-
萤火虫(鞘翅目Coleoptera:萤科Lampyridae)具有生物发光的特性,一直受到人们的喜爱和追捧[1−2]。但近几十年来,城市扩张、工业污染和土地利用的改变导致萤火虫自然生境破碎丧失,中国绝大多数地方的萤火虫种群数量已经明显减少[3−4]。从生物保护实践的角度来看,拯救受威胁物种的最佳方法就是保护其生境[5]。大多数品种的萤火虫在整个生命周期中需要利用河流、驳岸、灌木丛等多样生境空间,对小尺度、低程度的生境变化更加敏感[6−7]。因此,为了有效地保护萤火虫种群,避免人类活动的不利干扰,准确了解萤火虫的生境需求和栖息地特征是必不可少的。如日本从1996年开始对其特有的源氏萤Luciola cruciata和平家萤Aquatica lateralis的生境特征进行了长期的研究,从多角度分析了这2种萤火虫的生态习性和生境特征,为后来日本萤火虫种群繁育保护和栖息地构建提供了科学指导,一定程度上促进了当地萤火虫产业的繁荣发展[8−10]。除此之外,东南亚和美洲的许多国家也都积累了丰富的研究成果,逐渐成为全球主要的赏萤生态旅游目的地[11]。
据统计,中国已经确定的萤科昆虫有5亚科24属141种1亚种,凹眼萤科Rhagophthalmidae昆虫1属20种[7, 12]。随着自然保护意识的增强和生态旅游的兴起,某些品种的萤火虫逐渐被大家所熟知。这其中就包括峨眉萤属Emeia的三叶虫萤Emeia pseudosauteri [13]。三叶虫萤主要分布于四川、湖北和浙江。浙江省丽水市九龙国家湿地公园经过多年的生态保护建设,为三叶虫萤创造了适宜的生存环境,使得该种群通过自然累积在2014年前后大规模爆发,并且在随后的几年之中迅速扩大。根据九龙国家湿地公园管理处的统计,高峰期三叶虫萤种群数量可达4 000多万只,在湿地公园内80%的地方均有出现。三叶虫萤的虫卵、幼虫和成虫都需要稳定高质量的栖息地环境,对环境变化和人类活动干扰有着强烈的敏感性[13],可以作为非常优秀的环境指示物种。除此之外,三叶虫萤所需要的生境条件能够涵盖其他类似物种的生境需求,并在典型环境中填补掠食者生态位,可以作为伞护种维持生态系统的平衡和稳定[14−15]。更重要的是,三叶虫萤羽化成虫时间在每年的3—4月,相较于其他品种萤火虫更早,延长了国内以往只在6—8月的赏萤时间,而且种群密度高,极易形成大面积的萤火虫闪光美景[13]。这些优点使得三叶虫萤在短短几年之内就成为丽水生态旅游、文化宣传、自然教育、环境保护等活动的理想主角,唤起公众对于生态环境的保护意识[16−18]。因此,作为极具价值的昆虫资源,三叶虫萤的保护利用研究需要得到充分重视。目前三叶虫萤相关研究集中在生物形态、生殖生理、虫卵孵化、幼虫发育等方面[13, 19−20],缺少关于生境需求和栖息地环境因子等方面的研究。鉴于此,本研究选取了多个环境因子数据,分析九龙国家湿地公园内三叶虫萤现有分布区的生境特征,了解三叶虫萤生境需求,研究生境因子对三叶虫萤种群密度的影响,以期为三叶虫萤物种资源的保护利用、种群繁育、栖息地保护管理等提供科学参考。
-
各调查点三叶虫萤种群密度和生境因子如表1所示。
表 1 34个调查点的三叶虫萤种群密度和生境因子调研结果
Table 1. Results of E. pseudosauteri population density and habitat factors in 34 survey sites
点位编号 D/(只·m−2) XTEMP/℃ XRH/% XWS/(m·s−1) XAL/lx XCC/% XATH/m XPD/(株·m−2) XAHSG/cm XGC/% XTBL/cm pH XSWC/% 1 4.3 12.4 63.80 1.4 0.07 63 15.8 78 16.7 63.50 6.3 6.24 33.32 2 8.2 11.3 77.30 0.7 0.05 86 12.5 105 18.5 72.40 11.5 5.85 47.16 3 2.1 11.6 59.27 1.8 0.17 57 16.5 69 16.3 60.50 4.3 5.92 33.47 3 0.2 13.3 52.48 2.7 0.25 37 4.5 38 82.5 52.40 3.4 6.84 34.64 5 0.7 10.8 54.23 2.3 0.20 42 8.6 66 68.4 66.20 2.8 6.58 32.53 6 0.2 10.3 56.04 3.0 0.22 24 3.8 53 22.5 43.60 1.9 6.13 38.61 7 4.8 9.7 67.16 1.5 0.11 68 9.5 82 32.6 84.60 6.6 6.74 42.12 8 6.4 10.4 66.70 1.5 0.09 86 14.0 99 32.3 87.30 6.5 6.38 42.64 9 0.8 10.9 64.30 2.2 0.16 53 9.8 59 58.7 58.32 4.5 6.11 37.68 10 0.3 11.7 58.64 2.1 0.19 32 6.8 47 72.4 47.93 1.8 5.83 41.28 11 1.8 11.3 57.12 2.2 0.13 61 5.3 63 62.4 78.30 6.2 6.38 35.26 12 5.2 9.8 74.24 1.3 0.06 75 9.5 86 44.6 83.70 5.7 6.44 43.62 13 1.3 12.4 68.59 1.9 0.14 44 10.5 64 67.3 90.20 4.7 6.81 37.66 14 4.4 11.8 70.43 1.9 0.08 72 17.5 87 37.4 96.50 3.7 5.66 36.46 15 7.1 10.8 69.20 1.2 0.06 77 15.4 95 68.3 95.40 10.3 6.59 43.87 16 10.2 11.2 76.53 0.6 0.03 94 17.3 108 46.5 92.30 9.6 6.56 45.26 17 9.4 11.6 75.32 