Purification effects of different combinations of ornamental aquatic plants on eutrophic water
-
摘要:
目的 以适应性较强的挺水、浮水、沉水等观赏植物为试材,研究不同组合的水生观赏植物对不同质量浓度富营养化水体的净化效果。 方法 从2020年4月下旬开始,以挺水植物千屈菜Lythrum salicaria、黄菖蒲Iris pseudacorus、水葱Scirpus validus,浮水植物荇菜Nymphoides peltatum、睡莲 Nymphaea tetragon,沉水植物金鱼藻Ceratophyllum demersum进行不同种植组合处理,比较这些组合处理植物在低、中、高3种不同质量浓度(3种实验水体的总磷、总氮、氨态氮、化学需氧量分别为:2.00、0.20、0.67、20.00 mg·L−1;10.00、1.00、3.34、50.00 mg·L−1;20.00、2.00、6.67、100.00 mg·L−1)的富营养化水体中的生长情况以及去除总磷、总氮、氨氮及降低化学需氧量等的水体净化效果。 结果 ①总体来看,水葱在低质量浓度富营养化水体中长势较好,而千屈菜、黄菖蒲在中、高质量浓度处理下比低质量浓度处理下长势好;荇菜长势快,优于睡莲,但可能会影响组合配植植物的生长,而金鱼藻在与荇菜组合时长势弱于与睡莲组合。②总磷去除效果:在低质量浓度处理中,水葱+睡莲+金鱼藻组在前期对富营养水体总磷去除能力较强,去除率达47.57%;黄菖蒲+睡莲+金鱼藻的组合在后期净化效果最好,35 d时最高总磷去除率达74.59%;高质量浓度处理中,黄菖蒲+睡莲+金鱼藻组与水葱+睡莲+金鱼藻均有较好的去除效果。③总氮去除效果:在低质量浓度处理中,水葱所在的2个植物组合去除效果较好,总氮去除率均在30.00%以上;中质量浓度处理中,水葱+睡莲+金鱼藻组效果较好;黄菖蒲+睡莲+金鱼藻在低、中、高3种质量浓度处理中都有不错的净化效果。④氨氮去除效果:在低质量浓度处理中,水葱+荇菜+金鱼藻组去除氨氮效果最好,去除率达14.03%;中质量浓度处理中,千屈菜+睡莲+金鱼藻组净化效果最好,最高去除率达4.09%;高质量浓度处理中,黄菖蒲+睡莲+金鱼藻组和水葱+睡莲+金鱼藻组综合净化效果最好。⑤化学需氧量去除效果:在低质量浓度处理中,水葱+睡莲+金鱼藻组去除化学需氧量综合净化效果最好,去除率达108.33%;黄菖蒲+睡莲+金鱼藻组在低、中、高3种质量浓度处理下都有良好的净化效果,去除率分别为115.00%、46.00%、41.50%。 结论 结合各组合的景观应用价值分析,最终得出黄菖蒲+睡莲+金鱼藻组在不同质量浓度富营养化水体中均有良好的净化效果,且具有较高的景观应用价值,是最佳的种植组合。图4表6参25 Abstract:Objective The objective is to study the purification effects of aquatic ornamental plants on eutrophic water bodies. Method From late April 2020, different planting combinations were carried out with the water-holding plants Lythrum salicaria, Iris pseudacorus and Scirpus validus, the floating plants Nymphoides peltatum and Nymphaea tetragon, and the submerged plant Ceratophyllum demersum to compare their growth in water with 3 different levels of eutrophication: low, medium and high, and the water purification effects of removing total phosphorus(TP), total nitrogen(TN), ammonia nitrogen(NH3-N) and reducing chemical oxygen demand (COD ). TP, TN, NH3-N and COD of the 3 experimental water bodies were 2.00, 0.20, 0.67, 20.00 mg·L−1, 10.00, 1.00, 3.34, 50.00 mg·L−1, and 20.00, 2.00, 6.67, 100.00 mg·L−1). Result (1) S. validus grew well in the eutrophic water body with low mass concentration, while L. salicaria and I. pseudacorus grew better in the treatment of medium and high mass concentration than in the treatment of low mass concentration. N. peltatum grew faster and better than N. tetragon , but it might affect the growth of combined plants. C. demersum grew weaker in combination with N. peltatum than with N. tetragon. (2) In the low concentration treatment, the S. validus, N. tetragon and C. demersum algae group had a better