留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

竹龄和竹秆纵向部位对簕竹材性及纤维性能的影响

闫实 杨正勇 周晓剑 陈新义 杨杰芳 贺磊 黄慧

辛鹏程, 魏天兴, 陈宇轩, 等. 山西西南部黄土丘陵区典型林分生态化学计量特征[J]. 浙江农林大学学报, 2024, 41(3): 549-556. DOI: 10.11833/j.issn.2095-0756.20230573
引用本文: 闫实, 杨正勇, 周晓剑, 等. 竹龄和竹秆纵向部位对簕竹材性及纤维性能的影响[J]. 浙江农林大学学报, 2024, 41(4): 861-869. DOI: 10.11833/j.issn.2095-0756.20230586
XIN Pengcheng, WEI Tianxing, CHEN Yuxuan, et al. Ecological stoichiometric characteristics of typical forest stands in the Loess Hilly Region of southwest Shanxi[J]. Journal of Zhejiang A&F University, 2024, 41(3): 549-556. DOI: 10.11833/j.issn.2095-0756.20230573
Citation: YAN Shi, YANG Zhengyong, ZHOU Xiaojian, et al. Effects of bamboo age and longitudinal position on wood and fiber properties of Bambusa blumeana[J]. Journal of Zhejiang A&F University, 2024, 41(4): 861-869. DOI: 10.11833/j.issn.2095-0756.20230586

竹龄和竹秆纵向部位对簕竹材性及纤维性能的影响

DOI: 10.11833/j.issn.2095-0756.20230586
基金项目: 江西省科技合作专项国际合作重点项目(20203BDH80W009);江西省重点研发计划“揭榜挂帅”(20223BBH80004);江西省林业科技创新项目(创新专项〔2020〕02号);江西省林业科学院重点研发项目(2019511501);云南省专家工作站(202305AF150006);高等学校学科创新引智计划(D21027)
详细信息
    作者简介: 闫实(ORCID: 0009-0007-8117-2611),从事竹材开发与利用研究。E-mail: 15650069598@163.com
    通信作者: 黄慧(ORCID: 0000-0002-7206-3436),研究员,博士,从事竹质材料研究。E-mail: 75281329@qq.com
  • 中图分类号: S781

Effects of bamboo age and longitudinal position on wood and fiber properties of Bambusa blumeana

  • 摘要:   目的  研究竹龄及竹秆纵向部位对簕竹Bambusa blumeana材性及纤维性能的影响,为簕竹的开发利用提供理论和实践依据。  方法  通过范式洗涤法、纤维离析与显微观察、碱煮法对竹龄(1、2、3、4 a)和竹秆纵向部位(基部、中部、梢部)的簕竹密度、纤维形态、化学组分、力学性能、纤维束拉伸性能进行性能分析。  结果  随竹龄的增长,簕竹的气干密度、全干密度、木质素质量分数、拉伸强度、顺纹抗剪强度随之增大,纤维素质量分数逐渐降低。竹龄为2、3、4 a的簕竹,其竹秆不同纵向部位的平均长度差异极显著(P<0.01)。簕竹的纤维形态受竹秆纵向部位的影响较为明显。簕竹竹秆纵向部位基部至梢部,气干密度、全干密度、木质素质量分数、抗弯强度、顺纹抗剪强度及纤维束拉伸强度和模量均增大,纤维素质量分数逐渐降低。竹龄和竹秆纵向部位对半纤维质量分数、苯醇抽提物质量分数的影响不显著。  结论  簕竹纤维性能优良,在纤维化开发利用方面具有较大潜力。簕竹不同竹龄及竹秆纵向部位性能差异显著,其中竹龄为3和4 a的簕材可作为加工开发的优先选取材料。图5表3参40
  • 生态化学计量学主要关注生物地球化学循环过程中营养元素间的相互作用与平衡[1],从植物生态学、土壤学等多学科角度探究植物器官、物种、群落和生态系统的元素计量关系和规律,广泛用于判断植物体和群落的养分限制状况[2]、指导生态系统养分管理[3]、预测全球养分变化背景下的植被动态研究[4]。植物-凋落物-土壤是陆地生态系统重要的养分储存库,三者之间彼此影响和制约。植物养分输移活动通过叶片从大气中固定碳(C),依靠枝在植物各器官间进行养分运转,借助根系吸收和存储土壤中的养分,最后以凋落物淋溶、光降解、微生物分解和根系分泌等方式将C、氮(N)、磷(P)等元素归还土壤[5],因此,以上循环形成了植物-凋落物-土壤的C、N、P生态系统组分连续体,其关联性有助于深入认识植被各组分对营养元素的利用与分配规律。目前,研究多集中在区域土壤与植物单一器官(叶片)的生态化学计量比研究,如梁楚欣等[6]探究了滇东石漠化区不同植被恢复模式下土壤C、N、P质量分数及化学计量比的差异,王浩伊等[7]研究了大兴安岭不同生活型针叶林生态化学计量与生长阶段的关系,而对于植物多器官(叶、枝、根)-凋落物-土壤为整体的相关研究较少。因此,阐明植物-凋落物-土壤生态系统养分循环及调控机制,可揭示生态系统植物-凋落物-土壤之间的物质循环特征。黄土高原生态环境敏感,独特的地貌导致水土流失严重[8]。植被恢复能有效防治水土流失,随着人工恢复为主的“退耕还林还草”工程的实施[9],黄土高原植被覆盖率、土壤质量明显提升,形成了自然恢复和人工恢复为主的植被类型[10]。以往对黄土高原植被恢复的生态化学计量研究,集中在单一树种不同器官[11]、不同密度人工林土壤[12]等方面,关于不同植被恢复类型下植物各器官生态化学计量特征、凋落物与土壤生态化学计量特征关系的研究仍较少。鉴于此,为系统了解植被恢复过程中植物与土壤的生态过程,本研究以黄土丘陵区人工恢复植被油松Pinus tabuliformis林、刺槐Robinia pseudoacacia林、侧柏Platycladus orientalis林为研究对象,以自然恢复植被辽东栎Quercus liaotungensis天然次生林为对照,系统研究乔木叶、枝、根,凋落物和土壤生态化学计量特征,揭示黄土高原生态系统的生态过程、养分循环和限制因素,为黄土高原人工林植被恢复工作和森林经营改造提供科技支撑。

    研究区位于山西省临汾市吉县森林生态系统国家野外科学观测研究站所在地的蔡家川流域(35°53′~36°21′N,110°27′~110°07′E),该区地处黄土高原东南部半湿润地区,属于典型的黄土残塬沟壑区,季风气候显著,年平均气温为10 ℃,年平均降水量为579 mm,年平均蒸发量达1 729 mm,降水集中在6—9月,海拔为400~1 820 m。本研究选取蔡家川流域具有典型代表性的人工油松林、刺槐林、侧柏林、辽东栎天然次生林,林下植物主要为丁香Syringa oblata、黄刺玫Rosa xanthina、绣线菊Spiraea salicifolia、青蒿Artemisia caruifolia、连翘Forsythia suspensa、梾木Cornus macrophylla、糙苏Phlomoides umbrosa、紫菀Aster tataricus等。自1991年起,在蔡家川流域内进行退耕还林的全面植被恢复工作,流域内梁峁坡沟综合规划设计,营造人工林,保护天然林,栽植了油松、刺槐及侧柏等适应性强、耐干旱瘠薄的树种,该人工林为生态公益林,没有进行间伐、施肥等人工经营措施,天然林采取自然恢复的方式。研究区样地基本特征见表1

