留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于形态空间格局分析与最小累积阻力模型的城市热环境生态网络优化研究

潘振华 周媛 姚婧 宁顺斌 罗于舒 汪曼林

兰智鑫, 侯丹, 吴蔼民, 等. 毛竹PeCIGRs基因的克隆及表达分析[J]. 浙江农林大学学报, 2023, 40(5): 982-990. DOI: 10.11833/j.issn.2095-0756.20220761
引用本文: 潘振华, 周媛, 姚婧, 等. 基于形态空间格局分析与最小累积阻力模型的城市热环境生态网络优化研究[J]. 浙江农林大学学报, 2024, 41(5): 1085-1093. DOI: 10.11833/j.issn.2095-0756.20230505
LAN Zhixin, HOU Dan, WU Aimin, et al. Cloning and expression analysis of PeCIGRs gene from Phyllostachys edulis[J]. Journal of Zhejiang A&F University, 2023, 40(5): 982-990. DOI: 10.11833/j.issn.2095-0756.20220761
Citation: PAN Zhenhua, ZHOU Yuan, YAO Jing, et al. Research on optimization of urban thermal environment ecological network based on MSPA and minimum cumulative resistance model[J]. Journal of Zhejiang A&F University, 2024, 41(5): 1085-1093. DOI: 10.11833/j.issn.2095-0756.20230505

基于形态空间格局分析与最小累积阻力模型的城市热环境生态网络优化研究

DOI: 10.11833/j.issn.2095-0756.20230505
基金项目: 国家自然科学基金资助项目(52078440);四川省自然科学基金资助项目(2022NSFSC1160);西南民族大学中央高校基本科研业务费专项资金项目(ZYN2022071)
详细信息
    作者简介: 潘振华(ORCID: 0009-0008-5922-2114),从事城市设计与规划研究。E-mail: 1531638428@qq.com
    通信作者: 周媛(ORCID: 0009-0006-2548-1842),副教授,博士,从事城市设计与规划研究。E-mail: zhouyuan840205@163.com
  • 中图分类号: P901

Research on optimization of urban thermal environment ecological network based on MSPA and minimum cumulative resistance model

  • 摘要:   目的  建立合理的城市热环境生态网络,以缓解城市热岛效应。  方法  以成都市中心城区为研究对象,基于“源-汇”理论,利用形态学空间格局分析方法(MSPA)与景观连通性指数,分别筛选研究区内景观稳定性好、连通性高的“源”“汇”景观作为生态源地;运用最小累积阻力模型、重力模型以及水文分析模块构建和筛选研究区内的重要生态廊道,从而建立缓解城市热环境问题的多层级“源-汇”景观网络。  结果  分别筛选出24个具有重要连通性的“源”“汇”核心斑块作为重要生态源地。构建“源-源”廊道102条,“汇-汇”廊道141条,“源-汇”廊道325条,生态节点103个,障碍点148个。通过综合相交分析,一级补偿廊道主要由岷江、毗河和其他河道构成,二级输送廊道主要分布在“汇”景观较为密集的区域,三级作用廊道主要分布在高强度建设区域。  结论  基于“源-汇”理论构建的多层级生态网络优化格局是有效缓解城市热岛效应的重要举措。图4表3参25
  • 毛竹Phyllostachys edulis属禾本科Poaceae竹亚科Bambusoideae刚竹属Phyllostachys,具有快速生长的特性,最高日生长量超过1 m[12],是中国生长最快的植物之一。同时,毛竹也是中国竹类植物中分布最广的竹种,约占中国竹资源总面积的3/4[3]。此外,毛竹的茎秆木质化程度高,柔韧性好,在木材加工等方面被广泛应用,因而还具有重要的经济价值[4]。近年来,随着竹类植物,特别是毛竹的速生特性、高经济价值等优势逐渐凸显,以毛竹为主的竹资源研究备受关注,对毛竹快速生长机制的研究较为深入。一方面是激素、miRNA和基因等内在机制对竹子高生长的调控[1, 56],如CHEN等[7]研究表明:赤霉素(GA)是调控毛竹节间伸长的主要激素;另一方面是包括干旱、高盐等逆境胁迫对竹子高生长的影响,如毛美红等[8]的研究指出:干旱胁迫会显著影响毛竹新竹的胸径和株高。尽管对毛竹高生长机制的研究已涵盖了多个方面,但相比其他物种(如模式植物拟南芥Arabidopsis thaliana),对毛竹高生长分子机制的研究仍处在起步阶段,因而探究基因对毛竹茎秆发育的作用研究十分必要,对毛竹以及其它竹资源的可持续发展有重要意义。

    CIGR基因属于GRAS转录因子家族。GRAS家族是植物特有的一类转录因子且高度保守,已在拟南芥、水稻Oryza sativa、玉米Zea mays、高粱Sorghum bicolor、毛竹等多个物种中被鉴定[912],并依据序列、结构以及进化关系上的差异将该家族进一步划分为包含DELLA、HAM、PAT1等在内的共17个亚家族[13]。此外,功能研究表明:GRAS家族参与植物生长发育、非生物胁迫响应等多种生物过程和分子功能的调控[1416],如杨树Populus euphraticaPeSCL7过表达拟南芥后明显提高了抗盐和抗旱性[17]、拟南芥SCR突变后影响了根径向组织的分裂[18]CIGR基因作为该家族成员之一,最早在水稻中被发现,并以参与调控病原体诱导的防御反应被熟知[1920]。随后在多花黄精Polygonatum cyrtonema等物种中陆续被鉴定[2122],并对其功能展开了进一步的探究。研究发现:该基因还参与调控茎秆伸长,如水稻中通过混合分组分析法(BSA)筛选到在染色体分布上同绿色革命基因sd1紧密相连的候选基因CIGR,并发现该基因在高秆水稻的组织中高表达[23]。从植物分类学角度来看,毛竹与水稻同属于禾本科植物,参考水稻已有研究成果来探究毛竹相关机制具有重要的意义。为明确CIGR基因是否同样参与毛竹茎秆发育以及是否还参与逆境等非生物胁迫的响应,本研究利用文献中已鉴定的水稻CIGR基因[24]的序列在毛竹数据库中进行比对,得到4条同源基因,结合克隆和组织特异性表达、逆境胁迫及植物生长调节剂响应分析初步对毛竹CIGR基因进行探究,以期为研究毛竹CIGR基因的功能与作用机制提供基础。

    本研究使用的克隆材料毛竹茎秆采自浙江省杭州市临安区毛竹林示范园区,取3 m幼竹中部位置的节间样品速冻于液氮,保存于−80 ℃用于后续分析。

    根据毛竹数据库(http://www.bamboogdb.org/)获取4个CIGR基因的编码序列(CDS),使用Oligo 7设计CDS全长引物、引物序列(表1)。提取毛竹茎秆的RNA,并反转录为cDNA作为模板,反应体系为10 μL,2×E-taq PCR Master Mix酶5 μL、cDNA 1 μL、上下游引物各1 μL、ddH2O补至10 μL。PCR扩增程序为:95 ℃预变性3 min、95 ℃变性30 s、60 ℃退火30 s、72 ℃延伸120 s、34个循环及72 ℃延伸5 min。琼脂糖凝胶获取扩增片段并回收,经载体连接及大肠埃希菌Escherichia coli转化测序后获得阳性单菌落并保存于−80 ℃。

    表 1  基因克隆引物
    Table 1  Primers used in gene clone
    引物名称序列(5′→3′)引物名称序列(5′→3′)
    PeCIGR1-a-F ATGGACTTGCACCAGTTATTA PeCIGR2-a-F ATGGCTGATACTCCAACTTCCC
    PeCIGR1-a-R TCAGTGCCATGCAGAAGCAG PeCIGR2-a-R CTAATGCCATGCGGACGAAACCA
    PeCIGR1-b-F ATGGACTTGCACCAGTTA PeCIGR2-b-F ATGGCTGATACTCCAACT
    PeCIGR1-b-R TCAGTGCCAAGCAGAAGCAGAT PeCIGR2-b-R CTAATGCCATGCAGACGA
    下载: 导出CSV 
    | 显示表格