ability to remove TP from eutrophic water body in the early stage, with a removal rate of 47.57%. The combination of I. pseudacorus, N. tetragon and C. demersum algae had the best purification effect in the late stage, with a TP removal rate of 74.59%. In the medium and high concentration treatment, both the I. pseudacorus, N. tetragon and C. demersum algae group and S. validus, N. tetragon and C. demersum algae group had good TP removal effects. (3) In the low concentration treatment, the two planting combinations with S. validus had better removal effects, reaching 30.00% or more. In the medium concentration treatment, the TN removal effect of S. validus, N. tetragon and C. demersum algae group was better. I. pseudacorus, N. tetragon and C. demersum algae had good purification effect in the treatment of low, medium and high concentrations. (4) In the low concentration treatment, the group of S. validus, N. peltatum and C. demersum algae had the best effect of removing NH3-N, with a removal rate of 14.03%. In the medium concentration treatment, the group of L. salicaria, N. tetragon and C. demersum algae had the best purification effect, reaching 4.09%. In the high concentration treatment, both I.pseudacorus, N. tetragon and C. demersum algae group and S. validus, N. tetragon and C. demersum algae group had the best purification effect. (5) In the low concentration treatment, the effect of S. validus, N. tetragon and C. demersum algae group on COD removal was the best, up to 108.33%. The group of I. pseudacorus, N. tetragon and C. demersum algae had good purification effect in the treatment of low, medium and high concentrations, and the removal rates were 115.00%, 46.00% and 41.50% respectively. Conclusion The group of I. pseudacorus, N. tetragon and C. demersum has good purification effects in eutrophic water bodies of different concentrations and has high landscape application value. It proves to be the best planting combination. [Ch, 4 fig. 6 tab. 25 ref.] -
Key words:
- aquatic plant /
- eutrophication /
- plant combination /
- water restoration
-
表 1 植物种植组合处理
Table 1. Planting combination treatment
编号 种植组合 对照组(ck) 无植物 QXJ 千屈菜+荇菜+金鱼藻 QSJ 千屈菜+睡莲+金鱼藻 HXJ 黄菖蒲+荇菜+金鱼藻 HSJ 黄菖蒲+睡莲+金鱼藻 SXJ 水葱+荇菜+金鱼藻 SSJ 水葱+睡莲+金鱼藻 表 2 水体参数
Table 2. Parameters of the test water
富营养
化程度总氮/
(mg·L-1)总磷/
(mg·L-1)氨氮/
(mg·L-1)化学需氧量/
(mg·L-1)低 2.00 0.20 0.67 20.00 中 10.00 1.00 3.34 50.00 高 20.00 2.00 6.67 100.00 表 3 不同质量浓度富营养处理下不同水生植物组合对水体总磷的去除率
Table 3. Removal of TP from water bodies by different aquatic plant combinations under different eutrophic concentration treatments
