留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

无距虾脊兰根际土壤真菌与根系内生真菌多样性

何水莲 黄蓓 李田园 田敏

杨宁馨, 毛方杰, 杜华强, 等. 浙江省丽水市森林碳汇时空演变及对极端降水的响应[J]. 浙江农林大学学报, 2024, 41(5): 919-927. DOI: 10.11833/j.issn.2095-0756.20240141
引用本文: 何水莲, 黄蓓, 李田园, 等. 无距虾脊兰根际土壤真菌与根系内生真菌多样性[J]. 浙江农林大学学报, 2023, 40(6): 1158-1166. DOI: 10.11833/j.issn.2095-0756.20230179
YANG Ningxin, MAO Fangjie, DU Huaqiang, et al. Spatiotemporal evolution of forest carbon sink in Lishui City and its response to extreme precipitation[J]. Journal of Zhejiang A&F University, 2024, 41(5): 919-927. DOI: 10.11833/j.issn.2095-0756.20240141
Citation: HE Shuilian, HUANG Bei, LI Tianyuan, et al. Diversity of rhizosphere soil fungi and root endophytic fungi of Calanthe tsoongiana[J]. Journal of Zhejiang A&F University, 2023, 40(6): 1158-1166. DOI: 10.11833/j.issn.2095-0756.20230179

无距虾脊兰根际土壤真菌与根系内生真菌多样性

DOI: 10.11833/j.issn.2095-0756.20230179
基金项目: 浙江省农业(花卉)新品种选育重大科技专项(2021C02071-5);浙江省重点研发计划项目(2019C02036)
详细信息
    作者简介: 何水莲(ORCID: 0009-0007-2172-1279),从事兰科植物保育研究。E-mail: 990455348@qq.com
    通信作者: 田敏(ORCID: 0009-0009-7189-2767),副研究员,博士,从事花卉育种研究。E-mail: tmin115@163.com
  • 中图分类号: S718.81

Diversity of rhizosphere soil fungi and root endophytic fungi of Calanthe tsoongiana

  • 摘要:   目的  研究野生无距虾脊兰Calanthe tsoongiana在萌芽期、花期、果期、衰亡期根际土壤真菌和根系内生真菌多样性差异,旨在明确不同生长发育时期真菌多样性特征,为无距虾脊兰种群扩繁提供理论依据。  方法  采用内转录间隔区(internal transcribed spacer,ITS)测序技术,分析野生无距虾脊兰4个时期根际土壤真菌与根系内生真菌群落的物种组成及相对丰度变化,找出各时期优势真菌。  结果  4个时期共获得307 288条优化序列,平均序列长度为643 bp,隶属16门68纲176目413属。萌芽期根际土壤真菌和根系内生优势真菌为分别被孢霉属Mortierella和红菇属Russula,花期优势真菌分别为青霉属Penicillium和粗糙孔菌属Trechispora,果期分别为Paraboeremia和蜡壳耳属Sebacina,衰亡期分别为Paraboeremia和镰孢属Fusarium。Alpha多样性指数显示:根系内生真菌多样性和相对丰度从萌芽期到果期依次递增,在果期达到顶峰,衰亡期又急剧下降。根际土壤真菌中花期多样性最高,其余3个时期变化相对平稳。  结论  无距虾脊兰根际土壤真菌和根系内生真菌多样性和丰富度在整个生长发育时期存在较大差异,花期和果期真菌多样性高于衰亡期和萌芽期。图5表2参34
  • 森林生态系统是陆地生态系统的主体,在减缓全球变暖方面具有不可替代的作用[1]。净生态系统生产力(net ecosystem productivity, NEP)作为净初级生产力和异养呼吸的差值,是表征生态系统碳收支的重要指标,被广泛应用于定量描述森林生态系统碳源/汇的能力。然而,大气温室气体浓度的增加使大气持水能力不断增强,显著增加了暴雨发生的频率和强度[23],已成为影响森林NEP最大的因子之一[4]。中国位于北半球中高纬度地区,跨越不同的气候带,不同地区气候条件、植被生长异质[5],使得中国极端降水及森林碳汇具有明显的区域特征,并且NEP对极端降水的响应也不同。因此,开展区域碳源/汇分布及其对极端降水响应研究,对气候灾害预防和生态保护具有重要意义。

    准确估算极端降水时空格局是研究森林NEP响应极端降水的前提。相对阈值法是评判极端降水的常用方法,充分考虑了降水的地区间差异和季节因素[6],具有极端性弱、噪声低、显著性强等优点,可以更客观地分析极端降水的气候特征和变化趋势[7]。遥感观测协同生态过程模型不仅能估算森林NEP时空动态,更能帮助分析NEP对气候的响应机制,在区域NEP时空动态研究中具有显著优势[8]。InTEC模型是CHEN等[9]开发的融入森林年龄及干扰影响的生态系统模型,能更准确地模拟长期森林碳循环动态变化,在省域[10]和全国[11]尺度均得到了广泛应用。结构方程模型综合了方差、回归、路径和因子等统计分析方法,能模拟多因子的内在逻辑关系,综合评估因果联系和潜变量关系,已被广泛应用于生态学领域[12]。本研究以浙江省丽水市为研究区域,通过百分位阈值法分析1979—2079年极端降水时空演变特征,采用InTEC模型模拟不同情景下丽水市森林NEP时空格局,并构建结构方程定量分析丽水市森林NEP对极端降水的响应。研究结果将为丽水森林生态系统响应与适应全球气候变化提供理论支持,为维持和提升其植被碳汇功能提供依据。

    丽水市位于浙江省西南部(27°25′~28°57′N,118°41′~120°26′E),森林面积为142.14 万hm2,森林覆盖率达82.27%,蓄积量为0.96 亿m 3,森林类型主要为亚热带针叶林、阔叶林和竹林等。林地的净初级生产力年总量与浙江省平均相比,所占比例较高[13]。丽水市地势西南高东北低,西南部以中山为主,东部以低山为主,中间有中山以及河谷盆地。全市主要气候类型为亚热带湿润季风气候,光照充足、四季分明、雨量丰沛。年均降水量为1 598.9 mm,多集中在3—9月,6月最多,是降水较为丰富的地区,也是极端气候事件多发的地区[14]

    本研究利用百分位法描述极端降水时空特征,将月尺度的降水量从小到大排序,取其第95百分位值作为极端降水量阈值(mm·月−1)[15]。如果某月降水量超过这一阈值,则称该月发生了极端降水事件,累积该月降水量即为年极端降水量(mm·a−1),并定义该年发生极端降水月数为极端降水频度(次·a−1)。最后,将极端降水量除以极端降水频度为极端降水强度(I)。

    本研究使用InTEC模型模拟丽水市1979—2079年森林生态系统NEP,主要包括气象、土壤、森林年龄、参考年净初级生产力、氮沉降、二氧化碳(CO2)浓度及森林分布信息等时空分布数据。

    1.3.1   气象数据

    1979—2015年丽水市气象数据来源于中国气象局国家气象中心丽水市地面日值气象数据(https://data.cma.cn),包括最高气温、最低气温、降水量、太阳辐射及相对湿度。通过反距离加权插值法获得空间分辨率为1 km的日尺度栅格气象数据,然后通过累计获得月尺度气象数据。2016—2079年气象数据则采用第5次国际耦合比较计划(Coupled Model Intercomparison Project Phase 5, CMIP5)的3种气候情景RCP 2.6、RCP 4.5和RCP 8.5获得,并通过最近邻法重采样到1 km分辨率。

    1.3.2   森林分布数据

    利用最大似然法从Landsat5 TM数据中提取2004年丽水市针叶林、阔叶林、竹林等30 m分辨率森林分布信息。为了保持数据空间分辨率的一致性,采用局部平均法获取1 km森林丰度信息。具体步骤见文献[16]。

    1.3.3   土壤数据

    土壤数据包括土壤粉粒百分比、砂粒百分比、黏粒百分比、土壤深度、土壤有效持水力、土壤容重以及土壤萎蔫点。其中前3个数据来源于联合国粮食和农业组织及国际应用分析学会共同开发的全球土壤数据库(HWSD 1.2,https://iiasa.acat/Research/LUC/luc07/External-World-soil-database)。土壤容重使用Saxton改进的Brooks-Corey模型,结合土壤粉粒、砂粒、黏粒百分比来计算,土壤萎蔫点也根据粉粒、砂粒、黏粒百分比计算所得[17]