0.3 0.02 90 5.5 103 37.5 79.20 8.4 6.37 40.68 18 0.4 10.3 55.71 2.5 0.15 47 15.0 56 77.5 94.40 3.3 6.28 32.52 19 0.6 12.3 62.21 1.8 0.17 35 4.5 62 17.5 83.50 4.4 5.71 31.38 20 4.6 10.5 71.43 0.9 0.04 73 9.8 77 33.5 93.80 8.2 6.25 36.59 21 3.8 10.7 67.23 2.2 0.09 71 11.5 70 33.5 72.60 5.2 6.55 38.21 22 4.5 11.5 64.54 1.6 0.06 82 12.3 84 47.3 82.40 5.5 6.62 41.64 23 6.2 9.6 71.58 1.2 0.05 79 9.7 95 47.4 81.64 7.8 5.97 40.83 24 1.4 10.3 66.53 2.6 0.12 68 8.6 67 22.8 78.79 5.3 6.45 35.77 25 2.7 9.4 65.28 1.4 0.10 53 5.7 72 73.6 72.51 5.2 6.33 43.62 26 3.2 11.5 70.52 1.7 0.09 56 7.5 77 55.5 57.38 3.8 6.57 44.69 27 0.2 12.7 63.88 2.6 0.28 44 8.5 35 87.2 44.52 2.3 5.93 32.17 28 7.6 11.4 67.28 0.5 0.07 74 12.5 92 45.7 88.62 6.5 6.43 44.86 29 6.5 10.8 70.35 0.9 0.10 73 11.6 94 44.9 74.68 9.4 6.58 39.82 30 8.4 9.7 73.22 0.4 0.08 83 14.2 104 34.8 85.46 11.2 5.74 43.74 31 3.6 10.6 71.83 2.5 0.12 64 7.8 76 52.7 76.51 6.8 5.69 36.53 32 7.3 11.5 73.24 0.7 0.04 92 9.3 99 33.2 92.66 7.9 5.82 42.65 33 6.8 10.3 75.62 0.5 0.03 66 10.8 97 27.5 85.92 8.5 6.33 43.72 34 5.7 9.8 72.57 0.8 0.09 70 9.2 83 31.7 86.52 4.8 6.41 39.64 说明:D. 三叶虫萤种群密度;XAL. 环境光强;XPD. 植被密度;XTEMP. 气温;XRH. 相对湿度;XWS. 风速;XCC. 郁闭度;XATH. 乔木平均高度;XAHSG. 灌木地被平均高度;XGC. 地被覆盖度;XTBL. 凋落物层厚度;pH. 土壤pH;XSWC. 土壤含水量。 -
如果相关系数|r|≥0.8,则认为2个变量之间存在高度相关性,需要剔除[27]。从表2可见:环境光强和植被密度与其他生境因子普遍存在高度相关性,因此剔除这2个因子。最终筛选出气温、相对湿度、风速、郁闭度、乔木平均高度、灌木地被平均高度、地被覆盖度、枯枝落叶层厚度、土壤pH、土壤含水量等10个生境因子变量用于回归分析。
表 2 三叶虫萤栖息地12个生境因子相关性分析结果
Table 2. Results of correlation analysis of 12 habitat factors in E. pseudosauteri habitat
生境因子 XTEMP XRH XWS XAL XCC XATH XPD XAHSG XGC XTBL pH XSWC XTEMP 1 XRH −0.295 1 XWS 0.235 −0.756 1 XAL 0.247 −0.801 0.826 1 XCC −0.264 0.764 −0.742 −0.834 1 XATH −0.040 0.289 −0.329 −0.313 0.489 1 XPD −0.381 0.801 −0.852 −0.851 0.884 0.477 1 XAHSG 0.193 −0.379 0.367 0.389 −0.363 −0.214 −0.483 1 XGC −0.291 0.492 −0.512 −0.581 0.594 0.476 0.611 −0.174 1 XTBL −0.287 0.727 −0.776 −0.739 0.788 0.367 0.833 −0.344 0.508 1 XSPH −0.021 −0.119 0.004 −0.048 0.017 −0.050 −0.021 0.264 0.069 −0.018 1 XSWC −0.394 0.654 −0.656 −0.611 0.588 0.153 0.696 −0.132 0.255 0.577 0.141 1 说明:D. 三叶虫萤种群密度;XAL. 环境光强;XPD. 植被密度;XTEMP. 气温;XRH. 相对湿度;XWS. 风速;XCC. 郁闭度;XATH. 乔木平均高度;XAHSG. 灌木地被平均高度;XGC. 地被覆盖度;XTBL. 凋落物层厚度;pH. 土壤pH;XSWC. 土壤含水量。 -
由表3可知:多元逐步回归分析模型的相关系数(R)、决定系数(R2)、调整后的决定系数($R_{{\rm{adj}}}^2 $)均大于0.8,说明模型拟合度高,所建立的回归方程可以很好地反映种群密度与生境因子之间的关系。在显著水平下(P<0.05)模型最终包含了郁闭度、风速和土壤含水量这3个生境因子变量,R2 adj为0.930,说明这3个生境因子是影响三叶虫萤种群密度的关键因子。Durbin-Watson检验统计量为1.615,接近于2,证明被选择的3个生境因子变量之间相互独立,没有自相关性[28]。
表 3 三叶虫萤种群密度与生境因子的逐步回归分析结果