    表 1  研究区样地基本特征
    Table 1  Basic information about the sampling site in the study area
    林分海拔/m坡度/(°)坡向平均树高/m平均胸径/cm凋落物厚度/cm郁闭度/%林分密度/(株·hm−2)
    油松林 1 1472010.514.02.4501 680
    刺槐林 1 123710.512.92.9711 310
    侧柏林 1 18614西北7.58.41.0491 200
    辽东栎林1 14125东南9.311.23.1671 150
    下载: 导出CSV 
    | 显示表格

    于2022年7—8月进行外业调查。在每个长势良好的人工油松林、刺槐林、侧柏林和天然次生林辽东栎林等典型样地,分设3个乔木样方(20 m×20 m),在样方内进行每木检尺,调查郁闭度、树高和胸径等指标。样方内挑选3株长势均匀的标准木,在树冠处同一层东、西、南、北4个方位采集健康成熟的叶片与细枝(直径<2 cm),在标准木的冠幅范围内随机钻取3个0~60 cm的土芯,用冲洗法获取根样品(直径<2 mm),分别混匀后装入塑封袋;在样方内按对角线法选取3个1 m×1 m的具有代表性的凋落物样方,采集枯枝落叶(未分解、半分解和已分解),混匀后装入塑封袋;五点取样法采集0~20 cm土层土壤样品,混匀后装入塑封袋。以上采集的样品带回实验室后,叶、枝、根在100 ℃杀青15 min,随后降温至65 ℃恒温,将叶、枝、根与凋落物烘干至恒量,粉碎,过0.15 mm筛。土壤样品自然风干后,研磨过0.25 mm筛。采用元素分析仪测定全碳、全氮,采用硫酸-高氯酸消煮-钼锑抗比色法测定全磷。

    采用SPSS 25.0对数据进行K-S检验,验证数据正态性;采用单因素方差分析(one-way ANOVA)比较不同林分类型及不同组分生态化学计量差异;经方差齐性检验,使用最小显著性差异法(LSD)进行显著性检验(α=0.05);采用R 4.3.1对其进行相关性分析;绘图均在Origin 2021和R 4.3.1中进行。

    图1可知:4个林分的植物叶、枝、根平均C质量分数分别为516.35、495.05、490.76 g·kg−1,平均N质量分数为19.14、6.75、10.46 g·kg−1,平均P质量分数为1.61、1.11、0.74 g·kg−1。各林分器官间叶的N、P质量分数显著高于枝和根(P<0.05)。

    图 1  不同林分植物各器官、凋落物和土壤C、N、P质量分数
    Figure 1  C, N and P contents of plant organs, litter and soil of different forest stands

    不同林分植物各器官-凋落物-土壤C、N、P质量分数存在显著差异(P<0.05)。油松叶、枝、根和凋落物C质量分数最高;辽东栎土壤C质量分数最高;刺槐叶、根和土壤N质量分数最高;辽东栎枝和凋落物N质量分数最高;侧柏各组分中的N质量分数均显著低于其他树种(P<0.05);油松叶和土壤P质量分数最高,侧柏叶、枝、根P质量分数最低。

    图2可知:4个林分的植物叶、枝、根平均C/N分别为31.44、107.79、92.40,平均C/P为360.02、547.72、751.41,平均N/P为12.25、6.11、14.58。根的C/N和C/P显著高于叶和枝(P<0.05)。

    图 2  不同林分植物各器官、凋落物和土壤C、N、P化学计量比
    Figure 2  C, N and P stoichiometric ratios of plant organs, litter and soil of different forest stands

    不同林分植物各器官-凋落物-土壤C/N、C/P、N/P存在显著差异(P<0.05)。侧柏叶、枝、根的C/N和C/P显著高于其他树种(P<0.05),枝、根、凋落物的C/P在不同林分中表现为辽东栎最低。油松凋落物的C/N、C/P、N/P显著高于其他树种(P<0.05)。辽东栎土壤的C/N、C/P、N/P显著高于其他树种(P<0.05),油松土壤的C/N、C/P、N/P显著低于其他树种(P<0.05)。

    图3所示:典型林分植物叶、枝、根的C、N呈显著正相关(P<0.05)。叶C与凋落物C、土壤P呈极显著正相关(P<0.01),与凋落物P呈极显著负相关(P<0.01);叶N与凋落物N、P、土壤N呈显著正相关(P<0.05);枝C与凋落物C呈显著正相关(P<0.05),与凋落物N、P呈显著负相关(P<0.05);枝N与凋落物N、土壤C呈显著正相关(P<0.05);枝P与凋落物N、土壤C、N呈显著正相关(P<0.05);根C与凋落物C、土壤P呈极显著正相关(P<0.01),与凋落物P呈极显著负相关(P<0.01);根N与凋落物N、土壤N呈显著正相关(P<0.05);凋落物C与凋落物P、土壤C呈显著负相关(P<0.05),与土壤P呈极显著正相关(P<0.01);土壤N与土壤P呈极显著正相关(P<0.01)。

    图 3  典型林分植物各器官-凋落物-土壤化学计量特征的相关性关系
    Figure 3  Correlations between plant organs, litter and soil stoichiometric characteristics of typical forest stands

    叶C/N与凋落物C/N呈显著正相关(P<0.05);叶N/P与凋落物C/N呈显著负相关(P<0.05);根C/P与凋落物C/N呈显著正相关(P<0.05),与土壤C/P、N/P呈显著负相关(P<0.05);凋落物C/N、C/P均与土壤C/N、C/P呈极显著负相关(P<0.01),与N/P呈极显著负相关(P<0.001);土壤C/N与土壤C/P、N/P呈极显著正相关(P<0.001);土壤C/P与土壤N/P呈极显著正相关(P<0.001)。

    植物C、N、P养分分配及环境因子共同决定了植物的生长发育和营养水平[13]。本研究中4种林分乔木叶片C、N、P平均质量分数分别为516.35、18.64、1.61 g·kg−1,叶片C质量分数较全球植物叶片平均值(461.60 g·kg−1)偏高,但是N、P质量分数低于全球平均水平(20.60、2.00 g·kg−1)[1]。说明该研究区的C储备丰富,N、P较为贫瘠。这与黄土高原土壤结构松散,水土流失严重,植物难以从土壤中吸收N、P元素有关[14],亦与中国土壤P质量分数普遍较低的规律一致[15]。本研究中,油松叶片、枝、根C质量分数高于其他植被,表明油松体内积累了更多的有机质,能更好地抵御不良环境的侵扰,这与马钦彦等[16]对针叶树种的研究结果一致。相关研究表明:植物C质量分数越高,植物对外界不利条件的抵抗能力越强[17]。油松作为常绿针叶树种,叶片角质层发达,含有大量木质素与单宁等含碳化合物,具有更强的叶片韧性,可以更好地承受外界物理损伤。刺槐各组分间N质量分数显著高于其他植被类型,刺槐作为豆科Leguminosae植物,通过根瘤固定空气中的N,具有较强的固氮能力[18],可以缓解黄土高原普遍缺N的现象。

    植物叶C/N、C/P与植物的固氮能力、养分吸收和利用效率存在正反馈机制,与植物生长速率存在负反馈机制[19]。本研究中,刺槐叶C/N、C/P最低,表明刺槐在生长过程中生长速率较快。相关研究表明:植物叶N/P能够解释植物养分的受限制情况[20]。本研究中,油松、侧柏和辽东栎叶的平均N/P为8.34~13.71。胡耀升等[21]研究表明:当N/P<14时,植物的生长受N的限制;当14<N/P<16时,植物的生长受N、P共同限制。而本研究结果表明:黄土丘陵区油松、侧柏、辽东栎的生长主要受N限制,刺槐N/P为15.24,说明刺槐的生长同时受N和P的限制。凋落物是植物与土壤养分循环之间的纽带[22],其分解速率的快慢和养分释放的多少决定了植物的养分利用效率和土壤养分的供应状况[23]。其中,凋落物的C/N、C/P能反映其分解速率,C/N、C/P较低时凋落物更易分解。本研究中,油松凋落物C/N、C/P高于其他树种,不易分解,这是因为油松凋落物中较高的C和较低的C/N抑制了微生物的分解作用[24]。有研究发现:凋落物N/P也可以表征其分解速率的受限制情况[25]。本研究中,黄土丘陵区4种林分凋落物N/P均低于25,表明研究区凋落物分解主要受N限制。研究区土壤C/N、C/P平均值远小于全国平均值[26],这与郭鑫等[27]的研究结果一致,表明研究区土壤有机质分解矿化作用较快,不利于土壤有机质积累,且土壤P的有效性较高,土壤微生物受P的限制作用较小。作为衡量土壤质量的重要参数,土壤N/P可以表征土壤养分限制情况,本研究中黄土丘陵区土壤N/P远低于中国陆地平均水平[26],表明研究区内植物生长主要受限于土壤N。

