留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

桉树无性系生长性状基因型与环境互作效应及优良无性系选择

王楚彪 熊涛 张磊 何文亮 卢万鸿 林彦 罗建中

李芳燕, 夏晓雪, 吴梦洁, 等. 巨桉EgrCIN1响应非生物逆境的分析[J]. 浙江农林大学学报, 2022, 39(6): 1194-1202. DOI: 10.11833/j.issn.2095-0756.20220348
引用本文: 王楚彪, 熊涛, 张磊, 等. 桉树无性系生长性状基因型与环境互作效应及优良无性系选择[J]. 浙江农林大学学报, 2023, 40(5): 951-960. DOI: 10.11833/j.issn.2095-0756.20220734
LI Fangyan, XIA Xiaoxue, WU Mengjie, et al. Response of Eucalyptus grandis EgrCIN1 to abiotic stress[J]. Journal of Zhejiang A&F University, 2022, 39(6): 1194-1202. DOI: 10.11833/j.issn.2095-0756.20220348
Citation: WANG Chubiao, XIONG Tao, ZHANG Lei, et al. Genotype × environment interaction on growth traits of Eucalyptus clones and selection of elite clones[J]. Journal of Zhejiang A&F University, 2023, 40(5): 951-960. DOI: 10.11833/j.issn.2095-0756.20220734

桉树无性系生长性状基因型与环境互作效应及优良无性系选择

DOI: 10.11833/j.issn.2095-0756.20220734
基金项目: 中国林业科学研究院基本科研业务费专项资助 (CAFYBB2021MB002);广东省林业科技创新项目 (2017KJCX031, 2019KJCX014)
详细信息
    作者简介: 王楚彪(ORCID: 0000-0001-5417-4629),副研究员,博士,从事林木遗传育种研究。E-mail: scauwcb@163.com
    通信作者: 罗建中(ORCID: 0000-0001-8656-9254),研究员,博士,从事林木遗传育种研究。E-mail: 969170789@qq.com
  • 中图分类号: S722

Genotype × environment interaction on growth traits of Eucalyptus clones and selection of elite clones

  • 摘要:   目的  对20个桉树 Eucalyptus无性系,包括1个赤桉E. camaldulensis无性系和19个杂交桉无性系,分别在广西南宁、广西钦州、广东雷州、广西扶绥和海南定安的立地条件下进行测试,探讨基因型、环境及其互作对无性系选育的影响,旨在为桉树的无性系筛选适生环境并推广提供借鉴。  方法  以各地点所测试的4.5年生桉树无性系为研究对象,基于各无性系的树高、胸径、单株材积、保存率的调查数据,比较各地点各无性系的生长表现。对单地点、多地点建立线性混合模型,计算各性状的方差分量和无性系重复力,同时计算单地点的最佳线性无偏预测(BLUP)值和多地点各性状的方差效应量。最后通过材积平均值和BLUP值进行基因型和基因型与环境互作双标图(GGE)分析。  结果  单地点分析中,各地点的最优无性系生长排序不同,无性系各性状受到环境的影响也不同。多地点分析中,桉树无性系基因型、环境以及基因型与环境互作存在显著差异,各性状的无性系重复力为0.781 6~0.868 5,其中胸径的无性系重复力最高且表现最稳定,树高易受环境影响。基于单株材积性状,筛选出EC186、EC188、EC184为优良无性系。基于材积平均值和BLUP值进行GGE模型分析得出EC183和EC184为高材积、高稳定性的无性系。  结论  20个无性系中,EC183和EC184为高材积、高稳定性的无性系。5个地点相比,广西南宁地区适合这批无性系的快速生长,广西钦州为这批无性系理想的选材环境。图1表5参38
  • 低温是限制植物生长和发育的主要逆境因子。较低的温度会损伤植物细胞的膜结构,抑制酶活性,诱导活性氧产生,破坏代谢平衡等,引起植物生长受阻、早衰甚至死亡[1]。世界上只有三分之一的陆地面积温度在冰点以上,却有42%的陆地会经历−20 ℃以下的低温,因此低温也是限制植物地理分布的重要因素[2]。为了应对低温胁迫,植物在长期进化过程中逐渐形成了低温适应机制,用来提高植物耐受低温逆境的能力,降低低温胁迫伤害。在代谢层面上,植物可以通过提高可溶性糖、游离脯氨酸等小分子渗透调节物,以及抗氧化酶过氧化物酶(POD)、超氧化物歧化酶(SOD)和过氧化氢酶(CAT)等的活性来增加对低温的耐受力[3]。分子层面上,低温下植物细胞膜的流动性降低,膜蛋白的构象发生改变,进而使膜刚性增加,细胞膜的这些物理变化为膜上低温受体对低温的感受提供了基础。植物细胞的受体感受低温信号后,通过提高细胞质中的钙离子(Ca2+)水平,并与Ca2+结合蛋白结合,作为二级信号激活抗寒相关转录因子,调控耐寒相关基因,实现低温胁迫响应[4]。目前,低温响应的分子调控途径中,ICE1-CBF-COR途经被认为是植物响应耐寒胁迫的主要途径[5]。低温通过Ca2+信号引发蛋白激酶磷酸化脱落酸(ABA)信号调控途径中的蛋白激酶OST1 (open stomata1,气孔开放1)/SnRK2.1 (SNF1-related protein kinase 2.1,SNF1相关蛋白激酶2.1),磷酸化的OST1与bHLH类转录因子ICE1结合并将其磷酸化,稳定ICE1的活性,使其稳定结合在CBF (C-repeat binding factor,C-重复结合因子)基因上,激活它们的表达。CBF转录因子会进一步启动冷响应相关基因CORs (cold responsive,低温响应),如编码渗透调节物质合成酶以及低温保护蛋白COR、LT1 (low temperature 1,低温1)和CIN (cold-induced,冷诱导)基因等,提高植物的低温适应性[6-7]。除此之外,植物激素[8]和ROS (reactive oxygen species,活性氧)[9]也参与了植物低温响应的调控。

    植物细胞中,低温的响应和调控主要发生在细胞质和细胞核中,但叶绿体在低温响应中也发挥了重要作用。叶绿体不仅是低温响应二级信号分子ROS产生的主要场所[10],还参与水杨酸(SA)[11]、茉莉酸(JA)[12]、ABA[13]以及脯氨酸[14]等的生物合成。这些物质在植物低温响应中都产生了积极效应。因此,参与叶绿体生物活性的相关基因在低温逆境响应中也发挥了重要的功能。近年来,研究者发现叶绿体产生的ROS等信号分子可以通过逆行性信号传递途径进入细胞核来调控核基因的表达,以实现植物对环境的适应[15]。但叶绿体参与低温胁迫响应的具体分子机制大多不清楚。随着人们对植物逆境生物学研究重视程度的提高,越来越多参与植物非生物逆境响应的基因被挖掘出来,这些基因中有些响应特异逆境,也有些能够响应多种逆境,表明植物响应逆境的分子机制非常复杂的。尽管已经确定了相当数量逆境响应基因的功能,但仍有很多功能未知的基因响应非生物逆境胁迫[16]

    Eucalyptus树是世界上生长最快的木本植物之一,作为重要的用材树种广受欢迎,但大部分桉树对低温的耐受程度比较差。以桉树为材料研究它们的耐低温分子机制,深入挖掘低温胁迫响应相关的基因资源,对桉树的栽培和育种都有促进作用[17]EgrCIN1 (cold induced 1)是一个随低温处理时间延长表达不断增强的基因。亚细胞定位表明其表达的蛋白定位在巨桉Eucalyptus grandis叶绿体中。本研究通过对该基因及其编码蛋白序列特征的分析和在拟南芥Arabidopsis thaliana中异源过表达后转基因株系对低温的响应等实验,分析该基因响应低温胁迫的功能。

    巨桉为保存于浙江农林大学苗圃的G5扦插无性系材料。拟南芥野生型为哥伦比亚生态型,生长于浙江农林大学智能实验楼拟南芥生长室,生长条件为25 ℃ 16 h光照/22 ℃ 8 h黑暗,相对湿度为65%,光照强度为100 µmol·m−2·s−1

    根据EgrCIN1的编号(Eucgr.B02882)在phytozome (https://phytozome-next.jgi.doe.gov)中获取其基因、蛋白序列。使用ProtParam (http://web.expasy.Org/protparam/)分析EgrCIN1蛋白的相对分子量、理论等电点;使用PSIPRED (http://bioinf.cs.ucl.ac.uk/psipred/?disopred=1)在线预测其二级结构;使用TMHMM(http://www.cbs.dtu.dk/services/TMHMM/)进行跨膜结构预测;利用Plant-mPLoc (http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/)对EgrCIN1在细胞中的表达位置进行预测;同时截取EgrCIN1基因起始密码子ATG上游1 500 bp的序列作为其启动子,使用在线分析网站Plant Care (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/)分析EgrCIN1基因启动子上的顺式作用元件。

    1.3.1   4 ℃低温不同处理时间下的表达分析

    取6个月苗龄的巨桉G5无性系幼苗,于低温生长箱(Snijder,荷兰)中进行0.5、2.0、6.0、12.0、24.0、48.0 h的4 ℃低温处理。8 h光照/16 h黑暗,相对湿度为60%,光照强度为150 µmol·m−2·s−1。同时分别以正常温度(白天26 ℃,晚上22 ℃,湿度、光照与处理相同)条件下生长的G5无性系幼苗为对照(ck)。3株幼苗为1个处理组,设置3次重复。处理结束后,取叶片置于液氮速冻。

    1.3.2   组织特异性分析

    分别取6个月苗龄的巨桉G5无性系幼苗根、茎、嫩叶(顶端新生叶片)以及成熟叶片各100 mg,置于液氮速冻,待测。

    1.3.3   干旱、高盐、ABA、茉莉酸甲酯(MeJA)处理下的表达分析

    选取长势一致、6个月苗龄的巨桉G5无性系幼苗,分别进行干旱、高盐、ABA、MeJA等4种胁迫处理。干旱、高盐处理:干旱组不浇水即可;高盐处理组每次浇灌300 mmol·L−1氯化钠(NaCl)溶液200 mL,间隔12 h续浇1次;对照组浇灌等量清水,连续处理1周。ABA、MeJA处理:分别配制浓度为100 μmol·L−1的ABA和MeJA溶液,均匀喷洒在幼苗叶片上,对照组喷施等量清水,12 h处理1次,共处理24 h。每个处理3个植株,重复3次。处理结束后选择相同叶位的成熟叶片取样。

    1.3.4   RNA提取

    使用TIANGEN总RNA提取试剂盒(DP432),利用PrimerScript TM RT reagent Kit (TaKaRa,日本)试剂盒将RNA反转录为cDNA。设计引物(表1),以EgrACTIN为内参,用TB Green Premix Ex Taq Ⅱ(Tli RNaseH Plus)试剂盒(TaKaRa,日本)进行EgrCIN1基因表达的实时荧光定量PCR (RT-qPCR)实验,分析EgrCIN1在巨桉不同组织中及不同逆境处理后的表达情况。