    1.3.4   森林年龄数据

    根据浙江省森林资源清查小班数据提供的森林年龄信息,在对2004年浙江省森林资源样地清查年龄信息统计的基础上,利用克里金插值法得到2004年浙江省丽水市1 km分辨率的森林年龄空间分布数据。

    1.3.5   CO2浓度数据

    1979—1999年的CO2浓度数据来源于全球监测地球系统研究实验室(https://www.esrl.noaa.gov/gmd/ccgg/trends);2000—2079年RCP 2.6、RCP 4.5和RCP 8.5等3种情景下模拟的CO2浓度数据来自典型浓度路径(representative concentration pathways,RCPs)数据库(https://tntcat.iiasa.ac.at/RcpDb),使用线性插值将10 a尺度的CO2浓度数据插值成年尺度。

    1.3.6   氮沉降数据

    氮沉降数据来源于全球格点大气总估计的无机氮、氮氢化合物和氮氧化物沉降量。1860、1993和2050年的氮沉降数据利用全球三维化传输模型(TM 3)模拟得到(https://doi.org/10.3334/ORNLDAAC/830)。本研究采用线性插值得到丽水市1979—2079年1 km空间分辨率的氮沉降数据。

    1.3.7   参考年净初级生力

    本研究将2004年作为参考年校正初始的净初级生力值,使用BEPS模型模拟丽水市1 km分辨率净初级生力。具体模拟过程参考文献[18]。

    本研究利用最小二乘法计算线性回归模型的斜率来分析变量的时空演变特征(θ)。计算公式为:

    $$ \theta = \frac{{n\displaystyle \sum\limits_{i = 1}^n {{x_i}{y_i} - \displaystyle \sum\limits_{i = 1}^n {{x_i}\displaystyle \sum\limits_{i = 1}^n {{y_i}} } } }}{{n\displaystyle \sum\limits_{i = 1}^n {{x_i}^2 - {{\left(\displaystyle \sum\limits_{i = 1}^n {{x_i}} \right)}^2}} }} 。 $$ (1)

    式(1)中:n为年的总数;xi为年($ i $=1,2,…,50);yi为第i年的变量值。θ>0表示上升趋势,<0表示下降趋势。

    偏最小二乘(partial least square, PLS)通径分析是结构方程模型估计方法,可用以分析多变量之间的线性统计关系,可以有效解决多变量复共线问题,适用于变量多重相关或样本容量较小的情况,能克服变量数据分布复杂和变量之间相关的问题[12]。本研究采用该方法定量分析气候因子对NEP影响的相对重要程度及NEP驱动因子的直接作用和间接作用,在SmartPLS 3.3.9软件中进行。

    通过百分位阈值法计算月尺度的极端降水和阈值的空间分布结果,以及极端降水强度的空间分布结果如图1所示。总体上,未来丽水市极端降水量及强度除RCP 2.6情景外,其他2种情景下均呈上升趋势,并且RCP 4.5情景下2个指标上升趋势面积达90%以上,但上升趋势不显著。丽水市历史极端降水阈值为(313.32±18.77) mm·月−1,随着辐射胁迫增加极端降水阈值逐步增加,最大达(364.28±11.87) mm·月−1,在空间上呈现由西南向东北递减的趋势。2016年之前丽水市所有地区极端降水量及强度均呈上升趋势,极端降水量平均值为481.73 mm·a−1。RCP 8.5情景下未来变化最明显,极端降水量均值达638.19 mm·a−1,比历史的年均极端降水量增加了156.46 mm·a−1,强度是历史的1.28倍。

    图 1  历史(1979—2015年)及不同气候情景下未来(2016—2079年)丽水市极端降水的空间分布
    Figure 1  Spatial distribution of extreme precipitation in Lishui City under historical (1979-2015) and future (2016-2079) climate scenarios

    1979—2079年丽水市年极端降水累计次数的年际变化如图2所示。总体上,历史和未来极端降水增加趋势相近,分别为0.55与0.60,历史年极端降水次数增加量为20次·a−1,未来气候情景下年极端降水次数随辐射胁迫的增加而增加,至2079年累计发生次数分别较2016年增加33、35和36次·a−1,分别比历史次数增加了165%、175%、180%。

    图 2  历史(1979—2019年)及不同气候情景下未来(2019—2079年)丽水市年极端降水累计次数的年际变化
    Figure 2  Interannual changes of the cumulative number of extreme precipitation in Lishui City under historical (1979-2019) and different climate scenarios (2019-2079)

    1979—2079年丽水市森林NEP的年际变化如图3所示。由图3A可见:1979—2015年丽水市森林NEP整体呈显著增长趋势。1979—1988年表现为碳源,1986年NEP值历史最低,为−439.24 g·m−2·a−1,1989年开始从碳源转为碳汇,累计NEP增至2015年的6.8 Pg。由图3B~C可见:3种情景下2016—2079年丽水市森林NEP碳汇量呈下降趋势,RCP 8.5气候情景对比最不明显,RCP 2.6和RCP 4.5情景下森林碳汇从2064年开始已经表现为碳源。碳汇累积量在2064年之前一直处于增加状态,之后除了RCP 8.5情景继续增加外,其他2种情景已经停止增加甚至有下降的现象。3种情景下的NEP累积量相对于2015年分别增加了8.51、9.32、10.97 Pg。总体来说,1979—2079年间丽水市森林NEP呈先增加再减少的趋势,并且在RCP 8.5情景下减少最慢。

    图 3  历史(1979—2015年)及不同气候情景下未来(2016—2079年)丽水市森林NEP的年际变化
    Figure 3  Historical (1979-2015) and future (2016-2079) interannual changes of forest NEP in Lishui City under different climate scenarios

    图4为1979—2079年丽水市NEP以及时空演变特征的空间分布结果。从历史来看,1988—1996年碳汇能力增强,NEP<0的区域减少到9.74%,2015年时NEP>0的区域已达100%,丽水所有区域在历史上森林碳汇上升趋势都比较高。3种气候情景下,2016—2031年丽水市整体表现为碳汇,超过50%的区域为300<NEP<500 g·m−2·a−1,主要分布在北部区域;2032—2047年森林全市碳汇能力下降,超过80%的区域为100<NEP<300 g·m−2·a−1;2048—2063年森林碳汇能力持续下降,RCP 2.6下降最明显,主要在西部区域;2064—2079年,依旧持续下降。RCP 8.5气候情景77.01%的区域集中在0<NEP<100 g·m−2·a−1,RCP 2.6和RCP 4.5情景下NEP<0的区域增加到66.49%和65.46%,积累量有下降的现象,且下降趋势高值区主要分布在东部和北部。

    图 4  1979—2015基准年以及不同气候情景下2016—2079年丽水市NEP的空间分布和时空演变特征
    Figure 4  Spatial distribution of NEP and linear trend in Lishui City during 1979-2015 base year and 2016-2079 under different climate scenarios

    分析图5可知:1979—2079年丽水市气候因子对NEP的通径系数绝对值最大的均为降水,可见降水是森林生态系统NEP变化的重要驱动因子。由图5A得出:气候变化对NEP变化的直接影响为0.64,对极端降水的直接影响为0.30,气候变化通过影响极端降水进而影响NEP的间接影响为0.11 (0.30×0.37=0.11),极端降水对NEP的直接影响为0.37,因此1979—2015年丽水市极端降水对NEP产生积极影响。由图5B可知:在RCP 2.6情景下,2016—2079年丽水市气候变化对NEP变化的直接影响为0.66,对极端降水的直接影响为0.62,气候变化通过影响极端降水进而影响NEP的间接影响为0.01 (0.62×0.02=0.01),极端降水对NEP的直接影响不显著。由图5C可知:在RCP 4.5情景下,2016—2079年丽水市气候变化对NEP变化的直接影响为0.93,对极端降水的直接影响为0.53,气候变化通过极端降水对NEP产生的间接影响为0.20 (0.53×0.37=0.20),极端降水对NEP的直接影响为0.37,并且对NEP产生消极影响。由图5D可知:在RCP 8.5情景下,2016—2079年丽水市气候变化对NEP变化的直接影响为0.93,对极端降水的直接影响为0.62,气候变化通过影响极端降水进而影响NEP的间接影响为0.07 (0.62×0.12=0.07),极端降水对NEP的直接影响为0.12,对NEP变化产生消极影响。

    图 5  历史(1979—2015年)及不同气候情景下未来(2016—2079年)下极端降水对NEP的影响
    Figure 5  Effects of extreme precipitation on NEP under historical (1979-2015) and different climate scenarios (2016-2079)