Table 3. Results of stepwise regression analysis of E. pseudosauteri population density and habitat factors
生境因子 R R2 $\scriptstyle R_{{\rm{adj}}}^2 $ ESE d 郁闭度 0.903 0.816 0.810 1.304 3 风速 0.962 0.925 0.921 0.843 1 土壤含水量 0.968 0.937 0.930 0.790 3 1.615 说明:R为相关系数;R2为决定系数;$\scriptstyle R_{{\rm{adj}}}^2 $为调整后的决定系数;d为Durbin-Watson检验统计量;ESE为估计标准误差。 由表4可知:在回归分析中,被纳入的3个生境因子变量方差膨胀系数为1.830~2.665,均小于5,说明变量之间不存在多重共线性,符合多元回归分析的要求。3个生境因子变量t检验对应的P均小于0.05,说明郁闭度(P<0.001)、风速(P<0.001)和土壤含水量(P=0.029)对种群密度存在显著影响。标准化系数(β)可以反映自变量对因变量影响的重要程度,其绝对值越大则对因变量的影响越大,而其正负性可以表示自变量与因变量之间是正相关或负相关。因此,对三叶虫萤种群密度影响最大的是郁闭度(β=0.505),其次是风速(β =−0.424)和土壤含水量(β = 0.143)。其中郁闭度和土壤含水量与种群密度呈正相关,说明郁闭度和土壤含水量较高的地方更适合三叶虫萤生存栖息。风速与种群密度呈负相关,风速越大,种群密度越小。最终可以建立郁闭度(XCC)、风速(XWS)、土壤含水量(XSWC)对三叶虫萤种群密度(D)的逐步回归方程:D=7.446XCC−1.666XWS+9.337XSWC−6.584。
表 4 三叶虫萤种群密度与生境因子的逐步回归模型系数
Table 4. Stepwise regression model coefficients of E. pseudosauteri population density and habitat factors
被选择的变量 未标准化系数(B) 标准误差 标准化系数(β) t P 共线性统计 容差 方差膨胀系数 常数项 −6.584 3.038 −2.168 0.038 郁闭度 7.446 1.033 0.505 7.209 0.000 0.431 2.318 风速 −1.666 0.295 −0.424 −5.650 0.000 0.375 2.665 土壤含水量 9.337 4.062 0.143 2.299 0.029 0.546 1.830
Effects of habitat characteristics on population density of Emeia pseudosauteri in Kowloon National Wetland Park, Lishui
-
摘要:
目的 研究分析九龙国家湿地公园三叶虫萤Emeia pseudosauteri生境特征以及相关生境因子对其种群密度的影响,了解三叶虫萤的生境需求,为开展物种资源保护利用、种群繁育、栖息地保护管理等研究提供科学参考。 方法 2022年4月上旬,以九龙国家湿地公园及其周边三叶虫萤栖息地为研究区,设置34个调查点,实地调研获取每个调查点的三叶虫萤种群密度和12个生境因子数据,建立多元逐步回归模型分析不同生境因子对种群密度的影响。 结果 郁闭度[XCC,标准化系数(β) = 0.505,P<0.001]和土壤含水量(XSWC,β = 0.143,P = 0.029)对三叶虫萤种群密度(D)呈显著正相关,风速(XWS,β =−0.424,P<0.001)对种群密度呈显著负相关。逐步回归方程为D=7.446XCC−1.666XWS+9.337XSWC−6.584。调整后的R2为0.930,德宾-沃森检验(Durbin-Watson)结果为1.615,方差膨胀系数<5, P<0.05,说明纳入分析模型的3个生境因子之间相互独立,不存在共线性,该结果具有统计学意义。 结论 较高的郁闭度、较低的风速和较高的土壤含水量是三叶虫萤根据自身生物特性和生活习性对环境作出的选择,反映了三叶虫萤在通信交流、求偶交配、繁殖产卵等方面的生境需求。在开展三叶虫萤种群繁育保护和栖息地管理中应注意增加郁闭度、降低环境风影响、维持适宜的土壤湿度和空气湿度。表4参32 Abstract:Objective The objective is to study and analyze the habitat characteristics of Emeia pseudosauteri in Kowloon National Wetland Park and the influence of relevant habitat factors on its population density (D), so as to understand the habitat requirements of E. pseudosauteri and provide scientific reference for future research on species resources conservation and utilization, population breeding, habitat protection and management. Method In early April 2022, taking Kowloon National Wetland Park and the surrounding habitat of E. pseudosauteri in Lishui of Zhejiang Province as the research area, 34 survey points were set up to obtain the population density of E. pseudosauteri and 12 habitat factors data