留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

毛竹根系、新鲜枝叶、凋落物及土壤浸提液对浙贝母的化感作用

吴海平 叶根华 李伟成

吴海平, 叶根华, 李伟成. 毛竹根系、新鲜枝叶、凋落物及土壤浸提液对浙贝母的化感作用[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20220471
引用本文: 吴海平, 叶根华, 李伟成. 毛竹根系、新鲜枝叶、凋落物及土壤浸提液对浙贝母的化感作用[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20220471
WU Haiping, YE Genhua, LI Weicheng. Allelopathic effects of Phyllostachys edulis extracts on Fritillaria thunbergii[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20220471
Citation: WU Haiping, YE Genhua, LI Weicheng. Allelopathic effects of Phyllostachys edulis extracts on Fritillaria thunbergii[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20220471

本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。

毛竹根系、新鲜枝叶、凋落物及土壤浸提液对浙贝母的化感作用

doi: 10.11833/j.issn.2095-0756.20220471
基金项目: 浙江省省院合作项目(2015SY06);浙江省科技计划项目(2016F50008)
详细信息
    作者简介: 吴海平(ORCID: 0000-0002-8207-1288),高级工程师,从事林下经济、生态产品价值实现和林草湿地资源调查监测研究。E-mail: WHP42@126.com
  • 中图分类号: Q946

Allelopathic effects of Phyllostachys edulis extracts on Fritillaria thunbergii

  • 摘要:   目的  探讨毛竹Phyllostachys edulis根系、新鲜枝叶、凋落物及土壤浸提液对浙贝母Fritillaria thunbergii的化感作用,筛选毛竹-药用植物复合经营体系的适生经济物种。  方法  选择药用植物浙贝母作为目标植物,开展不同质量浓度(0.005、0.010、0.020、0.050和0.100 kg·L−1)毛竹(根系、新鲜枝叶、凋落物和0~20 cm土壤浸提液)的化感作用试验。  结果  ①根系浸提液对浙贝母的生长性状(株高、生物量和叶面积)、光合色素(叶绿素a、叶绿素b、叶绿素a+b)和药效成分的影响表现为“低促高抑”的效应。②新鲜枝叶、凋落物和土壤浸提液对浙贝母生长性状、光合色素和药效成分表现为促进作用,提高了叶面积的同时亦可提升直射光和漫射光的吸收能力,有利于浙贝母在弱光环境下生长;浙贝母最大净光合速率、光饱和点在这3种浸提液处理下,随着浸提液质量浓度增加表现为先升高后下降,同时增加了表观量子效率,降低了光补偿点,表明毛竹浸提液改变了浙贝母对光能的利用率和光强吸收范围。③根系浸提液对浙贝母的化感综合效应最强,土壤浸提液最弱。④高质量浓度根系浸提液处理时,浙贝母丙二醛质量摩尔浓度增加,表明浙贝母受到一定的环境胁迫。  结论  浙贝母可适应除高质量浓度根系浸提液外的其他浸提液浇灌,且可提升生物量和药效成分。建议开展整地作业,清理毛竹林死根鞭,有利于浙贝母的优质生长。图1表5参20
  • 图  1  毛竹不同浸提液对浙贝母抗氧化酶活性和丙二醛的影响

    Figure  1  Effects of different extracts of Ph. edulis forest on the activities of antioxidant enzymes and MDA content of F. thunbergii

    表  1  毛竹不同浸提液对浙贝母株高、生物量和叶面积的影响

    Table  1.   Effects of different extracts of Ph. edulis forest on height of F. thunbergia