    本研究通过百分位阈值法研究了浙江省丽水市近百年的极端降水状况,结果表明:1979—2015年丽水市极端降水事件呈上升趋势,在丽水市东南部地区的上升趋势较大。RCP 2.6情景下,2016—2079年极端降水大部分呈下降趋势,RCP 4.5及RCP 8.5情景下,极端降水主要呈上升趋势,RCP 4.5情景相对于RCP 8.5情景的极端降水量、频数及强度增加更为明显。这与前人研究结果一致[19]。人类活动的加剧及地形影响,使浙江省温室气体增加,气温上升从而导致极端降水事件更容易发生[23]。极端降水在浙江西部及南部等地上升趋势较大的原因主要是由于南部及西部地区多丘陵山地,湿润气流遇到山脉等阻挡时被迫抬升,气温降低,容易形成地形雨。丽水位于浙江省西南部,全市多山地,比浙江的中部盆地和东北部冲积平原更容易发生极端降水事件,因此丽水市未来应加强洪涝灾害的预防。

    长江流域及以南地区极端降水增多主要是由极端降水频数增加导致的[20]。本研究采用偏最小二乘法分析得知:1979—2079年极端降水频数对极端降水事件的通径系数大于极端降水强度对极端降水事件的通径系数,说明丽水市极端降水量的增加亦主要受极端降水频数的影响。另外,本研究是以年尺度分析极端降水事件变化。极端降水与季节有较强的相关性,并且极端降水的开始时间及持续时间都将直接或间接影响[7]丽水市气候的变化,因此,未来应将这些指标纳入丽水市极端降水变化特征的研究。

    本研究发现:1979—2015年期间,丽水市森林NEP从1989年由碳源逐渐转为碳汇,这主要是由于1989年前人为干扰严重,导致森林质量下降,1989年以后,随着退耕还林政策的实施,全省森林质量得到改善,森林面积、年龄逐渐增加,使得碳汇能力增强[21]。2016—2079年3种气候情景下,丽水市森林碳汇均呈下降趋势,主要是受到森林年龄继续增加及气候变化的影响[10],其中随着未来极端降水事件的增加,森林NEP也呈下降趋势。

    本研究通过InTEC模型模拟丽水市森林NEP的时空分布,虽然总体上精度较好,但仍然存在一些误差。首先,森林年龄对InTEC模型的模拟结果影响较大[10]。丽水市森林多属异龄林,森林资源清查的年龄数据为森林平均年龄,与森林实际情况有差别,通过空间插值后的数据也会存在误差。其次,本研究采用的3种气候情景的气象数据空间分辨率较低,通过线性插值生成的1 km分辨率气象数据对森林碳通量和极端降水空间解析不够细致,导致结果存在误差,但对长时间(百年尺度)碳通量演变和极端降水变化趋势仍具有一定参考价值。另外,本研究假设丽水市森林区域未来保持不变,然而实际上随着社会经济的发展,森林区域会发生改变,给模型模拟结果带来不确定性。因此,未来应进一步提高丽水森林空间分布、土壤、地形、气象等数据分辨率,更精确地模拟丽水市森林碳通量时空格局。

    偏最小二乘通径模型分析结果表明:降水是影响NEP变化的重要因子。1979—2015年极端降水对NEP产生了积极影响。这与WANG等[5]的研究结果一致,可能得益于植被对降水有一定程度的适应和抵抗能力,当极端降水超过阈值时,会对生态系统造成消极影响[4]。一方面可能导致植被根系严重缺氧、呼吸减慢,最终引起植被死亡;另一方面极端降水频次和强度会加剧土壤侵蚀,导致地表水土流失,造成颗粒和有机碳从陆地生态系统流向河流生态系统,从而改变生态系统碳源汇的大小和空间分布。可见,气候变化强度的增加对生态系统消极影响的也会变得严重[22]。虽然偏最小二乘通径分析因子间存在直接和间接影响,但受模型算法限制无法得到超过生态系统抵抗力和恢复力的阈值,未来可以通过极端降水和气候综合敏感性分析、多情景模拟比较,进一步揭示极端降水对NEP影响的阈值,阐明极端降水影响森林NEP的关键。

    浙江省丽水市历史、RCP 4.5及RCP 8.5情景下极端降水量、频数及强度均呈增加趋势,RCP 2.6呈下降趋势。极端降水事件上升趋势较高的地区主要位于丽水市南部和东南部地区。

    1979—2015年丽水市森林NEP以18.44 g·m−2·a−1的速度增加,在1989年由碳源转变为碳汇。2016—2079年,3种气候情景下丽水市森林NEP均呈下降趋势,但碳汇总量呈上升趋势,说明在未来气候情景下,丽水市森林生态系统依然具有较高的碳汇潜力。

    降水是影响NEP变化的重要驱动因子。虽然历史模拟显示极端降水对丽水NEP的影响为0.37,但未来气候变化情景下,除RCP 2.6情景不显著外,其余2种情景均对NEP产生显著消极影响,说明随着气候变化强度加剧,极端降水将对丽水市森林生态系统碳汇能力产生负面作用,应当积极采取森林经营措施,提高森林对极端气候事件抵抗力,使森林更好地服务实现“双碳”目标。

  • 图  1  不同时期无距虾脊兰根系内生真菌在门(A)和属(B)水平上的群落组成

    Figure  1  Community composition of root endophytic fungi in different periods of C. tsoongiana at phylum (A) and genus (B) level

    图  2  不同时期无距虾脊兰根际土壤真菌在门(A)和属(B)水平上的群落组成

    Figure  2  Community composition of rhizosphere soil fungi in different periods of C. tsoongiana at phylum (A) and genus (B) level

    图  3  根际土壤真菌与根系内生真菌在门(A)、属(B)水平下差异显著的类群

    Figure  3  The endophytic fungi in rhizosphere soil and root were different at phylum (A) and genus (B) level

    图  4  属水平不同时期根际土壤真菌与根系内生真菌分布韦恩图

    Figure  4  Venn diagram of endophytic fungi distribution in rhizosphere soil and root at genus level at different periods

    图  5  根际土壤真菌与根系内生真菌群落主成分分析

    Figure  5  Principal component analysis of rhizosphere soil fungi and root endophytic fungi

    表  1  物种注释结果统计

    Table  1.   Species annotation results statistics

    生长
    时期
    优化序
    列/条
    门/个纲/个目/个科/个属/个
    萌芽期63 660114191193359
    花期 92 9751346101217367
    果期 91 6561248108224377
    衰亡期58 99783375162264
    下载: 导出CSV

    表  2  Alpha多样性指数

    Table  2.   Alpha diversity indexes

    样本Alpha多样性指数
    ACE指数Chao指数Shannon指数Sobs指数Coverage指数
    MG1 983±26 c1 379±81 ab3.734±0.522 b680±104 cd0.964±0.004 a
    HG4 078±3 043 bc2 337±50 ab3.724±1.606 b987±423 bcd0.968±0.009 a
    GG8 681±439 ab4 499±351 ab4.221±0.501 b1 342±161 abc0.926±0.006 b
    SG817±292 c630±308 b3.298±0.788 b210±31 d0.990±0.005 a
    MT4 642±3 043 bc3 057±1 539 a5.042±0.191 a1 243±322 abc0.926±0.017 b
    HT12 860±9 858 a7 178±4 937 a5.423±0.221 b1 926±847 a0.891±0.027 c
    GT6 559±1 695 abc4 109±826 ab4.713±1.078 b1 580±398 ab0.931±0.017 b
    ST5 182±642 abc3 323±465 ab4.713±0.684 b1 198±229 abc0.908±0.014 bc
      说明:数据均为平均值±标准差。同列不同字母表示同一指数在不同样本间差异显著(P<0.05)。MG. 萌芽期根系;HG. 花期根系;GG. 果期根系;SG. 衰亡期根系;MT. 萌芽期根际土壤;HT. 花期根际土壤;GT. 果期根际土壤;ST. 衰亡期根际土壤。
    下载: 导出CSV
  • [1] 蒋雅婷. 无距虾脊兰种子萌发的生理及分子基础研究[D]. 北京: 中国林业科学研究院, 2019.