    利用DNAMAN对克隆得到的CIGR基因进行序列比对。利用Expasy在线软件 (https://web.expasy.org/protparam/) 及Plant-mPLoc在线软件 (http://www.csbio.sjtu.edu.cn/bioinf/plant-multi/)对CIGR蛋白理化性质和亚细胞定位进行分析和预测。利用Clustal X进行同源氨基酸序列比对,ESPript 3.0在线软件 (https://espript.ibcp.fr/ESPript/ESPript/) 用于多序列比对可视化。利用MEGA 7的Neighbor-Joining 算法对多个物种的CIGR蛋白序列进行系统进化树的构建。

    从美国国家生物技术信息中心(NCBI) 获取毛竹26个组织转录组数据[25],利用 Rstudio软件对毛竹PeCIGR1-aPeCIGR1-bPeCIGR2-aPeCIGR2-b基因在不同组织中的表达进行可视化分析。

    从NCBI获取课非生物胁迫及植物生长调节剂处理转录组数据(GSE169067),包含了干旱(PEG)、盐(NaCl)、脱落酸(abscisic acid,ABA)、水杨酸(salicylic acid,SA)处理。所有处理均为3个生物学重复,取样的时间为0、3、24 h,利用Rstudio软件完成毛竹PeCIGR1-aPeCIGR1-bPeCIGR2-aPeCIGR2-b基因在非生物胁迫和植物生长调节剂处理下表达模式的可视化分析。

    PCR 扩增、凝胶电泳(图1)、PCR 产物回收及连接转化测序研究表明:毛竹PH02Gene08687、PH02Gene44779、PH02Gene17912、PH02Gene13317完整的编码区序列长度分别为1 707、1 716、1 635、1 638 bp,分别编码568、571、544、545个氨基酸,与毛竹数据库序列比对一致。为便于后续研究分析,对上述基因进行重命名,依次为PeCIGR1-aPeCIGR1-bPeCIGR2-aPeCIGR2-b

    图 1  PeCIGRs基因克隆
    Figure 1  Cloning of PeCIGRs gene

    多序列比对发现:毛竹PeCIGRs蛋白与小佛肚竹Bambusa ventricosa、二穗短柄草Brachypodium distachyon、水稻等6个物种CIGR蛋白序列的C端相似度较高,具有GRAS蛋白典型的5个保守区域:LRI区域、 VHIID区域、 LRII区域、PFYRE 域及末端 SAW 区域,因而属于GRAS 蛋白家族成员(图2)[26]。为进一步明确毛竹PeCIGRs基因的功能,本研究利用毛竹、葡萄Vitis vinifera、小佛肚竹、水稻、二穗短柄草、高粱的CIGR蛋白序列构建进化树,结果如图3所示。整个进化树分成两大分支,其中PeCIGR1-a、PeCIGR1-b和PeCIGR2-a、PeCIGR2-b分别聚在2条分支上。同其他物种聚类结果表明:毛竹PeCIGRs蛋白与小佛肚竹、二穗短柄草、水稻CIGR蛋白进化关系更近。综上推测,毛竹PeCIGRs蛋白与小佛肚竹、二穗短柄草、水稻CIGR蛋白在功能上可能具有相似性。

    图 2  不同物种CIGR 蛋白序列比对分析
    Figure 2  Protein sequence alignment and analysis of CIGR protein from different species
    图 3  不同物种CIGR 蛋白序列系统进化树分析
    Figure 3  Phylogenetic tree analysis of CIGR protein sequences of different species

    表2为PeCIGRs蛋白的理化性质分析结果。PeCIGR1-a、PeCIGR1-b、PeCIGR2-a、PeCIGR2-b蛋白的等电点为5.63~6.03,不稳定指数为44.1~49.91,疏水性为−0.437~−0.310。4个CIGR蛋白均为酸性亲水蛋白,且PeCIGR1-a、PeCIGR1-b蛋白相较PeCIGR2-a、PeCIGR2-b蛋白更稳定。亚细胞定位预测表明:毛竹4个CIGR蛋白都定位于细胞核,与水稻CIGR蛋白定位一致[19]

    表 2  PeCIGRs蛋白理化性质及亚细胞定位分析
    Table 2  Analysis of physicochemical properties and subcellular localization of PeCIGRs protein
    蛋白名称氨基酸数量分子量/kD等电点不稳定指数脂肪指数疏水值亚细胞定位
    PeCIGR1-a56864 157.036.0344.2883.82−0.437细胞核
    PeCIGR1-b57164 407.135.6344.1082.01−0.443细胞核
    PeCIGR2-a54460 047.065.9749.9183.18−0.310细胞核
    PeCIGR2-b54559 924.856.0349.6482.33−0.316细胞核
    下载: 导出CSV 
    | 显示表格

    PeCIGR1-aPeCIGR1-bPeCIGR2-aPeCIGR2-b启动子上游2 000 bp顺式作用元件预测结果(表3~6)表明:4条基因启动子序列除包含TATA-box 和 CAAT-box 等核心启动元件外,还包含与光响应相关的元件,如3-AF1 binding site、ACE、Box 4;与激素相关的元件,如脱落酸响应元件ABRE、赤霉素响应元件(GARE-motif);与胁迫相关的元件,如低温响应元件(LTR)、干旱响应元件(MBS)以及分裂相关的元件(CAT-box)。上述结果表明:PeCIGRs基因可能参与调控毛竹分裂生长、光信号响应、植物生长调节剂和胁迫诱导等多种生物途径。

    表 3  PeCIGR1-a基因启动子顺式作用元件分析
    Table 3  Cis-element analysis of PeCIGR1-a gene promoter
    顺式元件序列数量功能顺式元件序列数量功能
    ABRE ACGTG 2 脱落酸响应元件 LAMP-element CTTTATCA 1 光响应元件
    AuxRR-core GGTCCAT 1 生长素响应元件 LTR CCGAAA 1 低温响应元件
    Box 4 ATTAAT 2 光响应元件 MBS CAACTG 1 干旱响应元件
    CAAT-box CAAAT 31 启动子和增强子区域调控元件 MRE AACCTAA 1 光响应元件
    CGTCA-motif CGTCA 1 茉莉酸甲酯响应元件 P-box CCTTTTG 1 赤霉素响应元件
    GARE-motif TCTGTTG 1 赤霉素响应元件 TATA-box TATA 9 核心启动子元件
    G-box CACGTC 2 光响应元件 TGACG-motif TGACG 1 茉莉酸甲酯响应元件
    下载: 导出CSV 
    | 显示表格
    表 4  PeCIGR1-b基因启动子顺式作用元件分析
    Table 4  Cis-element analysis of PeCIGR1-b gene promoter
    顺式元件序列数量功能顺式元件序列数量功能
    ABRE ACGTG 2 脱落酸响应元件 MRE AACCTAA 1 光响应元件
    Box 4 ATTAAT 2 光响应元件 Sp1 GGGCGG 1 光响应元件
    CAAT-box CAAAT 41 启动子和增强子区域调控元件 TATA-box TATA 12 核心启动子元件
    CGTCA-motif CGTCA 2 茉莉酸甲酯响应元件 TATC-box TATCCCA 1 赤霉素响应元件
    GATA-motif GATAGGA 1 光响应元件 TCA-element TCAGAAGAGG 1 水杨酸响应元件
    G-box CACGTC 4 光响应元件 TCCC-motif TCTCCCT 1 光响应元件
    LAMP-element CTTTATCA 1 光响应元件 TGACG-motif TGACG 2 茉莉酸甲酯响应元件
    下载: 导出CSV 
    | 显示表格
    表 5  PeCIGR2-a基因启动子顺式作用元件分析
    Table 5  Cis-element analysis of PeCIGR2-a gene promoter
    顺式元件序列数量功能顺式元件序列数量功能
    AF1 binding site TAAGAGAGGAA 1 光响应元件 G-Box CACGTT 7 光响应元件
    ABRE ACGTG 6 脱落酸响应元件 MBS CAACTG 2 干旱响应元件
    ACE GACACGTATG 1 光响应元件 TATA-box TATA 5 核心启动子元件
    CAAT-box CAAAT 18 启动子和增强子区域调控元件 TCT-motif TCTTAC 1 光响应元件
    CAT-box GCCACT 2 分裂表达相关元件 TGACG-motif TGACG 3 茉莉酸甲酯响应元件
    CGTCA-motif CGTCA 3 茉莉酸甲酯响应元件
    下载: 导出CSV 
    | 显示表格
    表 6  PeCIGR2-b基因启动子顺式作用元件分析
    Table 6  Cis-element analysis of PeCIGR2-b gene promoter
    顺式元件序列数量功能顺式元件序列数量功能
    AF1 binding site TAAGAGAGGAA 2 光响应元件 G-Box CACGTT 13 光响应元件
    ABRE ACGTG 12 脱落酸响应元件 GT1-motif GGTTAA 1 光响应元件
    ACE GACACGTATG 2 光响应元件 LTR CCGAAA 1 低温响应元件
    CAAT-box CAAAT 38 启动子和增强子区域调控元件 MBS CAACTG 4 干旱响应元件
    CAT-box GCCACT 2 分裂表达相关元件 TATA-box TATA 19 核心启动子元件
    CGTCA-motif CGTCA 4 茉莉酸甲酯响应元件 TCT-motif TCTTAC 3 光响应元件
    GARE-motif TCTGTTG 2 赤霉素响应元件 TGACG-motif TGACG 4 茉莉酸甲酯响应元件
    下载: 导出CSV 
    | 显示表格