    表 1  引物列表
    Table 1  Primers
    用途引物名称引物序列(5′→3′)
    35S::EgrCIN1载体构建 35S::EgrCIN1-F cgggggtaccATGGCTTCTTCACCTTGCAAAA
    35S::EgrCIN1-R gctctagaTCATCGGACATGGGGAATTACA
    35S::EgrCIN1::GFP载体构建 EgrCIN1::GFP-F gctctagaATGGCTTCTTCACCTTGCAAAA
    EgrCIN1::GFP-R cgggggtaccTCGGACATGGGGAATTACA
    半定量PCR EgrCIN1-F AGCCTATGCTTGTACTCCACCA
    EgrCIN1-R TTGCCGCCCTCGGCGCGGATGA
    AtACTIN-F TAGGCCAAGACATCATGGTGTCAT
    AtACTIN-R GTTGTACGACCACTGGCGTACAAG
    RT-qPCR EgrACTIN-F CCCGCTATGTATGTCGC
    EgrACTIN-R AAGGTCAAGACGGAGGAT
    qEgrCIN1-F ATGGCTTCTTCACCTTGCAAAA
    qEgrCIN1-R TCATCGGACATGGGGAATTACA
      说明:引物前小写字母为酶切位点及保护碱基
    下载: 导出CSV 
    | 显示表格

    以改造过的pCAMbia1300-GFP载体为骨架,在phytozome上获得EgrCIN1的转录本序列,去掉终止密码子后使用Primer Premier 5设计上下游引物并在引物2端分别添加Kpn Ⅰ和Xba Ⅰ酶切位点及保护碱基(表1),基因克隆后进行EgrCIN1::GFP融合载体构建。重组的阳性克隆提取质粒后,利用电转法转入农杆菌Agrobacterium tumetacie GV3101中。瞬时转化烟草Nicotiana tabacum叶片,共培养2 d后用激光共聚焦显微镜(ZEISS,LSM510,德国)观察并拍照。GFP荧光观察激发光波长设置为488 nm,吸收光波长为500~525 nm;观察叶绿素荧光时激发光波长设置为552 nm,吸收光波长则为620~650 nm。

    以含35S启动子的pCAMBIA1301为载体骨架,选取多克隆位点处的Xba Ⅰ和Kpn Ⅰ作为酶切位点,设计EgrCIN1带酶切位点的全长基因引物(表1),PCR扩增,鉴定后进行35S::EgrCIN1载体构建。电击转化农杆菌GV3101,蘸花法侵染拟南芥。种子收获后,在含25 μg·mL−1潮霉素B (Hygromycin B,罗氏,瑞士)的1/2 MS培养基进行阳性株系筛选,获得的阳性株系培养一段时间后,提取叶片基因组DNA,利用EgrCIN1基因特异引物(表1)进行分子鉴定。阳性株系继续繁殖、筛选,直至获得T3代转基因纯合株系。

    经筛选获得3个超表达EgrCIN1转基因纯合株系,纯合株系植株种植10 d后,提取叶片RNA,反转录为cDNA,设计引物(表1),以AtACTIN为内参,进行半定量PCR实验。

    野生型和EgrCIN1过表达株系种子经体积分数为75%乙醇消毒后,播种在1/2 MS培养基上,4 ℃春化处理2 d。低温处理:培养基上培养1周后的野生型和转基因株系幼苗分别移栽至育苗盆中,每盆中野生型和1个转基因株系各移栽4株。生长2周后,在低温培养箱中−6 ℃处理12 h后移至正常生长条件下恢复1周,观察表型并拍照。每个株系处理3盆,重复3次。实验结束后统计野生型(COL)和各株系的存活率。ABA处理:野生型和3个过表达株系分别播于含0.5 μmol·L−1 ABA的培养基上,生长10 d后,观察表型并拍照。

    定量结果采用2-ΔΔCt[18]方法计算;作图软件为GraphPad Prism ver 6.01;使用SPSS 16.0进行显著性检验,分析方法选择单因素方差分析,默认置信区间95%。

    课题组前期从巨桉4 ℃低温处理2 h的转录组中筛选到1个表达受到低温强烈诱导的基因,将其命名为EgrCIN1 (cold induced 1)。Phytozome数据库中该基因的序列号为Eucgr.B02882。为进一步了解EgrCIN1对低温的响应,利用RT-qPCR技术对4 ℃不同处理时间(0.5、2.0、6.0、12.0、24.0、48.0 h)的巨桉无性系幼苗进行EgrCIN1表达特性分析。结果表明(图1):除了处理0.5 h的植株中EgrCIN1基因的表达水平与未处理植株(对照)相比没有显著差异外,随处理时间的延长,EgrCIN1的表达水平逐渐升高,处理48.0 h时,其表达水平已经达到了对照的48.6倍。48.0 h后,叶片萎蔫严重,明显受到低温生理伤害,故未进一步取样分析。可见,EgrCIN1表达明显受低温诱导,且随处理时间的延长表达有增强的趋势。

    图 1  4 ℃低温处理不同时间下EgrCIN1的定量表达         
    Figure 1  Relative expression of EgrCIN1 gene under 4 ℃ low temperature treatment for different time

    根据巨桉数据库获取信息和相关分析可知:该基因开放阅读框全长579 bp,不含内含子。编码含有192个氨基酸的蛋白,等电点为6.98,相对分子量为20.80 kDa。该基因编码的蛋白既没有旁系同源物,也没有直系同源物,是巨桉中特有且唯一的蛋白。

    利用PSIPRED对EgrCIN1编码的蛋白的二级结构预测表明:该蛋白含有2个β转角和7个ɑ螺旋,其余部分则为无规则卷曲(图2A)。利用TMHMM对EgrCIN1蛋白序列跨膜结构的预测则表明:序列中所有氨基酸序列位点的跨膜概率均小于0.02,没有明显跨膜区域(图2B),说明其不是膜蛋白。亚细胞定位预测结果显示:EgrCIN1编码的蛋白可能在叶绿体、线粒体、细胞质及细胞核中都能表达。

    图 2  EgrCIN1蛋白二级结构(A)和跨膜结构(B)预测
    Figure 2  Prediction of EgrCIN1 protein secondary structure (A) and transmembrane structure (B)

    EgrCIN1的启动子上分布的顺式作用元件进行了分析,发现在EgrCIN1启动子上分布着多个与植物非生物逆境胁迫响应密切相关的顺式作用元件(表2),其中脱落酸应答元件(ABA response element, ABRE) 2个,乙烯响应元件(ethylene response element, ERE) 1个,低温响应元件(low temperature response element, LTR) 1个,植物转录因子MYB识别序列(MYB recongnition site)、MYC结合序列均为干旱和ABA响应元件,分别有4和6个。表明该基因的表达可能受到逆境胁迫的调控。

    表 2  EgrCIN1基因启动子上的顺式作用元件
    Table 2  Cis-elemtents in the promoter of EgrCIN1
    名称位置基序(5′→3′)数量功能
    ABRE 1 165−、1 165+ GTGCAC 2 ABA响应元件
    ERE 706+ ATTTAAA 1 乙烯响应元件
    LTR 420− AAAGCC 1 低温响应元件
    MYB 1 378+、1 152−、1 330+、1 378+ TAACCA 4 干旱、ABA响应元件
    MYC 104−、935−、630−、622+、1 015−、668+ CATTTG 6 干旱、ABA响应元件
    W-box 1 012−、1 280−、1 149− TTGACC 3 真菌诱导反应元件
      说明:+表示正义链,−表示反义链
    下载: 导出CSV 
    | 显示表格

    通过RT-qPCR分析EgrCIN1在不同组织中的表达情况,结果表明:EgrCIN1在嫩叶、成熟叶和茎中都有表达,且在茎中的表达量最高,而在根中却没有表达(图3)。

    图 3  EgrCIN1在巨桉不同组织中的定量表达
    Figure 3  Quantitative expression of EgrCIN1 in different tissues of E. grandis

    由于EgrCIN1为巨桉特有的基因,尚无其功能信息的研究,本研究构建了EgrCIN1::GFP表达载体,针对其编码蛋白在细胞中发挥功能的位置进行了亚细胞定位分析。结果表明:EgrCIN1蛋白与烟草叶片中的叶绿体具有共定位效应,表明EgrCIN1是在叶绿体中发挥作用的蛋白(图4)。

    图 4  EgrCIN1蛋白在烟草表皮细胞中的表达(标尺为50 μm)
    Figure 4  Expression of EgrCIN1 protein in tobacco epidermis cell(the bar is 50 μm)

    通过遗传转化后,从中筛选获得3个转基因株系:EgrCIN1-OE3、EgrCIN1-OE7和EgrCIN1-OE9。利用RT-qPCR技术对这3个株系中EgrCIN1的基因表达情况进行分析,结果表明:EgrCIN1在3个株系中都有明显的表达(图5)。

    图 5  野生型和EgrCIN1过表达转基因株系中EgrCIN1的半定量PCR
    Figure 5  Semi-quantitative PCR of EgrCIN1 in wild type and EgrCIN1 overexpression transgenic lines

    对3个拟南芥过表达转基因株系进行−6 ℃低温处理12 h,随后置于正常生长条件下生长1周。结果发现:−6 ℃低温处理对转基因株系和野生型都会造成低温伤害,但转基因株系的恢复情况明显好于野生型(图6A)。统计不同株系的存活率发现,野生型存活率为30.53%,而EgrCIN1-OE3、EgrCIN1-OE7和EgrCIN1-OE9等3个转基因株系分别达到了77.77%、86.07%和88.83% (图6B),表明EgrCIN1的超表达在一定程度上可以提高植株的抗寒性。

    图 6  野生型和EgrCIN1转基因株系低温处理后的表型(A)和存活率(B)
    Figure 6  Phenotype (A) and survival (B) of wild-type and EgrCIN1 transgenic lines after cold treatment

    植物低温响应分子调控途径有ABA依赖型和ABA非依赖型。针对EgrCIN1参与的抗寒性途径是否有ABA参与的这一问题,对转基因株系进行了ABA处理。结果表明:在0.5 μmol·L−1 ABA处理10 d后,3个转基因株系受到的ABA抑制作用明显强于野生型(图7),说明ABA也参与了EgrCIN1功能的发挥。

    图 7  野生型和EgrCIN1过表达株系0.5 μmol·L−1 ABA处理10 d后的表型
    Figure 7  Phenotypes of wild-type and EgrCIN1 overexpression lines treated with 0.5 μmol·L−1 ABA after 10 days

    由于不同非生物逆境因子之间往往存在相互作用,为了进一步了解其他非生物逆境因子对EgrCIN1的影响,分别分析了EgrCIN1在巨桉幼苗干旱、高盐、ABA和MeJA处理下的表达情况。结果表明:干旱和高盐处理都能诱导EgrCIN1的表达,干旱处理下EgrCIN1的表达量是对照的35.1倍;300 mmol·L−1 NaCl处理下EgrCIN1表达量则上调了16.4倍(图8A)。但EgrCIN1的拟南芥过表达转基因株系在干旱和高盐处理下与野生型相比没有显著的表型差异。此外,外源喷施ABA也能促进EgrCIN1的表达,而100 μmol·L−1 MeJA处理下,和对照相比EgrCIN1的表达并未发生显著变化(图8B)。