    JIANG Yating. Physiological and Molecular Basis of Seed Germination in Calanthe tsoongiana [D]. Beijing: Chinese Academy of Forestry, 2019.
    [2] VALADARES R B S, PEROTTO S, SANTOS E C, et al. Proteome changes in Oncidium sphacelatum (Orchidaceae) at different trophic stages of symbiotic germination [J]. Mycorrhiza, 2014, 24(5): 349 − 360.
    [3] 代晓宇. 兰属植物根部内生真菌及其对种子萌发苗木生长的效应[D]. 北京: 北京林业大学, 2011.

    DAI Xiaoyu. The Endophytic Fungi from Wild Cymbidium Plants and Effects on Seed Germination and Seeding Growth [D]. Beijing: Beijing Forestry University, 2011.
    [4] ERCOLE E, ADAMO M, RODDA M, et al. Temporal variation in mycorrhizal diversity and carbon and nitrogen stable isotope abundance in the wintergreen meadow orchid Anacamptis morio [J]. New Phytologist, 2015, 205(3): 1308 − 1319.
    [5] 唐燕静. 药用石斛种子与菌根真菌共生萌发专一性及其作用机制初探[D]. 北京: 北京协和医学院, 2021.

    TANG Yanjing. Preliminary Study on the Specificity and Mechanism of Symbiotic Germination between Medicinal Dendrobium Seeds and Mycorrhizal Fungi [D]. Beijing: Peking Union Medical College, 2021.
    [6] 袁仁文, 刘琳, 张蕊, 等. 植物根际分泌物与土壤微生物互作关系的机制研究进展[J]. 中国农学通报, 2020, 36(2): 26 − 35.

    YUAN Renwen, LIU Lin, ZHANG Rui, et al. The interaction mechanism between plant rhizosphere secretion and soil microbe: a review [J]. Chinese Agricultural Science Bulletin, 2020, 36(2): 26 − 35.
    [7] MENG Yuanyuan, FAN Xuli, ZHOU Lürong, et al. Symbiotic fungi undergo a taxonomic and functional bottleneck during orchid seeds germination: a case study on Dendrobium moniliforme [J]. Symbiosis, 2019, 79(3): 205 − 212.
    [8] 杨鑫凤, 周雅琴, 谭小明, 等. 青天葵叶斑病病原菌的分离鉴定及其生物防治[J]. 北方园艺, 2021(24): 115 − 121.

    YANG Xinfeng, ZHOU Yaqin, TAN Xiaoming, et al. Isolation and identification of pathogen causing leaf spot disease in Nervilia fordii (Hance) Schltr. and its biocontrol [J]. Northern Horticulture, 2021(24): 115 − 121.
    [9] EZZI M I, LYNCH J M. Cyanide catabolizing enzymes in Trichoderma spp. [J]. Enzyme and Microbial Technology, 2002, 31(7): 1042 − 1047.
    [10] 王晓国, 闫海霞, 李秀玲, 等. 带叶兜兰菌根真菌的鉴定及其促生作用[J]. 西南农业学报, 2021, 34(1): 119 − 125.

    WANG Xiaoguo, YAN Haixia, LI Xiuling, et al. Identification and growth promoting analysis of mycorrhizal fungi from Paphiopedilum hirsutissimun (Orchidaceae) [J]. Southwest China Journal of Agricultural Sciences, 2021, 34(1): 119 − 125.
    [11] WAUD M, WIEGAND T, BRYS R, et al. Nonrandom seedling establishment corresponds with distance-dependent decline in mycorrhizal abundance in two terrestrial orchids [J]. New Phytologist, 2016, 211(1): 255 − 264.
    [12] MCCORMICK M K, TAYLOR D L, WHIGHAM D F, et al. Germination patterns in three terrestrial orchids relate to abundance of mycorrhizal fungi [J]. Journal of Ecology, 2016, 104(3): 744 − 754.
    [13] VOYRON S, ERCOLE E, GHIGNONE S, et al. Fine-scale spatial distribution of orchid mycorrhizal fungi in the soil of host-rich grasslands [J]. New Phytologist, 2017, 213(3): 1428 − 1439.
    [14] JANE O, JOHANNA V, MOHAMMAD B, et al. Local-scale spatial structure and community composition of orchid mycorrhizal fungi in semi-natural grasslands [J]. Mycorrhiza, 2017, 27(4): 355 − 367.
    [15] 蒋玉玲, 陈旭辉, 苗青, 等. 辽宁省9种兰科植物根内与根际土壤中真菌群落结构的差异[J]. 植物生态学报, 2019, 43(12): 1079 − 1090.

    JIANG Yuling, CHEN Xuhui, MIAO Qing, et al. Difference in fungal communities between in roots and in root-associated soil of nine orchids in Liaoning, China [J]. Chinese Journal of Plant Ecology, 2019, 43(12): 1079 − 1090.
    [16] 杨霁琴, 满自红. 甘肃省兰科植物虾脊兰属的1种新分布记录种[J]. 甘肃农业大学学报, 2022, 57(5): 188 − 193.

    YANG Jiqin, MAN Zihong. A newly recorded species of Calanthe (Orchidaceae) from Gansu Province [J]. Journal of Gansu Agricultural University, 2022, 57(5): 188 − 193.
    [17] SUETSUGU K, NAKAHAMA N, ITO A, et al. Time-lapse photography reveals the occurrence of unexpected bee-pollination in Calanthe izuinsularis, an endangered orchid endemic to the Izu Archipelago [J]. Journal of Natural History, 2017, 51(13/14): 783 − 792.
    [18] 连静静, 钱鑫, 王彩霞, 等. 中国特有植物无距虾脊兰生物学特性及花部形态观察[J]. 植物资源与环境学报, 2013, 22(3): 100 − 106.

    LIAN Jingjing, QIAN Xin, WANG Caixia, et al. Observation of biological characteristics and floral morphology of Chinese endemic species Calanthe tsoongiana Tang et Wang [J]. Journal of Plant Resources and Environment, 2013, 22(3): 100 − 106.
    [19] REN Fei, DONG Wei, YAN Donghui. Organs, cultivars, soil, and fruit properties affect structure of endophytic mycobiota of Pinggu peach trees [J/OL]. Microorganisms, 2019, 7(9): 322[2023-02-20]. doi: 10.3390/microorganisms7090322.
    [20] 周婕, 苗一方, 方楷, 等. 紫茎泽兰内生真菌及其根际土壤真菌的多样性研究[J]. 生态科学, 2019, 38(5): 1 − 7.

    ZHOU Jie, MIAO Yifang, FANG Kai, et al. Diversity of the endophytic and rhizosphere soil fungi of Ageratina adenophora [J]. Ecological Sciences, 2019, 38(5): 1 − 7.
    [21] 吕立新, 王宏伟, 梁雪飞, 等. 不同化学型和季节变化对茅苍术内生真菌群落多样性的影响[J]. 生态学报, 2014, 34(24): 7300 − 7310.

    LÜ Lixin, WANG Hongwei, LIANG Xuefei, et al. Effects of different chemotypes and seasonal dynamic variation on the species diversity of endophytic fungal communities harbored in Atractylodes lancea [J]. Acta Ecologica Sinica, 2014, 34(24): 7300 − 7310.
    [22] YOKOYA K, ZETTLER L W, BELL J. The diverse assemblage of fungal endophytes from orchids in madagascar linked to abiotic factors and seasonality [J/OL]. Diversity, 2021, 13(2): 96[2023-02-20]. doi: 10.3390/d13020096.
    [23] 朱琳, 黄建, 陈天阳, 等. 文冠果人工林根际土壤真菌和根系内生真菌群落多样性[J]. 东北林业大学学报, 2015, 43(5): 105 − 111.

    ZHU Lin, HUANG Jian, CHEN Tianyang, et al. Root-associated and endophytic fungal community diversity in Xanthoceras sorbifolia Bunge plantation [J]. Journal of Northeast Forestry University, 2015, 43(5): 105 − 111.
    [24] 罗阳兰. 蕙兰内生真菌多样性及其促生能力的研究[D]. 西安: 陕西理工大学, 2019.

    LUO Yanglan. Diversity and Growth-Promoting Ability of Endophytic Fungi in Cymbidium faberi [D]. Xi’an: Shaanxi University of Technology, 2019.
    [25] 李孟凯, 牛昱龙, 杨文娟, 等. 西藏野生兰科植物内生真菌多样性与共生萌发研究[J]. 高原农业, 2020, 4(6): 580 − 584.

    LI Mengkai, NIU Yulong, YANG Wenjuan, et al. Study on diversity of endophytic fungi in wild Orchidaceae and symbiotic germination in Tibet [J]. Journal of Plateau Agriculture, 2020, 4(6): 580 − 584.
    [26] 王亚妮. 兰科石斛属植物根部内生真菌多样性研究及应用[D]. 北京: 北京林业大学, 2013.