    浸提液浙贝母株高
    ck/cmT1T2T3T4T5
    数值/cmIR数值/cmIR数值/cmIR数值/cmIR数值/cmIR
    根系 42.75±2.31c 57.93±0.86 a 0.26 53.20±3.43 b 0.20 52.27±2.75 b 0.18 43.30±0.85 c 0.01 37.78±3.12 d −0.12
    新鲜枝叶 42.75±2.31 a 46.80±3.89 a 0.09 46.00±2.73 a 0.07 45.50±3.51 a 0.06 44.55±5.39 a 0.04 42.50±1.84 a −0.01
    凋落物 42.75±2.31 a 44.03±3.89 a 0.03 44.47±3.42 a 0.04 42.75±6.04 a 0.00 41.58±10.41 a −0.03 38.43±6.84 a −0.10
    土壤 42.75±2.31 ab 46.47±3.78 a 0.08 43.97±1.08 a 0.03 42.02±3.99 ab −0.02 38.13±4.11 b −0.11 37.90±3.65 b −0.11
    浸提液 浙贝母地上生物量
    ck/g T1 T2 T3 T4 T5
    数值/g IR 数值/g IR 数值/g IR 数值/g IR 数值/g IR
    根系 0.85±0.03 b 1.02±0.09 a 0.17 1.09±0.11 a 0.22 1.08±0.15 a 0.21 0.81±0.03 b −0.05 0.75±0.10 b −0.12
    新鲜枝叶 0.85±0.03 c 1.10±0.02 bc 0.15 1.16±0.04 ab 0.27 1.27±0.04 a 0.33 1.09±0.17 b 0.22 0.86±0.01 c 0.02
    凋落物 0.85±0.03 b 0.90±0.07 b 0.05 1.04±0.10 a 0.18 0.93±0.04 b 0.09 0.90±0.02 b 0.06 0.85±0.06 b 0.00
    土壤 0.85±0.03 b 0.87±0.04 b 0.02 1.15±0.06 a 0.26 0.10±0.17 ab 0.15 0.97±0.07 ab 0.12 0.87±0.04 b 0.02
    浸提液 浙贝母地下生物量
    ck/g T1 T2 T3 T4 T5
    数值/g IR 数值/g IR 数值/g IR 数值/g IR 数值/g IR
    根系 1.16±0.20 c 1.41±0.10 bc 0.18 2.21±0.01 a 0.48 1.59±0.29 b 0.27 1.16±0.11 c 0.00 1.05±0.01 c −0.10
    新鲜枝叶 1.16±0.20 a 1.29±0.06 a 0.10 1.43±0.03 a 0.19 1.46±0.36 a 0.20 1.40±0.10 a 0.17 1.34±0.07 a 0.13
    凋落物 1.16±0.20 b 1.51±0.05 a 0.23 1.55±0.10 a 0.25 1.46±0.06 a 0.20 1.23±0.16 b 0.06 1.18±0.05 b 0.02
    土壤 1.16±0.20 a 1.58±0.40 a 0.27 1.87±0.64 a 0.38 1.66±0.21 a 0.30 1.42±0.01 a 0.18 1.30±0.28 a 0.14
    浸提液 浙贝母叶面积
    ck/cm2 T1 T2 T3 T4 T5
    数值/cm2 IR 数值/cm2 IR 数值/cm2 IR 数值/cm2 IR 数值/cm2 IR
    根系 5.29±1.35 a 7.03±2.39 a 0.25 7.37±0.41 a 0.28 6.50±4.31 a 0.19 5.92±0.26 a 0.11 3.18±1.17 a −0.40
    新鲜枝叶 5.29±1.35 a 6.21±1.16 a 0.15 7.28±2.35 a 0.27 6.08±4.20 a 0.13 5.77±1.03 a 0.08 5.60±1.72 a 0.06
    凋落物 5.29±1.35 a 7.19±0.32 a 0.27 6.91±0.82 a 0.24 6.65±0.97 a 0.21 5.58±0.21 a 0.05 5.57±0.45 a 0.05
    土壤 5.29±1.35 a 6.52±0.88 a 0.19 8.89±2.40 a 0.41 7.55±2.90 a 0.30 6.30±1.28 a 0.16 5.43±1.54 a 0.03
      说明:同行不同小写字母表示处理间差异显著(P<0.05); 表中数值为平均值±标准差
    下载: 导出CSV

    表  2  毛竹不同浸提液对浙贝母光合色素参数的影响

    Table  2.   Effects of different extracts of Ph. edulis forest on the photosynthetic pigment of F. thunbergia