    通过分析PeCIGRs基因在毛竹不同部位以及不同组织的表达模式发现(图4):PeCIGR1-aPeCIGR1-bPeCIGR2-aPeCIGR2-b在不同发育阶段毛竹茎秆中的表达高于其他组织,如叶片、叶鞘、箨片、鞭、根以及不同部位的芽,且4个基因的表达峰值都集中在3 m高的幼竹顶部。此外,在茎秆的其他发育阶段中,PeCIGR1-aPeCIGR1-b基因主要在1.5 m幼竹底部、顶部高表达;PeCIGR2-aPeCIGR2-b则主要在6.7 m幼竹的底部、中部高表达。综上表明,PeCIGRs基因可能在毛竹茎秆发育中发挥着重要的作用。

    图 4  毛竹PeCIGRs在不同组织中的表达模式
    Figure 4  Expression patterns of PeCIGRs in different tissues

    通过分析PeCIGRs基因在非生物胁迫(盐、干旱)和植物生长调节剂处理(脱落酸、水杨酸)下的表达模式发现(图5):PeCIGR1-aPeCIGR1-bPeCIGR2-aPeCIGR2-b在盐、干旱、水杨酸处理中表达模式一致,均呈现先升高后下降的变化趋势。在脱落酸处理中,4个CIGR基因呈现2种不同的表达模式,其中PeCIGR1-aPeCIGR1-b是在处理3 h后明显上调,在24 h后表达下调,而PeCIGR2-aPeCIGR2-b基因在处理后3 h没有明显变化趋势,在处理24 h后表现出下调的趋势。综上所述,PeCIGR1-aPeCIGR1-bPeCIGR2-aPeCIGR2-b对盐、干旱胁迫具有强烈的响应,对水杨酸、脱落酸具有一定的应答作用。

    图 5  毛竹 PeCIGRs在非生物胁迫和植物生长调节剂处理下的表达模式
    Figure 5  Expression patterns of PeCIGRs in abiotic stresses and hormonal treatment

    基因调控在竹子快速生长中扮演着重要的角色,如参与细胞壁合成的CesAs基因、参与响应激素的PheSAUR29基因等[2728]。现有竹子基因层面的研究多参考水稻等模式植物展开,如毛竹PeGA20ox1基因,是与水稻、二穗短柄草等物种进行比对后得到的同源性较高的基因,该基因通过异源转入拟南芥后显著增加了株高和节间长度[29]。本研究同样是在水稻茎秆发育研究中发现了1个与茎秆伸长密切相关的基因CIGR,该基因是赤霉素应答基因,在光信号转导[21]、赤霉素(GA)信号转导[20]以及茎秆发育[23]等途径都参与调控。为探究该基因在毛竹生长发育等途径中是否参与调控,本研究通过克隆及表达分析等方法对毛竹CIGR基因展开初步探究。

    除在水稻中被报道外,CIGR基因也在其他物种中被发现参与调控节间伸长和茎秆发育。如小佛肚竹的BvCIGR基因异源转入水稻后引起了株高和节间的伸长[30];白花虎眼万年青Ornithogalum thyrsoides QtCIGR1异源转入烟草Nicotiana tabacum中后显著提升节间长度[22]。与此结果相似,在分析CIGR基因在毛竹不同部位的表达情况时发现,该基因主要表达在茎秆中;在分析毛竹茎秆不同发育阶段时发现,该基因在3 m茎秆顶部的表达量最高,该时期处于竹子的速生期[31]。此外,在多物种CIGR蛋白进化系统分析及序列比对分析中还发现:毛竹CIGR蛋白与小佛肚竹、水稻的CIGR蛋白序列具有较高的相似度。这进一步为参考水稻、小佛肚竹的CIGR蛋白对毛竹相关功能进行研究提供了可靠性。综上,本研究参考与毛竹CIGR蛋白具有高相似性的物种已有研究成果,初步分析了CIGRs基因在毛竹组织中的表达特征。结果表明:毛竹PeCIGRs基因参与毛竹茎秆发育,特别是在毛竹茎秆速生期中扮演着重要的角色。

    毛竹生长喜温喜湿[32],因而干旱等其他环境因子或非生物胁迫对其生长有重要影响[33]。GRAS家族在盐胁迫、干旱胁迫等非生物胁迫以及激素信号转导中也参与应答[3436],如水稻OsGRAS23过表达后提升了植物的抗旱性[37],山葡萄Vitis amurensis VaPAT1过表达拟南芥后显著提升了植物对寒冷、干旱以及盐等非生物胁迫的抗性[38]。为明确毛竹CIGR基因是否也参与非生物胁迫应答,本研究对毛竹CIGR基因启动子顺式作用元件进行了预测,发现与非生物胁迫(干旱、低温)和植物生长调节剂响应(脱落酸、水杨酸)相关元件的存在。在此基础上,本研究进一步对毛竹非生物胁迫和植物生长调节剂处理的表达模式进行分析,结果表明:PeCIGRs基因的确受到了盐、干旱、水杨酸的强烈诱导,且PeCIGR1-a、PeCIGR1-b和PeCIGR2-a、PeCIGR2-b分别在脱落酸处理的不同时间点也参与应答。这表明PeCIGRs基因在非生物胁迫响应和植物生长调节剂应答中发挥着重要作用。

    本研究从毛竹克隆得到4条CIGR基因,依次命名为PeCIGR1-a、PeCIGR1-b、PeCIGR2-a、PeCIGR2-b。4条基因序列都具有典型的GRAS结构域,属GRAS家族。组织特异性分析表明:4条基因主要在速生期的茎秆顶部中表达,表明4条基因在幼竹速生生长中参与调控。非生物胁迫和植物生长调节剂处理下PeCIGRs基因的表达模式表明:4条基因在盐、干旱、水杨酸处理早期受到强烈的诱导,在脱落酸处理中,PeCIGR1-a、PeCIGR1-b和PeCIGR2-a、PeCIGR2-b分别在不同处理时间点参与应答,表明这4条基因也参与毛竹对非生物胁迫的响应和植物生长调节剂的应答。