at each survey point, and a multiple stepwise regression model was established to analyze the impact of different habitat factors on population density. Result Canopy closure [XCC, standardized coefficient (β)=0.505, P<0.001] and soil water content (XSWC, β=0.143, P=0.029) had a significant positive correlation with the population density of E. pseudosauteri. Wind speed (XWS, β=−0.424, P<0.001) had a significant negative correlation with population density. Stepwise regression equation: D=7.446XCC−1.666XWS+9.337XSWC−6.584. The adjusted R2 was 0.930, the Durbin-Watson test result was 1.615, the variance inflation coefficient was less than 5, and the significance P values were less than 0.05, indicating that the three habitat factors included in the analysis model were independent of each other, and there was no collinearity. The analysis result was statistically significant. Conclusion Higher canopy density, lower wind speed and higher soil water content are choices of environment made by E. pseudosauteri according to its own biological characteristics and living habits, reflecting its habitat needs in communication, mating, breeding and spawning. Therefore, in carrying out the breeding, protection and habitat management of E. pseudosauteri population, attention should be paid to increasing canopy closure, reducing the impact of environmental wind, and maintaining suitable soil and air humidity. [Ch, 4 tab. 32 ref.] -
表 1 34个调查点的三叶虫萤种群密度和生境因子调研结果
Table 1. Results of E. pseudosauteri population density and habitat factors in 34 survey sites
点位编号 D/(只·m−2) XTEMP/℃ XRH/% XWS/(m·s−1) XAL/lx XCC/% XATH/m XPD/(株·m−2) XAHSG/cm XGC/% XTBL/cm pH XSWC/% 1 4.3 12.4 63.80 1.4 0.07 63 15.8 78 16.7 63.50 6.3 6.24 33.32 2 8.2 11.3 77.30 0.7 0.05 86 12.5 105 18.5 72.40 11.5 5.85 47.16 3 2.1 11.6 59.27 1.8 0.17 57 16.5 69 16.3 60.50 4.3 5.92 33.47 3 0.2 13.3 52.48 2.7 0.25 37 4.5 38 82.5 52.40 3.4 6.84 34.64 5 0.7 10.8 54.23 2.3 0.20 42 8.6 66 68.4 66.20 2.8 6.58 32.53 6 0.2 10.3 56.04 3.0 0.22 24 3.8 53 22.5 43.60 1.9 6.13 38.61 7 4.8 9.7 67.16 1.5 0.11 68 9.5 82 32.6 84.60 6.6 6.74 42.12 8 6.4 10.4 66.70 1.5 0.09 86 14.0 99 32.3 87.30 6.5 6.38 42.64 9 0.8 10.9 64.30 2.2 0.16 53 9.8 59 58.7 58.32 4.5 6.11 37.68 10 0.3 11.7 58.64 2.1 0.19 32 6.8 47 72.4 47.93 1.8 5.83 41.28 11 1.8 11.3 57.12 2.2 0.13 61 5.3 63 62.4 78.30 6.2 6.38 35.26 12 5.2 9.8 74.24 1.3 0.06 75 9.5 86 44.6 83.70 5.7 6.44 43.62 13 1.3 12.4 68.59 1.9 0.14 44 10.5 64 67.3 90.20 4.7 6.81 37.66 14 4.4 11.8 70.43 1.9 0.08 72 17.5 87 37.4 96.50 3.7 5.66 36.46 15 7.1 10.8 69.20 1.2 0.06 77 15.4 