    浸提液叶绿素a
    ck/(mg·g−1)T1T2T3T4T5
    数值/(mg·g−1)IR数值/(mg·g−1)IR数值/(mg·g−1)IR数值/(mg·g−1)IR数值/(mg·g−1)mIR
    根系 1.49±0.13 b 1.81±0.10 a 0.18 1.70±0.65 ab 0.13 1.68±0.23 ab 0.12 1.51±0.11 b 0.02 1.34±0.12 c −0.10
    新鲜枝叶 1.49±0.13 d 1.76±0.02 b 0.15 1.93±0.02 a 0.23 1.63±0.02 c 0.09 1.57±0.01 cd 0.06 1.57±0.04 cd 0.05
    凋落物 1.49±0.13 c 1.93±0.04 a 0.23 1.74±0.04 b 0.15 1.61±0.04 bc 0.08 1.58±0.01 bc 0.06 1.54±0.04 c 0.03
    土壤 1.49±0.13 b 1.69±0.02 a 0.120 1.63±0.02 ab 0.09 1.58±0.03 ab 0.06 1.53±0.03 ab 0.05 1.55±0.06 ab 0.04
    浸提液 叶绿素b
    ck/(mg·g−1) T1 T2 T3 T4 T5
    数值/(mg·g−1) IR 数值/(mg·g−1) IR 数值/(mg·g−1) IR 数值/(mg·g−1) IR 数值/(mg·g−1) IR
    根系 0.44±0.01 c 0.66±0.63 ab 0.34 0.75±0.54 a 0.42 0.62±0.64 ab 0.20 0.59±0.11 ab 0.26 0.50±0.06 bc 0.13
    新鲜枝叶 0.44±0.01 b 0.68±0.01 a 0.36 0.73±0.01 a 0.40 0.50±0.01 b 0.13 0.47±0.01 ab 0.06 0.38±0.01 e −0.13
    凋落物 0.44±0.01 c 0.75±0.02 b 0.42 0.81±0.01 a 0.46 0.47±0.01 c 0.07 0.45±0.01 c 0.03 0.43±0.01 c −0.01
    土壤 0.44±0.01 c 0.67±0.01 a 0.35 0.63±0.01 a 0.31 0.53±0.01 b 0.18 0.51±0.01 bc 0.14 0.49±0.19 bc 0.12
    浸提液 叶绿素a/b
    ck T1 T2 T3 T4 T5
    数值 IR 数值 IR 数值 IR 数值 IR 数值 IR
    根系 3.46±0.72 a 2.77±0.13 a −0.20 2.27±0.23 a −0.34 2.72±0.26 a −0.21 2.62±0.36 a −0.24 2.74±0.59 a −0.21
    新鲜枝叶 3.46±0.72 ab 2.57±0.01 b −0.26 2.64±0.01 b −0.24 3.24±0.01 b −0.06 3.37±0.01 ab −0.03 4.16±0.04 a 0.12
    凋落物 3.46±0.72 a 2.57±0.01 b −0.26 2.16±0.02 b −0.38 3.45±0.01 a −0.01 3.51±0.01 a 0.02 3.58±0.01 a 0.03
    土壤 3.46±0.72 a 2.51±0.01 a −0.28 2.57±0.03 a −0.26 3.02±0.01 a −0.13 3.16±0.01 a −0.11 3.46±0.79 a −0.09
    浸提液 叶绿素a+b
    ck/(mg·g−1) T1 T2 T3 T4 T5
    数值/(mg·g−1) IR 数值/(mg·g−1) IR 数值/(mg·g−1) IR 数值/(mg·g−1) IR 数值/(mg·g−1) IR
    根系 1.92±0.09 c 2.47±0.16 a 0.22 2.45±0.03 a 0.22 2.30±0.08 ab 0.16 2.10±0.21 bc 0.08 1.84±0.06 c −0.04
    新鲜枝叶 1.92±0.09 e 2.44±0.02 b 0.21 2.66±0.03 a 0.28 2.13±0.02 c 0.01 2.04±0.01 d 0.06 1.95±0.04 e 0.01
    凋落物 1.92±0.09 d 2.68±0.05 a 0.28 2.54±0.05 b 0.24 2.08±0.05 c 0.08 2.04±0.01 cd 0.06 1.97±0.06 cd 0.02
    土壤 1.92±0.09 d 2.35±0.02 a 0.19 2.26±0.03 b 0.15 2.11±0.04 c 0.09 2.07±0.03 c 0.07 2.05±0.03 c 0.06
    浸提液 类胡萝卜素
    ck/(mg·g−1) T1 T2 T3 T4 T5
    数值/(mg·g−1) IR 数值/(mg·g−1) IR 数值/(mg·g−1) IR 数值/(mg·g−1) IR 数值/(mg·g−1) IR
    根系 0.52±0.01 a 0.63±0.04 a 0.17 0.62±0.03 a 0.16 0.60±0.04 a 0.13 0.56±0.03 a 0.06 0.55±0.01 a 0.05
    新鲜枝叶 0.52±0.01 b 0.60±0.01 a 0.13 0.59±0.01 a 0.12 0.53±0.01 b 0.02 0.45±0.01 c −0.15 0.43±0.01 c −0.17
    凋落物 0.52±0.01 b 0.61±0.01 a 0.14 0.59±0.01 a 0.12 0.52±0.01 b −0.01 0.50±0.01 b −0.05 0.47±0.02 c −0.10
    土壤 0.52±0.01 d 0.61±0.01 a 0.14 0.59±0.01 b 0.12 0.54±0.01 c 0.03 0.48±0.01 e −0.08 0.44±0.01 f −0.15
      说明:同行不同小写字母表示处理间差异显著(P<0.05); 表中数值为平均值±标准差
    下载: 导出CSV

    表  3  毛竹不同浸提液对浙贝母光响应特征参数的影响

    Table  3.   Effects of different extracts of Ph. edulis forest on photoresponse characteristic parameters of F. thunbergii