  • 图  1  研究区范围示意图

    Figure  1  The study area

    图  2  阻力面示意图

    Figure  2  Resistance surface

    图  3  生态源地的识别示意图

    Figure  3  Ecological source of the “source - sink” landscape

    图  4  “源-汇”景观廊道分布示意图

    Figure  4  “Source-sink” landscape corridor distribution

    图  5  低阻力廊道、生态障碍点与关键点分布(A)及“源-汇”多层级景观网络示意图(B)

    Figure  5  Distribution of low-resistance corridors, ecological barrier points and key points (A), and “source-sink” multi-level landscape network (B)

    表  1  赋予不同影响因子的阻力值

    Table  1.   Resistance values assigned to different impact factors

    影响因子类型分级赋予阻力值所占权重影响因子类型分级赋予阻力值所占权重
    用地分类林地100.520坡度/( º )0~10100.078
    水地2010~2030
    草地3020~3050
    耕地5030~4070
    未利用土地7040~5090
    建设用地100>50100
    高程/m<200100.078归一化植被
    指数(NDVI)
    −1.00~−0.20100.201
    200~40030−0.20~0.3030
    400~600500.30~0.5050
    600~800700.50~0.7070
    800~1 000900.70~1.0090
    >1 000100
    下载: 导出CSV

    表  2  “源”“汇”景观要素不同类型面积占比

    Table  2.   Area proportion of different types of “source” “sink” landscape elements

    景观类型“汇”景观面
    积占比/%
    “源”景观面
    积占比/%
    核心区55.9131.83
    孤岛 0.070.14
    孔隙 2.461.61
    边缘区3.323.77
    环岛 0.060.04
    桥接区0.060.08
    支线 0.210.26
    下载: 导出CSV

    表  3  研究区各行政区景观廊道分布

    Table  3.   Distribution of landscape corridors in each administrative district

    行政区建筑密度/%“源-源”廊道长度/km所占比例/%“汇-汇”廊道长度/km所占比例/%“源-汇”廊道长度/km所占比例/%
    新都区 20.50825.3226.6642.6517.223 563.2221.87
    郫都区 20.43518.0216.7810.4721.817 422.1216.17
    双流区 12.72509.8216.4689.7118.623 944.2322.22
    温江区 19.12357.4611.5233.846.29 438.328.76
    龙泉驿区11.16345.5711.1171.334.69 768.869.06
    金牛区 18.99229.247.3379.076.25 423.085.03
    青白江区15.01201.956.531.160.83 699.393.43
    成华区 14.4990.752.918.130.52 827.712.62
    锦江区 18.0111.050.3177.754.73 295.243.06
    青羊区 28.097.040.2303.228.23 500.853.25
    武侯区 22.205.260.2409.5211.04 882.504.53
    下载: 导出CSV
  • [1] 宫阿都, 李京, 王晓娣, 等. 北京城市热岛环境时空变化规律研究[J]. 地理与地理信息科学, 2005, 21(6): 15 − 18.

    GONG Adu, LI Jing, WANG Xiaodi, et al. Study on temporal and spatial distribution characteristics of the urban heat island in Beijing [J]. Geography and Geo-Information Science, 2005, 21(6): 15 − 18.
    [2] 刘孟竹, 李雅丽, 张红娟, 等. 1996—2017年张家口市区景观格局与地表热环境的时空变化[J]. 水土保持通报, 2021, 41(6): 303 − 309.

    LIU Mengzhu, LI Yali, ZHANG Hongjuan, et al. Spatiotemporal variations of landscape pattern and urban thermal environment in Zhangjiakou City during 1996−2017 [J]. Bulletin of Soil and Water Conservation, 2021, 41(6): 303 − 309.
    [3] 郭宇. 上海市热环境时空变化特征及其驱动机制研究[D]. 上海: 上海应用技术大学, 2022.

    GUO Yu. Temporal and Spatial Variation Characteristics of Urban Thermal Environment and Driving Mechanism in Shanghai City [D]. Shanghai: Shanghai Institute of Technology, 2022.
    [4] 杨务发, 余坤勇, 赵各进, 等. 基于热岛效应的福州市绿色廊道优化[J]. 浙江农林大学学报, 2022, 39(4): 876 − 883.

    YANG Wufa, YU Kunyong, ZHAO Gejin, et al. Optimization of greenways in Fuzhou based on heat island effect[J]. Journal of Zhejiang A&F University, 2022, 39(4): 876 − 883.
    [5] 陈利顶, 傅伯杰, 赵文武. “源”“汇”景观理论及其生态学意义[J]. 生态学报, 2006, 26(5): 1444 − 1449.

    CHEN Liding, FU Bojie, ZHAO Wenjie. Source-sink landscape theory and its ecological significance [J]. Acta Ecologica Sinica, 2006, 26(5): 1444 − 1449.
    [6] 周媛. 多元目标导向下的成都中心城区绿地生态网络构建[J]. 浙江农林大学学报, 2019, 36(2): 359 − 365.

    ZHOU Yuan. Developing urban greenspace ecological network in Chengdu City center based on multiple objectives [J]. Journal of Zhejiang A&F University, 2019, 36(2): 359 − 365.
    [7] 赵晨晓, 刘春卉, 魏家星. 缓解城市热岛效应的南京市绿色基础设施网络构建方法[J]. 浙江农林大学学报, 2021, 38(6): 1127 − 1135.

    ZHAO Chenxiao, LIU Chunhui, WEI Jiaxing. Green infrastructure network construction method for mitigating urban heat island effect in Nanjing [J]. Journal of Zhejiang A&F University, 2021, 38(6): 1127 − 1135.
    [8] 胡凤宁, 周亮. 城市绿色基础设施降温作用及其影响因素研究进展[J]. 生态学报, 2023, 43(11): 4445 − 4460.

    HU Fengning, ZHOU Liang. Cooling effect of urban green infrastructure and its impacting factors: a review [J]. Acta Ecologica Sinica, 2023, 43(11): 4445 − 4460.
    [9] 周媛, 陈明坤, 黎贝, 等. 基于空间连通性动态变化的城市绿地生态网络优化[J]. 中国城市林业, 2023, 21(4): 23 − 32.

    ZHOU Yuan, CHEN Mingkun, LI Bei, et al. Optimization of urban green space ecological network based on dynamic change of spatial connectivity [J]. Journal of Chinese Urban Forestry, 2023, 21(4): 23 − 32.
    [10] 周媛, 唐密, 陈娟, 等. 基于形态学空间格局分析与图谱理论的成都市绿地生态网络优化[J]. 生态学杂志, 2023, 42(6): 1527 − 1536.

    ZHOU Yuan, TANG Mi, CHEN Juan, et al. Optimization of urban green space ecological network in Chengdu based on morphological spatial pattern analysis and graph theory [J]. Chinese Journal of Ecology, 2023, 42(6): 1527 − 1536.
    [11] 乔治, 陈嘉悦, 王楠, 等. 基于MSPA和电路理论的京津冀城市群热环境空间网络[J]. 环境科学, 2023, 44(6): 3034 − 3042.

    QIAO Zhi, CHEN Jiayue, WANG Nan, et al. Spatial network of urban heat environment in Beijing-Tianjin-Hebei urban agglomeration based on MSPA and circuit theory [J]. Environmental Science, 2023, 44(6): 3034 − 3042.
    [12] 潘越, 龚健, 杨建新, 等. 基于生态重要性和MSPA核心区连通性的生态安全格局构建——以桂江流域为例[J]. 中国土地科学, 2022, 36(4): 86 − 95.

    PAN Yue, GONG Jian, YANG Jianxin, et al. Construction of ecological security pattern based on ecological lmportance and connectivity of MSPA-core area: a case study of guifiang river basin [J]. China Land Science, 2022, 36(4): 86 − 95.
    [13] 刘婷, 欧阳帅, 勾蒙蒙, 等. 基于MSPA模型的新型城市热景观连通性分析[J]. 生态学报, 2023, 43(2): 615 − 624.