    在长期的进化过程中,植物通过调节养分配置,形成相应的元素分配规律,从而产生对应的生长特性,以适应外界环境的变化。本研究中不同器官C、N、P质量分数及其计量比存在密切联系,叶与根的C、N质量呈显著正相关,说明叶与根养分分配具有协同性,这与王淳等[28]的研究结果一致。不同器官间的C/N、C/P、N/P均呈显著正相关,说明不同器官之间相互促进,协同增长;植物资源利用在不同植物器官间是一致的,同时也受相同元素限制。因此,分析植物、凋落物和土壤间C、N、P及化学计量特征的相关关系,有助于解释生态系统养分循环的内部调控规律[29]

    本研究中典型林分植物各器官C、N与凋落物C、N呈显著正相关,叶C/N与凋落物C/N呈显著正相关,可见,植物与凋落物在各元素间存在较强的相关性,这是因为叶片是凋落物的直接来源,两者之间存在养分转移。叶和根的N与土壤N呈显著正相关关系,表明叶和根与土壤供给的氮之间相互促进。凋落物C与土壤C呈显著负相关,凋落物C/N、C/P与土壤C/N、C/P、N/P间呈显著负相关,说明凋落物是植物地上部分与土壤之间的介质,凋落物分解速率的快慢,影响着凋落物与土壤之间的养分循环关系[30]。凋落物分解速率慢,其自身养分含量高,返还到土壤中的养分将减少,因此,凋落物与土壤元素之间存在负相关关系。

    山西西南部黄土丘陵区典型林分乔木叶、枝、根、凋落物和土壤的生态化学计量特征具有显著差异,油松林具有较好的固碳能力,刺槐林具有较好的固氮效果。刺槐生长受N、P限制;油松、侧柏、辽东栎生长受N限制;研究区土壤氮缺乏且凋落物分解受N限制。典型林分植物叶、枝、根之间化学计量特征显著正相关,说明植物各器官养分分配具有协同性,凋落物与土壤之间化学计量特征显著负相关,表明凋落物和土壤之间的养分动态变化具有协变性。因此,从养分限制角度考虑,建议在晋西北黄土丘陵区人工林管护过程中合理营造刺槐混交林,增强固氮能力,并缓解N元素的养分限制性。

  • 图  1  不同竹龄下簕竹竹秆纵向部位的气干密度和全干密度

    Figure  1  Air-dry density and total dry densityof longitudinal part of B. blumeana under different bamboo ages

    图  2  不同竹龄下簕竹竹秆纵向部位的力学性能

    Figure  2  Mechanical properties of longitudinal part of B. blumeana under different bamboo ages

    图  3  不同竹龄下簕竹纤维束的拉伸强度

    Figure  3  Tensile strength of fiber bundles of B. blumeana under different bamboo ages

    图  4  不同竹龄下簕竹纤维束的拉伸模量

    Figure  4  Tensile modulus of fiber bundles of B. blumeana under different bamboo ages

    图  5  竹秆不同纵向部位下簕竹纤维束的拉伸性能

    Figure  5  Tensile properties of fiber bundles of B. blumeana under different longitudinal parts

    表  1  不同竹龄簕竹胸径、节高及壁厚

    Table  1.   Diameter at breast height, node height and wall thickness of B. blumeana of different ages

    竹龄/a胸径/cm节高/cm壁厚/mm
    140.2~70.823.6~45.64.6~10.0
    233.9~52.220.4~36.53.5~7.9
    336.3~63.733.3~41.54.8~9.9
    445.2~70.630.9~43.84.5~12.7
    下载: 导出CSV

    表  2  不同竹龄下簕竹竹秆纵向部位的化学组分

    Table  2.   Chemical fractions of longitudinal part of B. blumeana under different bamboo ages

    竹龄/a纵向部位纤维素质
    量分数/%
    半纤维素质
    量分数/%
    木质素质
    量分数/%
    苯醇抽提物
    质量分数/%
    竹龄/a纵向部位纤维素质
    量分数/%
    半纤维素质
    量分数/%
    木质素质
    量分数/%
    苯醇抽提物
    质量分数/%
    1基部49.0±0.913.9±0.224.8±0.62.1±0.23基部40.8±1.314.6±0.329.4±0.92.6±0.8
    中部44.4±0.413.2±2.328.2±2.12.0±0.3中部38.3±1.014.2±1.432.2±2.02.7±0.0
    梢部44.2±1.614.1±0.427.4±1.63.3±0.6梢部36.2±2.415.8±1.231.4±2.82.6±0.3
    2基部48.6±1.412.2±0.626.6±1.72.0±0.14基部41.3±0.614.3±0.429.6±0.43.4±0.5
    中部42.2±0.913.2±0.329.8±0.52.9±0.4中部38.8±1.614.8±0.332.0±1.72.8±0.1
    梢部39.0±1.114.2±1.432.4±1.12.7±0.1梢部34.1±1.817.2±0.531.6±0.82.6±0.1
      说明:数值为平均值±标准差。
    下载: 导出CSV

    表  3  不同竹龄下簕竹竹秆纵向部位的纤维形态

    Table  3.   Fiber morphology of longitudinal part of B. blumeana under different bamboo ages

    竹龄/a纵向部位纤维长度/mm纤维宽度/μm平均纤维长度/mm平均纤维宽度/μm纤维长宽比
    1基部0.42~5.406.50~31.901.90±0.91 a14.14±5.37 a134
    中部0.46~5.117.57~26.632.10±1.13 a13.85±4.49 a152
    梢部0.59~3.606.66~27.812.02±0.80 a15.00±4.47 a135
    2基部0.58~5.008.65~30.892.39±1.13 a17.45±5.41 ab137
    中部0.68~4.677.59~29.272.43±0.77 a16.57±6.19 b147
    梢部0.49~5.467.89~35.742.40±1.07 a19.48±8.39 a123
    3基部0.60~4.6310.15~28.792.20±0.93 a15.80±4.47 a139
    中部0.68~4.508.56~33.832.32±0.85 a19.90±6.15 a117
    梢部0.71~5.069.19~30.412.29±1.02 a17.02±5.33 b134
    4基部0.54~5.9913.16~38.312.74±1.35 a23.39±7.21 a117
    中部0.77~5.9611.78~33.873.18±1.20 b19.58±5.20 b162
    梢部0.62~5.307.29~25.532.56±1.10 b13.64±3.89 c188
      说明:平均纤维长度和宽度为平均值±标准差。不同字母表示相同竹龄不同部位间差异极显著(P<0.01)。
    下载: 导出CSV
  • [1] 王戈, 费本华, 方长华, 等. 落实“以竹代塑”倡议助力竹业提速增效[J]. 世界竹藤通讯, 2022, 20(4): 1 − 4.