    图 8  巨桉幼苗高盐、干旱(A)和ABA、MeJA(B)处理下EgrCIN1的定量表达
    Figure 8  Quantitative expression of EgrCIN1 in E. grandis seedlings under high salt, drought (A) and ABA, MeJA (B) treatments

    EgrCIN1是巨桉中一个受低温诱导的未知功能的基因,本研究表明:它随着低温处理时间的延长,表达水平不断提高,显示其参与了巨桉的低温胁迫响应。基因、蛋白质序列的结构特征分析,以及多序列比对和可能功能域的搜索结果都表明该基因是巨桉中一个特有的新基因。启动子上顺式作用元件的预测也表明其表达可能受低温相关因素和信号的影响。组织特异性表达分析则表明该基因主要在巨桉茎和叶中表达,而根中没有表达。显示其可能主要在植株地上部分发挥作用。对于EgrCIN1功能的进一步研究有可能为揭示桉树低温适应性新机制提供基础。

    叶绿体在植物低温响应过程中处于中心枢纽的位置,一方面植物抵抗低温的能力取决于低温下的叶片光合活性。另一方面,叶绿体中参与光合作用的光反应中心酶活性受到抑制,进而引发PSⅡ的光能溢出效应,导致ROS积累,产生控制核基因表达的逆行性信号,调控低温响应基因表达,提高植株适应性[19]。在一定程度上,叶绿体的抗低温程度与整体植株的抗寒性密切相关。因此,叶绿体冷诱导相关的基因受到了极大的关注和重视。很多冷诱导基因在叶绿体中表达,并参与植物的低温逆境响应。针叶福禄考Phlox subulata中PsCor413im1蛋白在叶绿体膜上表达,超表达PsCor413im1的拟南芥株系在低温和冷冻逆境下,存活率和种子发芽率都有较大程度的提高[20]。拟南芥中的NAC102在叶绿体中作为抑制因子参与叶绿体基因的表达,并介导ROS对低温响应基因ZAT6、ZAT10和ZAT12等的调控[21-22];冷调控蛋白COR15A和COR15B在低温条件下也可以通过结构的改变稳定叶绿体的膜结构,实现拟南芥对低温的适应性[23]。这些结果表明:叶绿体中表达的低温诱导基因有可能成为植物低温驯化的重要靶标。尽管利用生物信息学软件预测EgrCIN1编码蛋白在叶绿体、线粒体、细胞质以及细胞核中都可能存在,但亚细胞定位结果表明其可能仅在叶绿体中表达。因此被低温强烈诱导的EgrCIN1基因表达的蛋白也定位在叶绿体中,表明其在桉树中同样有可能是叶绿体中参与低温耐受性提高的重要候选基因。拟南芥中过表达EgrCIN1株系低温处理下的结果说明了该基因的确参与了植物的低温胁迫响应,能够提高植株对低温的耐受程度。另外,该基因在不同叶绿体中表达的强度有所差异,同时并非所有叶绿体中都有该基因的表达。这可能与瞬时表达过程中该基因在不同叶绿体中表达的强度不同有关,也可能是该基因在叶绿体不同发育阶段表达模式不同。

    ABA在植物低温响应中也发挥了重要作用[24-25],包含叶绿体在内的质体是ABA生物合成开始的场所[13]。ABA在叶绿体中与逆境胁迫相关基因表达的蛋白互作调控植物对逆境的适应性。如小立碗藓Physcomitrella patens中,ABA介导了叶绿体蛋白PpCOR413im对植物低温逆境适应性的调控[26]。拟南芥中过表达匍匐剪股颖Agrostis stolonifera叶绿体定位蛋白AsHSP26.8a,可以通过调控ABA信号途径提高转基因植株对低温的抗性水平[27]EgrCIN1的过表达株系对外源ABA表现出敏感性提高的表型,同时转基因植株对低温的抗性也得到了增强,这与AsHSP26.8a作用相似。暗示ABA合成或者信号途径可能也参与了EgrCIN1对低温逆境响应的调控。同时,在巨桉中,ABA的处理也能在一定程度上诱导EgrCIN1的表达,表明ABA合成或者信号途径可能也参与了EgrCIN1功能发挥的调控。因此,EgrCIN1一方面可能受到低温等非生物逆境信号诱导而参与ABA生物合成或者信号转导对逆境响应的调控;另一方面,ABA也极可能直接影响EgrCIN1的表达,参与其功能的调控。另外,干旱、高盐也能强烈诱导EgrCIN1的表达,但实验过程中EgrCIN1拟南芥过表达转基因株系并未表现出明显的耐旱、耐盐表型,显示EgrCIN1在拟南芥和巨桉的非生物逆境响应中发挥的功能可能不同,同时也表明EgrCIN1在植物非生物逆境响应中发挥的功能比较复杂,需要进一步研究以揭示其在巨桉低温等非生物逆境响应中的功能。

    本研究表明:EgrCIN1是巨桉中特有的一个基因,受低温强烈诱导,在叶绿体中表达。其拟南芥过表达转基因株系提高了对低温的耐受性,同时对ABA的敏感程度也被增强。这表明EgrCIN1有可能是存在叶绿体中,通过与ABA互作,以ABA依赖形式的途径参与了植物对低温逆境的响应。但仍有很多问题需要进一步深入研究,如EgrCIN1是否与叶绿体的发育有关系,与ABA采用什么样的互作方式共同参与植物对低温逆境适应性的调控,在干旱、高盐等其他非生物逆境响应中的作用等。

  • 图  1  基于材积平均值的GGE分析图

    Figure  1  GGE analysis diagram based on average wood volume

    表  1  参试的无性系

    Table  1.   Clones tested

    树种和杂交组合(♀×♂)无性系
    赤桉 SX95
    粗皮桉×巨桉
    EC199
    粗皮桉×尾叶桉
    EC195
    巨桉×粗皮桉
    EC183
    巨桉×巨桉
    EC184
    巨桉×尾叶桉
    EC182
    尾叶桉×赤桉
    EC189
    尾叶桉×粗皮桉
    EC186、EC187、EC190、
    EC191、EC192、EC193、
    EC194、EC196、EC200
    尾叶桉×巨桉
    EC181、DH32-29(ck)
    细叶桉×粗皮桉
    EC198
    细叶桉×巨桉
    EC188
    细叶桉×尾叶桉
    EC180
      说明:赤桉 E. camaldulensis,粗皮桉 E. pellita,巨桉 E. grandis,尾叶桉 E. urophylla
    下载: 导出CSV

    表  2  各试验地基本情况

    Table  2.   Basic information of each test area

    试验地编码纬度
    (N)
    经度
    (E)
    土壤
    类型
    年均气
    温/℃
    年均降
    水量/mm
    广西南宁E122°82′108°37′赤红壤23.51 350
    广西钦州E221°98′108°66′砖红壤24.01 600
    广东雷州E320°92′110°10′沙壤 23.21 864
    广西扶绥E422°64′107°91′赤红壤24.01 250
    海南定安E519°68′110°36′砖红壤26.01 639
      说明:气候信息来源参考中国气象数据网 (http://data.cma.cn)。
    下载: 导出CSV

    表  3  不同参试无性系生长性状

    Table  3.   Growth traits of different clones tested

    无性系材积/(m3·株−1)平均材积/
    (m3·株−1)
    变异系
    数/%
    保存率/
    %
    广西南宁广西钦州广东雷州广西扶绥海南定安
    EC180 0.071 2 hi 0.046 7 fg 0.101 9 bcde 0.084 6 def 0.081 3 a 0.085 9 47.20 68.5
    EC181 0.075 0 ghi 0.053 9 defg 0.077 9 g 0.062 2 hi 0.047 7 g 0.065 0 43.95 74.3
    EC182 0.118 4 abcde 0.028 9 gh 0.058 5 h 0.050 5 ij 0.072 2 abc 0.064 2 45.55 83.1
    EC183 0.116 3 bcdef 0.116 8 a 0.096 7 def 0.111 9 b 0.065 7 cde 0.098 9 38.52 83.8
    EC184 0.137 8 ab 0.121 2 a 0.097 7 cdef 0.113 2 b 0.069 7 bc 0.102 1 38.85 80.7
    EC186 0.151 9 a 0.084 9 bc 0.114 9 ab 0.096 7 cd 0.077 1 ab 0.104 8 45.61 66.7
    EC187 0.112 9 bcdef 0.079 7 bcde 0.077 7 g 0.087 0 cdef 0.079 7 ab 0.085 1 33.42 53.7
    EC188 0.104 0 bcdefgh 0.066 5 cdef 0.112 6 bc 0.126 2 a 0.064 4 cdef 0.103 2 45.22 57.7
    EC189 0.134 8 abc 0.072 2 bcdef 0.084 3 fg 0.081 5 efg 0.068 5 bcd 0.082 3 38.49 84.0
    EC190 0.094 6 defghi 0.051 7 efg 0.093 5 defg 0.060 3 hi 0.079 4 ab 0.075 6 46.78 78.5
    EC191 0.128 5 abcd 0.099 1 ab 0.086 6 efg 0.083 7 ef 0.056 5 efg 0.085 4 44.51 76.6
    EC192 0.113 2 bcdef 0.084 6 bc 0.127 6 a 0.090 9 cde 0.061 5 cdef 0.100 0 49.00 63.0
    EC193 0.110 5 bcdefg 0.081 6 bcd 0.085 0 fg 0.083 1 ef 0.056 1 efg 0.080 5 50.97 56.7
    EC194 0.079 7 fghi 0.046 7 fg 0.097 4 cdef 0.075 1 fg 0.065 4 cde 0.078 2 37.41 73.2
    EC195 0.079 6 fghi 0.072 7 bcdef 0.099 3 cdef 0.048 5 jk 0.070 5 abc 0.073 9 46.21 78.0
    EC196 0.100 0 cdefgh 0.077 5 bcde 0.096 4 def 0.097 1 c 0.071 4 abc 0.090 1 42.97 69.9
    EC198 0.083 7 efghi 0.057 4 cdef 0.092 9 defg 0.069 3 gh 0.061 4 cdef 0.075 8 50.21 66.7
    EC199 0.058 5 ij 0.074 8 bcdef 0.052 9 hi 0.077 8 fg 0.057 3 defg 0.063 3 51.25 73.3
    EC200 0.090 2 efghi 0.079 0 bcde 0.108 9 bcd 0.081 6 efg 0.053 1 fg 0.084 2 40.71 56.4
    SX95 0.037 0 j 0.014 2 h 0.041 5 i 0.038 0 k 0.032 7 h 0.036 6 51.61 76.2
    DH32-29(ck) 0.134 7 0.091 7 0.100 3 32.98 94.0
    平均 0.101 0 0.070 5 0.070 5 0.081 0 0.064 6
      说明:同列不同字母表示在0.05水平下差异显著。−表示数据未检测。
    下载: 导出CSV