    LIU Ting, OUYANG Shuai, GOU Mengmeng, et al. Analysis connectivity of urban heat island in a new-type urbanization based on MSPA model [J]. Acta Ecologica Sinica, 2023, 43(2): 615 − 624.
    [14] 刘莉莉. 基于MCR模型的鄠邑区生态安全格局构建[J]. 河南科技, 2023, 42(19): 112 − 116.

    LIU Lili. Construction of ecological security pattern in Huyi District based on MCR model [J]. Henan Science and Technology, 2023, 42(19): 112 − 116.
    [15] 李喆, 陈圣宾, 陈芝阳. 地表温度与土地利用类型间的空间尺度依赖性——以成都为例[J]. 生态环境学报, 2022, 31(5): 999 − 1007.

    LI Zhe, CHEN Shengbin, CHEN Zhiyang. Spatial scale dependence between land surface temperature and land use types: a case study of Chengdu City [J]. Ecology and Environmental Sciences, 2022, 31(5): 999 − 1007.
    [16] 覃志豪, ZHANG Minghua, ARNON K, 等. 用陆地卫星TM6数据演算地表温度的单窗算法[J]. 地理学报, 2001, 56(4): 456 − 466.

    TAN Zhihao, ZHANG Minghua, ARNON K, et al. Mono-window algorithm for retrieving land surface temperature from Landsat TM6 data [J]. Acta Geographica Sinica, 2001, 56(4): 456 − 466.
    [17] 贾海峰, 刘雪华. 环境遥感原理与应用[M]. 北京: 清华大学出版社, 2006.

    JIA Haifeng, LIU Xuehua. Principles and Applications of Environmental Remote Sensing [M]. Beijing: Tsinghua University Press, 2006.
    [18] LAL S, SHEEL V. A study of the atmospheric photochemical loss of N2O based on trace gas measurements [J]. Chemosphere-Global Change Science, 2000, 2(3/4): 455 − 463.
    [19] 贾玉雪, 帅红, 韩龙飞. 基于“源-汇”理论的资江下游地区非点源污染风险区划[J]. 应用生态学报, 2020, 31(10): 3518 − 3528.

    JIA Yuxue, SHUAI Hong, HAN Longfei. Zonation on non-point source pollution risk in the lower reaches of ZiJiang River based on the “source-sink” theory [J]. Chinese Journal of Applied Ecology, 2020, 31(10): 3518 − 3528.
    [20] 邵润钰, 罗紫薇, 胡希军, 等. 基于MSPA和MCR模型的株洲市生态网络构建与优化[J]. 西北林学院学报, 2024, 39(2): 217 − 227.

    SHAO Runyu, LUO Ziwei, HU Xijun, et al. Construction of Zhuzhou ecological network based on MSPA and MCR models [J]. Journal of Northwest Forestry University, 2024, 39(2): 217 − 227.
    [21] 陈胜兰, 丁山, 魏甫, 等. 基于生态景观连通性的浏阳市自然保护地整合优化评价[J]. 中南林业调查规划, 2023, 42(4): 21 − 25.

    CHEN Shenglan, DING Shan, WEI Fu, et al. Integrated optimization evaluation of natural protected areas in Liuyang City of Hunan Province based on ecological landscape connectivity [J]. Central South Forest Inventory and Planning, 2023, 42(4): 21 − 25.
    [22] 颜钰, 曾真, 陈秀铭, 等. 基于MCR模型的泉州市绿地生态网络构建与生态节点识别研究[J]. 山东林业科技, 2024, 54(1): 11 − 20.

    YAN Yu, ZENG Zhen, CHEN Xiuming, et al. Research on the construction of greenland ecological network and ecological nodes identification in Quanzhou city based on MCR modeling [J]. Journal of Shandong Forestry Science and Technology, 2024, 54(1): 11 − 20.
    [23] 郭家新, 胡振琪, 李海霞, 等. 基于MCR模型的市域生态空间网络构建[J]. 农业机械学报, 2021, 52(3): 275 − 284.

    GUO Jiaxin, HU Zhenqi, LI Haixia, et al. Construction of municipal ecological space network based on MCR model [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(3): 275 − 284.
    [24] 韦宝婧, 苏杰, 胡希军, 等. 基于“HY-LM”的生态廊道与生态节点综合识别研究[J]. 生态学报, 2022, 42(7): 2995 − 3009.

    WEI Baojing, SU Jie, HU Xijun, et al. Comprehensive identification of eco-corridors and eco-nodes based on principle of hydrological analysis and Linkage Mapper [J]. Acta Ecologica Sinica, 2022, 42(7): 2995 − 3009.
    [25] 李程蓉, 陈天. 缓解城市热环境的多层级“源-汇”景观网络构建[J]. 生态学报, 2023, 43(8): 3068 − 3078.

    LI Chengrong, CHEN Tian. Construction of multi-level “source-sink” landscape network to alleviate urban thermal environment [J]. Acta Ecologica Sinica, 2023, 43(8): 3068 − 3078.
  • [1] 黄晓杰, 丁金华, 汪大庆.  苏南水网地区绿色空间景观生态风险时空演变与调控策略 . 浙江农林大学学报, 2024, 41(6): 1283-1292. doi: 10.11833/j.issn.2095-0756.20240169
    [2] 吴庚鸿, 王一茹, 刘铁冬, 龚文峰, 林世平, 陈翀.  基于SEDMs模型的海口市城市公园绿地景观格局演变及空间配置评价 . 浙江农林大学学报, 2023, 40(5): 1093-1101. doi: 10.11833/j.issn.2095-0756.20220702
    [3] 李琛, 高彬嫔, 吴映梅, 郑可君, 武燕.  基于PLUS模型的山区城镇景观生态风险动态模拟 . 浙江农林大学学报, 2022, 39(1): 84-94. doi: 10.11833/j.issn.2095-0756.20210237
    [4] 杨务发, 余坤勇, 赵各进, 耿建伟, 赵秋月, 杨柳青, 刘健.  基于热岛效应的福州市绿色廊道优化 . 浙江农林大学学报, 2022, 39(4): 876-883. doi: 10.11833/j.issn.2095-0756.20210672
    [5] 崔杨林, 高祥, 董斌, 位慧敏.  县域景观生态风险评价 . 浙江农林大学学报, 2021, 38(3): 541-551. doi: 10.11833/j.issn.2095-0756.20200461
    [6] 赵晨晓, 刘春卉, 魏家星.  缓解城市热岛效应的南京市绿色基础设施网络构建方法 . 浙江农林大学学报, 2021, 38(6): 1127-1135. doi: 10.11833/j.issn.2095-0756.20200816
    [7] 赵勋刚, 胡雨村, 王文辉, 胡云卿.  乌海市生态环境评价及驱动因子分析 . 浙江农林大学学报, 2019, 36(5): 990-998. doi: 10.11833/j.issn.2095-0756.2019.05.019
    [8] 沈啸, 张建国.  基于网络文本分析的绍兴镜湖国家城市湿地公园旅游形象感知 . 浙江农林大学学报, 2018, 35(1): 145-152. doi: 10.11833/j.issn.2095-0756.2018.01.019
    [9] 孙敏, 陈健, 林鑫涛, 杨山.  城市景观格局对PM2.5污染的影响 . 浙江农林大学学报, 2018, 35(1): 135-144. doi: 10.11833/j.issn.2095-0756.2018.01.018
    [10] 郑泽睿, 施拥军, 周国模, 陈婷, 杨一, 裴晶晶.  毛竹碳汇林栽植方式在成林初期对空间分布格局变化特征的影响 . 浙江农林大学学报, 2017, 34(3): 395-405. doi: 10.11833/j.issn.2095-0756.2017.03.003
    [11] 闻国静, 刘云根, 王妍, 侯磊, 王艳霞, 郭玉静.  普者黑湖流域景观格局及生态风险时空演变 . 浙江农林大学学报, 2017, 34(6): 1095-1103. doi: 10.11833/j.issn.2095-0756.2017.06.018
    [12] 陈丽萍, 李平衡, 莫路锋, 周国模, 李金荣.  基于通量源区模型的雷竹林生态系统碳通量信息提取 . 浙江农林大学学报, 2016, 33(1): 1-10. doi: 10.11833/j.issn.2095-0756.2016.01.001
    [13] 戴小廷, 杨建州, 冯祥锦.  森林环境资源边际机会成本定价的理论及构成 . 浙江农林大学学报, 2013, 30(3): 406-411. doi: 10.11833/j.issn.2095-0756.2013.03.017
    [14] 郭慧慧, 蒋文伟, 梅艳霞.  基于高空间分辨率航空影像的宁波鄞州新城区城市景观格局分析 . 浙江农林大学学报, 2012, 29(3): 344-351. doi: 10.11833/j.issn.2095-0756.2012.03.005
    [15] 蔡霞, 叶旭英, 徐红霞, 方文飞.  近自然林业理论在景观林营建中的应用 . 浙江农林大学学报, 2008, 25(5): 584-590.
    [16] 宣功巧.  运用景观生态学基本原理规划城市绿地系统斑块和廊道 . 浙江农林大学学报, 2007, 24(5): 599-603.
    [17] 何莹, 韦新良, 蔡霞, 李可追, 王珍.  生态景观林群落结构定量分析 . 浙江农林大学学报, 2007, 24(6): 711-718.
    [18] 宋瑜, 江洪, 余树全, 周国模.  水土流失的景观生态分析 . 浙江农林大学学报, 2007, 24(3): 342-349.
    [19] 张纵, 施侠, 徐晓清.  城市河流景观整治中的类自然化形态探析 . 浙江农林大学学报, 2006, 23(2): 202-206.
    [20] 蒋文伟, 刘彤, 丁丽霞, 温国胜, 张万荣, 钟泰林.  景观生态空间异质性的研究进展 . 浙江农林大学学报, 2003, 20(3): 311-314.
  • 期刊类型引用(1)