    WANG Ge, FEI Benhua, FANG Changhua, et al. Implement “the bamboo as a substitute for plastic initiative” to help the bamboo industry to speed up and improve the efficiency [J]. World Bamboo Rattan, 2022, 20(4): 1 − 4.
    [2] 费本华, 漆良华. 实施我国国家竹材储备战略计划的思考[J]. 世界林业研究, 2020, 33(3): 38 − 42.

    FEI Benhua, QI Lianghua. Thoughts on the strategic planning of implementing national bamboo reserve [J]. World Forestry Research, 2020, 33(3): 38 − 42.
    [3] 徐晴, 江泽慧. 利用空间信息学应对“以竹代塑”资源供给挑战[J]. 世界竹藤通讯, 2024, 22(1): 1 − 7.

    XU Qing, JIANG Zehui. Harnessing spatial informatics to address the challengesin resource supply of “bamboo as a substitute for plastic” [J]. World Bamboo Rattan, 2024, 22(1): 1 − 7.
    [4] 李延军, 许斌, 张齐生, 等. 我国竹材加工产业现状与对策分析[J]. 林业工程学报, 2016, 1(1): 2 − 7.

    LI Yanjun, XU Bin, ZHANG Qisheng, et al. Present situation and the countermeasure analysis of bamboo timber processing industry in China [J]. Journal of Forestry Engineering, 2016, 1(1): 2 − 7.
    [5] DIERICK D, HÖLSCHER D, SCHWENDENMANN L. Water use characteristics of a bamboo species (Bambusa blumeana) in the Philippines [J]. Agricultural &Forest Meteorology, 2010, 150(12): 1568 − 1578.
    [6] 史军义, 周德群, 马丽莎, 等. 中国竹类多样性、地理区划及发展趋势[J]. 世界竹藤通讯, 2022, 20(4): 5 − 10.

    SHI Junyi, ZHOU Dequn, MA Lisha, et al. Bamboo resources in China: species diversity, geographical zoning and development trend [J]. World Bamboo Rattan, 2022, 20(4): 5 − 10.
    [7] LOBREGAS M O S, BUNIAO E V D, LEAÑO Jr J L. Alkali-enzymatic treatment of Bambusa blumeana textile fibers for natural fiber-based textile material production [J]. Industrial Crops and Products, 2023, 194(11): 62 − 68.
    [8] 李智勇, Trinh Thang Long, 李楠, 等. 亚洲主要国家竹种资源与利用[J]. 世界竹藤通讯, 2020, 18(4): 1 − 7.

    LI Zhiyong, Trinh Thang Long, LI Nan, et al. Main bamboo species and their utilization in Asia countries [J]. World Bamboo Rattan, 2020, 18(4): 1 − 7.
    [9] 徐有明, 滕方玲. 我国高性能重组竹研究进展及其研发建议[J]. 世界竹藤通讯, 2015, 13(3): 1 − 7.

    XU Youming, TENG Fangling. Research progress on high-performance reconstituted bamboo lumber in China and its development suggestions [J]. World Bamboo Rattan, 2015, 13(3): 1 − 7.
    [10] 王鹏程, 代永刚, 汪佑宏, 等. 竹龄对梁山慈竹纤维形态特征的影响[J]. 安徽农业大学学报, 2018, 45(5): 853 − 860.

    WANG Pengcheng, DAI Yonggang, WANG Youhong, et al. Effect of age on the fiber morphological characteristics of Dendrocalamus farinosus [J]. Journal of Anhui Agricultural University, 2018, 45(5): 853 − 860.
    [11] 姚开泰, 谭伟, 周海洋, 等. 竹龄和竹秆纵向部位对青皮竹物理力学性能的影响[J]. 林业工程学报, 2021, 6(5): 76 − 81.

    YAO Kaitai, TAN Wei, ZHOU Haiyang, et al. Effects of age and culm longitudinal position on physical and mechanical properties of Bambusa textilis McClure bamboo [J]. Journal of Forestry Engineering, 2021, 6(5): 76 − 81.
    [12] 朱宗伟, 李兵云, 李海龙. 竹龄对竹材化学成分及制浆造纸性能的影响[J]. 中国造纸, 2023, 42(4): 8 − 13.

    ZHU Zongwei, LI Bingyun, LI Hailong. Effects of bamboo growth-age on its chemical components and kraft pulping performance [J]. China Pulp &Paper, 2023, 42(4): 8 − 13.
    [13] 牛思杰, 王娜, 崔百祥, 等. 不同竹龄和部位对毛竹纤维形态及结晶度的影响[J]. 浙江农林大学学报, 2023, 40(2): 446 − 452.

    NIU Sijie, WANG Na, CUI Baixiang, et al. Effects of different ages and positions on fiber morphology and crystallinity of Phyllostachys edulis [J]. Journal of Zhejiang A&F University, 2023, 40(2): 446 − 452.
    [14] 严彦, 刘焕荣, 张秀标, 等. 毛竹材性差异对胶合竹层板应力分级的影响[J]. 安徽农业大学学报, 2017, 44(2): 260 − 264.

    YAN Yan, LIU Huanrong, ZHANG Xiubiao, et al. The effect of Phyllostachys pubescens f. lutea Wen property on the E-Rated classification of laminated bamboo board [J]. Journal of Anhui Agricultural University, 2017, 44(2): 260 − 264.
    [15] 周鑫, 卢婧雯, 岳凤霞, 等. 广西10种野生竹材的化学组分分析及木质素结构表征[J]. 中国造纸, 2023, 42(8): 46 − 54, 68.

    ZHOU Xin, LU Jingwen, YUE Fengxia, et al. Chemical composition analysis and isolated lignin structural characterization of 10 wild bamboo species in Guangxi [J]. China Pulp &Paper, 2023, 42(8): 46 − 54, 68.
    [16] OSORIO L, TRUJILLO E, van VUURE A W. Morphological aspects and mechanical properties of single bamboo fibers and flexural characterization of bamboo/epoxy composites [J]. Journal of Reinforced Plastics and Composites, 2011, 30(5): 396 − 408.
    [17] 黄慧, 王玉, 孙丰文, 等. 分丝方法对竹纤维提取及机械性能的影响[J]. 林业工程学报, 2016, 1(6): 23 − 28.

    HUANG Hui, WANG Yu, SUN Fengwen, et al. Effect of splitting method on bamboo fiber extraction and its mechanical properties [J]. Journal of Forestry Engineering, 2016, 1(6): 23 − 28.
    [18] 陈冠军, 袁晶, 余雁, 等. 竹材顺纹抗压性能的种间差异及其影响因子研究[J]. 木材加工机械, 2018, 29(6): 23 − 27.

    CHEN Guanjun, YUAN Jing, YU Yan, et al. Study on interspecific differences of the compression performance parallel to the grain of bamboo and its influencing factors [J]. Wood Processing Machinery, 2018, 29(6): 23 − 27.
    [19] DIXON P G, GIBSON L J. The structure and mechanics of moso bamboo material [J/OL]. Journal of the Royal Society Interface, 2014, 11(99): 20140321[2024-12-01]. doi: 10.1098/rsif.2014.0321.
    [20] 方徐勤, 王传贵, 张双燕. 冬、夏采伐期毛竹主要物理力学性能的对比[J]. 东北林业大学学报, 2019, 47(2): 70 − 73.

    FANG Xuqin, WANG Chuangui, ZHANG Shuangyan. Properties of bamboo in different cutting periods [J]. Journal of Northeast Forestry University, 2019, 47(2): 70 − 73.
    [21] 张闻博, 费本华, 田根林, 等. 不同纬度毛竹物理力学性质的比较研究[J]. 北京林业大学学报, 2019, 41(4): 136 − 145.