富营养化程度 天数/d 不同植物种植组合处理对总磷的去除率/% QXJ QSJ HXJ HSJ SXJ SSJ 低 7 0.00±1.88 ab 0.35±2.20 ab −4.90±0.30 b 5.85±4.83 a −46.04±2.66 c 12.53±4.43 a 14 36.06±0.94 ab 32.80±2.72 b 40.78±0.76 ab 33.76±0.06 b 3.83±3.99 c 47.57±3.76 a 21 34.53±6.23 a 26.86±4.73 a 37.60±9.64 a 49.87±3.91 a 42.59±4.36 a 36.83±0.94 a 28 81.13±1.45 a 64.28±5.05 b 61.39±2.88 bc 74.59±2.21 ab 72.89±1.76 ab 49.15±0.92 c 35 16.10±1.33 b 42.93±6.68 a 31.05±3.45 ab 42.93±2.17 a 34.50±2.30 a 33.75±5.53 a 中 7 4.37±0.69 a 1.53±2.62 a 2.76±1.59 a 1.38±2..42 a 0.92±0.92 a 4.30±0.61 a 14 26.47±1.57 a 27.16±0.79 a 22.71±4.93 a 26.24±1.86 a 20.56±4.82 a 20.95±4.09 a 21 9.21±1.36 a 12.43±1.16 a 6.91±1.33 a 11.66±0.81 a 11.05±1.46 a 11.74±1.47 a 28 20.34±0.58 a 19.53±1.53 a 21.03±0.59 a 21.71±0.23 a 18.93±0.94 a 19.59±1.85 a 35 8.06±1.21 a 8.42±1.12 a 3.96±0.68 ab 8.52±0.23 a 2.15±1.34 b 7.37±0.99 a 高 7 4.45±0.41 a 6.22±0.13 a 4.83±0.72 a 5.06±0.80 a 5.99±0.27 a 4.95±1.35 a 14 6.98±0.27 a 7.21±0.13 a 6.98±0.46 a 4.99±0.31 b 6.98±0.03 a 6.29±0.13 ab 21 10.97±0.44 a 10.97±0.48 a 7.37±0.76 bc 10.13±1.07 ab 9.94±0.83 ab 6.14±0.01 c 28 12.20±0.62 a 12.50±0.31 a 10.66±0.67 a 10.36±1.38 a 10.66±1.31 a 12.04±1.77 a 35 9.30±0.60 ab 7.60±1.74 b 11.59±0.15 ab 12.20±0.70 a 7.75±1.01 b 12.35±0.81 a 说明:同行平均值后不同小写字母表示同一时间不同植物组合对总磷的去除率差异显著(P<0.05) 表 4 不同质量浓度富营养处理下不同水生植物组合对水体总氮的去除率
Table 4. Removal of TN from water bodies by different aquatic plant combinations under different eutrophic concentration treatments
富营养化程度 天数/d 不同植物种植组合处理对总氮的去除率/% QXJ QSJ HXJ HSJ SXJ SSJ 低 7 0.44±2.06 a −0.83±0.74 a −0.78±1.15 a 9.75±4.14 a 2.08±0.93 a 2.19±1.30 a 14 2.62±1.18 a 0.34±3.95 a 1.90±1.19 a 6.23±3.33 a 6.04±2.71 a 8.79±6.38 a 21 1.36±1.81 a 2.33±1.22 a 1.39±0.98 a −2.42±2.48 a 1.50±1.29 a 2.53±2.74 a 28 3.64±0.13 a 11.40±2.49 a 11.63±11.62 a −10.00±2.60 a 0.25±2.02 a 11.62±6.19 a 35 12.05±4.07 d 16.93±2.62 cd 22.10±1.04 bcd 24.95±1.41 bc 47.33±1.99 a 30.90±0.17 b 中 7 0.40±0.06 a 0.67±0.35 a −0.05±0.41 a 1.15±1.30 a −0.42±0.39 a −0.66±0.60 a 14 0.24±0.30 a 0.30±0.41 a 0.94±0.18 a 0.59±0.21 a 2.10±1.04 a 0.60±0.34 a 21 0.28±0.23 a 0.13±0.27 a 0.40±0.17 a 0.55±0.10 a 0.11±0.35 a 0.32±0.23 a 28 8.43±0.63 a 9.44±0.77 a 12.58±3.92 a 13.66±0.84 a 9.44±0.12 a 10.51±1.26 a 35 2.15±0.56 bc 2.67±0.44 bc 0.79±0.08 c 3.36±0.24 abc 3.43±0.56 ab 5.59±0.94 a 高 7 0.23±0.27 a −0.58±0.21 a −0.48±0.22 a −0.11±0.04 a −0.13±0.10 a −0.05±0.22 a 14 0.41±0.12 ab −0.06±0.06 c 0.67±0.00 a 0.71±0.04 a 0.15±0.11 bc 0.48±0.08 ab 21 0.22±0.40 a −0.17±0.15 a 0.33±0.10 a 0.05±0.13 a 0.20±0.11 a 0.24±0.22 a 28 1.29±0.13 a 1.20±0.05 a 1.08±0.06 a 1.27±0.05 a 1.29±0.09 a 1.23±0.05 a 35 2.59±0.06 b 2.85±0.04 b 2.78±0.09 b 3.47±0.24 a 2.76±0.09 b 2.60±0.12 b 说明:同行平均值后不同小写字母表示同一时间不同植物组合对总氮的去除率差异显著(P<0.05) 表 5 不同质量浓度富营养处理下不同水生植物组合对水体氨氮的去除率