    1. 王书伟,周明兵. 毛竹ICE基因家族的全基因组鉴定及低温胁迫下的表达模式分析. 浙江农林大学学报. 2024(03): 568-576 . 本站查看

    其他类型引用(2)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20230505

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2024/5/1085

图(5) / 表(3)
计量
  • 文章访问数:  370
  • HTML全文浏览量:  244
  • PDF下载量:  34
  • 被引次数: 3
出版历程
  • 收稿日期:  2023-10-16
  • 修回日期:  2024-04-09
  • 录用日期:  2024-04-22
  • 网络出版日期:  2024-09-25
  • 刊出日期:  2024-09-25

基于形态空间格局分析与最小累积阻力模型的城市热环境生态网络优化研究

doi: 10.11833/j.issn.2095-0756.20230505
    基金项目:  国家自然科学基金资助项目(52078440);四川省自然科学基金资助项目(2022NSFSC1160);西南民族大学中央高校基本科研业务费专项资金项目(ZYN2022071)
    作者简介:

    潘振华(ORCID: 0009-0008-5922-2114),从事城市设计与规划研究。E-mail: 1531638428@qq.com

    通信作者: 周媛(ORCID: 0009-0006-2548-1842),副教授,博士,从事城市设计与规划研究。E-mail: zhouyuan840205@163.com
  • 中图分类号: P901

摘要:   目的  建立合理的城市热环境生态网络,以缓解城市热岛效应。  方法  以成都市中心城区为研究对象,基于“源-汇”理论,利用形态学空间格局分析方法(MSPA)与景观连通性指数,分别筛选研究区内景观稳定性好、连通性高的“源”“汇”景观作为生态源地;运用最小累积阻力模型、重力模型以及水文分析模块构建和筛选研究区内的重要生态廊道,从而建立缓解城市热环境问题的多层级“源-汇”景观网络。  结果  分别筛选出24个具有重要连通性的“源”“汇”核心斑块作为重要生态源地。构建“源-源”廊道102条,“汇-汇”廊道141条,“源-汇”廊道325条,生态节点103个,障碍点148个。通过综合相交分析,一级补偿廊道主要由岷江、毗河和其他河道构成,二级输送廊道主要分布在“汇”景观较为密集的区域,三级作用廊道主要分布在高强度建设区域。  结论  基于“源-汇”理论构建的多层级生态网络优化格局是有效缓解城市热岛效应的重要举措。图4表3参25

English Abstract

兰智鑫, 侯丹, 吴蔼民, 等. 毛竹PeCIGRs基因的克隆及表达分析[J]. 浙江农林大学学报, 2023, 40(5): 982-990. DOI: 10.11833/j.issn.2095-0756.20220761
引用本文: 潘振华, 周媛, 姚婧, 等. 基于形态空间格局分析与最小累积阻力模型的城市热环境生态网络优化研究[J]. 浙江农林大学学报, 2024, 41(5): 1085-1093. DOI: 10.11833/j.issn.2095-0756.20230505
LAN Zhixin, HOU Dan, WU Aimin, et al. Cloning and expression analysis of PeCIGRs gene from Phyllostachys edulis[J]. Journal of Zhejiang A&F University, 2023, 40(5): 982-990. DOI: 10.11833/j.issn.2095-0756.20220761
Citation: PAN Zhenhua, ZHOU Yuan, YAO Jing, et al. Research on optimization of urban thermal environment ecological network based on MSPA and minimum cumulative resistance model[J]. Journal of Zhejiang A&F University, 2024, 41(5): 1085-1093. DOI: 10.11833/j.issn.2095-0756.20230505
  • 随着城市化加速发展,不透水地面逐渐增多,城市热岛效应(urban heat island effect,UHI)日益凸显。学者们多从热环境时空变化[12]、影响机制及驱动力[3]、城市热岛效应缓解方法[4]等方面展开研究,但较少关注景观网络在缓解热岛效应中的作用。这些研究表明,地表温度受斑块间的热交换影响显著,热源与热汇的连通性是影响热流动的重要因素。然而,地表温度难以反映整体格局和连通性,需要合适的方法来准确描述热环境的空间格局。对城市热岛的研究侧重于整体区域尺度或是斑块水平上的统计分析,忽视了景观网络对缓解城市热环境的作用。陈利顶等[5]利用“源-汇”理论,将热环境与生态过程结合,为解决城市热环境问题提供新思路。

    城市绿地对缓解城市热岛效应具有重要作用[6],当绿地覆盖面积在40%以下时,绿地系统的空间格局将对环境的增势以及降温产生主要影响[7],在有限的城市空间中增加大面积的绿地已经难以实现,因此通过优化绿地空间格局来缓解城市热岛效应尤为重要。基于景观生态学“源-汇”理论,识别城市热岛像元与绿地像元,构建多层级生态网络,将是缓解城市热环境的重要手段。生态网络构建方法主要包括形态空间格局分析方法(morphological spatial pattern analysis,MSPA)、最小累积阻力模型以及重力模型等 [89]。MSPA方法强调景观内部结构性的连接,可以准确地将前景要素划分为核心、孤岛、孔隙、边缘、环道、桥接和支线等7类,为后期廊道以及生态节点的识别提供理论依据[1012]。近年来MSPA方法也逐渐应用到城市热岛的研究中,以达到缓解城市热岛效应的目的。景观连通性指数包括整体连通性指数(integral index of connectivity,IIC)、可能连通性指数(probability of connectivity,PC)等,反映了景观对生态过程中能量流动的促进或阻碍作用大小,良好的景观连通性有助于构建稳定的生态环境[13]。最小累积阻力模型是指物种从源地向目标迁移扩散过程中,穿越不同景观表面所需耗费的最小代价的模型[14],最小累积阻力模型与重力模型相结合能更好地识别生态廊道间的相互作用强度,以筛选具有重要作用的关键廊道。目前,大多数研究利用MSPA、景观连通性指数、最小累积阻力模型等方法进行绿地生态网络的构建,但利用该方法体系构建缓解城市热环境的多层级生态网络的研究相对较少。