    WANG Ya’ni. Diversity and Application of Endophytic Fungi from Roots of Dendrobium (Orchideace) [D]. Beijing: Beijing Forestry University, 2013.
    [27] 张霞. 兰花内生菌对铁皮石斛抗逆性的研究[D]. 南京: 南京林业大学, 2011.

    ZHANG Xia. Studied on the Resistance of Endophytic Rhizoconia spp. to Dendrobium caudidum [D]. Nanjing: Nanjing Forestry University, 2011.
    [28] 黄敏, 江标, 高大中, 等. 大黄花虾脊兰内生真菌及土壤真菌的群落特征研究[J]. 生态科学, 2022, 41(4): 111 − 119.

    HUANG Min, JIANG Biao, GAO Dazhong, et al. Community characteristics of endophytic fungi and soil fungi in the Calanthe sieboldii [J]. Ecological Sciences, 2022, 41(4): 111 − 119.
    [29] 周婀, 李勃, 马瑜. 太白山野生桃儿七内生真菌群落组成及多样性[J]. 生物技术, 2023, 33(1): 14 − 18.

    ZHOU E, LI Bo, MA Yu. Community composition and diversity characteristics of endophytic fungi isolated from wild Sinopodophyllum hexandrum in Taibai Mountain [J]. Biotechnology, 2023, 33(1): 14 − 18.
    [30] 庄鑫, 吴媛, 陈佳雯, 等. 不同地点朝鲜淫羊藿生长时期内生真菌的多样性[J/OL]. 分子植物育种, 2023-02-06[2023-02-20]. http://kns.cnki.net/kcms/detail/46.1068.S.20230203.1637.002.html.

    ZHUANG Xin, WU Yuan, CHEN Jiawen, et al. Diversity analysis of endophytic fungi during the growth period of Epimedium korea in different locations [J/OL]. Molecular Plant Breeding, 2023-02-06[2023-02-20]. http://kns.cnki.net/kcms/detail/46.1068.S.20230203.1637.002.html.
    [31] 宁琪, 陈林, 李芳, 等. 被孢霉对土壤养分有效性和秸秆降解的影响[J]. 土壤学报, 2022, 59(1): 206 − 217.

    NING Qi, CHEN Lin, LI Fang, et al. Effects of Mortierella on nutrient availability and straw decomposition in soil [J]. Acta Pedologica Sinica, 2022, 59(1): 206 − 217.
    [32] SELOSSE M A, BAUER R, MOYERSOEN B. Basal hymenomycetes belonging to the Sebacinaceae are ectomycorrhizal on temperate deciduous trees [J]. New Phytologist, 2002, 155(1): 183 − 195.
    [33] 蒋胜竞, 石国玺, 毛琳, 等. 不同PCR引物在根系丛枝菌根真菌群落研究中的应用比较[J]. 微生物学报, 2015, 55(7): 916 − 925.

    JIANG Shengjing, SHI Guoxi, MAO Lin, et al. Comparison of different PCR primers on detecting arbuscular mycorrhizal communities inside plant roots [J]. Acta Microbiologica Sinica, 2015, 55(7): 916 − 925.
    [34] 徐超, 席刚俊, 范克胜, 等. 不同氮源对铁皮石斛菌根真菌生长的影响[J]. 江苏农业科学, 2013, 41(4): 236 − 238.

    XU Chao, XI Gangjun, FAN Kesheng, et al. Effects of different nitrogen sources on the growth of Dendrobium officinale mycorrhizal fungi [J]. Jiangsu Agricultural Sciences, 2013, 41(4): 236 − 238.
  • [1] 蒋楚楚, 辛静静, 夏树全, 罗平, 邵果园, 崔永一.  蕙兰‘红香妃’内生真菌分离鉴定及体外抑菌效应 . 浙江农林大学学报, 2023, 40(4): 783-791. doi: 10.11833/j.issn.2095-0756.20220578
    [2] 彭思利, 张鑫, 武仁杰, 蔡延江, 邢玮, 葛之葳, 毛岭峰.  杨树人工林土壤丛枝菌根真菌群落对氮添加的季节性动态响应 . 浙江农林大学学报, 2023, 40(4): 792-800. doi: 10.11833/j.issn.2095-0756.20220640
    [3] 姜海燕, 狄佳麟, 丛林, 闫伟, 白娜娜, 张旭, 白慧.  4株内生真菌对沙地云杉立枯病的抗病作用 . 浙江农林大学学报, 2022, 39(2): 372-379. doi: 10.11833/j.issn.2095-0756.20210287
    [4] 任俊杰, 庞新博, 刘昭阳, 李静雅, 张婉莹, 尹书乐, 王利兵, 李迎超.  不同种源蒙古栎种子表型性状的多样性 . 浙江农林大学学报, 2022, 39(6): 1221-1228. doi: 10.11833/j.issn.2095-0756.20220133
    [5] 曹春婧, 何建龙, 王占军, 魏淑花.  宁夏不同区域欧李园昆虫群落多样性 . 浙江农林大学学报, 2021, 38(6): 1253-1260. doi: 10.11833/j.issn.2095-0756.20200774
    [6] 刘政, 李颖, 朱培, 褚旭东, 何国庆, 孙勇.  浙江省长兴县湿地维管植物多样性及区系 . 浙江农林大学学报, 2020, 37(3): 465-471. doi: 10.11833/j.issn.2095-0756.20190436
    [7] 罗熳丽, 段均华, 姚恒, 卢昌泰, 肖玖金, 张健.  稻草不同还田量对土壤动物群落结构的影响 . 浙江农林大学学报, 2020, 37(1): 85-92. doi: 10.11833/j.issn.2095-0756.2020.01.011
    [8] 余望寅, 姚冠, 扎西拉姆, 普琼, 刘京晶, 周湘.  2种栽培环境对铁皮石斛内生细菌多样性的影响 . 浙江农林大学学报, 2020, 37(2): 284-290. doi: 10.11833/j.issn.2095-0756.2020.02.012
    [9] 陈飞龙, 黄凤生, 夏俊勇, 王义平.  不同经营模式下山核桃林昆虫群落结构 . 浙江农林大学学报, 2019, 36(3): 429-436. doi: 10.11833/j.issn.2095-0756.2019.03.001
    [10] 左政, 郑小贤.  不同干扰等级下常绿阔叶次生林林分结构及树种多样性 . 浙江农林大学学报, 2019, 36(1): 21-30. doi: 10.11833/j.issn.2095-0756.2019.01.004
    [11] 侯姣姣, 孙涛, 余仲东, 康永祥, 布芳芳, 甘明旭.  盐胁迫下内生真菌对国槐幼苗生长及生理的影响 . 浙江农林大学学报, 2017, 34(2): 294-300. doi: 10.11833/j.issn.2095-0756.2017.02.013
    [12] 刘益曦, 张豪, 朱圣潮.  温州蕨类植物多样性与地理分布 . 浙江农林大学学报, 2016, 33(5): 778-783. doi: 10.11833/j.issn.2095-0756.2016.05.008
    [13] 缪福俊, 蒋宏, 王宏虬, 原晓龙, 陈剑, 杨宇明, 王娟.  黄花杓兰菌根真菌rDNA ITS的多样性 . 浙江农林大学学报, 2015, 32(5): 815-820. doi: 10.11833/j.issn.2095-0756.2015.05.024
    [14] 刘佳敏, 张慧, 黄秀凤, 徐华潮.  浙江3个自然保护区昆虫多样性及森林健康评价 . 浙江农林大学学报, 2013, 30(5): 719-723. doi: 10.11833/j.issn.2095-0756.2013.05.013
    [15] 吴尚英, 张洋, 刘爱荣, 徐同.  红树林植物红海榄和秋茄的内生真菌多样性 . 浙江农林大学学报, 2010, 27(4): 489-493. doi: 10.11833/j.issn.2095-0756.2010.04.002
    [16] 李巧, 陈又清, 周兴银, 陈彦林, 郭文俊.  元谋干热河谷桉树林昆虫群落初步研究 . 浙江农林大学学报, 2008, 25(4): 502-506.
    [17] 白红霞, 袁秀英.  内蒙古地区杨树内生真菌多样性调查 . 浙江农林大学学报, 2006, 23(6): 629-635.
    [18] 梁健, 孙婷.  延安林区啮齿动物群落的聚类分析 . 浙江农林大学学报, 2004, 21(1): 70-74.
    [19] 高小辉, 何小勇, 何林.  浙西南野生观赏树木资源多样性 . 浙江农林大学学报, 2001, 18(4): 389-393.
    [20] 王小德, 卢山, 方金凤, 孔强.  城市园林绿化特色性研究 . 浙江农林大学学报, 2000, 17(2): 150-154.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20230179