Table 5. Removal of NH3-N from water bodies by different aquatic plant combinations under different eutrophic concentration treatments
富营养化程度 天数/d 不同植物种植组合处理对氨氮的去除率/% QXJ QSJ HXJ HSJ SXJ SSJ 低 7 −1.49±4.80 a −4.98±5.87 a −9.70±3.02 a −0.75±3.88 a −8.96±5.24 a −7.96±7.77 a 14 1.50±0.43 a −38.06±4.31 d −13.43±0.43 c −3.73±1.72 ab −12.69±1.72 bc 0.75±0.00 a 21 21.89±0.86 b 21.89±1.72 b 20.40±0.86 b 30.35±1.79 a 31.34±1.99 a 33.08±1.29 a 28 11.19±15.08 ab 29.85±6.03 a −15.67±1.29 b 31.34±2.59 a 38.06±7.32 a 18.66±1.29 ab 35 10.65±0.28 ab 7.66±1.75 b 11.74±1.04 ab 7.56±1.42 b 14.03±1.29 a 9.48±0.73 ab 中 7 −2.69±0.46 a 1.10±0.87 a −1.05±1.12 a −0.90±1.04 a −0.60±1.38 a −2.84±0.09 a 14 1.40±0.17 a 0.30±0.10 a 0.10±1.90 ab 0.65±0.09 a −0.40±0.35 ab −1.00±0.17 b 21 2.30±0.53 a 4.09±0.36 a 3.44±0.61 a 1.20±0.35 ab 2.20±1.21 a −1.35±0.09 b 28 0.00±0.17 a 0.15±1.30 a 0.75±0.78 a −0.60±0.52 a 0.20±1.15 a 1.00±0.40 a 35 0.91±0.03 bc 1.68±0.10 ab 0.67±0.29 bc 0.61±0.22 c 1.50±0.25 abc 2.27±0.29 a 高 7 2.60±0.40 a 1.40±0.80 a 1.45±0.35 a 2.65±0.17 a 0.70±1.08 a 0.30±0.13 a 14 3.42±0.87 a 2.82±0.56 a 3.87±0.22 a 3.82±0.09 a 3.37±0.69 a 2.17±0.61 a 21 1.15±1.00 a 0.60±1.15 a −0.75±1.73 a 0.75±0.94 a 1.25±0.53 a −0.97±1.34 a 28 0.65±0.48 ab 0.12±0.87 ab −0.37±1.04 b 2.70±0.13 ab 2.32±0.43 ab 3.07±0.61 a 35 0.66±0.01 c 0.95±0.08 b 1.08±0.04 ab 1.19±0.03 a 1.04±0.06 ab 1.08±0.02 ab 说明:同行平均值后不同小写字母表示同一时间不同植物组合对氨氮的去除率差异显著(P<0.05) 表 6 不同质量浓度富营养处理下不同水生植物组合对水体化学需氧量的去除率
Table 6. Removal of COD from water bodies by different aquatic plant combinations under different eutrophic concentration treatments
富营养化程度 天数/d 不同植物种植组合处理对化学需氧量的去除率/% QXJ QSJ HXJ HSJ SXJ SSJ 低 7 25.00±5.00 ab 6.67±9.28 ab −16.67±23.15 b −1.67±12.02 ab −13.33±11.67 b 50.00±10.41 a 14 −41.67±3.33 a −47.50±10.10 ab −78.33±23.33 b −10.00±10.00 a −25.00±22.55 a −3.33±6.01 a 21 57.50±15.28 a 52.50±11.55 a 27.50±25.98 a 69.17±3.33 a 37.50±7.64 a 54.17±8.33 a 28 60.00±7.22 a 30.83±12.02 a −0.83±30.05 a 25.83±4.41 a 45.83±16.91 a 59.17±10.93 a 35 12.50±7.22 b −6.67±4.41 b −7.50±10.10 b 115.00±8.67 a 105.00±0.00 a 108.33±16.07 a 中 7 10.00±6.11 a 14.67±2.40 a 9.33±0.67 a 2.00±16.17 a 16.00±9.24 a −4.00±7.57 a 14 37.33±5.21 a 4.67±8.33 ab −14.33±9.81 b 13.33±6.36 ab 5.33±13.28 ab −10.00±7.06 b 21 6.00±5.29 a 2.00±5.03 a 4.00±12.70 a 6.00±4.62 a 16.00±5.29 a −13.00±0.58 a 28 −7.33±9.96 a 3.33±11.39 a 4.67±10.67 a 7.33±0.67 a 4.67±6.96 a 10.00±8.00 a 35 41.33±3.46 ab 36.00±6.36 ab 19.33±3.46 b 46.00±2.91 a 43.33±7.02 a 34.67±2.91 ab 高 7 11.67±2.85 ab 9.67±2.91 b 15.67±2.19 ab 25.33±1.76 a 17.00±2.31 ab 11.33±4.67 b 14 −8.00±5.51 a −6.33±2.85 a 3.00±3.61 a −5.33±4.84 a −5.33±5.55 a −4.00±1.00 a 21 1.33±6.96 a 11.00±3.76 a 13.33±1.20 a 10.00±1.20 a 7.33±9.02 a 13.33±3.38 a 28 11.00±3.46 a 5.50±2.02 a 15.00±1.15 a 14.00±4.16 a 10.00±4.04 a 10.67±4.81 a 35 27.00±0.58 c 36.00±1.15 b 41.33±0.88 a 41.50±0.29 a 19.00±0.58 d 6.00±0.58 e 说明:同行平均值后不同小写字母表示同一时间不同植物组合对化学需氧量去除率差异显著(P<0.05) -
[1] 张家洋, 陈丽丽, 李慧. 水生植物对富营养化水体除磷去氮的研究概述[J]. 西北师范大学学报(自然科学版), 2013, 49(1): 115 − 120. doi: 10.16783/j.cnki.nwnuz.2013.01.022 ZHANG Jiayang, CHEN Lili, LI Hui. The summary of hydrophytes on removal of nitrogen and phosphorus in eutrophic water [J]. Journal of Northwest Normal University (Natrual Science) , 2013, 49(1): 115 − 120. doi: 10.16783/j.cnki.nwnuz.2013.01.022 [2] 刘伸伸, 张震, 何金铃, 等. 水生植物对氮磷及重金属污染水体的净化作用[J]. 浙江农林大学学报, 2016, 33(5): 910 − 919. doi: 10.11833/j.issn.2095-0756.2016.05.025 LIU Shenshen, ZHANG Zhen, HE Jinling, et al. Purification effect of aquatic plants on nitrogen, phosphorus and heavy metal polluted water [J]. Journal of Zhejiang A&F University, 2016, 33(5): 910 − 919. doi: 10.11833/j.issn.2095-0756.2016.05.025 [3] GLIWICZ Z M. Can ecological theory be used to improve water quality [J]. Hydrobiologia, 1992, 243/244: 283 − 291. doi: 10.1007/BF00007044 [4] GABALLAH M S, ABDELWAHAB O, BARAKAT K M, et al. A novel horizontal subsurface flow constructed wetland planted with Typha angustifolia for treatment of polluted water [J]. Environmental Science and Pollution Research International, 2020, 27(22): 28449 − 28462. doi: 10.1007/s11356-020-08669-5 [5] RODRIGUEZ M, BRISSON J. Does the combination of two plant species improve removal efficiency in treatment wetlands? [J]. Ecological Engineering, 2016, 91: 302 − 309. doi: 10.1016/j.ecoleng.2016.02.047 [6] MOORE M T, LOCKE M A, KRÖGER R. Using aquatic vegetation to remediate nitrate, ammonium, and soluble reactive phosphorus in simulated runoff [J]. Chemosphere:Environmental Toxicology and Risk Assessment, 2016, 160: 149 − 154. [7] COLEMAN J, HENCH K, GARBUTT K, et al. Treatment of domestic wastewater by three plant species in constructed wetlands [J]. Water,Air,and Soil Pollution, 2001, 128(3/4): 283 − 295. doi: 10.1023/A:1010336703606 [8] 周玥, 韩玉国, 张梦, 等. 4种不同生活型湿地植物对富营养化水体的净化效果[J]. 