95 68.3 95.40 10.3 6.59 43.87 16 10.2 11.2 76.53 0.6 0.03 94 17.3 108 46.5 92.30 9.6 6.56 45.26 17 9.4 11.6 75.32 0.3 0.02 90 5.5 103 37.5 79.20 8.4 6.37 40.68 18 0.4 10.3 55.71 2.5 0.15 47 15.0 56 77.5 94.40 3.3 6.28 32.52 19 0.6 12.3 62.21 1.8 0.17 35 4.5 62 17.5 83.50 4.4 5.71 31.38 20 4.6 10.5 71.43 0.9 0.04 73 9.8 77 33.5 93.80 8.2 6.25 36.59 21 3.8 10.7 67.23 2.2 0.09 71 11.5 70 33.5 72.60 5.2 6.55 38.21 22 4.5 11.5 64.54 1.6 0.06 82 12.3 84 47.3 82.40 5.5 6.62 41.64 23 6.2 9.6 71.58 1.2 0.05 79 9.7 95 47.4 81.64 7.8 5.97 40.83 24 1.4 10.3 66.53 2.6 0.12 68 8.6 67 22.8 78.79 5.3 6.45 35.77 25 2.7 9.4 65.28 1.4 0.10 53 5.7 72 73.6 72.51 5.2 6.33 43.62 26 3.2 11.5 70.52 1.7 0.09 56 7.5 77 55.5 57.38 3.8 6.57 44.69 27 0.2 12.7 63.88 2.6 0.28 44 8.5 35 87.2 44.52 2.3 5.93 32.17 28 7.6 11.4 67.28 0.5 0.07 74 12.5 92 45.7 88.62 6.5 6.43 44.86 29 6.5 10.8 70.35 0.9 0.10 73 11.6 94 44.9 74.68 9.4 6.58 39.82 30 8.4 9.7 73.22 0.4 0.08 83 14.2 104 34.8 85.46 11.2 5.74 43.74 31 3.6 10.6 71.83 2.5 0.12 64 7.8 76 52.7 76.51 6.8 5.69 36.53 32 7.3 11.5 73.24 0.7 0.04 92 9.3 99 33.2 92.66 7.9 5.82 42.65 33 6.8 10.3 75.62 0.5 0.03 66 10.8 97 27.5 85.92 8.5 6.33 43.72 34 5.7 9.8 72.57 0.8 0.09 70 9.2 83 31.7 86.52 4.8 6.41 39.64 说明:D. 三叶虫萤种群密度;XAL. 环境光强;XPD. 植被密度;XTEMP. 气温;XRH. 相对湿度;XWS. 风速;XCC. 郁闭度;XATH. 乔木平均高度;XAHSG. 灌木地被平均高度;XGC. 地被覆盖度;XTBL. 凋落物层厚度;pH. 土壤pH;XSWC. 土壤含水量。 表 2 三叶虫萤栖息地12个生境因子相关性分析结果
Table 2. Results of correlation analysis of 12 habitat factors in E. pseudosauteri habitat
生境因子 XTEMP XRH XWS XAL XCC XATH XPD XAHSG XGC XTBL pH XSWC XTEMP 1 XRH −0.295 1 XWS 0.235 −0.756 1 XAL 0.247 −0.801 0.826 1 XCC −0.264 0.764 −0.742 −0.834 1 XATH −0.040 0.289 −0.329 −0.313 0.489 1 XPD −0.381 0.801 −0.852 −0.851 0.884 0.477 1 XAHSG 0.193 −0.379 0.367 0.389 −0.363 −0.214 −0.483 1 XGC −0.291 0.492 −0.512 −0.581 0.594 0.476 0.611 −0.174 1 XTBL −0.287 0.727 −0.776 −0.739 0.788 0.367 0.833 −0.344 0.508 1 XSPH −0.021 −0.119 0.004 −0.048 0.017 −0.050 −0.021 0.264 0.069 −0.018 1 XSWC −0.394 0.654 −0.656 −0.611 0.588 0.153 0.696 −0.132 0.255 0.577 0.141 1 说明:D. 三叶虫萤种群密度;XAL. 环境光强;XPD. 植被密度;XTEMP. 气温;XRH. 相对湿度;XWS. 风速;XCC. 郁闭度;XATH. 乔木平均高度;XAHSG. 灌木地被平均高度;XGC. 地被覆盖度;XTBL. 凋落物层厚度;pH. 土壤pH;XSWC. 土壤含水量。 表 3 三叶虫萤种群密度与生境因子的逐步回归分析结果
Table 3. Results of stepwise regression analysis of E. pseudosauteri population density and habitat factors
生境因子 R R2 $\scriptstyle R_{{\rm{adj}}}^2 $ ESE d 郁闭度 0.903 0.816 0.810 1.304 3 风速 0.962 0.925 0.921 0.843 1 土壤含水量 0.968 0.937 0.930 0.790 3 1.615 说明:R为相关系数;R2为决定系数;$\scriptstyle R_{{\rm{adj}}}^2 $为调整后的决定系数;d为Durbin-Watson检验统计量;ESE为估计标准误差。 表 4 三叶虫萤种群密度与生境因子的逐步回归模型系数