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2023/6/1158

图(5) / 表(2)
计量
  • 文章访问数:  580
  • HTML全文浏览量:  98
  • PDF下载量:  602
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-28
  • 修回日期:  2023-05-26
  • 录用日期:  2023-07-26
  • 网络出版日期:  2023-11-23
  • 刊出日期:  2023-11-23

无距虾脊兰根际土壤真菌与根系内生真菌多样性

doi: 10.11833/j.issn.2095-0756.20230179
    基金项目:  浙江省农业(花卉)新品种选育重大科技专项(2021C02071-5);浙江省重点研发计划项目(2019C02036)
    作者简介:

    何水莲(ORCID: 0009-0007-2172-1279),从事兰科植物保育研究。E-mail: 990455348@qq.com

    通信作者: 田敏(ORCID: 0009-0009-7189-2767),副研究员,博士,从事花卉育种研究。E-mail: tmin115@163.com
  • 中图分类号: S718.81

摘要:   目的  研究野生无距虾脊兰Calanthe tsoongiana在萌芽期、花期、果期、衰亡期根际土壤真菌和根系内生真菌多样性差异,旨在明确不同生长发育时期真菌多样性特征,为无距虾脊兰种群扩繁提供理论依据。  方法  采用内转录间隔区(internal transcribed spacer,ITS)测序技术,分析野生无距虾脊兰4个时期根际土壤真菌与根系内生真菌群落的物种组成及相对丰度变化,找出各时期优势真菌。  结果  4个时期共获得307 288条优化序列,平均序列长度为643 bp,隶属16门68纲176目413属。萌芽期根际土壤真菌和根系内生优势真菌为分别被孢霉属Mortierella和红菇属Russula,花期优势真菌分别为青霉属Penicillium和粗糙孔菌属Trechispora,果期分别为Paraboeremia和蜡壳耳属Sebacina,衰亡期分别为Paraboeremia和镰孢属Fusarium。Alpha多样性指数显示:根系内生真菌多样性和相对丰度从萌芽期到果期依次递增,在果期达到顶峰,衰亡期又急剧下降。根际土壤真菌中花期多样性最高,其余3个时期变化相对平稳。  结论  无距虾脊兰根际土壤真菌和根系内生真菌多样性和丰富度在整个生长发育时期存在较大差异,花期和果期真菌多样性高于衰亡期和萌芽期。图5表2参34

English Abstract

杨宁馨, 毛方杰, 杜华强, 等. 浙江省丽水市森林碳汇时空演变及对极端降水的响应[J]. 浙江农林大学学报, 2024, 41(5): 919-927. DOI: 10.11833/j.issn.2095-0756.20240141
引用本文: 何水莲, 黄蓓, 李田园, 等. 无距虾脊兰根际土壤真菌与根系内生真菌多样性[J]. 浙江农林大学学报, 2023, 40(6): 1158-1166. DOI: 10.11833/j.issn.2095-0756.20230179
YANG Ningxin, MAO Fangjie, DU Huaqiang, et al. Spatiotemporal evolution of forest carbon sink in Lishui City and its response to extreme precipitation[J]. Journal of Zhejiang A&F University, 2024, 41(5): 919-927. DOI: 10.11833/j.issn.2095-0756.20240141
Citation: HE Shuilian, HUANG Bei, LI Tianyuan, et al. Diversity of rhizosphere soil fungi and root endophytic fungi of Calanthe tsoongiana[J]. Journal of Zhejiang A&F University, 2023, 40(6): 1158-1166. DOI: 10.11833/j.issn.2095-0756.20230179
  • 无距虾脊兰Calanthe tsoongiana为兰科Orchidaceae虾脊兰属Calanthe地生草本,花朵娇艳,造型独特,受到人们的喜爱。近些年来,由于人为破坏,以及自身繁殖困难,导致野生无距虾脊兰种群数量锐减,现已被列为极度濒危等级[1]

    植物和真菌之间的互惠共生是自然界中普遍存在的现象[2]。兰科菌根真菌是一类与兰科植物形成共生关系并生成菌丝团的真菌,隶属于根系内生真菌,对兰科植物生长起促进作用[3]。研究表明:兰科植物的整个生命活动都需要菌根真菌的参与,菌根真菌不仅可以帮助兰花种子萌发[45],也在其生长发育过程中扮演着重要的角色。它可以吸收土壤中的矿质元素、有机物等,在侵染兰科植物后被宿主细胞分解并向其传输营养物质[67],若缺乏菌根真菌,兰科植物将无法长期存活。除了菌根真菌,兰科植物中非菌根真菌的数量也十分庞大,远远超过了菌根真菌。镰孢属Fusarium、木霉属Trichoderma和青霉属Penicillinum是兰科植物中常见的内生真菌,在适当的条件下不仅能促进兰科植物种子的萌发和生长发育,还可以有效抑制病原菌的生长[810]。由此可见,非菌根真菌的作用也不容忽视。兰科菌根真菌不仅广泛存在于根系内,也存在于植株周围土壤中,且距离植株越远,其相对丰度越低[1112],但也有研究表明:菌根真菌少量或者不存在于土壤中[1314]。蒋玉玲等[15]研究表明:通过对周围土壤中真菌类群的分析,可推断兰科植物能否长期在此生存。因此,研究根际土壤真菌类群对兰科植物保育十分重要。

    目前,虾脊兰属植物的研究集中在分类鉴别、育种和繁殖等方面,具体有资源调查、遗传多样性研究、化学与药用价值研究、快速繁育以及引种驯化等等[1617]。国内外对虾脊兰属根系内生真菌多样性研究较少,尚处于初步阶段,未得到系统且全面的数据,尤其是无距虾脊兰还未见相关报道。鉴于此,本研究以浙江省天目山野生无距虾脊兰为材料,通过分析无距虾脊兰不同时期根际土壤真菌与根系内生真菌多样性,明确其优势真菌和共有真菌类群,以期为无距虾脊兰资源有效保护提供科学参考。

    • 所用材料采自浙江天目山国家级自然保护区内无距虾脊兰野生居群(海拔550 m,30°21′47″N,119°25′30″E)。该研究区属亚热带季风气候,雨水充沛,年降水量达1 870 mm,相对湿度较大,自然条件优越。

      无距虾脊兰生长在海拔450~1 450 m的阔叶混交林下,生长周期可分为萌芽期、花期、果期和衰亡期[18]。选择未遭到破坏、分布集中且长势一致的植株,分别于2、5、7和11月进行根段采集。每次选取9株植株,每株取3~4个长约4~5 cm的根段,用根围土包裹装入采样袋,做好标记并放入4 ℃冰箱保存。

    • 取出根系并用流水冲洗干净,无菌水冲泡,用体积分数为70%的乙醇洗涤2 min,质量分数为2.5%的次氯酸钠浸泡5 min,体积分数为70%的乙醇洗涤30 s,再经无菌水冲洗2~3次,用无菌滤纸吸去多余水分后转入液氮中紧急速冻。初步处理完成,置于−80 ℃超低温冰箱保存。

    • 在超净台上抖掉根围土,保留附着在根系1 mm左右的根际土。用无菌镊子将根系转移至装有磷酸缓冲盐溶液(PBS)的离心管中,全温摇床下震荡20 min,挑出根系,将剩余悬浮液6 000 r·min−1高速离心20 min,弃上清液得到根际土。做好标签记录,将离心管放入液氮,待其彻底急速冷冻后,放入−80 ℃超低温冰箱保存。

    • 使用DNA提取试剂盒提取无距虾脊兰根系与根际土壤DNA,提取后利用质量分数为1%的琼脂糖凝胶电泳检测DNA浓度,引物合成和测序由上海美吉生物医药科技有限公司进行。