    本研究以成都市中心城区为研究对象,基于“源-汇”理论,利用MSPA与景观连通性指数,筛选研究区“源”“汇”景观,利用最小累积阻力模型、重力模型以及水文分析模块构建“源-源”“汇-汇”“源-汇”景观廊道以及生态节点,最终形成具备“补偿-运输-作用”功能的多层级景观网络格局,确定需要重点保护的生态用地、重要廊道以及关键节点,提出优化策略,为成都市生态网络空间的构建提供有效支撑。

    • 成都市位于川西平原,30°22′~30°96′N,103°68′~104°49′E,地势较为平坦,由于地形影响,夏季炎热,冬季寒冷。本研究的中心城区(图1)包括郫都区、新都区、青白江区、温江区、金牛区、成华区、龙泉驿区、青羊区、武侯区、锦江区、双流区等11个行政区,总面积为3 732.06 km2。中心城区处于全国两大静风区之一,建筑及人口密度高,地表通风能力弱[15],不利于城市内部热量扩散,城市热环境矛盾突出,因此具有研究城市热岛效应的典型特征。

      图  1  研究区范围示意图

      Figure 1.  The study area

    • 所用数据包括2020年空间分辨率为30 m的Landsat 8 OLI卫星影像数据(http://earthexplorer.usgs.gov),空间分辨率为30 m的DEM高程数据(https://www.gscloud.cn/),以及《成都市国土空间总体规划(2020—2035年)》(草案)等相关规划图件。利用ENVI软件对获取的遥感影像预处理后利用覃志豪等[16]的单窗算法反演地表温度;利用监督分类的方法,将研究区2020年的土地利用类型细分为草地、林地、耕地、水域以及城乡建设用地等5种类型,通过实地调研踏勘与高分辨率遥感影像的目视判别,对分类结果进行校正,最终解译精度达89%以上。

    • 通过计算城市区域与周边地区的平均温度之差来确定相对热岛强度,相对热岛强度越高,相应区域内热岛效应越明显[17]。在ArcGIS中通过计算不同用地类型的相对热岛强度来判别“源-汇”景观。按照LAL等[18]和贾玉雪等[19]的研究将计算结果中相对热岛强度(H)≥0的斑块定义为对城市热环境有促进作用的“源”景观,H<0的景观定义为“汇”景观。

    • 将“源”景观作为前景,赋值为2,“汇”景观作为背景,赋值为1,并将其转化为30 m×30 m栅格数据;运用Guidos Toolbox软件对其进行MSPA分析,设置8邻域的连通规则,边缘宽度为1,获得7种景观类型:核心区、边缘、孤岛、桥接区、环道、支线和孔隙。按相同步骤将“汇”景观作为前景,“源”景观作为背景,得到“汇”景观的空间形态格局。

    • 景观连通性指数可以衡量不同空间单元之间景观要素的连通性。量化景观要素在生态源地之间进行扩散或者迁移的难易程度,也是衡量生态过程之间联系程度的重要指标[20]。利用Conefor 2.6软件,通过计算IIC、PC以及斑块重要性(dI’)来衡量不同核心斑块的重要程度[21]。考虑研究区内斑块的面积和连通性,通过反复测试计算,设定斑块连接性阈值为2 000,连通概率为0.5。最后,基于景观连通性指数dI’值大小综合评估核心区斑块的景观重要程度。

    • 根据研究区现状以及数据的可获取性,最终选取用地类型、高程、坡度以及归一化植被指数(NDVI)来构建综合阻力面。其中高程决定了城市内不同区域的温度分布,坡度影响空气流动和热量累积,不同用地类型对城市热环境产生不同影响,而NDVI则反映了植被覆盖情况,对城市温度、热岛效应和空气质量有重要影响。采用专家打分法确定因子阻力值,并采用层次分析法(AHP)计算其权重值(表1),通过叠加分析最终生成综合阻力面(图2)。可以看出,研究区内阻力值的呈现由中心向四周扩散,逐渐递减,尤其是东南方向的递减最为明显。

      表 1  赋予不同影响因子的阻力值

      Table 1.  Resistance values assigned to different impact factors

      影响因子类型分级赋予阻力值所占权重影响因子类型分级赋予阻力值所占权重
      用地分类林地100.520坡度/( º )0~10100.078
      水地2010~2030
      草地3020~3050
      耕地5030~4070
      未利用土地7040~5090
      建设用地100>50100
      高程/m<200100.078归一化植被
      指数(NDVI)
      −1.00~−0.20100.201
      200~40030−0.20~0.3030
      400~600500.30~0.5050
      600~800700.50~0.7070
      800~1 000900.70~1.0090
      >1 000100

      图  2  阻力面示意图

      Figure 2.  Resistance surface

    • 在ArcGIS中,利用Cost-distance工具构建研究区的累积耗费距离表面。利用Cost-path构建多对多的潜在生态廊道,以连接不同的“源-汇”景观。最后,利用重力模型[22]计算生态廊道间的相互作用强度,通过筛选合适的强度阈值,确保所有的“源-汇”景观均被连通,从而提取出“源-源”“汇-汇”“源-汇”生态廊道。

    • 识别生态廊道中的关键点和障碍点能够为物种的迁徙及物种保护区的划分和规划提供科学依据[2324]。在ArcGIS中,运用水文分析模块,对累积耗费距离表面进行水流方向、汇流累积量等一系列分析计算。通过对比不同阈值设定下最小阻力路径的完整性与连通性,最后确定阈值为500构建研究区内的低阻力廊道。运用ArcGIS中的Intersect工具将低阻力值廊道与“源-源”“汇-汇”廊道进行相交分析从而获得不同生态节点,包括生态障碍点与生态关键点,其中生态关键点是生态廊道中能量流动密度较大的点,需要对关键点进行有效利用与保护;对障碍点则需进行生态修复来提升廊道整体的连接度,以保障冷热能的有效传递。

    • 将“源-源”“汇-汇”“源-汇”廊道共同相交[25],得到一级补偿廊道;将“汇-汇”“源-汇”廊道进行相交,得到二级输送引导廊道;将“源-源”“源-汇”廊道进行相交,得到三级作用廊道,完成廊道的“补偿-运输-作用”的完整体系,构建完整的多层级“源-汇”生态景观网络。

    • 图3A可以看出:“源”景观在研究区中部呈现聚集特征,“汇”景观大多分散分布在研究区的西北部以及东南部。其中,“汇”景观斑块总计98342个,占研究区域总面积的62.1%,以大面积的带状水域和块状绿地为主;“源”景观斑块总计212 231个,占研究区域总面积的37.9%,由大面积建设用地组成。

      图  3  生态源地的识别示意图

      Figure 3.  Ecological source of the “source - sink” landscape

    • 从“源-汇”景观的MSPA格局分析(图3B)可以看出:“源”核心景观密集地分布在研究区中部,多为城市建设用地;研究区西北以及东南两侧的“源”景观核心斑块较为破碎,景观连通性较差。研究区中部的“汇”景观由于城市绿地破碎化严重导致空间连通性较差。对比不同景观要素类型面积比(表2)发现:“源”景观核心区面积为1 169.33 km2,占“源”景观前景要素总面积的31.83%;“汇”景观核心区面积为2 053.78 km2,占“汇”景观前景要素总面积的55.91%,对城市热岛效应起重要作用。最终,分别筛选面积在0.01 km2以上的源、汇核心斑块作为重要核心斑块,以进行景观连通性分析。

      表 2  “源”“汇”景观要素不同类型面积占比

      Table 2.  Area proportion of different types of “source” “sink” landscape elements

      景观类型“汇”景观面
      积占比/%
      “源”景观面
      积占比/%
      核心区55.9131.83
      孤岛 0.070.14
      孔隙 2.461.61
      边缘区3.323.77
      环岛 0.060.04
      桥接区0.060.08
      支线 0.210.26
    • 将dI’值大于0.1的斑块作为研究的生态源地,分别筛选出24 个“源”“汇”生态源地(图3C),其中“源”景观生态源地占研究区总面积的28.81%,“汇”景观生态源地占研究区总面积的53.60%。“汇”生态源地主要分布在青白江生态带、龙泉山国家森林片区、三圣乡片区、青龙湖湿地公园片区、兴隆湖湿地公园片区以及江安河流域段,而“源”景观生态源地主要分布在金牛区、成华区、锦江区、青羊区以及武侯区(简称“五城区”)。