Table 4. Stepwise regression model coefficients of E. pseudosauteri population density and habitat factors
被选择的变量 未标准化系数(B) 标准误差 标准化系数(β) t P 共线性统计 容差 方差膨胀系数 常数项 −6.584 3.038 −2.168 0.038 郁闭度 7.446 1.033 0.505 7.209 0.000 0.431 2.318 风速 −1.666 0.295 −0.424 −5.650 0.000 0.375 2.665 土壤含水量 9.337 4.062 0.143 2.299 0.029 0.546 1.830 -
[1] 朱志欣, 李胜. 萤火虫景观调查与构建[J]. 中国园林, 2015, 31(8): 25 − 28. ZHU Zhixin, LI Sheng. The survey and construction of firefly landscape [J]. Chinese Landscape Architecture, 2015, 31(8): 25 − 28. [2] 王郡明, 梁醒财, 罗佑珍. 萤火虫生物学特性及其应用研究[J]. 云南农业大学学报(自然科学), 2006, 21(5): 576 − 580. WANG Junming, LIANG Xingcai, LUO Youzhen. Surveys of bionomics and application of firefly [J]. Journal of Yunnan Agricultural University (Natural Science), 2006, 21(5): 576 − 580. [3] PRASERTKUL T. Characteristics of Pteroptyx firefly congregations in a human dominated habitat [J]. Journal of Insect Behavior, 2018, 31(4): 436 − 457. [4] 时秀明, 李燕, 朱志欣, 等. 乐清市仙溪水乡萤火虫栖息地营建探析[J]. 风景园林, 2017, 24(5): 101 − 106. SHI Xiuming, LI Yan, ZHU Zhixin, et al. Study on the construction of firefly habitat in Xianxi Town in Yueqing City [J]. Landscape Architecture, 2017, 24(5): 101 − 106. [5] MEFFE G K, CARROLL C R, GROOM M J. Principles of Conservation Biology [M]. 3rd ed. Sunderland: Sinauer Associates, 2006. [6] HWANG Y T, MOON J, LEE W S, et al. Evaluation of firefly as a tourist attraction and resource using contingent valuation method based on a new environmental paradigm [J]. Journal of Quality Assurance in Hospitality &Tourism, 2020, 21(3): 320 − 336. [7] 曹成全, 张毅, 王义哲, 等. 萤火虫的研究、保护及开发利用进展[J/OL]. 环境昆虫学报, 2022-03-09[2022-08-27]. https://kns.cnki.net/kcms/detail/44.1640.Q.20220308.1543.002.html. CAO Chengquan, ZHANG Yi, WANG Yizhe, et al. Progress in the research, conservation and exploitation of fireflies [J/OL]. Journal of Environmental Entomology. 2022-03-09[2022-08-27]. https://kns.cnki.net/kcms/detail/44.1640.Q.20220308.1543.002.html. [8] SHIBUE K, OHBA N, FUJII E. Analysis of habitat factor which influence on population of Luciola cruciata at Nobi district in the Miura peninsula [J]. Journal of The Japanese Institute of Landscape Architecture, 1995, 58(5): 121 − 124. [9] SHIBUE K, OHBA N, FUJII E. Habitat analysis of Luciola lateralis especially around Yatoda, terraced paddy field in the narrow valley [J]. Journal of Japan Society on Water Environment, 1996, 19(4): 323 − 330. [10] OSAWA S, KATSUNO T, SERA K. Habitats of Luciola lateralis and Pyrocoelia fumosa in valley bottom in urban greenery [J]. Journal of the Japanese Society of Revegetation Technology, 2005, 31(1): 187 − 189. [11] LEWIS S M, THANCHAROEN A, WONG C H, et al. Firefly tourism: advancing a global phenomenon toward a brighter future [J/OL]. Conservation Science and Practice, 2021, 3(5): e391[2022-08-26]. doi: 10.1111/csp2.391. [12] 曹倍荣, 闫振天, 陈斌. 