    表  4  地点与无性系的方差汇总

    Table  4.   Summary of variances of sites and clones

    变异因子自由度树高胸径材积
    SSMSES/%SSMSES/%SSMSES/%
    修正模型 110 10 992.9 99.9** 7 491.9 68.1** 2.132 0.019**
    截距 1 927 809.3 927 809.3** 567 606.6 567 606.6** 25.965 25.965**
    地点 4 4 411.0 1 102.8** 22.0 1 116.6 281.9** 6.8 0.378 0.095** 8.7
    无性系 19 3 201.2 168.5** 17.0 4 104.9 215.5** 21.2 1.037 0.055** 20.7
    地点×无性系 76 2 617.3 34.4** 14.3 2 108.6 27.8** 12.2 0.644 0.008** 13.9
    重复 (地点) 11 763.5 69.4** 4.7 161.8 14.7** 1.1 0.072 0.007** 1.8
    误差 3 759 15 632.8 4.2 15 244.1 4.1 3.975 0.001
    总计 3 870 954 435.0 590 342.6 32.071
    修正后总计 3 869 26 625.7 22 736.0 6.107
      说明:SS、MS、ES分别表示第1类平方和、均方、方差效应量。**与*分别表示在0.01、0.05水平下F检验差异显著。
    下载: 导出CSV

    表  5  不同地点无性系各性状的方差结果和遗传参数

    Table  5.   Variance results and genetic parameters of each character in clones from different locations

    性状方差结果/遗传参数地点
    广西南宁广西钦州广东雷州广西扶绥海南定安5地点结合
    树高 重复 13.409* 143.413** 101.418** 8.696**
    无性系 34.142** 80.532** 57.043** 101.538** 16.978**
    重复×无性系 9.511** 17.439** 8.793** 5.235**
    误差 5.392 3.894 4.780 4.038 1.310
    Ve 5.389 3 3.914 5 4.784 7 3.858 7 1.320 1 4.407 2
    Vg 1.762 5 3.474 3 0.886 3 1.663 1 0.383 6 0.753 3
    Vge 0.561 1 0.835 2 0.331 8 0.432 1 0.936 0
    Rc 0.830 5 0.881 1 0.751 1 0.918 6 0.711 4 0.781 6
    胸径 重复 7.150 30.401** 15.180** 6.115**
    无性系 37.191** 56.974** 117.873** 88.210** 13.528**
    重复×无性系 6.480 8.302** 5.599** 4.505**
    误差 7.348 4.787 5.248 3.127 1.150
    Ve 7.345 1 4.863 6 5.450 3 3.173 9 1.1842 4.147 0
    Vg 1.852 8 2.942 2 1.827 2 1.420 3 0.280 6 1.033 3
    Vge 0.107 1 0.131 5 0.164 7 0.362 2 0.672 5
    Rc 0.790 7 0.888 3 0.934 6 0.937 8 0.678 1 0.868 5
    材积 重复 0.001 0.014** 0.006** 0.002**
    无性系 0.013** 0.014** 0.028** 0.028** 0.003**
    重复×无性系 0.001 0.002** 0.002** 0.001**
    误差 0.002 0.001 0.001 0.001 0.000
    Ve 0.00177 8 0.00103 2 0.001 365 0.000 876 0.000 296 0.001 058
    Vg 0.00073 8 0.00064 0 0.000 441 0.000 469 6.26E−05 0.000 247
    Vge 3.10E−05 5.51E−05 5.83E−05 9.80E−05 0.000 219
    Rc 0.861 5 0.886 6 0.920 7 0.941 3 0.640 3 0.833 3
      说明:广西南宁无性系、误差自由度分别为19、304,其他地的重复、无性系、重复×无性系、误差的自由度分别为广西钦州 (2、19、25、325);广东雷州 (3、19、54、1149);广西扶绥 (3、19、54、1174);海南定安 (3、19、43、632)。Ve表示残差,Vg表示无性系基因型方差,Vge表示重复 (或地点) 与基因型互作方差,Rc表示无性系重复力。**与*分别表示在0.01、0.05水平下F检验差异显著。−表示缺少重复数据。
    下载: 导出CSV
  • [1] ALFRED K, ZAITON S, NORZANALIA S. A review on the potential socio-economic impact of Eucalyptus plantation on local community [J]. Malays Forester, 2020, 83(2): 322 − 339.
    [2] 徐建民, 白嘉雨, 陆钊华. 华南地区桉树可持续遗传改良与育种策略[J]. 林业科学研究, 2001, 14(6): 587 − 594.

    XU Jianmin, BAI Jiayu, LU Zhaohua. Some sustainable strategies of improvement and breeding for Eucalyptus tree species in southern China [J]. Forest Research, 2001, 14(6): 587 − 594.
    [3] 林元震. 林木基因型与环境互作的研究方法及其应用[J]. 林业科学, 2019, 55(5): 142 − 151.

    LIN Yuanzhen. Research methodologies for genotype by environment interactions in forest trees and their applications [J]. Scientia Silvae Sinicae, 2019, 55(5): 142 − 151.
    [4] CHA-UM S, KIRDMANEE C. Response of Eucalyptus camaldulensis Dehnh. to different salt affected soils [J]. Acta Horticulturae, 2012, 937: 1057 − 1064.
    [5] ANDRÉ J L, OLIVEIRA R S, SETTE C R, et al. Wood volume of Eucalyptus clones established under different spacings in the Brazilian Cerrado [J]. Forest Science, 2021, 67(4): 478 − 489.
    [6] CHAVARRÍA-PEREZ L M, GIORDANI W, DAS GRAÇAS DIAS K O, et al. Improving yield and fruit quality traits in sweet passion fruit: evidence for genotype by environment interaction and cross-compatibility in selected genotypes [J/OL]. PLoS One, 2020, 15(5): e0232818[2022-11-15]. doi: 10.1371/journal.pone.0232818.
    [7] 周家维, 董飞, 袁昌选, 等. 不同桉树无性系在黔东南的速生性和耐寒性分析[J]. 种子, 2018, 37(9): 84 − 88.

    ZHOU Jiawei, DONG Fei, YUAN Changxuan, et al. Analysis of fast growth and cold tolerance of different Eucalyptus clone in Southeast Guizhou [J]. Seed, 2018, 37(9): 84 − 88.
    [8] MURAKAMI A. Development of salt tolerant Eucalyptus globulus selection [J]. Japan TAPPI Journal, 2006, 60(1): 69 − 74.
    [9] 朱英娟, 刘丽婷, 张水花, 等. 25个桉树无性系生长量及抗风性研究[J]. 广东农业科学, 2016, 43(7): 37 − 44.

    ZHU Yingjuan, LIU Liting, ZHANG Shuihua, et al. Study on increment and wind-resistance of Eucalyptus clones [J]. Guangdong Agricultural Sciences, 2016, 43(7): 37 − 44.
    [10] FURLAN R A, TAMBARUSSI E V, MORAES C B. Genetic parameters of Eucalyptus spp. clones in northeastern Brazil [J]. Floresta, 2020, 50(2): 1267 − 1278.
    [11] SANTOS G A, NUNES A C P, RESENDE M D V, et al. Genetic control and genotype-by-environment interaction of wood weight in Eucalyptus clones in the state of Rio Grande do Sul, Brazil [J]. Revista Árvore, 2016, 40(5): 867 − 876.
    [12] 崔之益, 徐大平, 杨曾奖, 等. 桉树无性系在华南6种立地条件下的适生性评价[J]. 华南农业大学学报, 2017, 38(3): 79 − 86.

    CUI Zhiyi, XU Daping, YANG Zengjiang, et al. Adaptability evaluation of Eucalyptus clones at six stand conditions in southern China [J]. Journal South China Agricultural University, 2017, 38(3): 79 − 86.
    [13] ALVAREZ J A, CORTIZO S C, GYENGE J E. Yield stability and phenotypic plasticity of Populus spp. clones growing in environmental gradients: I-yield stability under field conditions [J/OL]. Forest Ecology and Management, 2020, 463: 117995[2022-11-15]. doi: 10.1016/j.foreco.2020.117995.
    [14] SHALIZI M N, ISIK F. Genetic parameter estimates and GxE interaction in a large cloned population of Pinus taeda L. [J]. Tree Genet Genomes, 2019, 15(3): 1 − 13.
    [15] BRAGA R C, PALUDETO J G Z, SOUZA B M, et al. Genetic parameters and genotype × environment interaction in Pinus taeda clonal tests [J/OL]. Forest Ecology and Management, 2020, 474: 118342[2022-11-15]. doi: 10.1016/j.foreco.2020.118342.
    [16] 王大为, 王延波, 常程, 等. 多主成分玉米区域试验数据的GGE双标图分析[J]. 山西农业大学学报 (自然科学版), 2021, 41(1): 30 − 39.

    WANG Dawei, WANG Yanbo, CHANG Cheng, et al. GGE biplot analysis of maize multi-environment trial data with multi principal component [J]. Journal Shanxi Agricultural University (Natural Science Edition), 2021, 41(1): 30 − 39.
    [17] BIANCHI M C, BRUZI A T, SOARES I O, et al. Heritability and the genotype × environment interaction in soybean [J/OL]. Agrosystems Geosciences & Environment, 2020, 3(1): e20020 [2022-11-15]. doi: 10.1002/AGG2.20020.
    [18] SOARES I O, REZENDE P M, BRUZI A T, et al. Adaptability of soybean cultivars in different crop years [J]. Genetics and Molecular Research, 2015, 14(3): 8995 − 9003.
    [19] 王家妍, 莫雅芳, 申礼凤, 等. 桂南地区23个桉树无性系遗传变异分析和选择[J]. 西南农业学报, 2019, 32(9): 2174 − 2179.

    WANG Jiayan, MO Yafang, SHEN Lifeng, et al. Genetic variation analysis and selection of 23 Eucalyptus clones in Southern Guangxi [J]. Southwest China Journal of Agricultural Sciences, 2019, 32(9): 2174 − 2179.
    [20] de MORAES C B, de FREITAS T C M, PIERONI G B, et al. Genetic parameters of Eucalyptus clones for early selection in frost occurrence region [J]. Scencei Forestalis, 2014, 42(102): 219 − 227.
    [21] KARTIKANINGTYAS D, NIRSATMANTO A, SUNARTI S, et al. Trends of genetic parameters and stand volume productivity of selected clones of Eucalyptus pellita observed in clonal trials in Wonogiri, Central Java [J/OL]. IOP Conference Series: Earth and Environmental Science, 2020, 522(1): 012005[2022-11-15]. doi: 10.1088/1755-1315/522/1/012005.
    [22] 李宝琦, 徐建民, 李光友, 等. 桉树大径材无性系中期选择[J]. 安徽农业科学, 2009, 37(34): 17170 − 17174, 17225.