应用生态学报, 2016, 27(10): 3353 − 3360. doi: 10.13287/j.1001-9332.201610.019 ZHOU Yue, HAN Yuguo, ZHANG Meng, et al. Purification efficiency of four different ecotypes of wetland plants on eutrophic water body [J]. Chinese Journal of Applied Ecology, 2016, 27(10): 3353 − 3360. doi: 10.13287/j.1001-9332.201610.019 [9] 王春景. 菰和菖蒲对污染水体净化和修复效果的研究[D]. 芜湖: 安徽师范大学, 2006. WANG Chunjing. Studies on Phytopurification and Phytoremediation of Contaminated waters by Zizania latifolia Turez. and Acorus calamus L. [D]. Wuhu: Anhui Normal University, 2006. [10] 中国环境科学研究院. 地表水环境质量标准: GB 3838—2002[S]. 北京: 中国标准出版社, 2000. Chinese Research of Academy of Environmental Sciences. Environmental Quality Standard for Surface Water: GB 3838–2002[S]. Beijing: China Standards Press, 2000. [11] 国家环境保护总局《水和废水监测分析方法》编委会. 水和废水监测分析方法 [M]. 4版. 北京: 中国环境科学出版社, 2002. Editorial Committee of Water and Wastewater Monitoring and Analysis Methods, State Environmental Protection Administration. Water and Wastewater Monitoring and Analysis Methods [M]. 4th ed. Beijing: China Environmental Science Press, 2002. [12] 吴卿, 王美, 许吟波, 等. 不同植物生物栅系统对富营养化景观水净化试验[J]. 水土保持学报, 2013, 27(4): 171 − 175. doi: 10.13870/j.cnki.stbcxb.2013.04.011 WU Qing, WANG Mei, XU Yinbo, et al. Study on different plant biological grid systems in eutrophic landscape water [J]. Journal of Soil and Water Conservation, 2013, 27(4): 171 − 175. doi: 10.13870/j.cnki.stbcxb.2013.04.011 [13] 吴中华. 竞争对水生浮叶植物群落关键种、冗余种和资源配置的影响[D]. 武汉: 武汉大学, 2005. WU Zhonghua. Effects of Competition on the Keystone Species, Redundant Species and Resource Allocation of Floating-leaved Aquatic Plant Communities[D]. Wuhan: Wuhan University, 2005. [14] 褚淑祎, 赖政钢, 李锷, 等. 3种块茎类挺水植物的净水效能及资源化利用[J]. 浙江农林大学学报, 2020, 37(6): 1224 − 1229. CHU Shuyi, LAI Zhenggang, LI E, et al. Water purification efficiency and resource utilization of three tuberous emergent aquatic plants [J]. Journal of Zhejiang A&F University, 2020, 37(6): 1224 − 1229. [15] 张景雯, 田如男. 4种植物对模拟的城市景观污水的净化效果[J]. 湿地科学, 2018, 16(1): 85 − 92. ZHANG Jingwen, TIAN Runan. Purification effect of four kinds of aquatic plants on simulated urban landscape polluted water [J]. Wetland Science, 2018, 16(1): 85 − 92. [16] 王兴华, 王云. 微生物与植物协同去除生活污水中总氮、总磷、COD的效果研究[J]. 山东农业科学, 2015, 47(3): 45 − 48, 51. doi: 10.14083/j.issn.1001-4942.2015.03.013 WANG Xinghua, WANG Yun. Effect of plant synergetic with microorganism on removing total nitrogen, total phosphorus and COD from sewage [J]. Shandong Agricultural Sciences, 2015, 47(3): 45 − 48, 51. doi: 10.14083/j.issn.1001-4942.2015.03.013 [17] 宋红, 陈玮, 何兴元, 等. 3种水(湿)生植物对浑河水体氮去除能力研究[J]. 