中国萤科和雌光萤科昆虫名录[J]. 重庆师范大学学报(自然科学版), 2021, 38(5): 21 − 36. CAO Beirong, YAN Zhentian, CHEN Bin. Checklist of Lampyridae and Rhagophthalmidae insect of China [J]. Journal of Chongqing Normal University (Natural Science), 2021, 38(5): 21 − 36. [13] FU Xinhua, BALLANTYNE L A, LAMBKIN C. Emeia gen. nov., a new genus of Luciolinae fireflies from China (Coleoptera: Lampyridae) with an unusual trilobite-like larva, and a redescription of the genus Curtos Motschulsky [J]. Zootaxa, 2012, 3403(1): 1 − 53. [14] MADRUGA R O, HERNÁNDEZ Q M. Larval feeding habits of the Cuban endemic firefly Alecton discoidalis Laporte (Coleoptera: Lampyridae) [J/OL]. Psyche: A Journal of Entomology, 2010: 149879[2022-08-26]. doi: 10.1155/2010/149879. [15] ROBERGE J M, ANGELSTAM P. Usefulness of the umbrella species concept as a conservation tool [J]. Conservation Biology, 2004, 18(1): 76 − 85. [16] BOWEN-JONES E, ENTWISTLE A. Identifying appropriate flagship species: the importance of culture and local contexts [J]. Oryx, 2002, 36(2): 189 − 195. [17] WALPOLE M J, LEADER-WILLIAMS N. Tourism and flagship species in conservation [J]. Biodiversity and Conservation, 2002, 11(3): 543 − 547. [18] 李晓文, 张玲, 方精云. 指示种、伞护种与旗舰种: 有关概念及其在保护生物学中的应用[J]. 生物多样性, 2002, 10(1): 72 − 79. LI Xiaowen, ZHANG Ling, FANG Jingyun. Indicator, umbrella and flagship species: the concepts and their applications in conservation biology [J]. Biodiversity Science, 2002, 10(1): 72 − 79. [19] 梅昭利, 曹成全, 童超, 等. 不同温度对三叶虫萤卵孵化和初孵幼虫发育的影响[J]. 环境昆虫学报, 2020, 42(2): 306 − 310. MEI Zhaoli, CAO Chengquan, TONG Chao, et al. Effects of different temperatures on the hatching of eggs and development of newly hatched larvae of Emeia pseudosauteri [J]. Journal of Environmental Entomology, 2020, 42(2): 306 − 310. [20] 范良榜. 丽水九龙国家湿地公园昆虫资源调查及分析[D]. 杭州: 浙江农林大学, 2019. FAN Liangbang. Investigation and Analysis of Insect Resources in Lishui Jiulong National Wetland Park [D]. Hangzhou: Zhejiang A&F University, 2019. [21] 黄海凤, 林春绵, 姜理英, 等. 丽水市大溪水环境承载力及对策研究[J]. 浙江工业大学学报, 2004, 32(2): 41 − 46. HUANG Haifeng, LIN Chunmian, JIANG Liying, et al. Study on water environment carrying capacity and counter measures in Daxi River in Lishui City [J]. Journal of Zhejiang University of Technology, 2004, 32(2): 41 − 46. [22] 张丽娟. 丽水湿地资源的现状分析及保护措施[J]. 