    ZHANG Wenbo, FEI Benhua, TIAN Genlin, et al. Comparative study on physical mechanic properties of Phyllostachys edulis in different latitudes [J]. Journal of Beijing Forestry University, 2019, 41(4): 136 − 145.
    [22] FUJII T. Cell wall structure of the culm of azumanezasa (Pleioblastus chino Max. ) [J]. Mokuzai Gakkaishi, 1985, 31: 865 − 872.
    [23] 章怡, 王冰冰, 王传贵. 竹黄对毛竹材基本密度和顺纹抗压强度的贡献率[J]. 东北林业大学学报, 2022, 50(9): 105 − 108.

    ZHANG Yi, WANG Bingbing, WANG Chuangui. Contribution rate of Phyllostachys heterocycle to basic density and compressive strength of parallel to grain [J]. Journal of Northeast Forestry University, 2022, 50(9): 105 − 108.
    [24] 尤龙杰, 尤龙辉, 涂永元, 等. 不同竹龄麻竹材气干密度、力学性质及燃烧性能的比较研究[J]. 中南林业科技大学学报, 2017, 37(10): 124 − 132.

    YOU Longjie, YOU Longhui, TU Yongyuan, et al. Comparative study on air-dried density, mechanical properties and combustion performance of Dendrocalamus latiflorus Munro in different ages [J]. Journal of Central South University of Forestry &Technology, 2017, 37(10): 124 − 132.
    [25] GROSSER D, LIESE W. On the anatomy of Asian bamboos, with special reference to their vascular bundles [J]. Wood Science and Technology, 1971, 5(4): 290 − 312.
    [26] YUE Panpan, FU Genque, HU Yajie, et al. Changes of chemical composition and hemicelluloses structure in differently aged bamboo (Neosinocalamus affinis) culms [J]. Journal of Agricultural and Food Chemistry, 2018, 66(35): 9199 − 9208.
    [27] 彭博, 王传贵, 张双燕. 四川两种竹材理化性质及纤维形态分析[J]. 世界竹藤通讯, 2018, 16(3): 15 − 19.

    PENG Bo, WANG Chuangui, ZHANG Shuangyan. Analysis of physical & chemical properties and fiber configuration of 2 species of bamboos from Sichuan Province [J]. World Bamboo Rattan, 2018, 16(3): 15 − 19.
    [28] 陈友地, 秦文龙, 李秀玲, 等. 十种竹材化学成分的研究[J]. 林产化学与工业, 1985, 5(4): 32 − 39.

    CHEN Yongdi, QIN Wenlong, LI Xiuling. Studies on the chemical composition of ten bamboo materials [J]. Chemistry and Industry of Forest Products, 1985, 5(4): 32 − 39.
    [29] 雷刚, 王鹏程, 汪佑宏, 等. 皖南几种散生竹主要材性研究[J]. 西北林学院学报, 2022, 37(2): 223 − 228.

    LEI Gang, WANG Pengcheng, WANG Youhong, et al. Main properties of serveral monopodial bamboos in southern Anhui Province [J]. Journal of Northwest Forestry University, 2022, 37(2): 223 − 228.
    [30] 向娥琳. 毛竹生长过程中细胞壁结构与性能的变化研究[D]. 成都: 四川农业大学, 2018.

    XIANG Elin. Study on the Cell Wall Structure and Property during the Growth of Moso Bamboo [D]. Chengdu: Sichuan Agricultural University, 2018.
    [31] FUJII Y, AZUMA J I, MARCHESSAULT R H, et al. Chemical composition change of bamboo accompanying its growth [J]. Holzforschung, 1993, 47(2): 109 − 115.
    [32] 陈铭, 郭琳, 郑笑, 等. 中国15个主产区毛竹纤维形态比较[J]. 南京林业大学学报(自然科学版), 2018, 42(6): 7 − 12.

    CHEN Ming, GUO Lin, HENG Xiao, et al. Comparison of cell morphology of moso bamboo fibers from fifteen main producing regions in China [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2018, 42(6): 7 − 12.
    [33] 蔡燚, 王宝金, 官洁茹, 等. 金寨毛竹纤维形态及化学成分[J]. 东北林业大学学报, 2020, 48(2): 81 − 86.

    CAI Yi, WANG Baojin, GUAN Jieru, et al. Fiber morphylogy and chemical composition of moso bamboo from Jinzhai [J]. Journal of Northeast Forestry University, 2020, 48(2): 81 − 86.
    [34] 李荣荣, 贺楚君, 彭博, 等. 毛竹材不同部位纤维形态及部分物理性能差异[J]. 浙江农林大学学报, 2021, 38(4): 854 − 860.

    LI Rongrong, HE Chujun, PENG Bo, et al. Differences in fiber morphology and partial physical properties in different parts of Phyllostachys edulis [J]. Journal of Zhejiang A&F University, 2021, 38(4): 854 − 860.
    [35] 黄俊杰, 谭敬尹, 胡传双, 等. 广东省4个竹种物理力学性能研究[J]. 林产工业, 2023, 60(4): 25 − 32.

    HUANG Junjie, TAN Jingyin, HU Chuanshuang, et al. Research on the physico-mechanical properties of four bamboo species in Guangdong Province [J]. China Forest Products Industry, 2023, 60(4): 25 − 32.
    [36] 於琼花, 俞友明, 金永明, 等. 雷竹人工林竹材物理力学性质[J]. 浙江林学院学报, 2004, 21(2): 130 − 133.

    YU Qionghua, YU Youming, JIN Yongming, et al. Physical and mechanical properties of bamboo timber in plantation forests of Phyllostachys praecox [J]. Journal of Zhejiang Forestry College, 2004, 21(2): 130 − 133.
    [37] 王献轲, 方长华, 刘嵘, 等. 竹材不同尺度单元纵向拉伸性能研究进展[J]. 竹子学报, 2020, 39(4): 14 − 24.

    WANG Xianke, FANG Changhua, LIU Rong, et al. The longitudinal tensile properties of bamboo units with different scales [J]. Journal of Bamboo Research, 2020, 39(4): 14 − 24.
    [38] OKAHISA Y, KOJIRO K, KIRYU T, et al. Nanostructural changes in bamboo cell walls with aging and their possible effects on mechanical properties [J]. Journal of Materials Science, 2018, 53(6): 3972 − 3980.
    [39] GAO Xun, ZHU Deju, FAN Shutong, et al. Structural and mechanical properties of bamboo fiber bundle and fiber/bundle reinforced composites: a review [J]. Journal of Materials Research and Technology, 2022, 19: 1162 − 1190.
    [40] 李兴会, 罗蓓, 何蕊. 青皮竹和慈竹不同发育期竹材解剖特征研究[J]. 世界竹藤通讯, 2017, 15(4): 9 − 12.