    LI Baoqi, XU Jianmin, LI Guangyou, et al. Research on the medium-term selection of the clone of Eucalyptus timber with large-diameter [J]. Journal of Anhui Agricultural Sciences, 2009, 37(34): 17170 − 17174, 17225.
    [23] 陈兴彬, 肖复明, 余林, 等. 基于混合线性模型估算杉木生长性状遗传参数[J]. 森林与环境学报, 2018, 38(4): 419 − 424.

    CHEN Xingbin, XIAO Fuming, YU Lin, et al. Estimation of genetic parameters of Cunninghamia lanceolata growth traits based on mixed linear model [J]. Journal of Forest Environment, 2018, 38(4): 419 − 424.
    [24] de ARAUJO M J, de PAULA R C, CAMPOE O C, et al. Adaptability and stability of eucalypt clones at different ages across environmental gradients in Brazil [J/OL]. Forest Ecology and Management, 2019, 454: 117631[2022-11-15]. doi: 10.1016/j.foreco.2019.117631.
    [25] dos SANTOS A, CECCON G, TEODORO P E, et al. Adaptability and stability of erect cowpea genotypes via REML/BLUP and GGE biplot [J]. Bragantia, 2016, 75(3): 299 − 306.
    [26] 陈朝阳, 魏建伟, 陈淑萍, 等. 黄淮海夏玉米品种籽粒产量基因型与环境互作分析[J]. 分子植物育种, 2019, 17(8): 2749 − 2760.

    CHEN Chaoyang, WEI Jianwei, CHEN Shuping, et al. Genotype by environment interaction effect on grain yield of Huanghuaihai summer maize cultivars [J]. Molecular Plant Breeding, 2019, 17(8): 2749 − 2760.
    [27] 王兵伟, 覃嘉明, 郑加兴, 等. 一年两季鲜食糯玉米区域试验的GGE双标图分析[J]. 南方农业学报, 2017, 48(11): 1961 − 1968.

    WANG Bingwei, QIN Jiaming, ZHENG Jiaxing, et al. GGE biplot analysis on regional trial of fresh-eaten waxy maize with two seasons per year [J]. Journal of Southern Agriculture, 2017, 48(11): 1961 − 1968.
    [28] 严威凯. 双标图分析在农作物品种多点试验中的应用[J]. 作物学报, 2010, 36(11): 1805 − 1819.

    YAN Weikai. Optimal use of biplots in analysis of multi-location variety test data [J]. Acta Agronomica Sinica, 2010, 36(11): 1805 − 1819.
    [29] ROCHA S M G, VIDAURRE G B, PEZZOPANE J E M, et al. Influence of climatic variations on production, biomass and density of wood in Eucalyptus clones of different species [J/OL]. Forest Ecology and Management, 2020, 473: 118290[2022-11-15]. doi: 10.1016/j.foreco.2020.118290.
    [30] 钟继洪, 郭庆荣, 谭军, 等. 桉林-砖红壤水分性能特征研究[J]. 土壤与环境, 2002, 11(2): 136 − 139.

    ZHONG Jihong, GUO Qingrong, TAN Jun, et al. Latosol water properties characteristics under Eucalyplus in Leizhou Peninsula [J]. Soil and Environmental Sciences, 2002, 11(2): 136 139.
    [31] FREITAS T P, OLIVEIRA J T D S, PAES J B, et al. Environmental effect on growth and characteristics of Eucalyptus wood [J/OL]. Florestae Ambiente, 2019, 26(4): e20160302[2022-11-15]. doi: 10.1590/2179-8087.030216.
    [32] dos SANTOS O P, CARVALHO I R, SZARESKI V J, et al. Multivariate approach in Eucalyptus breeding and its effect on genotype × environment interactions [J/OL]. Genetics and Molecular Research, 2018, 17(3): gmr18025[2022-11-15]. doi: 10.4238/gmr18025.
    [33] 朱显亮, 兰俊, 王建忠, 等. 中大径材尾细桉杂种无性系选择研究[J]. 南京林业大学学报 (自然科学版), 2020, 44(2): 43 − 50.

    ZHU Xianliang, LAN Jun, WANG Jianzhong, et al. Clonal selection of middle/large diameter timber of Eucalyptus urophylla × E. tereticornis hybrid clones [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2020, 44(2): 43 − 50.
    [34] 李光友, 徐建民, 李昌荣, 等. 杂交桉家系在桂北生长及优良性评价[J]. 中南林业科技大学学报, 2021, 41(2): 8 − 15.

    LI Guangyou, XU Jianmin, LI Changrong, et al. Study on the grouped and genetic analysis of Eucalyptus hybrids in northern Guangxi [J]. Journal of Central South University of Forestry &Technology, 2021, 41(2): 8 − 15.
    [35] WU Shijun, XU Jianmin, LI Guangyou, et al. Genotypic variation in wood properties and growth traits of Eucalyptus hybrid clones in southern China [J]. New Forest, 2011, 42(1): 35 − 50.
    [36] 郑聪慧, 张鸿景, 王玉忠, 等. 基于BLUP和GGE双标图的华北落叶松家系区域试验分析[J]. 林业科学, 2019, 55(8): 73 − 83.

    ZHENG Conghui, ZHANG Hongjing, WANG Yuzhong, et al. An analysis of a regional trial of Larix principis-rupprechtii families based on BLUP and GGE biplot [J]. Scientia Silvae Sinicae, 2019, 55(8): 73 − 83.
    [37] OSORIO L F, WHITE T L, HUBER D A. Age trends of heritabilities and genotype-by-environment interactions for growth traits and wood density from clonal trials of Eucalyptus grandis Hill ex Maiden [J]. Silvae Genetica, 2001, 50(3/4): 108 − 116.
    [38] 程玲, 张心菲, 张鑫鑫, 等. 基于BLUP和GGE双标图的林木多地点试验分析[J]. 西北农林科技大学学报 (自然科学版), 2018, 46(3): 87 − 93.

    CHENG Ling, ZHANG Xinfei, ZHANG Xinxin, et al. Forestry multi-environment trial analysis based on BLUP and GGE biplot [J]. Journal of Northwest A&F University (Natural Science Edition), 2018, 46(3): 87 − 93.
  • [1] 杨艳, 唐洁, 李永进, 汤玉喜, 黎蕾.  7个南方适生杨树无性系生长和木材纤维性状分析与评价 . 浙江农林大学学报, 2022, 39(4): 807-813. doi: 10.11833/j.issn.2095-0756.20210481
    [2] 陈娅欣, 周明兵.  毛竹长末端重复序列反转录转座子的全基因组特征及进化分析 . 浙江农林大学学报, 2021, 38(3): 455-463. doi: 10.11833/j.issn.2095-0756.20200458
    [3] 王晨, 张俊红, 张苗, 许雯婷, 楼雄珍, 童再康.  柳杉优良无性系组培快繁体系研究 . 浙江农林大学学报, 2020, 37(4): 810-816. doi: 10.11833/j.issn.2095-0756.20190484
    [4] 牛媛, 敖妍, 李云, 田秀铭, 杨长文, 刘小天, 李志虹.  文冠果优良无性系授粉组合选择及结实性状分析 . 浙江农林大学学报, 2020, 37(2): 209-219. doi: 10.11833/j.issn.2095-0756.2020.02.003
    [5] 高常军, 魏龙, 贾朋, 田惠玲, 李树光.  基于去重复性分析的广东省滨海湿地生态系统服务价值估算 . 浙江农林大学学报, 2017, 34(1): 152-160. doi: 10.11833/j.issn.2095-0756.2017.01.021
    [6] 郑秀文, 崔鹏, 石嘉伟, 杨静静, 陈敏敏, 郑瑶, 许玲, 刘宏波.  水稻OsZFP互作蛋白的筛选与鉴定 . 浙江农林大学学报, 2017, 34(6): 1024-1028. doi: 10.11833/j.issn.2095-0756.2017.06.008
    [7] 徐圆圆, 陆明英, 蒋维昕, 程飞, 谭玲, 杨梅.  铝胁迫下不同耐铝型桉树无性系根和叶抗氧化特征的差异 . 浙江农林大学学报, 2016, 33(6): 1009-1016. doi: 10.11833/j.issn.2095-0756.2016.06.012
    [8] 陆敏佳, 蒋玉蓉, 陈国林, 毛前, 陆国权.  藜麦叶片黄酮类物质的提取及基因型差异 . 浙江农林大学学报, 2014, 31(4): 534-540. doi: 10.11833/j.issn.2095-0756.2014.04.007
    [9] 郑勇平, 孙鸿有, 冯建民, 张建章, 冯建国, 吴隆高.  杉木优良无性系龙15与闽33双系种子园遗传改良效应分析 . 浙江农林大学学报, 2009, 26(2): 201-208.
    [10] 陆道调, 蔡会德, 张旭, 牟继平.  桉树无性系速生丰产林生长及经济效益评价 . 浙江农林大学学报, 2008, 25(1): 65-68.
    [11] 曾艳玲, 谭晓风, 张党权, 曾晓峰, 李秀根, 刘先雄.  5个中国砂梨品种S基因型的确定 . 浙江农林大学学报, 2007, 24(6): 654-660.
    [12] 李淑仪, 蓝佩玲, 廖新荣, 杨国清, 简明, 徐胜光.  2 个桉树无性系微量元素叶片营养诊断初探 . 浙江农林大学学报, 2005, 22(1): 40-45.
    [13] 景芸, 梁一池, 杨华.  不同锥栗无性系果实营养成分的比较分析 . 浙江农林大学学报, 2004, 21(2): 176-179.
    [14] 余树全, 付达荣, 李翠环, 刘军, 刘大健.  康定杨优树无性系苗期测定 . 浙江农林大学学报, 2003, 20(3): 245-248.
    [15] 黎章矩, 钱莲芳, 戴文圣, 汪祖潭, 骆文坚, 许树洪, 喻卫武.  山茱萸优良无性系选育 . 浙江农林大学学报, 2003, 20(4): 331-335.
    [16] 陈孝丑.  杉木速生优良无性系的选育 . 浙江农林大学学报, 2001, 18(3): 257-261.
    [17] 童再康, 郑勇平, 罗士元, 杨惠平, 史红正.  黑杨派南方型新无性系纸浆材材性变异与遗传 . 浙江农林大学学报, 2001, 18(1): 21-25.
    [18] 田荆祥, 俞友明, 余学军, 周天相.  无性系杉木的物理力学性质 . 浙江农林大学学报, 1998, 15(3): 260-266.
    [19] 赖焕林, 王章荣.  马尾松无性系种子园花期花量分析 . 浙江农林大学学报, 1996, 13(4): 405-410.
    [20] 何祯祥, 蒋恕, 叶志宏, 施季森.  杉木无性系扦插繁殖生根机理 . 浙江农林大学学报, 1994, 11(1): 38-44.
  • 期刊类型引用(3)