低碳地产, 2016, 2(5): 271 − 273. ZHANG Lijuan. Analysis of the current situation of wetland resources in Lishui and protection measures [J]. Low Carbon Estate, 2016, 2(5): 271 − 273. [23] 李永宁, 张宾兰, 秦淑英, 等. 郁闭度及其测定方法研究与应用[J]. 世界林业研究, 2008, 21(1): 40 − 46. LI Yongning, ZHANG Binlan, QIN Shuying, et al. Review of research and application of forest canopy closure and its measuring methods [J]. World Forestry Research, 2008, 21(1): 40 − 46. [24] 李相逸, 曹磊, 马超, 等. 天津滨海滩涂湿地鸟类丰富度与环境因子的关系研究[J]. 风景园林, 2018, 25(6): 107 − 112. LI Xiangyi, CAO Lei, MA Chao, et al. Research on avian abundance and their correlationship with environmental variables at coastal wet-land in Tianjin [J]. Landscape Architecture, 2018, 25(6): 107 − 112. [25] TOMITA M, ITOH K, KATOH K. Regional comparison of environmental factors influencing distribution of Genji-firefly Luciola cruciata [J]. Journal of the Japanese Institute of Landscape Architecture, 2006, 69(5): 557 − 560. [26] 罗宜富, 李磊, 李秋华, 等. 阿哈水库叶绿素a时空分布特征及其与藻类、环境因子的关系[J]. 环境科学, 2017, 38(10): 4151 − 4159. LUO Yifu, LI Lei, LI Qiuhua, et al. Spatial and temporal distribution of chlorophyll a and its relationship to algae and environmental factors in Aha Reservoir [J]. Environmental Science, 2017, 38(10): 4151 − 4159. [27] TAKEDA M, AMANO T, KATOH K, et al. The habitat requirement of the Genji-firefly Luciola cruciata (Coleoptera: Lampyridae), a representative endemic species of Japanese rural landscapes [M]// HAWKSWORTH D L, BULL A T. Arthropod Diversity and Conservation: Topics in Biodiversity and Conservation. Dordrecht: Springer, 2006, 15: 177 − 189. [28] 邱明宇. 串珠藻科植物地理分布及与环境因子的关系[D]. 太原: 山西大学, 2021. QIU Mingyu. Geographical Distribution and Relationship with Environmental Factors of Batrachospermaceae [D]. Taiyuan: Shanxi University, 2021. [29] LEWIS S M, CRATSLEY C K. Flash signal evolution, mate choice, and predation in fireflies [J]. Annual Review of Entomology, 2008, 53: 293 − 321. [30] YUMA M. Effects of illuminance and tree coverage on the density of adult Genji-firefly, Luciola cruciata (Coleoptera) [J]. Ecology and Civil Engineering, 2001, 4(1): 59 − 63. [31] MØLLER A P. Long-term trends in wind speed, insect abundance and ecology of an insectivorous bird[J/OL]. Ecosphere, 2013, 4(1): 1 − 11[2022-08-26]. doi: 10.1890/ES12-00310.1. [32] 卢聪聪, 童超, 曹成全, 等. 不同环境和介质对三叶虫萤卵孵化的影响[J]. 生物资源, 2017, 39(5): 386 − 388. LU Congcong, TONG Chao, CAO Chengquan, et al. Effect of different environments and materials on the hatching of Emeia pseudosauteri eggs [J]. Biotic Resource, 2017, 39(5): 386 − 388. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20220616