    浸提液表观量子效率
    ckT1T2T3T4T5
    数值IR数值IR数值IR数值IR数值IR
    根系 0.048±0.013 de 0.071±0.005 b 0.324 0.065±0.008 cd 0.262 0.063±0.004 cd 0.238 0.049±0.004 e 0.020 0.096±0.010 a 0.500
    新鲜枝叶 0.048±0.013 a 0.067±0.011 a 0.284 0.067±0.009 a 0.284 0.059±0.004 a 0.186 0.050±0.003 a 0.040 0.053±0.004 a 0.094
    凋落物 0.048±0.013 b 0.054±0.008 b 0.111 0.084±0.012 a 0.429 0.072±0.011 ab 0.333 0.053±0.006 b 0.094 0.059±0.011 b 0.186
    土壤 0.048±0.013 a 0.074±0.026 a 0.351 0.062±0.006 a 0.226 0.053±0.007 a 0.094 0.054±0.007 a 0.111 0.050±0.008 a 0.040
    浸提液 最大净光合速率
    ck/
    (μmol·m−2·s−1)
    T1 T2 T3 T4 T5
    数值/
    (μmol·m−2·s−1)
    IR 数值/
    (μmol·m−2·s−1)
    IR 数值/
    (μmol·m−2·s−1)
    IR 数值/
    (μmol·m−2·s−1)
    IR 数值/
    (μmol·m−2·s−1)
    IR
    根系 4.31±0.83 c 7.31±1.06 b 0.41 8.83±1.99 b 0.51 9.02±2.41 a 0.55 10.57±2.01 ab 0.59 3.99±0.68 c −0.08
    新鲜枝叶 4.31±0.83 a 6.65±1.04 a 0.35 7.15±2.31 a 0.40 6.19±1.65 a 0.30 4.49±0.67 a 0.04 4.68±1.01 a 0.08
    凋落物 4.31±0.83 b 6.52±0.42 a 0.34 6.52±0.82 a 0.34 5.32±1.21 ab 0.19 4.51±0.70 b 0.04 5.48±1.12 ab 0.21
    土壤 4.31±0.83 a 4.92±0.61 a 0.12 4.78±0.59 a 0.10 4.763±0.52 a 0.10 4.58±0.66 a 0.06 4.52±0.70 a 0.05
    浸提液 光饱和点
    ck/
    (μmol·m−2·s−1)
    T1 T2 T3 T4 T5
    数值/
    (μmol·m−2·s−1)
    IR 数值/
    (μmol·m−2·s−1)
    IR 数值/
    (μmol·m−2·s−1)
    IR 数值/
    (μmol·m−2·s−1)
    IR 数值/
    (μmol·m−2·s−1)
    IR
    根系 110.67±10.00 c 116.92±16.63 bc 0.05 151.25±19.04 b 0.27 240.38±26.52 a 0.54 236.20±23.33 a 0.53 51.97±7.26 d −0.53
    新鲜枝叶 110.67±10.00 a 114.18±12.30 a 0.03 121.60±16.16 a 0.09 121.81±20.48 a 0.09 109.84±12.00 a −0.01 107.09±12.52 a −0.03
    凋落物 110.67±10.00 b 139.20±13.21 a 0.21 89.50±8.01 c −0.19 87.79±10.36 c −0.21 97.23±9.27 c −0.12 109.78±12.84 bc −0.01
    土壤 110.67±10.00 a 80.00±7.32 b −0.23 93.23±10.25 ab −0.16 108.74±11.00 a −0.02 103.30±9.40 a −0.07 110.44±6.55 a −0.00
    浸提液 光补偿点
    ck/
    (μmol·m−2·s−1)
    T1 T2 T3 T4 T5
    数值/
    (μmol·m−2·s−1)
    IR 数值/
    (μmol·m−2·s−1)
    IR 数值/
    (μmol·m−2·s−1)
    IR 数值/
    (μmol·m−2·s−1)
    IR 数值/
    (μmol·m−2·s−1)
    IR
    根系 20.88±4.22 a 14.09±3.26 ab −0.32 15.38±3.02 ab −0.26 17.86±4.63 ab −0.14 20.41±4.10 a −0.02 10.42±2.15 b −0.50
    新鲜枝叶 20.88±4.22 a 14.91±2.11 a −0.28 14.92±2.69 a −0.28 16.95±1.65 a −0.19 20.00±3.21 a −0.04 18.87±2.91 a −0.09
    凋落物 20.88±4.22 a 18.52±2.08 a −0.11 11.91±0.67 b −0.43 13.89±1.33 b −0.33 18.86±0.90 a −0.09 16.95±2.15 ab −0.19
    土壤 20.88±4.22a 13.51±1.90 b −0.35 16.13±1.44 ab −0.23 18.70±2.61 a −0.09 18.52±1.55 a −0.11 20.00±2.71 a −0.04
      说明:同行不同小写字母表示处理间差异显著(P<0.05); 表中数值为平均值±标准差
    下载: 导出CSV

    表  4  毛竹不同浸提液对浙贝母的综合化感效应

    Table  4.   Synthesis effects of different extracts of Ph. edulis forest on F. thunbergia