    1. 邱小兰. 大花序桉和托里桉生长量及主要材性比较. 福建林业科技. 2024(02): 13-18 . 百度学术
    2. 陈书兴. 大花序桉和卷荚相思生长发育规律及主要材性比较. 福建林业. 2024(05): 41-44 . 百度学术
    3. 赵安琪,尹跃,何军,安巍,秦小雅,胡体旭. 枸杞LbaHY5基因克隆、亚细胞定位及表达分析. 华北农学报. 2024(06): 76-83 . 百度学术

    其他类型引用(0)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20220734

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2023/5/951

图(1) / 表(5)
计量
  • 文章访问数:  619
  • HTML全文浏览量:  95
  • PDF下载量:  56
  • 被引次数: 3
出版历程
  • 收稿日期:  2022-11-28
  • 修回日期:  2023-05-17
  • 录用日期:  2023-05-22
  • 网络出版日期:  2023-09-26
  • 刊出日期:  2023-09-26

桉树无性系生长性状基因型与环境互作效应及优良无性系选择

doi: 10.11833/j.issn.2095-0756.20220734
    基金项目:  中国林业科学研究院基本科研业务费专项资助 (CAFYBB2021MB002);广东省林业科技创新项目 (2017KJCX031, 2019KJCX014)
    作者简介:

    王楚彪(ORCID: 0000-0001-5417-4629),副研究员,博士,从事林木遗传育种研究。E-mail: scauwcb@163.com

    通信作者: 罗建中(ORCID: 0000-0001-8656-9254),研究员,博士,从事林木遗传育种研究。E-mail: 969170789@qq.com
  • 中图分类号: S722

摘要:   目的  对20个桉树 Eucalyptus无性系,包括1个赤桉E. camaldulensis无性系和19个杂交桉无性系,分别在广西南宁、广西钦州、广东雷州、广西扶绥和海南定安的立地条件下进行测试,探讨基因型、环境及其互作对无性系选育的影响,旨在为桉树的无性系筛选适生环境并推广提供借鉴。  方法  以各地点所测试的4.5年生桉树无性系为研究对象,基于各无性系的树高、胸径、单株材积、保存率的调查数据,比较各地点各无性系的生长表现。对单地点、多地点建立线性混合模型,计算各性状的方差分量和无性系重复力,同时计算单地点的最佳线性无偏预测(BLUP)值和多地点各性状的方差效应量。最后通过材积平均值和BLUP值进行基因型和基因型与环境互作双标图(GGE)分析。  结果  单地点分析中,各地点的最优无性系生长排序不同,无性系各性状受到环境的影响也不同。多地点分析中,桉树无性系基因型、环境以及基因型与环境互作存在显著差异,各性状的无性系重复力为0.781 6~0.868 5,其中胸径的无性系重复力最高且表现最稳定,树高易受环境影响。基于单株材积性状,筛选出EC186、EC188、EC184为优良无性系。基于材积平均值和BLUP值进行GGE模型分析得出EC183和EC184为高材积、高稳定性的无性系。  结论  20个无性系中,EC183和EC184为高材积、高稳定性的无性系。5个地点相比,广西南宁地区适合这批无性系的快速生长,广西钦州为这批无性系理想的选材环境。图1表5参38

English Abstract

李芳燕, 夏晓雪, 吴梦洁, 等. 巨桉EgrCIN1响应非生物逆境的分析[J]. 浙江农林大学学报, 2022, 39(6): 1194-1202. DOI: 10.11833/j.issn.2095-0756.20220348
引用本文: 王楚彪, 熊涛, 张磊, 等. 桉树无性系生长性状基因型与环境互作效应及优良无性系选择[J]. 浙江农林大学学报, 2023, 40(5): 951-960. DOI: 10.11833/j.issn.2095-0756.20220734
LI Fangyan, XIA Xiaoxue, WU Mengjie, et al. Response of Eucalyptus grandis EgrCIN1 to abiotic stress[J]. Journal of Zhejiang A&F University, 2022, 39(6): 1194-1202. DOI: 10.11833/j.issn.2095-0756.20220348
Citation: WANG Chubiao, XIONG Tao, ZHANG Lei, et al. Genotype × environment interaction on growth traits of Eucalyptus clones and selection of elite clones[J]. Journal of Zhejiang A&F University, 2023, 40(5): 951-960. DOI: 10.11833/j.issn.2095-0756.20220734
  • 桉树 Eucalyptus生长迅速,作为一种重要工业用材树种,在满足日益增长的全球木材供应需求方面发挥了重要作用[1]。在以往桉树育种策略中,培育速生桉树无性系能短时间内满足木材需求,前提需在无性系区域试验基础上,选出适宜本区域的优良无性系以推广应用[2]。材积是桉树重要的经济性状,对木材产量有显著影响。然而,推广的无性系在不同生境生长难免出现经济性状不良的问题,因此桉树育种策略需兼顾培育适应范围广的优良无性系。区域试验为选育适应性范围广的品种提供依据,且能反映植物生长状况及性状、品种稳定性的问题。

    区域试验也存在着基因型与环境互作 (genotype × environment interaction, G×E) 影响品种在不同环境下的排序。G×E指基因型的相对表现在不同环境下缺乏稳定性[3],即基因型与环境互作效应越强,稳定性越低,是影响品种稳定性的主要原因。基因型与环境互作研究的重要性包括3点:其一,可认识不同性状在不同生长环境中的遗传规律,如赤桉 E. camaldulensis的保存率受土壤盐浓度的影响[4],桉树无性系的胸径受株行距的正向影响[5],翅茎西番莲 Passiflora alata的生长性状受海拔的影响[6]等;其二,可为特定生境选择经济性状表现最优的基因型,如在特定的恶劣环境中,选育出抗寒[7]、抗盐抗旱[8]、抗风[9]的桉树品种,使跨区域 (或气候) 种植成为可能;其三,可为多种生境选择稳定性好的优良基因型,如在不同土壤特性、气候类型的环境中选择较优的桉树品种[1012]。通过基因型与环境互作的研究,可选择适应范围广、品种产量稳定的优良无性系。

    几乎所有重要的林木品种的基因型和环境互作都有报道,包括杨属 Populus[13]、松属Pinus [14]、柳属 Salix[15]等。对桉树无性系与环境互作的研究,目前大多数使用的分析方法有稳定性分析、主效可加互作可乘 (additive main multiplicative interaction, AMMI) 分析、主成分分析以及近期流行的基因型和基因型与环境互作双标图[genotype main effects (G) and genotype × environment interaction (G×E), GGE]分析方法等[10]。其中GGE的优势是在AMMI分析基因型与环境互作效应的基础上,又更多考虑基因型的作用[16]。此外,对遗传和表型参数的估计,包括各性状方差分量、无性系重复力、遗传增益等,对育种策略的成功至关重要[17]。如仅从一个环境中估算遗传和表型参数,未考虑较大的G×E影响,会导致结果不准确,因此,从多个环境中获得的参数具有参考价值[18]。目前,仍缺乏对桉树基因型与环境互作效应的研究,已有的研究也仅在一个地点开展[1921],因此评估栽培桉树不同基因与环境互作的效应具有重要意义。本研究通过研究不同地点中桉树无性系的生长性状,筛选各地点中的适生品种;对单地点、多地点建立线性混合模型以计算遗传参数;最后以材积平均值和最佳线性无偏预测(best linear unbiased prediction, BLUP)值进行GGE分析,选出优良无性系及其理想种植地点,为桉树优良品种的推广提供借鉴。

    • 参试无性系共21个,4.5年生,详见表1,以种植面积较大的无性系DH32-29作为对照。

      表 1  参试的无性系

      Table 1.  Clones tested

      树种和杂交组合(♀×♂)无性系
      赤桉 SX95
      粗皮桉×巨桉
      EC199
      粗皮桉×尾叶桉
      EC195
      巨桉×粗皮桉
      EC183
      巨桉×巨桉
      EC184
      巨桉×尾叶桉
      EC182
      尾叶桉×赤桉
      EC189
      尾叶桉×粗皮桉
      EC186、EC187、EC190、
      EC191、EC192、EC193、
      EC194、EC196、EC200
      尾叶桉×巨桉
      EC181、DH32-29(ck)
      细叶桉×粗皮桉
      EC198
      细叶桉×巨桉
      EC188
      细叶桉×尾叶桉
      EC180
        说明:赤桉 E. camaldulensis,粗皮桉 E. pellita,巨桉 E. grandis,尾叶桉 E. urophylla
    • 采用完全随机区组设计,每个小区4行,每行5株,株行距为2 m×3 m,样地设置4个重复,1个重复内的各个无性系重复20次。于2016年6月种植,2020年12月调查树高、胸径、保存率。试验地分布在广西、广东及海南,详见表2

      表 2  各试验地基本情况

      Table 2.  Basic information of each test area

      试验地编码纬度
      (N)
      经度
      (E)
      土壤
      类型
      年均气
      温/℃
      年均降
      水量/mm
      广西南宁E122°82′108°37′赤红壤23.51 350
      广西钦州E221°98′108°66′砖红壤24.01 600
      广东雷州E320°92′110°10′沙壤 23.21 864
      广西扶绥E422°64′107°91′赤红壤24.01 250
      海南定安E519°68′110°36′砖红壤26.01 639
        说明:气候信息来源参考中国气象数据网 (http://data.cma.cn)。
    • 树高 (H, m) 和胸径 (D, cm) 分别使用瑞典Vertex Ⅳ超声波林木测高仪和卷尺测量,计算单株材积 (V, m3·株−1) [22],公式为:V=D2H/30 000。各无性系保存率为活立木株数占总株数的百分比。表型材积变异系数(Cv)公式为:Cv=σ/μ×100%,其中σ表示无性系材积标准差,μ表示无性系材积平均值。

    • 单地点方差分析使用线性混合模型 (linear mixed model),模型[23]为:${{Y}}_{{ijk}}{=}{\mu}{+}{{B}}_{{i}}{+}{{C}}_{{j}}{+}{{B}}_{{C}{ij}}{+}{{ \varepsilon }}_{{ijk}}$。其中Yijk为单点试验第i重复第j无性系第k单株的观测值,μ为群体的总体平均值,Bi为第i重复效应,Cj为第j无性系效应,BCij为第j无性系和第i重复的互作效应,εijk为剩余项。其中以无性系、无性系与重复的互作效应为随机效应,获得单地点各无性系的BLUP值用于GGE分析。

      多地点方差分析同样建立线性混合模型,计算各性状的方差分量和方差效应量,模型[23]为:${{Y}}_{{hij}}{=}{\mu}{+} {{L}}_{{h}}{+}{{B}{(}{L}{)}}_{{i}{(}{h}{)}}{+}{{C}}_{{j}}{+}{{I}}_{{{\rm{LC}}hj}}{+}{{ \varepsilon }}_{{hij}}$。其中,Yhij为单点试验第h地点内第i重复第j无性系的小区平均值,μ为群体的总体平均值,Lh为第h地点效应,B(L)i(h)为第h地点内第i重复效应,Cj为第j无性系效应,ILChj为第j无性系和第h地点的互作效应,εijk为剩余项。此外各性状的均方 (MS) 是由第Ⅰ类平方和与自由度 (DF) 的比值计算。偏效应量 (ES,η2) 基于第Ⅰ类平方和计算,公式为:${{\eta}}_{\left({A}\right)}^{{2}}{=}\dfrac{{{S}}_{{{\rm{S}}}{A}}}{{{S}}_{{{\rm{S}}}{A}}{+}{{S}}_{{{\rm{S}}}{{\rm{E}}}}}$。其中,A表示某个变异因子 (或因素)。SSA表示某个变异因子的平方和,SSE表示误差平方和。