    LI Xinghui, LUO Bei, HE Rui. Anatomical characteristics of Bambusa texlilis McClure and Bambusa emeiensis in different growth periods [J]. World Bamboo Rattan, 2017, 15(4): 9 − 12.
  • [1] 牛思杰, 王娜, 崔百祥, 王传贵, 武恒, 张双燕.  不同竹龄和部位对毛竹纤维形态及结晶度的影响 . 浙江农林大学学报, 2023, 40(2): 446-452. doi: 10.11833/j.issn.2095-0756.20220749
    [2] 杜珂珂, 雍宬, 孙恩惠, 黄红英, 曲萍, 徐跃定, 陈玲, 孙倩, 关明杰.  生物预处理秸秆纤维特性及复合材料的性能研究 . 浙江农林大学学报, 2022, 39(4): 869-875. doi: 10.11833/j.issn.2095-0756.20210647
    [3] 李荣荣, 贺楚君, 彭博, 王传贵.  毛竹材不同部位纤维形态及部分物理性能差异 . 浙江农林大学学报, 2021, 38(4): 854-860. doi: 10.11833/j.issn.2095-0756.20200649
    [4] 查瑶, 饶俊, 关莹, 张利萍, 高慧.  竹叶/HDPE复合材料的制备及性能 . 浙江农林大学学报, 2020, 37(2): 343-349. doi: 10.11833/j.issn.2095-0756.2020.02.020
    [5] 鲍敏振, 于文吉, 陈玉和, 余养伦, 吴再兴, 何盛, 李能.  铜唑防腐剂对杨木重组木防腐性能及物理力学性能的影响 . 浙江农林大学学报, 2020, 37(1): 165-170. doi: 10.11833/j.issn.2095-0756.2020.01.022
    [6] 莫珏, 马中青, 聂玉静, 马灵飞.  高温快速热压处理对毛竹材物理力学性能的影响 . 浙江农林大学学报, 2019, 36(5): 974-980. doi: 10.11833/j.issn.2095-0756.2019.05.017
    [7] 夏雨, 牛帅红, 李延军, 夏俐, 马俊敏, 王丽, 余肖红.  常压高温热处理对红竹竹材物理力学性能的影响 . 浙江农林大学学报, 2018, 35(4): 765-770. doi: 10.11833/j.issn.2095-0756.2018.04.023
    [8] 李洪吉, 蔡先锋, 袁佳丽, 曾莹莹, 于晓鹏, 温国胜.  毛竹快速生长期光合固碳特征及其与影响因素的关系 . 浙江农林大学学报, 2016, 33(1): 11-16. doi: 10.11833/j.issn.2095-0756.2016.01.002
    [9] 柴晓娟, 苏燕, 陈慧, 郭玮龙, 金水虎.  蔺草底部茎秆解剖构造与力学性能 . 浙江农林大学学报, 2016, 33(6): 1058-1066. doi: 10.11833/j.issn.2095-0756.2016.06.019
    [10] 李慧媛, 周定国, 吴清林.  硼酸锌/紫外光稳定剂复配对高密度聚乙烯基木塑 . 浙江农林大学学报, 2015, 32(6): 914-918. doi: 10.11833/j.issn.2095-0756.2015.06.014
    [11] 龚迎春, 任海青, 汤正捷, 吴章康, 黄伟.  3种阻燃剂对聚乙烯基木塑地板性能的影响 . 浙江农林大学学报, 2015, 32(3): 410-414. doi: 10.11833/j.issn.2095-0756.2015.03.012
    [12] 杨学通, 郭文静, 陈巧花, 王正.  造纸剩余物制备复合板材可行性研究 . 浙江农林大学学报, 2014, 31(6): 954-958. doi: 10.11833/j.issn.2095-0756.2014.06.019
    [13] 李蓓蕾, 宋照亮, 姜培坤, 周国模, 李自民.  毛竹林生态系统植硅体的分布及其影响因素 . 浙江农林大学学报, 2014, 31(4): 547-553. doi: 10.11833/j.issn.2095-0756.2014.04.009
    [14] 汤颖, 李君彪, 沈钰程, 金勇男, 王云芳, 李延军.  热处理工艺对竹材性能的影响 . 浙江农林大学学报, 2014, 31(2): 167-171. doi: 10.11833/j.issn.2095-0756.2014.02.001
    [15] 陈利芳, 马红霞, 张燕君, 王剑菁, 曹永建.  浸注药剂热处理工艺对木材物理性能的影响 . 浙江农林大学学报, 2013, 30(6): 955-959. doi: 10.11833/j.issn.2095-0756.2013.06.023
    [16] 嵇伟兵, 姚文斌, 马灵飞.  龙竹和绿竹竹材壁厚度方向的梯度力学性能 . 浙江农林大学学报, 2007, 24(2): 125-129.
    [17] 张叶田, 何礼平.  竹集成材与常见建筑结构材力学性能比较 . 浙江农林大学学报, 2007, 24(1): 100-104.
    [18] 卢凤珠, 徐跃标, 钱俊, 徐群芳, 严建敏.  不同竹龄毛竹材燃烧性能的研究 . 浙江农林大学学报, 2005, 22(2): 198-202.
    [19] 李延军, 张宏, 张璧光, 徐美荣.  梳解前后小径杉木细胞的微观形态及力学性能 . 浙江农林大学学报, 2004, 21(2): 125-129.
    [20] 俞友明, 方伟, 杨云芳, 余学军, 金永明.  不同立地条件红壳竹竹材物理力学性质的比较 . 浙江农林大学学报, 2001, 18(4): 380-383.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20230586

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2024/4/861

图(5) / 表(3)
计量
  • 文章访问数:  460
  • HTML全文浏览量:  104
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-06
  • 修回日期:  2024-03-26
  • 录用日期:  2024-04-01
  • 网络出版日期:  2024-07-12
  • 刊出日期:  2024-07-12

竹龄和竹秆纵向部位对簕竹材性及纤维性能的影响

doi: 10.11833/j.issn.2095-0756.20230586
    基金项目:  江西省科技合作专项国际合作重点项目(20203BDH80W009);江西省重点研发计划“揭榜挂帅”(20223BBH80004);江西省林业科技创新项目(创新专项〔2020〕02号);江西省林业科学院重点研发项目(2019511501);云南省专家工作站(202305AF150006);高等学校学科创新引智计划(D21027)
    作者简介:

    闫实(ORCID: 0009-0007-8117-2611),从事竹材开发与利用研究。E-mail: 15650069598@163.com

    通信作者: 黄慧(ORCID: 0000-0002-7206-3436),研究员,博士,从事竹质材料研究。E-mail: 75281329@qq.com
  • 中图分类号: S781

摘要:   目的  研究竹龄及竹秆纵向部位对簕竹Bambusa blumeana材性及纤维性能的影响,为簕竹的开发利用提供理论和实践依据。  方法  通过范式洗涤法、纤维离析与显微观察、碱煮法对竹龄(1、2、3、4 a)和竹秆纵向部位(基部、中部、梢部)的簕竹密度、纤维形态、化学组分、力学性能、纤维束拉伸性能进行性能分析。  结果  随竹龄的增长,簕竹的气干密度、全干密度、木质素质量分数、拉伸强度、顺纹抗剪强度随之增大,纤维素质量分数逐渐降低。竹龄为2、3、4 a的簕竹,其竹秆不同纵向部位的平均长度差异极显著(P<0.01)。簕竹的纤维形态受竹秆纵向部位的影响较为明显。簕竹竹秆纵向部位基部至梢部,气干密度、全干密度、木质素质量分数、抗弯强度、顺纹抗剪强度及纤维束拉伸强度和模量均增大,纤维素质量分数逐渐降低。竹龄和竹秆纵向部位对半纤维质量分数、苯醇抽提物质量分数的影响不显著。  结论  簕竹纤维性能优良,在纤维化开发利用方面具有较大潜力。簕竹不同竹龄及竹秆纵向部位性能差异显著,其中竹龄为3和4 a的簕材可作为加工开发的优先选取材料。图5表3参40