    处理不同浸提液的综合化感效应指数处理不同浸提液的综合化感效应指数
    根系新鲜枝叶凋落物土壤根系新鲜枝叶凋落物土壤
    T10.1360.1060.1480.035T40.1040.0390.0200.041
    T20.2000.1540.1060.107T5−0.1080.0110.0160.016
    T30.1800.1020.0530.081平均值0.1030.0820.0690.056
    下载: 导出CSV

    表  5  毛竹不同浸提液对贝母素甲和贝母素乙质量分数的影响

    Table  5.   Effects of different extracts of Ph. edulis forest on the contents of fritillarin A and fritillarin B

    浸提液贝母素甲/(mg·kg−1)
    ckT1T2T3T4T5
    根系 65.15±1.84 b 87.15±1.53 a 88.77±0.27 a 58.30±0.30 c 40.12±0.12 d 39.79±3.29 d
    新鲜枝叶 65.15±1.84 d 95.56±1.06 b 108.58±3.58 a 86.99±1.99 b 82.75±0.25 c 71.76±1.26 d
    凋落物 65.15±1.84 e 113.94±3.00 a 91.22±1.22 b 87.75±0.25 c 83.26±0.26 d 81.89±1.35 d
    土壤 65.15±1.84 d 95.21±3.01 bc 100.56±0.51 a 96.65±1.50 b 92.78±0.50 c 91.57±1.40 c
    浸提液 不同处理下贝母素乙/(mg·kg−1)
    ck T1 T2 T3 T4 T5
    根系 29.10±1.10 b 41.93±0.40 a 42.15±0.15 a 27.92±0.60 b 22.45±2.20 c 16.70±1.20 d
    新鲜枝叶 29.10±1.10 d 47.33±0.30 b 62.34±2.04 a 46.23±1.02 b 40.15±0.15 b 35.13±0.10 c
    凋落物 29.10±1.10 c 45.45±1.30 a 43.47±3.40 a 39.07±1.07 b 38.42±1.96 b 38.04±1.04 b
    土壤 29.10±1.10 d 41.75±1.50 b 52.23±2.20 a 51.88±1.50 a 40.26±0.20 b 38.41±1.20 c
    下载: 导出CSV
  • [1] QIN Fangcuo, LIU Shu, YU Shixiao. Effects of allelopathy and competition for water and nutrients on survival and growth of tree species in Eucalyptus urophylla plantations [J]. Forest Ecology and Management, 2018, 424(15): 387 − 395.
    [2] INDERJIT, WARDLE D, KARBAN R, et al. The ecosystem and evolutionary contexts of allelopathy [J]. Trends in Ecology and Evolution, 2011, 26(12): 655 − 663. doi:  10.1016/j.tree.2011.08.003
    [3] HU Lingfei, ROBERT C A M, CADOT S, et al. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota [J/OL]. Nature Communications, 2018, 9: 2738[2022-06-07]. doi:  10.1038/s41467-018-05122-7.
    [4] BONANOM G, ZOTTI M G, IDBELLA M, et al. Microbiota modulation of allelopathy depends on litter chemistry: mitigation or exacerbation? [J/OL]. Science of the Total Environment, 2021, 776: 145942[2022-06-17]. doi:  10.1016/j.scitotenv.2021.145942.
    [5] 陈娟, 白尚斌, 周国模, 等. 毛竹浸提液对苦槠幼苗生长的化感效应[J]. 生态学报, 2014, 34(16): 4499 − 4507.

    CHEN Juan, BAI Shangbin, ZHOU Guomo, et al. Allelopathic effects of Phyllostachys edulis extracts on Castanopsis sclerophylla [J]. Acta Ecologica Sinica, 2014, 34(16): 4499 − 4507.
    [6] 刘姚姚, 张瑞, 沈晓飞, 等. 毛竹林不同浸提液对浙江楠幼苗生长的影响研究[J]. 西部林业科学, 2020, 49(3): 99 − 108. doi:  10.16473/j.cnki.xblykx1972.2020.03.016

    LIU Yaoyao, ZHANG Rui, SHEN Xiaofei, et al. Study on the effects of different extracts from Phyllostachys edulis forest on the growth of Phoebe chekiangensis seedlings [J]. Journal of West China Forestry Science, 2020, 49(3): 99 − 108. doi:  10.16473/j.cnki.xblykx1972.2020.03.016
    [7] 张瑞, 詹卉, 刘姚姚, 等. 毛竹林不同浸提液对延胡索生长指标和光合特征的影响[J]. 西南林业大学学报(自然科学), 2020, 40(3): 59 − 67.

    ZHANG Rui, ZHAN Hui, LIU Yaoyao, et al. Effects of different extracts from Phyllostachys edulis on the growth index and photosynthesis characteristics of Corydalis yanhusuo [J]. Journal of Southwest Forestry University (Natural Sciences), 2020, 40(3): 59 − 67.
    [8] 李欣欣, 赖金莉, 岳建华, 等. 毛竹各器官和根际土浸提液对杉木种子萌发的化感作用[J]. 生态学报, 2018, 38(22): 8149 − 8157.