      PCR 仪采用ABI Gene Amp® 9700型,每个样本3个重复,20.0 μL PCR反应体系为10.0 μL 2× ChamQ SYBR Color qPCR Master Mix,0.8 μL上游引物,0.8 μL下游引物,0.4 μL 50 × ROX Reference Dye 1,2.0 μL DNA模板,ddH2O补至20.0 μL。PCR反应条件为95 ℃预变性5 min,95 ℃变性30 s,58 ℃退火30 s,35个循环;72 ℃延伸1 min,4 ℃保存。同一样本的PCR产物混合后用质量分数为2%的琼脂糖凝胶电泳检测,使用AxyPrepDNA凝胶回收试剂盒(AXYGEN公司)切胶回收PCR产物,纯化后的PCR产物使用Illumina MiSeq平台进行测序。

    • 首先根据overlap关系利用FLASH (v1.2.11)软件对Illumina测序得到的原始数据进行拼接,并通过FASTP (v.0.19.6)软件对序列质量进行质控、过滤和优化。区分样本后,在97%相似度水平下使用UPARSE (v11.0)软件对优化序列进行分类操作单元(OTU)聚类分析。为了得到每个OTU对应的物种分类信息,基于97%相似水平下采用RDP classifier贝叶斯算法对OTU代表序列与UNITE (v.8.0)数据库进行分类学比对。

      基于OTU聚类分析结果,通过Mothur (v1.30.2)软件进行多样性指数分析,从而得到所有样本群落中物种的丰富度、覆盖度和多样性等信息。根据分类学分析结果,通过Qiime (v1.9.1)软件生成各分类学水平丰度表,进行Beta多样性距离计算,找出各样本在某一分类学水平上的优势物种、样本中各优势物种的相对丰度以及不同样本中物种的组成相似性,并利用R语言(version 3.3.1)工具统计和作图,将差异和距离通过二维坐标图呈现出来,从总体上反映各组样本之间的差异和组内样本之间的变异度大小。基于Kruskal-Wallis秩和检验(Kruskal-Wallis H test),通过R (version 3.3.1)的stats包和python的scipy包运用DP的方法计算影响大小(effect size),从而找出多组样本的物种进行差异显著性分析。

    • 无距虾脊兰萌芽期根系测序共获得31 987条优化序列。由图1可知:在门水平上担子菌门Basidiomycota和被孢霉门Mortierellomycota占比较大,属于萌芽期根系内生真菌优势门;在属水平上,被孢霉属Mortierella和红菇属Russula真菌序列占比相差不大,共同作为该时期优势内生真菌。花期根系测序共获得51 913条优化序列。其中,担子菌门为最大优势菌门;在属水平上,粗糙孔菌属Trechispora为该时期优势内生真菌。相较于萌芽期,花期真菌类群中担子菌门和子囊菌门Ascomycota相对丰度分别为萌芽期的1.33和1.97倍,被孢霉门、被孢霉属和红菇属的相对丰度呈现下降趋势,分别减少了67.82%、67.39%和75.70%。

      图  1  不同时期无距虾脊兰根系内生真菌在门(A)和属(B)水平上的群落组成

      Figure 1.  Community composition of root endophytic fungi in different periods of C. tsoongiana at phylum (A) and genus (B) level

      果期根系测序共获得43 793条优化序列。其中担子菌门真菌在数量上占绝对优势;在属水平上,蜡壳耳属Sebacina为该时期优势内生真菌。相较于花期,担子菌门、子囊菌门、被孢霉门和红菇属相对丰度变化不大,但Saitozyma、锁瑚菌属Clavulina相对丰度有所增加,由原来占比不足3.00%增长到13.09%和10.29%,蜡壳耳属增加了67.30%。衰亡期根系测序共获得30 000条优化序列。该时期,子囊菌门属于优势菌门,镰孢属为优势内生真菌,相较于其他3个时期,衰亡期根系内生真菌多样性整体出现骤降现象。

    • 在萌芽期,无距虾脊兰根际土壤测序共获得31 673条优化序列。由图2可知:萌芽期根际土壤与根系在门水平上真菌类群一致,但相对丰度稍有变化;在属水平上,红菇属相对丰度明显下降,占比仅为3.55%,其余真菌相对丰度较小,被孢霉属为该时期根际土壤优势真菌。

      图  2  不同时期无距虾脊兰根际土壤真菌在门(A)和属(B)水平上的群落组成

      Figure 2.  Community composition of rhizosphere soil fungi in different periods of C. tsoongiana at phylum (A) and genus (B) level

      在花期,根际土壤测序共获得41 062条优化序列。与同时期根系内生真菌相比,担子菌门相对丰度减少,子囊菌门相对丰度增加。在属水平上,根际土壤和根系真菌类群相对丰度明显不同,其中青霉属Penicillium为该时期根际土壤优势真菌。相较于萌芽期根际土壤真菌,花期子囊菌门和罗兹菌门Rozellomycota相对丰度分别为萌芽期的1.34和4.74倍,担子菌门、被孢霉门真菌相对丰度分别减少了31.93%和67.82%。

      在果期,根际土壤测序共获得47 863条优化序列。与根系内生真菌相比,门水平上子囊菌门和担子菌门变化最大,在属水平上,Paraboeremia仅存在于根际土壤真菌中,且占比较大,为该时期根际土壤优势真菌。相较于花期根际土壤真菌,果期子囊菌门、被孢霉门、ParaboeremiaSaitozyma相对丰度分别为花期的1.34、1.61、4.03和1.07倍,担子菌门和罗兹菌门相对丰度分别降低到花期的89.45%和42.21%。

      在衰亡期,根际土壤测序共获得28 997条优化序列。在门水平上,担子菌门为根系内生真菌的5.61倍,根系内生真菌无被孢霉门,而在根际土壤中其真菌序列占7.29%。在属水平上,各真菌相对丰度差别较大,其中Paraboeremia为该时期根际土壤优势真菌。相较于果期根际土壤真菌,蜡壳耳属仅存在于衰亡期根际土壤中,担子菌门和被孢霉属真菌相对丰度分别为果期的1.53和1.31倍,Saitozyma相对丰度降低到果期的32.32%。

    • 通过对无距虾脊兰根际土壤与根系测序分析,发现不同生长发育时期物种注释结果存在较大差别,具体差异见表1。其中萌芽期根际土壤和根系优势真菌分别为被孢霉属和红菇属,花期优势真菌分别为青霉属和粗糙孔菌属,果期优势真菌分别为Paraboeremia和蜡壳耳属,衰亡期优势真菌分别为Paraboeremia和镰孢属,不同生长发育时期优势真菌不同。

      表 1  物种注释结果统计

      Table 1.  Species annotation results statistics

      生长
      时期
      优化序
      列/条
      门/个纲/个目/个科/个属/个
      萌芽期63 660114191193359
      花期 92 9751346101217367
      果期 91 6561248108224377
      衰亡期58 99783375162264

      在门水平上,子囊菌门真菌在萌芽期、花期和果期的根际土壤与根系中存在显著差异;而被孢霉门真菌则在萌芽期与衰亡期的根际土壤和根系中存在显著差异(图3AP<0.05)。在属水平上,被孢霉属、红菇属、罗兹菌门未分类属以及青霉属在萌芽期的根际土壤与根系真菌上差异较为明显。由图4可知:有虫草菌属Cordyceps等321个属为4个时期共有真菌;裸盖菇属Psilocybe等29个属为萌芽期和花期共有真菌,复膜孢酵母属Saccharomycopsis等43个属为花期和果期共有真菌,Melanopsamma等36个属为果期和衰亡期共有真菌,Stenella等23个属为衰亡期和萌芽期共有真菌。

      图  3  根际土壤真菌与根系内生真菌在门(A)、属(B)水平下差异显著的类群

      Figure 3.  The endophytic fungi in rhizosphere soil and root were different at phylum (A) and genus (B) level

      图  4  属水平不同时期根际土壤真菌与根系内生真菌分布韦恩图

      Figure 4.  Venn diagram of endophytic fungi distribution in rhizosphere soil and root at genus level at different periods

      表2可见:果期根系内生真菌的ACE指数、Chao指数、Shannon指数和Sobs指数最高,其次是花期,然后是萌芽期,衰亡期Alpha指数最低。意味着果期根系内生真菌多样性和丰富度最高,衰亡期根系内生真菌多样性和丰富度最低。在无距虾脊兰根际土壤真菌中,花期Alpha多样性指数高于其他3个时期,果期ACE指数、Chao指数和Sobs指数高于萌芽期和衰亡期,萌芽期和衰亡期Alpha多样性指数相对一致。综合来讲,花期的根际土壤真菌多样性和丰富度最高,果期次之。