English Abstract

辛鹏程, 魏天兴, 陈宇轩, 等. 山西西南部黄土丘陵区典型林分生态化学计量特征[J]. 浙江农林大学学报, 2024, 41(3): 549-556. DOI: 10.11833/j.issn.2095-0756.20230573
引用本文: 闫实, 杨正勇, 周晓剑, 等. 竹龄和竹秆纵向部位对簕竹材性及纤维性能的影响[J]. 浙江农林大学学报, 2024, 41(4): 861-869. DOI: 10.11833/j.issn.2095-0756.20230586
XIN Pengcheng, WEI Tianxing, CHEN Yuxuan, et al. Ecological stoichiometric characteristics of typical forest stands in the Loess Hilly Region of southwest Shanxi[J]. Journal of Zhejiang A&F University, 2024, 41(3): 549-556. DOI: 10.11833/j.issn.2095-0756.20230573
Citation: YAN Shi, YANG Zhengyong, ZHOU Xiaojian, et al. Effects of bamboo age and longitudinal position on wood and fiber properties of Bambusa blumeana[J]. Journal of Zhejiang A&F University, 2024, 41(4): 861-869. DOI: 10.11833/j.issn.2095-0756.20230586
  • 竹材绿色、低碳、速生、可再生、可降解,是优良的生物质材料,竹材砍伐后加工成竹制品可起到碳转移、缓冲碳排放等作用。在全球可持续发展背景下,竹材的开发利用受到广泛关注,可替代木材、塑料、钢材、人造纤维等[12]。中国竹林面积较大,但在竹类划分中,仅分为毛竹Phyllostachys edulis和杂竹。这种划分不能满足竹产品对竹资源以及竹种差异性的需求[3],且很多国家的竹资源开发仅限于简单利用或初级加工利用,大量竹资源尤其是丛生竹资源的应用价值未得到充分挖掘[4]

    簕竹Bambusa blumeana也称箣竹,隶属禾本科Poaceae竹亚科Bambusoideae簕竹属Bambusa,地下茎合轴丛生,茎秆下部枝条繁茂多刺,原产于印度尼西亚和马来西亚东部,在菲律宾、泰国、越南均有栽培,中国福建、台湾、广西、云南、海南等省也有栽培[56]。簕竹秆型高大、秆径中等、节间较长,属秆型优良的大型高产丛生竹种,具有较高的经济利用价值[7],目前已被应用于家具、观赏园艺、手工艺品制作、住房建设等,但精深加工利用较少[89]。竹材理化性能、力学性质等材性数据是竹材开发利用的基础,决定了竹材的应用范畴。王鹏程等[10]对梁山慈竹Dendrocalamus farinosus不同径向位置的纤维形态研究发现:竹龄为3 a的梁山慈竹纤维形态较优。姚开泰等[11]对不同竹龄和纵向部位的青皮竹B. textilis物理力学性能研究发现:随竹龄增大,青皮竹的密度逐渐增大,竹龄为4 a的青皮竹全干密度和纤维束拉伸强度最高,随着竹秆纵向部位升高,纤维趋于细短,纤维束拉伸性能下降。朱宗伟等[12]研究表明:对于麻竹D. latiflorus的综纤维素,冷水、热水和质量分数为1%的氢氧化钠(NaOH)抽出物质量分数随竹龄的增长逐渐减小;苯醇抽提物质量分数随竹龄的增长变化不大。牛思杰等[13]研究发现:竹龄可作为筛选原材料的优先指标。综上所述,竹龄和部位对竹材理化性质有较大影响。鉴于此,本研究探究竹龄及纵向部位对簕竹竹材气干密度、全干密度、纤维形态、化学组分、抗弯性能、顺纹抗剪强度、纤维束拉伸性能的影响及变化规律,以期为簕竹的工业化利用提供理论依据。

    • 簕竹采自云南省临沧市沧源瓦族自治县(23°21′N,99°27′E)。在同一片竹林中,分散选取有代表性、无明显缺陷、竹龄为1、2、3、4 a的簕竹,各竹龄采集8~10株。簕竹的胸径、节高以及壁厚如表1所示。截取离地面高度分别在1~3 m (基部)、3~5 m (中部)、5~7 m (梢部)的竹段样本进行后续研究。

      表 1  不同竹龄簕竹胸径、节高及壁厚

      Table 1.  Diameter at breast height, node height and wall thickness of B. blumeana of different ages

      竹龄/a胸径/cm节高/cm壁厚/mm
      140.2~70.823.6~45.64.6~10.0
      233.9~52.220.4~36.53.5~7.9
      336.3~63.733.3~41.54.8~9.9
      445.2~70.630.9~43.84.5~12.7
    • 参照严彦等[14]的方法,从不同竹龄、不同纵向部位的簕竹竹筒上截取试样。测试气干密度和全干密度。

    • 随机选取不同竹龄、不同纵向部位的簕竹试样,去青并粉碎,过40~60目筛。采用范氏洗涤法测定纤维素、半纤维素和木质素质量分数。参照周鑫等[15]的方法,测定苯醇抽提物质量分数。每组样品测定3个重复,取平均值。

    • 将竹条劈成火柴棒大小,浸泡在质量分数为95%的冰乙酸与质量分数为30%的过氧化氢的体积比为1∶1的混合液中,于80 ℃水浴中处理10 h,至试样变白。使用去离子水洗涤试样至中性,将纤维充分打散。在OlmpusBX 51光学显微镜下测定纤维长度和纤维宽度。纤维长度每组测定100根,纤维宽度每组测定50根。

    • 调节竹材含水率为12%。抗弯性能、顺纹抗剪强度参考严彦等[14]的方法进行加工测定。

    • 将竹片放入到质量分数为5%的NaOH溶液中,60 ℃水浴加热20 h,经温水冲洗数遍至中性,含水率控制在30%~60%,之后用平板硫化压机平压和双锟混炼挤压将竹片松散疏解,使用梳子进一步分丝,获得簕竹纤维束。将纤维束用纤维切断器切断至80 mm长,抽取30根无明显缺陷的纤维束进行测试。为防止测试时纤维束发生滑移,对试样进行一定的处理[16]。参照黄慧等[17]的方法测定纤维束拉伸性能,加载速率为2 mm·min−1,夹持长度为80 mm,标距为60 mm,测定前在光学显微镜下测量纤维束直径。

    • 采用SPSS 27对纤维形态进行单因素方差分析(one-way ANOVA),显著性水平为0.01,采用Origin 2022绘图,采用gauss函数对纤维束拉伸强度进行拟合。

    • 密度是评估竹材品质和质量的基本指标之一,与竹材力学性能、硬度等密切相关[18]。一般而言,密度越高,则竹材纤维结构更坚硬和紧密,机械性能越好[19]。如图1所示:不同竹龄和竹秆纵向部位的簕竹气干密度、全干密度最大值可达0.723、0.739 g·cm−3,平均气干密度为0.587 g·cm−3,平均全干密度为0.669 g·cm−3,低于毛竹的全干密度(0.700 g·cm−3)和气干密度(0.759 g·cm−3)[2021]。簕竹的气干密度随着竹龄的增长而呈增大趋势,其中竹龄为1 a的簕竹平均气干密度为0.566 g·cm−3,而竹龄为4 a的簕竹平均气干密度可达0.615 g·cm−3,簕竹的全干密度随竹龄的增长也呈增大趋势。这种变化主要是由于竹材生长的过程中,其细胞壁和内部组成物质在生长过程中不断生成和累积,纤维壁厚也随着竹龄显著增长,导致气干密度及全干密度增加[22],这与毛竹、麻竹的变化趋势一致[2324]。另外,簕竹竹材的气干密度、全干密度随着竹秆纵向部位的增加呈逐步增加的趋势,基部至梢部气干密度从0.554 g·cm−3增加到0.619 g·cm−3,全干密度从0.590 g·cm−3增加到0.723 g·cm−3。这种变化可能是随着竹秆高度的增加,单位横截面积内维管束分布数量不断增多,维管束分布密度逐渐增大,从而使竹秆梢部密度更高[25]

      图  1  不同竹龄下簕竹竹秆纵向部位的气干密度和全干密度

      Figure 1.  Air-dry density and total dry densityof longitudinal part of B. blumeana under different bamboo ages