    LI Xinxin, LAI Jinli, YUE Jianyue, et al. Allelopathy of Phyllostachys pubescens extract on the seed germination of Chinese fir [J]. Acta Ecologica Sinica, 2018, 38(22): 8149 − 8157.
    [9] 徐琳煜, 刘守赞, 白岩, 等. 不同光强处理对三叶青光合特性的影响[J]. 浙江农林大学学报, 2018, 35(3): 467 − 475. doi:  10.11833/j.issn.2095-0756.2018.03.010

    XU Linyu, LIU Shouzan, BAI Yan, et al. Effects of light intensity treatments on photosynthetic characteristics in Tetrastigma hemsleyanum [J]. Journal of Zhejiang A&F University, 2018, 35(3): 467 − 475. doi:  10.11833/j.issn.2095-0756.2018.03.010
    [10] 王文文, 杨飞, 杨中, 等. 超高效液相色谱-串联质谱法分析贝母药材中5种生物碱[J]. 分析测试学报, 2019, 38(4): 461 − 465. doi:  10.3969/j.issn.1004-4957.2019.04.014

    WANG Wenwen, YANG Fei, YANG Zhong, et al. Determination of 5 alkaloids in Fritillaria by ultrahigh performance liquid chromatography-tandem mass spectrometry [J]. Journal of Instrumental Analysis, 2019, 38(4): 461 − 465. doi:  10.3969/j.issn.1004-4957.2019.04.014
    [11] 车朋, 刘久石, 齐耀东, 等. UPLC-ELSD同时测定贝母类药材中6种生物碱的含量[J]. 中国中药杂志, 2020, 45(6): 1393 − 1398. doi:  10.19540/j.cnki.cjcmm.20191223.201

    CHE Peng, LIU Jiushi, QI Yaodong, et al. Simultaneous determination of six major isosteroidal alkaloids in Beimu by UPLC-ELSD [J]. China Journal of Chinese Materia Medica, 2020, 45(6): 1393 − 1398. doi:  10.19540/j.cnki.cjcmm.20191223.201
    [12] WILLIAMSON G B, RICHARDSON D. Bioassays for allelopathy: measuring treatment responses with independent controls [J]. Journal of Chemical Ecology, 1988, 14(1): 181 − 187. doi:  10.1007/BF01022540
    [13] 曾任森. 化感作用研究中的生物测定方法综述[J]. 应用生态学报, 1999, 10(1): 125 − 128. doi:  10.3321/j.issn:1001-9332.1999.01.031

    ZENG Renseng. Review on bioassay methods for allelopathy research [J]. Chinese Journal of Applied Ecology, 1999, 10(1): 125 − 128. doi:  10.3321/j.issn:1001-9332.1999.01.031
    [14] INDERJIT. Soil microorganisms: an important determinant of allelopathic activity [J]. Plant and Soil, 2005, 274(1): 227 − 236.
    [15] DAI Zhicong, WANG Xiaoying, QI Shanshan, et al. Effects of leaf litter on inter-specific competitive ability of the invasive plant Wedelia trilobata [J]. Ecological Research, 2016, 31(3): 367 − 374. doi:  10.1007/s11284-016-1344-0
    [16] 黄永杰, 周会, 张丹丹, 等. 水花生及其根际土浸提液对马尼拉幼苗生长生理特性的影响[J]. 水土保持学报, 2015, 29(1): 285 − 291. doi:  10.13870/j.cnki.stbcxb.2015.01.054

    HUANG Yongjie, ZHOU Hui, ZHANG Dandan, et al. Effects of extracts of Alternanthera philoxeroides and rhizospheric soil on growth and physiological characteristics of Zoysia matrella seedlings [J]. Journal of Soil and Water Conservation, 2015, 29(1): 285 − 291. doi:  10.13870/j.cnki.stbcxb.2015.01.054
    [17] 阎飞, 杨振明, 韩丽梅. 植物化感作用(Allelopathy)及其作用物的研究方法[J]. 生态学报, 2000, 20(4): 692 − 696. doi:  10.3321/j.issn:1000-0933.2000.04.029

    YAN Fei, YANG Zenming, HAN Limei. Review on research methods for allelopathy and allelochemicals in plants [J]. Acta Ecologica Sinica, 2000, 20(4): 692 − 696. doi:  10.3321/j.issn:1000-0933.2000.04.029
    [18] WU Di, CHEN Jianyang, LU Baiyi, et al. Application of near infrared spectroscopy for the rapid determination of antioxidant activity of bamboo leaf extract [J]. Food Chemistry, 2012, 135: 2147 − 2156. doi:  10.1016/j.foodchem.2012.07.011
    [19] 刘云芬, 王薇薇, 祖艳侠, 等. 过氧化氢酶在植物抗逆中的研究进展[J]. 大麦与谷类科学, 2019, 36(1): 5 − 8. doi:  10.14069/j.cnki.32-1769/s.2019.01.002