水生态学杂志, 2014, 35(2): 14 − 19. doi: 10.3969/j.issn.1674-3075.2014.02.003 SONG Hong, CHEN Wei, HE Xingyuan, et al. Effect of three hydrophytes on removal of nitrogen in Hunhe River [J]. Journal of Hydroecology, 2014, 35(2): 14 − 19. doi: 10.3969/j.issn.1674-3075.2014.02.003 [18] 陈照方, 陈凯, 杨司嘉. 水生植物对淡水生态系统的修复效果[J]. 分子植物育种, 2019, 17(13): 4501 − 4506. doi: 10.13271/j.mpb.017.004501 CHEN Zhaofang, CHEN Kai, YANG Sijia. Analysis of remediation effect of aquatic plants on freshwater ecosystem [J]. Molecular Plant Breeding, 2019, 17(13): 4501 − 4506. doi: 10.13271/j.mpb.017.004501 [19] 张倩妮, 陈永华, 杨皓然, 等. 29种水生植物对农村生活污水净化能力研究[J]. 农业资源与环境学报, 2019, 36(3): 392 − 402. doi: 10.13254/j.jare.2018.0235 ZHANG Qianni, CHEN Yonghua, YANG Haoran, et al. Study on the purification ability of 29 aquatic plants to rural domestic sewage [J]. Journal of Agricultural Resources and Environment, 2019, 36(3): 392 − 402. doi: 10.13254/j.jare.2018.0235 [20] 胡傲, 李宇辉, 杨予静, 等. 不同生长型沉水植物配置对生物量积累和水质净化效果的影响[J]. 湖泊科学, 2022, 34(5): 1484 − 1492. doi: 10.18307/2022.0527 HU Ao, LI Yuhui, YANG Yujing, et al. Effects of different growth form submerged macrophyte assemblages on biomass accumulation and water purification [J]. Journal of Lake Sciences, 2022, 34(5): 1484 − 1492. doi: 10.18307/2022.0527 [21] 杨澜, 牛健植, 伦小秀, 等. 不同栽植密度下金鱼藻对富营养化水体净化效果研究[J]. 北京林业大学学报, 2020, 42(9): 130 − 138. doi: 10.12171/j.1000-1522.20190447 YANG Lan, NIU Jianzhi, LUN Xiaoxiu, et al. Purification efficiency of Ceratophyllum demersum under different planting densities in eutrophic water [J]. Journal of Beijing forestry University, 2020, 42(9): 130 − 138. doi: 10.12171/j.1000-1522.20190447 [22] 刘丽霞, 冯国锋. 水生植物景观的营造[J]. 北方园艺, 2008(7): 188 − 190. LIU Lixia, FENG Guofeng. The creation of aquatic plant landscapes [J]. Northern Horticulture, 2008(7): 188 − 190. [23] 储荣华. 水生植物的生态和景观应用[D]. 苏州: 苏州大学, 2010. CHU Ronghua. The Ecological and Landscape Applications of Hydrophytes[D]. Suzhou: Soochow University, 2010. [24] 周炜. 睡莲、荷花品种耐阴性比较及水培装置研究[D]. 南京: 南京农业大学, 2019. ZHOU Wei. Comparison of Low Light Tolerance of Water Lily and Lotus Varieties and Study on Hydroponic Device[D]. Nanjing: Nanjing Agricultural University, 2019. [25] 董淮晋, 何连生, 黄彩红, 等. 利用轮藻和金鱼藻组合治理白洋淀富营养化水体研究[J]. 湿地科学, 2013, 11(4): 505 − 509. doi: 10.3969/j.issn.1672-5948.2013.04.016 DONG Huaijin, HE Liansheng, HUANG Caihong, et al. Using submersed plants Chara sp. and Ceratophyllum demersum to control eutrophication in Baiyangdian Lake [J]. Wetland Science, 2013, 11(4): 505 − 509. doi: 10.3969/j.issn.1672-5948.2013.04.016 -
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20220446

计量
- 文章访问数: 7
- 被引次数: 0