      基于线性混合模型,单地点以无性系、无性系与重复互作效应作为随机因子;多地点以无性系、无性系与地点互作效应作为随机因子,其他变异因子作为固定效应。获得的各性状方差分量用于计算遗传参数。无性系重复力(Rc)的计算公式[21]为:

      $$ {{R}}_{{{\rm{c}}}}=\dfrac{{{V}}_{{{\rm{g}}}}}{{{V}}_{{{\rm{g}}}}+\dfrac{{{V}}_{{{\rm{ge}}}}}{{L}}+\dfrac{{{V}}_{{{\rm{e}}}}}{{N_L}}} 。 $$

      其中,Vg为无性系基因型方差,Vge为无性系与重复 (或地点)交互作用方差,Ve为残差,L为重复 (或地点) 个数,NL为重复 (或地点) 内各无性系个数,其中每个重复 (或地点) 内各无性系的个数不同,NL的值需使用调和平均数。

    • 为了鉴别各试点中表现最好的无性系、分析各试点对无性系评价的相似性、筛选理想选材环境和无性系,分别基于材积平均值和BLUP值进行GGE模型分析,该模型公式[2425]为:

      $$ {{Y}}_{{ij}}-{{\overline{Y}}}_{{i}{j}}={{ \lambda }}_{{1}}{\xi}_{{i}{1}}{\eta}_{{j}{1}}+{{ \lambda }}_{{2}}{\xi}_{{i}{2}}{\xi}_{{j}{2}}+{{ \varepsilon }}_{{ij}} 。 $$

      其中,Yij为无性系i在环境j下的预测产量;$\overline Y_{ij} $为所有无性系i在环境j下的总体平均值;λ1λ2为主成分单值分解,ξi1ξi2是无性系i在主成分上的特征向量,ηj1ηj2为环境j在主成分上的特征向量;εij是随机误差。

      使用R 4.1.1、Rstudio v.2022.12.0+353、SPSS 26、Excel 2019进行数据分析。

    • 各无性系的材积、材积变异系数及保存率的数据统计见表3,单地点方差分析表明各无性系的材积差异极显著 (P<0.01, 未列表)。5个试验地相比,南宁的平均材积 (0.101 0 m3·株−1) 较其他地点大,定安的平均材积 (0.064 6 m3·株−1) 较小,说明定安对于参试无性系的适应性相对差。在各地中选择前3个优良无性系 (除对照),其中南宁优良无性系为EC186、EC184和EC189;钦州为EC184、EC183和EC191;雷州为EC192、EC186和EC188;扶绥为EC188、EC184和EC183;定安为EC180、EC187和EC190。可见EC184在南宁、钦州和扶绥3地表现优良。各无性系 (多地点分析) 中,EC186、EC188、EC184的平均材积大于DH32-29。EC182、EC183、EC184和EC189的保存率均大于80.0%,但EC182与EC189的材积表现略低。此外,EC183、E184、EC189材积的变异系数 (38.51%~39.82%) 相对较低,表明这些无性系稳定性相对较好;EC186的材积变异系数 (45.61%) 则较高。

      表 3  不同参试无性系生长性状

      Table 3.  Growth traits of different clones tested

      无性系材积/(m3·株−1)平均材积/
      (m3·株−1)
      变异系
      数/%
      保存率/
      %
      广西南宁广西钦州广东雷州广西扶绥海南定安
      EC180 0.071 2 hi 0.046 7 fg 0.101 9 bcde 0.084 6 def 0.081 3 a 0.085 9 47.20 68.5
      EC181 0.075 0 ghi 0.053 9 defg 0.077 9 g 0.062 2 hi 0.047 7 g 0.065 0 43.95 74.3
      EC182 0.118 4 abcde 0.028 9 gh 0.058 5 h 0.050 5 ij 0.072 2 abc 0.064 2 45.55 83.1
      EC183 0.116 3 bcdef 0.116 8 a 0.096 7 def 0.111 9 b 0.065 7 cde 0.098 9 38.52 83.8
      EC184 0.137 8 ab 0.121 2 a 0.097 7 cdef 0.113 2 b 0.069 7 bc 0.102 1 38.85 80.7
      EC186 0.151 9 a 0.084 9 bc 0.114 9 ab 0.096 7 cd 0.077 1 ab 0.104 8 45.61 66.7
      EC187 0.112 9 bcdef 0.079 7 bcde 0.077 7 g 0.087 0 cdef 0.079 7 ab 0.085 1 33.42 53.7
      EC188 0.104 0 bcdefgh 0.066 5 cdef 0.112 6 bc 0.126 2 a 0.064 4 cdef 0.103 2 45.22 57.7
      EC189 0.134 8 abc 0.072 2 bcdef 0.084 3 fg 0.081 5 efg 0.068 5 bcd 0.082 3 38.49 84.0
      EC190 0.094 6 defghi 0.051 7 efg 0.093 5 defg 0.060 3 hi 0.079 4 ab 0.075 6 46.78 78.5
      EC191 0.128 5 abcd 0.099 1 ab 0.086 6 efg 0.083 7 ef 0.056 5 efg 0.085 4 44.51 76.6
      EC192 0.113 2 bcdef 0.084 6 bc 0.127 6 a 0.090 9 cde 0.061 5 cdef 0.100 0 49.00 63.0
      EC193 0.110 5 bcdefg 0.081 6 bcd 0.085 0 fg 0.083 1 ef 0.056 1 efg 0.080 5 50.97 56.7
      EC194 0.079 7 fghi 0.046 7 fg 0.097 4 cdef 0.075 1 fg 0.065 4 cde 0.078 2 37.41 73.2
      EC195 0.079 6 fghi 0.072 7 bcdef 0.099 3 cdef 0.048 5 jk 0.070 5 abc 0.073 9 46.21 78.0
      EC196 0.100 0 cdefgh 0.077 5 bcde 0.096 4 def 0.097 1 c 0.071 4 abc 0.090 1 42.97 69.9
      EC198 0.083 7 efghi 0.057 4 cdef 0.092 9 defg 0.069 3 gh 0.061 4 cdef 0.075 8 50.21 66.7
      EC199 0.058 5 ij 0.074 8 bcdef 0.052 9 hi 0.077 8 fg 0.057 3 defg 0.063 3 51.25 73.3
      EC200 0.090 2 efghi 0.079 0 bcde 0.108 9 bcd 0.081 6 efg 0.053 1 fg 0.084 2 40.71 56.4
      SX95 0.037 0 j 0.014 2 h 0.041 5 i 0.038 0 k 0.032 7 h 0.036 6 51.61 76.2
      DH32-29(ck) 0.134 7 0.091 7 0.100 3 32.98 94.0
      平均 0.101 0 0.070 5 0.070 5 0.081 0 0.064 6
        说明:同列不同字母表示在0.05水平下差异显著。−表示数据未检测。
    • 表4可见:对于树高,地点×无性系的交互作用占总表型贡献率 (即方差效应量) 的14.3%,地点的效应量为22.0%,无性系的效应量为17.0%;对于胸径,地点×无性系的效应量为12.2%,地点的效应量为6.8%,无性系的效应量为21.2%;对于材积,地点×无性系的效应量为13.9%,地点的效应量为8.7%,无性系的效应量为20.7%。可见树高受到地点影响较其他性状大,胸径受地点影响较小。

      表 4  地点与无性系的方差汇总

      Table 4.  Summary of variances of sites and clones

      变异因子自由度树高胸径材积
      SSMSES/%SSMSES/%SSMSES/%
      修正模型 110 10 992.9 99.9** 7 491.9 68.1** 2.132 0.019**
      截距 1 927 809.3 927 809.3** 567 606.6 567 606.6** 25.965 25.965**
      地点 4 4 411.0 1 102.8** 22.0 1 116.6 281.9** 6.8 0.378 0.095** 8.7
      无性系 19 3 201.2 168.5** 17.0 4 104.9 215.5** 21.2 1.037 0.055** 20.7
      地点×无性系 76 2 617.3 34.4** 14.3 2 108.6 27.8** 12.2 0.644 0.008** 13.9
      重复 (地点) 11 763.5 69.4** 4.7 161.8 14.7** 1.1 0.072 0.007** 1.8
      误差 3 759 15 632.8 4.2 15 244.1 4.1 3.975 0.001
      总计 3 870 954 435.0 590 342.6 32.071
      修正后总计 3 869 26 625.7 22 736.0 6.107
        说明:SS、MS、ES分别表示第1类平方和、均方、方差效应量。**与*分别表示在0.01、0.05水平下F检验差异显著。
    • 基于线性混合模型,获得各性状 (除保存率) 的方差结果和遗传参数值,结果如表5。树高、胸径、材积的无性系重复力分别为0.711 4~0.918 6、0.678 1~0.934 6、0.640 3~0.920 7,说明各性状无性系之间的生长变异主要受遗传控制。

      表 5  不同地点无性系各性状的方差结果和遗传参数

      Table 5.  Variance results and genetic parameters of each character in clones from different locations

      性状方差结果/遗传参数地点
      广西南宁广西钦州广东雷州广西扶绥海南定安5地点结合
      树高 重复 13.409* 143.413** 101.418** 8.696**
      无性系 34.142** 80.532** 57.043** 101.538** 16.978**
      重复×无性系 9.511** 17.439** 8.793** 5.235**
      误差 5.392 3.894 4.780 4.038 1.310
      Ve 5.389 3 3.914 5 4.784 7 3.858 7 1.320 1 4.407 2
      Vg 1.762 5 3.474 3 0.886 3 1.663 1 0.383 6 0.753 3
      Vge 0.561 1 0.835 2 0.331 8 0.432 1 0.936 0
      Rc 0.830 5 0.881 1 0.751 1 0.918 6 0.711 4 0.781 6
      胸径 重复 7.150 30.401** 15.180** 6.115**
      无性系 37.191** 56.974** 117.873** 88.210** 13.528**
      重复×无性系 6.480 8.302** 5.599** 4.505**
      误差 7.348 4.787 5.248 3.127 1.150
      Ve 7.345 1 4.863 6 5.450 3 3.173 9 1.1842 4.147 0
      Vg 1.852 8 2.942 2 1.827 2 1.420 3 0.280 6 1.033 3
      Vge 0.107 1 0.131 5 0.164 7 0.362 2 0.672 5
      Rc 0.790 7 0.888 3 0.934 6 0.937 8 0.678 1 0.868 5
      材积 重复 0.001 0.014** 0.006** 0.002**
      无性系 0.013** 0.014** 0.028** 0.028** 0.003**
      重复×无性系 0.001 0.002** 0.002** 0.001**
      误差 0.002 0.001 0.001 0.001 0.000
      Ve 0.00177 8 0.00103 2 0.001 365 0.000 876 0.000 296 0.001 058
      Vg 0.00073 8 0.00064 0 0.000 441 0.000 469 6.26E−05 0.000 247
      Vge 3.10E−05 5.51E−05 5.83E−05 9.80E−05 0.000 219
      Rc 0.861 5 0.886 6 0.920 7 0.941 3 0.640 3 0.833 3
        说明:广西南宁无性系、误差自由度分别为19、304,其他地的重复、无性系、重复×无性系、误差的自由度分别为广西钦州 (2、19、25、325);广东雷州 (3、19、54、1149);广西扶绥 (3、19、54、1174);海南定安 (3、19、43、632)。Ve表示残差,Vg表示无性系基因型方差,Vge表示重复 (或地点) 与基因型互作方差,Rc表示无性系重复力。**与*分别表示在0.01、0.05水平下F检验差异显著。−表示缺少重复数据。