    LIU Yunfen, WANG Weiwei, ZU Yanxia, et al. Research progress on the effects of catalase on plant stress tolerance [J]. Barley and Cereal Sciences, 2019, 36(1): 5 − 8. doi:  10.14069/j.cnki.32-1769/s.2019.01.002
    [20] 陈昱, 张福建, 杨有新, 等. 芥菜浸提液对豇豆连作土壤性质及幼苗生理指标的影响[J]. 核农学报, 2019, 33(5): 1038 − 1047. doi:  10.11869/j.issn.100-8551.2019.05.1038

    CHEN Yi, ZHANG Fujian, YANG Youxin, et al. Effect of aqueous extract of mustard on soil properties of the continuous cropping cowpea and seedling physiological indexes [J]. Journal of Nuclear Agricultural Sciences, 2019, 33(5): 1038 − 1047. doi:  10.11869/j.issn.100-8551.2019.05.1038
  • [1] 荆蓉, 彭祚登, 李云, 王少明.  刺槐林下凋落物浸提液对刺槐种子萌发和胚生长的化感作用 . 浙江农林大学学报, doi: 10.11833/j.issn.2095-0756.20220247
    [2] 赵聪, 赵敏, 黄学芳, 黄明镜, 王娟玲.  结球甘蓝叶水提液对糯玉米和西葫芦幼苗生长的化感作用 . 浙江农林大学学报, 2022, 39(4): 838-844. doi: 10.11833/j.issn.2095-0756.20210683
    [3] 赵楚, 钱燕萍, 田如男.  梭鱼草化感物质丁二酸、肉桂酸及香草酸对铜绿微囊藻生长的抑制效应 . 浙江农林大学学报, 2020, 37(6): 1105-1111. doi: 10.11833/j.issn.2095-0756.20190722
    [4] 胡晓君, 续竞秦, 何丹华, 张念如, 郑轶枫.  浙江省集体林区农户林下经济经营意愿及其影响因素 . 浙江农林大学学报, 2018, 35(3): 537-542. doi: 10.11833/j.issn.2095-0756.2018.03.020
    [5] 徐勇峰, 黄斌, 朱陈名, 朱咏莉, 李萍萍.  堆制番茄秸秆浸提液对黄瓜和大白菜的化感作用 . 浙江农林大学学报, 2017, 34(2): 276-282. doi: 10.11833/j.issn.2095-0756.2017.02.011
    [6] 冯彬, 何云核, 赵爽, 郭明.  香蒲不同部位水浸提液对4种水生植物种子的化感作用 . 浙江农林大学学报, 2017, 34(3): 427-436. doi: 10.11833/j.issn.2095-0756.2017.03.007
    [7] 国靖, 汪贵斌, 曹福亮.  施肥对银杏叶片光合作用及营养元素质量分数的影响 . 浙江农林大学学报, 2016, 33(6): 969-975. doi: 10.11833/j.issn.2095-0756.2016.06.007
    [8] 郑洁, 刘芳, 吴兴波, 许改平, 丁倩倩, 高岩, 张汝民.  白三叶叶片水浸提液对几种园林植物的化感作用 . 浙江农林大学学报, 2014, 31(1): 19-27. doi: 10.11833/j.issn.2095-0756.2014.01.004
    [9] 朱强, 安黎, 邹梦辉, 田曾元, 郭予琦.  红叶李水浸液对4种草坪植物的化感作用 . 浙江农林大学学报, 2014, 31(5): 710-715. doi: 10.11833/j.issn.2095-0756.2014.05.008
    [10] 杨琴琴, 缪丽华, 洪春桃, 王媛, 季梦成.  香菇草水浸提液对3种植物种子萌发和幼苗生长的化感效应 . 浙江农林大学学报, 2013, 30(3): 354-358. doi: 10.11833/j.issn.2095-0756.2013.03.008
    [11] 赵巍巍, 江洪, 马元丹.  模拟酸雨胁迫对樟树幼苗光合作用和水分利用特性的影响 . 浙江农林大学学报, 2013, 30(2): 179-186. doi: 10.11833/j.issn.2095-0756.2013.02.004
    [12] 王媛, 缪丽华, 高岩, 季梦成.  再力花地下部水浸提液对几种常见水生植物的化感作用 . 浙江农林大学学报, 2012, 29(5): 722-728. doi: 10.11833/j.issn.2095-0756.2012.05.014
    [13] 胡玉玲, 胡冬南, 袁生贵, 郭晓敏.  不同肥料与芸苔素内酯处理对5年生油茶光合和品质的影响 . 浙江农林大学学报, 2011, 28(2): 194-199. doi: 10.11833/j.issn.2095-0756.2011.02.004
    [14] 杜明利, 高岩, 张汝民, 高群英, 傅杭飞.  大花金鸡菊水浸液对6种常见园林植物种子萌发的化感作用 . 浙江农林大学学报, 2011, 28(1): 109-114. doi: 10.11833/j.issn.2095-0756.2011.01.017
    [15] 隋德宗, 王保松, 施士争, 教忠意.  盐胁迫对灌木柳无性系幼苗生长及光合作用的影响 . 浙江农林大学学报, 2010, 27(1): 63-68. doi: 10.11833/j.issn.2095-0756.2010.01.010
    [16] 朱澜, 李雪芹, 贾晓琳, 王斌, 金松恒.  高温胁迫对高羊茅光合作用的影响 . 浙江农林大学学报, 2009, 26(5): 652-655.
    [17] 吴根良, 何勇, 王永传, 孙瑶, 朱祝军.  不同光照强度下卡特兰和蝴蝶兰光合作用和叶绿素荧光参数日变化 . 浙江农林大学学报, 2008, 25(6): 733-738.
    [18] 张岚, 高素萍.  园林植物化感作用研究现状与问题探讨 . 浙江农林大学学报, 2007, 24(4): 497-503.
    [19] 龚伟, 宫渊波, 胡庭兴, 陈林武, 张发会, 王景燕, 朱志芳.  湿地松幼树冠层光合作用日变化及其影响因素 . 浙江农林大学学报, 2006, 23(1): 29-34.
    [20] 何光训.  杉木化感物质香草醛的产生机理探讨 . 浙江农林大学学报, 2005, 22(4): 454-457.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20220471