    • 基于最小成本路径构建“源-源”廊道276条,“汇-汇”廊道266条,“源-汇”廊道690条。利用重力模型最终筛选出“源-源”廊道102条,总长度为2 081.6 km,“汇-汇”廊道141条,总长度为1 907.8 km,“源-汇”廊道325条,总长度为7 698.0 km (图4)。其中“源”景观23、24号生态源点与“汇”景观23号生态源点仅由单条景观廊道连通,表明它们在整个热环境中相对独立,呈孤岛状分布,受到其他景观斑块的影响较小,导致在整个热传导的过程中不能发挥良好的作用。

      图  4  “源-汇”景观廊道分布示意图

      Figure 4.  “Source-sink” landscape corridor distribution

    • 统计不同行政区内各廊道的占比情况(表3)发现:新都区、郫都区与双流区内各类“源-汇”重要廊道最多,主要以毗河、岷江等河流,部分廊道呈簇团状分布,说明在研究区冷热交换过程中起到了重要作用;由于五城区分布有大片的“源”景观生态源地,且建筑密度相对较高,区域内各层级“源-汇”重要廊道分布较少,导致其在冷热交换过程中发挥的作用较小。尤其是成华区建筑密度为14.49%,各层级廊道占比都相对较低,区域内大量热空气堆积不易扩散,热岛效应明显。

      表 3  研究区各行政区景观廊道分布

      Table 3.  Distribution of landscape corridors in each administrative district

      行政区建筑密度/%“源-源”廊道长度/km所占比例/%“汇-汇”廊道长度/km所占比例/%“源-汇”廊道长度/km所占比例/%
      新都区 20.50825.3226.6642.6517.223 563.2221.87
      郫都区 20.43518.0216.7810.4721.817 422.1216.17
      双流区 12.72509.8216.4689.7118.623 944.2322.22
      温江区 19.12357.4611.5233.846.29 438.328.76
      龙泉驿区11.16345.5711.1171.334.69 768.869.06
      金牛区 18.99229.247.3379.076.25 423.085.03
      青白江区15.01201.956.531.160.83 699.393.43
      成华区 14.4990.752.918.130.52 827.712.62
      锦江区 18.0111.050.3177.754.73 295.243.06
      青羊区 28.097.040.2303.228.23 500.853.25
      武侯区 22.205.260.2409.5211.04 882.504.53
    • 利用水文分析模块获取低阻力廊道95条,将低阻力廊道与“源-汇”廊道相交分析得到生态障碍点148个,生态关键点103个(图5A),其中生态关键点在青羊区、武侯区以及锦江区与双流区交汇处出现堆积现象,导致该区域出现功能廊道不能充分利用的问题。生态关键点整体分布与“汇”景观生态源地分布情况大致相同,这意味着加强“汇”景观源地的生态建设,降低周边阻力值,将会有效提升网络连通性。而生态障碍点大多聚集在建筑密度相对较高的区域,生态障碍点堆积处出现大量的热能无法有效被传输,加强生态障碍点的生态修复对城市热量的传导具有重要作用。

      图  5  低阻力廊道、生态障碍点与关键点分布(A)及“源-汇”多层级景观网络示意图(B)

      Figure 5.  Distribution of low-resistance corridors, ecological barrier points and key points (A), and “source-sink” multi-level landscape network (B)

    • 多层级“源-汇”景观网络中(图5B),一级补偿廊道36条,主要由岷江、毗河和其他河流廊道构成,分布在研究区西部以及北部,在城市中发挥着冷热空气交换的重要作用,是补充能量的主要途径;二级输送引导廊道125条,主要分布在西部、南部以及北部的三环路附近,起到将冷空气运输和分配的作用,是实现能量传递的次要路线;三级作用廊道86条,主要分布在研究区西北以及东北部,主要承担实现热空气的运输和分配的任务,是“源-汇”景观能量交换过程的末端环节。3种廊道共同作用,实现了廊道的“补偿-输送-作用”的功能,以达到缓解城市热岛效应的作用。

    • 优化生态网络中的“源-汇”景观源地对改善城市热环境具有重要作用。在五城区中大量建筑密度高、人口高度密集的“源”景观生态源地,应加强垂直绿化、屋顶绿化等来增加植被覆盖率;在源地周围增加社区口袋公园、绿化带等构建缓冲区,以改善城市生态环境。对于龙泉驿区、双流区等植被覆盖率高、生态质量好的“汇”景观生态源地,可建设生态公园和自然保护区、引进生态景观设计等,以增强其改善气候环境的生态效能。

    • 对区域内生态障碍点来说,可以推广绿色建筑以有效地吸收太阳辐射,对新建城区的建筑布局进行合理规划,降低建筑密度、增加绿色基础服务设施以降低城市表面的温度,有效改善城市热岛效应。对生态关键点可退耕还林、扩大区域植被绿化面积、建立生态缓冲区等来降低生态关键点周边的阻力值,以确保生态关键点与生态廊道的连通性,保障热量之间的相互流通。

    • 一级补偿廊道多依托水系以及绿道进行构建,是调节气候的关键要素,可对其进行生态规划保护,包括河道整治、整合岸线资源以及拓宽绿道宽度等。二级输送引导廊道相当于城市通风廊道,可对廊道布局、地形特征和内部设施等方面合理规划,以保证冷空气的输送,尤其需注重绿地植被结构的优化设计,确保其通透性。三级作用廊道主要起热交换的作用,可以拓宽廊道横截面、加强沿线绿化建设等提高其作用效率。

    • 通过生态缓冲区的建设提高生态关键点与障碍点的生态环境质量,增强与生态廊道的有效连接与过渡,强化“源”“汇”景观生态源地之间的相互渗透,增加绿色基础设施建设,减弱高密度建成区对自然生态环境的干扰,推进城市生态环境多层次、立体化、网络化的建设思路,整体提升生态网络缓解城市热岛效应的能力。

    • 本研究共筛选“源” “汇”景观源地24个,“源-源”廊道102条,“汇-汇”廊道141条,“源-汇”廊道325条,生态关键点103个,生态障碍点148个。多层级景观网络中,一级补偿廊道36条,二级输送廊道125条,三级作用廊道86条,分布在研究区北部、南部与西北部。

      与其他研究相比[1516],本研究利用MSPA方法提取研究区内与城市热环境相关的“源-汇”景观核心斑块,计算景观连通性筛选“源-汇”景观生态源地,使生态源地识别过程更科学,减少生态源地识别的主观性;运用最小累积阻力模型与重力模型,最终构建多层级生态网络优化格局,该研究方法框架将为缓解城市热环境提出新的研究思路。综合运用水文分析模块构建的低阻力廊道与不同类型的“源”“汇”景观生态廊道相交,获取缓解城市热环境的生态关键点与生态障碍点,同时,将不同类型的“源”“汇”生态廊道进行相交,构建多层级的“源-汇”生态网络,分析城市建设开发状况与生态网络的空间格局关系,可更直观地揭示出生态网络脆弱区域存在的生态问题。

      本研究仅对2020年的城市热环境数据展开分析,城市景观格局不断地发生变化,根据不同时期城市景观格局与城市热岛效应之间的动态变化关系,筛选具有高稳定性、高连通性的源地,综合构建缓解热环境的优化生态网络空间格局,将是后期研究的重点方向。生态网络建设是一个复杂的过程,涉及诸多因素,需要从不同尺度进行多层次分析和构建。增强城市与周边地区生态斑块之间的联系,保护核心生态斑块的完整性,保护区域的生物多样性并促进城市的可持续发展是其最终目的,因此从多尺度协同角度出发来构建综合生态网络,也是后期研究的重要方向。

参考文献 (25)

目录

/

返回文章
返回