      广西南宁试验地材积无性系重复力较高,为0.861 5,胸径较低,为0.7907 ,该地残差较其他地大。广西钦州试验地各性状的无性系重复力几乎相等 (趋于0.89),基因型方差分量占较大比例,说明各无性系内单株之间生长变异受到遗传控制较高,不同重复、重复×无性系之间的胸径性状差异不显著,表明不同重复的种植环境对胸径生长无影响。广东雷州试验地树高性状无性系重复力 (0.751 1) 较低,可能其对环境更加敏感;而该地区无性系内胸径、材积性状重复力都较高。广西扶绥试验地各性状无性系重复力大于0.90,可能受环境因素的影响较小,而且方差结果表明该试验地各性状的无性系效应量较其他变异来源高。海南定安试验地各性状重复×无性系方差所占的分量比基因型大,导致无性系重复力相对较低,同时该地区的G×E大小 (通过重复×无性系的方差分量占无性系与重复×无性系两者之和的百分比来衡量) 较其他地点高。

      5个地点联合分析中,无性系与地点的互作方差比单一地点重复互作方差要高,说明地点很大程度影响无性系的生长且该混合模型更有合理性。此时性状之间无性系重复力由大到小为胸径、材积、树高。

    • 对材积原始数据进行GGE双标图分析见图1,PC1与PC2共同解释总G+G×E效应的78.96%,图1A中多边形由离原点最远的无性系连接而成,通过原点到多边形各边的垂线将双标图分成若干扇区,每个扇形区域中顶角的品种是该扇区中表现最好的无性系,靠近原点的品种对环境不敏感。根据落点的扇区可将广西南宁、海南定安划为一组,其中EC186在该环境材积最高;广西钦州、扶绥划为一组,其中EC184在该环境材积最高;广东雷州划为一组,其中EC183在该环境材积最高。

      图  1  基于材积平均值的GGE分析图

      Figure 1.  GGE analysis diagram based on average wood volume

      图1A中两地线段间夹角的余弦值是它们的相关系数,夹角小于90°表示正相关,说明两地对品种排序相似[26]。夹角较小说明试验点是重复设置的,去掉1个试验点不影响对品种的评价。各地点之间存在正相关,其中广西南宁和海南定安夹角最小,说明这2个环境对无性系的选择具有一致性。广西南宁和钦州线段较长,说明广西南宁和钦州有较强的无性系区分能力。然而,海南定安线段较短,说明海南定安的不同无性系之间的生长差异小。

      图1B中带箭头的直线为平均环境轴,直线上圆圈表示平均环境值,试验地线段和平均环境轴的角度越小,代表性越强[27]。其中广西钦州与平均环境轴角度小,且线段较长,表明广西钦州具有较强的代表性和区分力,有区分力却没代表性的地区可以淘汰稳定性差的品种,既有区分力又有代表性的地区才能选择高产稳产的品种[28]。即在广西钦州选择的高产稳产品种较为可靠;广西南宁适于无性系的快速生长,同时也淘汰不稳定品种。

      图1B中环境平均轴所指方向是无性系平均值的走向,无箭头的绿直线表示该性状的总平均值[27]。材积由大到小依次列出EC184、EC186、EC183、EC192、EC191、EC188、EC189、EC196、EC193、EC200 (只列出大于材积总平均值的无性系)。无性系与平均环境轴之间的垂线越长,表示无性系越不稳定,其中EC184具有较强的稳定性,即该无性系在各环境下生长表现差异不大;其次EC182的稳定性最低,说明该无性系在各环境下生长表现差异大,由表3数据:EC182在广西南宁生长较好,广西钦州生长较差。综合选择EC184为高材积量、高稳定性的无性系。

      对材积的BLUP值进行GGE双标图分析可知 (因结果基本相似图未列出):主成分共同解释G+G×E效应的80.68%。选出无性系EC184在广西南宁、广西钦州、广西扶绥、海南定安环境下材积的表现最优,EC188在广东雷州环境下表现最好。除定安地区外,其他地区有较强的无性系区分能力。广西钦州 (E2) 与前文分析相同,为理想的材积试验环境。无性系材积由大到小依次为EC184、EC183、EC186、EC192、EC188、EC191、EC196、EC189、EC187、EC193、EC200 (只列出大于BLUP值的总平均值的无性系)。尽管EC184材积量最大,但BLUP-GGE模型得出EC183具有较强的材积稳定性,与前面分析有差异,因此综合选择EC183为高材积量、高稳定性的无性系。

    • 无性系生长不仅受到遗传控制,而且受许多环境因子的影响,如降水量、土壤类型、气温、风力等。本研究表明:南宁地区的无性系生长表现最好。ROCHA等[29]研究表明:潮湿环境更有利于桉树无性系材积增长,然而广西南宁的年均降水量相比广西钦州、广东雷州、海南定安较低,意味着这3个点地的无性系本应该有较好的材积生长量,但是无性系材积都低于广西南宁,推断有其他因素影响这3个地区的无性系生长。本研究无性系品种以尾叶桉和巨桉为母本居多,不排除因品种因素导致广西南宁在较低年均降水量下有良好生长表现的可能[29]。另外,由于气候条件相差不大,还可能是土壤类型所致。广西南宁的土壤类型为赤红壤,广西钦州和海南定安的土壤为浅海沉积物发育的砖红壤,一般认为赤红壤比浅海沉积物砖红壤更有高导水性、持水和供水的能力[30]。其次,海南定安材积量较其他地小,可能与其年均气温较高、地理位置靠近赤道有关,这与de ARAUJO等[24]认为桉树无性系接近赤道的生产力在下降的结果有一定关联。此外,广西钦州、广东雷州、海南定安沿海,常年受到台风的影响,也可能导致无性系生长受抑制。由此可见,无性系的生长是遗传与环境相互作用的结果。

    • 无性系生长过程中,各性状在不同环境下表现程度有所不同,有的性状受环境影响较大,不同性状的重复力也有所差异。本研究表明:树高易受到环境影响,重复力较低。方差效应量是衡量各变异因子大小的指标,树高性状中地点的方差效应量 (22.0%) 较无性系、无性系与地点的交互作用大,说明树高主要受地点影响,而胸径、材积主要受遗传的影响,与FREITAS等[31]、dos SANTOS等[32]的研究结果一致。本研究无性系各性状的重复力 (0.640 3~0.934 6) 处于高水平,说明桉树无性系生长性状受较高程度的遗传控制。多点结合的各性状重复力中,树高重复力较低,与朱显亮等[33]得出尾细桉无性系树高重复力高于胸径的结果不一致,可能是其研究仅涉及单个试验地,同时本研究单地点试验中广西南宁与海南定安的树高重复力较胸径高,说明单地点重复之间影响树高的环境因子较小,导致树高重复力高于胸径。可见重复力大小与环境因子有一定关联,影响树高的环境因子有待进一步研究。

    • 本研究表明:GGE模型得出EC184为高产稳产的无性系,BLUP-GGE模型则为EC183,2个模型一致得出广西钦州为理想选材环境。倘若没有应用基因型与环境互作相关分析模型,以传统手段从多个地点综合选出优于DH32-29的优良无性系,那么结果可能与预期不一致。本研究优于DH32-29的无性系包括EC184、EC186、EC188,但EC186的变异系数大,EC188则保存率低。周家维等[7]在贵州地区中筛选出6个优良尾细桉优于DH32-29,李光友等[34]在桂北地区筛选出优于DH32-29的无性系均为尾巨桉杂交所得,并认为尾巨桉杂交值得关注,但都局限于单一地点,单一地区选择的优良无性系并不能说明该无性系在其他环境具有代表性。

      以往研究表明:桉树生长性状受显著的G×E影响[35],本研究亦如此,不同地点的无性系重复之间是由环境造成,每个重复甚至单株之间所生长的空间环境独立,然而本研究广西钦州胸径的重复×无性系相互作用不显著,其他地区却显著,表明同一地点内往往会表现微环境、块状或梯度型的空间差异,而广西钦州的胸径则没有表现出环境差异。为了提高无性系遗传效应估算的准确性,有学者利用各个树体的行列数据进行空间分析[36],前提是种植布局的行列需整齐。对于G×E大小,本研究通过方差分量的比值来权衡,得出海南定安各性状的G×E最大,各性状中树高G×E较大。同样地,OSORIO等[37]通过两两地点的B型遗传相关 (实际上是方差分量的比值) 表明巨桉的树高G×E较材积、木材密度大。

      GGE分析中,基于BLUP数据的GGE模型比原始数据具有更高的变异解释能力,因此BLUP-GGE模型更为可靠,这与程玲等[38]的研究一致。为了解决试验地环境异质性问题并使分析结果更可靠,程玲等[38]基于平均值、BLUP值与GGE双标图联合分析火炬树Rhus typhina的基因型与环境互作效应,发现原始平均值与BLUP值对应的理想选材环境不同,但是本研究平均值和BLUP值对应的理想选材环境都是广西钦州,可能是前者多考虑了空间分析造成选材环境有所差异。其次,基于平均值、BLUP值的GGE模型分别筛选出EC184、EC183为高材积量、高稳定性品种,2个无性系都是以巨桉为母本,说明巨桉在生长方面具有较强的基因稳定性以及适应能力,李光友等[34]也认为巨桉为母本具有良好的表现。

    • 本研究综合5个地点的数据,桉树各无性系的生长表现存在显著差异。5个地点联合方差分析及遗传参数中,胸径的地点效应量 (6.8%) 较其他性状低,胸径的无性系重复力较其他性状高,说明胸径性状较其他更稳定,受到遗传控制较高。

      基于材积平均值的GGE分析,广西钦州为理想选材环境,EC184为材积较高且稳定的无性系;基于材积BLUP值的GGE分析,广西钦州同样为材积理想选材环境,EC183为材积较高且稳定的无性系。所以GGE模型筛选出EC183和EC184为高材积和高稳定性的无性系。

参考文献 (38)

目录

/

返回文章
返回