      表 2  Alpha多样性指数

      Table 2.  Alpha diversity indexes

      样本Alpha多样性指数
      ACE指数Chao指数Shannon指数Sobs指数Coverage指数
      MG1 983±26 c1 379±81 ab3.734±0.522 b680±104 cd0.964±0.004 a
      HG4 078±3 043 bc2 337±50 ab3.724±1.606 b987±423 bcd0.968±0.009 a
      GG8 681±439 ab4 499±351 ab4.221±0.501 b1 342±161 abc0.926±0.006 b
      SG817±292 c630±308 b3.298±0.788 b210±31 d0.990±0.005 a
      MT4 642±3 043 bc3 057±1 539 a5.042±0.191 a1 243±322 abc0.926±0.017 b
      HT12 860±9 858 a7 178±4 937 a5.423±0.221 b1 926±847 a0.891±0.027 c
      GT6 559±1 695 abc4 109±826 ab4.713±1.078 b1 580±398 ab0.931±0.017 b
      ST5 182±642 abc3 323±465 ab4.713±0.684 b1 198±229 abc0.908±0.014 bc
        说明:数据均为平均值±标准差。同列不同字母表示同一指数在不同样本间差异显著(P<0.05)。MG. 萌芽期根系;HG. 花期根系;GG. 果期根系;SG. 衰亡期根系;MT. 萌芽期根际土壤;HT. 花期根际土壤;GT. 果期根际土壤;ST. 衰亡期根际土壤。

      在同一时期中,萌芽期、花期和衰亡期根际土壤真菌的Alpha多样性指数均高于根系内生真菌,说明在该时期根际土壤真菌多样性和丰富度高于根系内生真菌。果期根系内生真菌ACE指数、Chao指数高于根际土壤真菌,但是根际土壤真菌Shannon指数和Sobs指数高于根系内生真菌。

      为了进一步明确无距虾脊兰不同时期根际土壤真菌和根系内生真菌群落结构的差异,本研究采用主成分分析(PCA)分析其真菌群落的相似性和差异性。PCA结果显示:无距虾脊兰在花期、果期、萌芽期、衰亡期有明显的聚类区分(图5A),主成分1解释了差异的12.92%,主成分2解释了差异的7.73%。其中在主成分1轴上花期区分较为明显,主成分2轴上果期区分较为明显,萌芽期和衰亡期距离较近,意味着衰亡期和萌芽期根际土壤真菌、根系内生真菌类群相似度高,进一步说明无距虾脊兰根际土壤真菌和根系内生真菌群落在整个生长发育时期存在阶段性差异。由图5B可知:4个时期根系内生真菌相较于根际土壤真菌,距离较近,意味着根际土壤真菌彼此间真菌类群差异较大,其中花期和果期尤为明显。另外,在每个时期中根际土壤与根系之间彼此分开较远,相较于各自内部样品之间两者真菌类群差别较为明显,其中根系样品之间内生真菌类群差别小于根际土壤。

      图  5  根际土壤真菌与根系内生真菌群落主成分分析

      Figure 5.  Principal component analysis of rhizosphere soil fungi and root endophytic fungi

    • 本研究表明:无距虾脊兰根际土壤真菌和根系内生真菌优势菌门均为担子菌门和子囊菌门。根际土壤真菌类群与根系内生真菌类群相互重叠存在一定相似性,说明有一部分根系内生真菌来自根际土壤真菌。推测由于根系与根际土壤长期互相接触,彼此真菌类群相互影响[19],且根系对根际土壤真菌具有一定的选择性等原因造成的[20]。从另一方面来讲,彼此之间也相互独立具有一定差异性,根际土壤真菌群落的丰富度、均匀度以及多样性均高于根系内生真菌。在根际处根系经常与其他根系、土壤微生物互作,从而导致了根际土壤真菌多样性高于根内真菌。

      在根系内生真菌中,真菌多样性和丰富度从萌芽期到果期依次递增,并在果期达到顶峰,衰亡期又急剧下降。而根际土壤真菌类群变化情况却与之相差较大,从萌芽期到花期逐渐增加,在花期达到顶峰后逐渐下降,衰亡期与萌芽期真菌多样性和丰富度变化相对平稳。这与吕立新等[21]的观点相吻合,夏季真菌多样性高于春季和秋季,随着季节变化,温度、土壤含水量等环境因子相继发生变化,真菌群落结构也随之发生变化。YOKOYA等[22]在研究兰花时也发现了在雨季分离出的真菌,在旱季不一定出现,而同一类真菌的相对丰度也不尽相同。花期为无距虾脊兰生长初期,此时温度适宜、光线充足,周围伴生植物数量增加,土壤和根际土壤真菌丰富度也相应增加。无距虾脊兰果期为每年的7—9月,此时温度高,周围植物数量相较于花期会有所减少,所以果期根际土壤真菌丰富度少于花期。而根系内生真菌出现上述差异情况可能是从萌芽期到果期,无距虾脊兰生长发育需要大量营养物质持续输入,且夏季温度高,需要增加自身抗逆性,因此根系内生真菌种类和丰富度显著增加并在果期达到顶峰。随着冬季的到来,周围植物逐渐进入休眠期,植被凋落物、土壤微生物的分解等都会使土壤有机质增加,从而促进微生物的生长,造成衰亡期真菌群落丰富度的降低[23]

      兰科植物在自然状态下无法自主萌发,内生真菌通过向兰科植物传输营养物质,从而促进种子萌发和原球茎的分化[24]。李孟凯等[25]用镰孢属菌液处理过的铁皮石斛Dendrobium officinale种子胚膨大,种皮有被假根冲破的迹象。内生真菌对兰科植物的促生作用在生长期也有体现。王亚妮[26]研究发现:接种了内生真菌的铁皮石斛,其鲜质量、移栽成活率相比对照均有所增加;此外,张霞[27]研究表明:接种内生真菌的铁皮石斛,其抗旱性明显增强。由此可见,内生真菌在兰科植物生长发育过程中的作用不可忽视。本研究显示:无距虾脊兰不同时期优势真菌及相对丰度不同,推测兰科植物在相应生长期会选择对自己生长益处最大的真菌共生。有研究表明:在碳的需求方面,果期需求是花期的2倍[28],而花期的优势真菌不能满足果期对生长素等方面的需求,所以不同时期优势真菌的相对丰度会随之发生变化,也进一步证实了内生真菌极易受周围环境和生长阶段影响[29]

      镰孢属和青霉属是兰科植物中常见的内生真菌,在适当的条件下不仅能促进兰科植物种子的萌发和生长发育,还可以有效抑制病原菌的生长。这2种真菌类群在花期和衰亡期属于优势真菌,由此可以推测:镰孢属和青霉属在无距虾脊兰中同样可以促进其生长,并提高其抗病性。庄鑫等[30]研究不同地点朝鲜淫羊藿Epimedium brevicornu生长时期内生真菌表明:蜡壳耳属真菌与淫羊藿中黄酮类化学成分含量成正比,证明蜡壳耳属真菌可以促进植物对磷元素的吸收,促进植物生长,同时增强植株抗灰霉病的能力。被孢霉属真菌被证实在生物分解以及土壤养分转化的过程中发挥重要作用[31]。红菇属曾被认定为菌根真菌,并与多种兰科植物存在共生关系[32]。上述几类真菌均为无距虾脊兰不同时期的优势真菌,但是这几类优势真菌是否与无距虾脊兰菌根真菌存在共生关系,是否对无距虾脊兰生长发育过程中起促进作用,还需采用石蜡切片观察是否在根细胞中形成菌丝结,并结合共生培养视植株的生长状况而定。然而,另外一些公认的菌根真菌,如胶膜菌科Tulasnellaceae在本研究中尚未见到,有研究表明可能与DNA测序区域有关[33],在后续实验进行高通量测序时可以采取不同的引物。除此之外,可能与植物种类有关,有些真菌广泛存在于多种植物体内,而有些真菌却只与某种特定植物产生共生关系[34]

    • 本研究表明:在不同生长发育时期,无距虾脊兰真菌群落多样性和丰富度存在较大差异。根际土壤真菌多样性高于根系内生真菌,花期根际土壤真菌多样性最高,果期根系内生真菌最丰富。不同时期优势真菌差别较大,萌芽期根际土壤和根系内生优势真菌分别为被孢霉属、红菇属,花期优势真菌分别为青霉属、粗糙孔菌属,果期分别为Paraboeremia、蜡壳耳属,衰亡期分别为Paraboeremia、镰孢属。

参考文献 (34)

目录

/

返回文章
返回