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2023/1/1

计量
  • 文章访问数:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-17
  • 录用日期:  2022-10-12
  • 修回日期:  2022-10-09
  • 网络出版日期:  2022-10-26

毛竹根系、新鲜枝叶、凋落物及土壤浸提液对浙贝母的化感作用

doi: 10.11833/j.issn.2095-0756.20220471
    基金项目:  浙江省省院合作项目(2015SY06);浙江省科技计划项目(2016F50008)
    作者简介:

    吴海平(ORCID: 0000-0002-8207-1288),高级工程师,从事林下经济、生态产品价值实现和林草湿地资源调查监测研究。E-mail: WHP42@126.com

  • 中图分类号: Q946

摘要:   目的  探讨毛竹Phyllostachys edulis根系、新鲜枝叶、凋落物及土壤浸提液对浙贝母Fritillaria thunbergii的化感作用,筛选毛竹-药用植物复合经营体系的适生经济物种。  方法  选择药用植物浙贝母作为目标植物,开展不同质量浓度(0.005、0.010、0.020、0.050和0.100 kg·L−1)毛竹(根系、新鲜枝叶、凋落物和0~20 cm土壤浸提液)的化感作用试验。  结果  ①根系浸提液对浙贝母的生长性状(株高、生物量和叶面积)、光合色素(叶绿素a、叶绿素b、叶绿素a+b)和药效成分的影响表现为“低促高抑”的效应。②新鲜枝叶、凋落物和土壤浸提液对浙贝母生长性状、光合色素和药效成分表现为促进作用,提高了叶面积的同时亦可提升直射光和漫射光的吸收能力,有利于浙贝母在弱光环境下生长;浙贝母最大净光合速率、光饱和点在这3种浸提液处理下,随着浸提液质量浓度增加表现为先升高后下降,同时增加了表观量子效率,降低了光补偿点,表明毛竹浸提液改变了浙贝母对光能的利用率和光强吸收范围。③根系浸提液对浙贝母的化感综合效应最强,土壤浸提液最弱。④高质量浓度根系浸提液处理时,浙贝母丙二醛质量摩尔浓度增加,表明浙贝母受到一定的环境胁迫。  结论  浙贝母可适应除高质量浓度根系浸提液外的其他浸提液浇灌,且可提升生物量和药效成分。建议开展整地作业,清理毛竹林死根鞭,有利于浙贝母的优质生长。图1表5参20

English Abstract

吴海平, 叶根华, 李伟成. 毛竹根系、新鲜枝叶、凋落物及土壤浸提液对浙贝母的化感作用[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20220471
引用本文: 吴海平, 叶根华, 李伟成. 毛竹根系、新鲜枝叶、凋落物及土壤浸提液对浙贝母的化感作用[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20220471
WU Haiping, YE Genhua, LI Weicheng. Allelopathic effects of Phyllostachys edulis extracts on Fritillaria thunbergii[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20220471
Citation: WU Haiping, YE Genhua, LI Weicheng. Allelopathic effects of Phyllostachys edulis extracts on Fritillaria thunbergii[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20220471

返回顶部

目录

    /

    返回文章
    返回