    • 竹材化学组成的不同可能会引起竹材结构和性能间的差异[26]。如表2所示:簕竹纤维素平均质量分数为41.4%,与慈竹相当[27];半纤维素质量分数为12.2%~17.2%,木质素质量分数为26.6%~32.4%,均值为29.6%,高于慈竹(24.0%)、毛竹(22.4%)。因此,在竹浆造纸方面,可选择竹龄为1和2 a的簕竹。苯醇抽提物平均质量分数为2.6%,低于毛竹(3.6%)[28]。苯醇抽提物是以苯、乙醇混合物进行抽提,可从原料中溶解树脂、脂肪、蜡、色素及可溶性单宁等。簕竹的苯醇抽提物低,表明簕竹的耐虫、抗菌等性能可能优于毛竹和慈竹[29]。随竹龄增加,纤维素质量分数先降低后略微增大,竹龄为1 a的簕竹纤维素质量分数最高,均值达45.3%,竹龄为3 a的簕竹纤维素质量分数最低。半纤维素质量分数随竹龄的增加先减少后增大,但总体变化较小。木质素质量分数随竹龄的增加逐渐增大,这是由于随竹龄增大,竹材木质化加剧所致[30]。苯醇抽提物质量分数随竹龄增大而增加。从基部至稍部,纤维素质量分数逐渐降低,半纤维素质量分数差异不大,木质素质量分数逐渐增大,苯醇抽提物质量分数无明显变化规律。簕竹化学组分随竹秆位置的变化趋势与毛竹相似[31]

      表 2  不同竹龄下簕竹竹秆纵向部位的化学组分

      Table 2.  Chemical fractions of longitudinal part of B. blumeana under different bamboo ages

      竹龄/a纵向部位纤维素质
      量分数/%
      半纤维素质
      量分数/%
      木质素质
      量分数/%
      苯醇抽提物
      质量分数/%
      竹龄/a纵向部位纤维素质
      量分数/%
      半纤维素质
      量分数/%
      木质素质
      量分数/%
      苯醇抽提物
      质量分数/%
      1基部49.0±0.913.9±0.224.8±0.62.1±0.23基部40.8±1.314.6±0.329.4±0.92.6±0.8
      中部44.4±0.413.2±2.328.2±2.12.0±0.3中部38.3±1.014.2±1.432.2±2.02.7±0.0
      梢部44.2±1.614.1±0.427.4±1.63.3±0.6梢部36.2±2.415.8±1.231.4±2.82.6±0.3
      2基部48.6±1.412.2±0.626.6±1.72.0±0.14基部41.3±0.614.3±0.429.6±0.43.4±0.5
      中部42.2±0.913.2±0.329.8±0.52.9±0.4中部38.8±1.614.8±0.332.0±1.72.8±0.1
      梢部39.0±1.114.2±1.432.4±1.12.7±0.1梢部34.1±1.817.2±0.531.6±0.82.6±0.1
        说明:数值为平均值±标准差。
    • 表3可知:簕竹纤维长度为0.42~5.99 mm,纤维宽度为6.50~38.87 μm。整体纤维形态特征与同属的油簕竹B. lapidea较为接近,属细长、柔性型纤维,是制浆造纸的上等原料,在纤维化利用方面极具开发潜力[32]。不同竹龄之间簕竹纤维长度和宽度有一定差异,竹龄为1 a的簕竹相对较小,竹龄为2和3 a的簕竹趋于稳定,竹龄为 4 a时,簕竹纤维长度和宽度最大,竹龄为1 a的簕竹平均纤维长度为2.01 mm,竹龄为4 a的簕竹平均纤维长度为2.83 mm。簕竹纤维长度纵向变化从大到小依次为中部、梢部、基部,纤维宽度基部到梢部呈逐渐减小的趋势,长宽比梢部最大。显著性分析表明:竹龄为1、2、3 a的簕竹纵向部位的平均纤维宽度差异不显著。竹龄为4 a的簕竹不同纵向部位的平均纤维长度差异极显著(P<0.01),竹龄为1 a的差异不显著。牛思节等[13]研究发现纤维形态受竹龄影响最大,纤维长度随竹龄增大,但在轴向高度上纤维长度未见明显差异。蔡燚等[33]研究认为:毛竹的纤维长宽比在轴向高度上呈先减小后增加再减小的趋势,并在5.5 m处达最大值。姚开泰等[11]研究表明:青皮竹不同竹龄间纤维长度和宽度差异较小,但竹龄为3 a的纤维形态差异明显,青皮竹纤维长度和宽度随竹秆部位高度增加而减小。可见,关于竹龄和纵向部位对竹材纤维形态的影响没有统一变化趋势,本研究簕竹纤维形态变化趋势也与其他研究有所差异。

      表 3  不同竹龄下簕竹竹秆纵向部位的纤维形态

      Table 3.  Fiber morphology of longitudinal part of B. blumeana under different bamboo ages

      竹龄/a纵向部位纤维长度/mm纤维宽度/μm平均纤维长度/mm平均纤维宽度/μm纤维长宽比
      1基部0.42~5.406.50~31.901.90±0.91 a14.14±5.37 a134
      中部0.46~5.117.57~26.632.10±1.13 a13.85±4.49 a152
      梢部0.59~3.606.66~27.812.02±0.80 a15.00±4.47 a135
      2基部0.58~5.008.65~30.892.39±1.13 a17.45±5.41 ab137
      中部0.68~4.677.59~29.272.43±0.77 a16.57±6.19 b147
      梢部0.49~5.467.89~35.742.40±1.07 a19.48±8.39 a123
      3基部0.60~4.6310.15~28.792.20±0.93 a15.80±4.47 a139
      中部0.68~4.508.56~33.832.32±0.85 a19.90±6.15 a117
      梢部0.71~5.069.19~30.412.29±1.02 a17.02±5.33 b134
      4基部0.54~5.9913.16~38.312.74±1.35 a23.39±7.21 a117
      中部0.77~5.9611.78~33.873.18±1.20 b19.58±5.20 b162
      梢部0.62~5.307.29~25.532.56±1.10 b13.64±3.89 c188
        说明:平均纤维长度和宽度为平均值±标准差。不同字母表示相同竹龄不同部位间差异极显著(P<0.01)。
    • 图2所示:簕竹的平均抗弯强度为110.7 MPa,与广泛应用的毛竹(109.1 MPa)相近,平均抗弯模量为11.53 GPa,较毛竹(7.91 GPa)高45.8%,表明簕竹比毛竹具有更好的韧性[34]。平均顺纹抗剪强度为9.9 MPa,较毛竹(16.6 MPa)低46.8%。簕竹抗弯强度随着竹龄的增加呈增大趋势,竹龄为4 a的簕竹抗弯强度可达135.9 MPa,抗弯模量高达14.24 GPa,这与毛竹等的变化规律相似[35]。此外,簕竹抗弯强度和抗弯模量随着竹秆高度的增高呈上升趋势,梢部抗弯强度均值为123.6 MPa,抗弯模量均值为13.46 GPa。簕竹顺纹抗剪强度随竹龄的增加同样呈增大趋势,最大顺纹抗剪强度可达12.6 MPa;随着竹秆高度的增加呈现上升趋势,梢部顺纹抗剪强度均值为11.6 MPa。竹秆从基部至梢部,维管束横截面积逐渐减小,维管束密度增加,导管直径变窄,自由水含率随之减少,这些变化会导致竹材密度的增加,从而使竹材的力学性能得到相应的提高[3637]。簕竹不同竹龄和竹秆纵向部位力学性能的变化与竹材密度、含水率、不同类型细胞的径向分布以及细胞壁厚度和化学组分的变化有关[38]

      图  2  不同竹龄下簕竹竹秆纵向部位的力学性能

      Figure 2.  Mechanical properties of longitudinal part of B. blumeana under different bamboo ages

    • 图3图4可知:簕竹纤维束直径主要分布在0.1~0.4 mm,纤维束拉伸强度主要分布在100.0~600.0 MPa,平均拉伸强度为250.1 MPa,拉伸模量主要分布在10.00~60.00 GPa,平均拉伸模量为23.14 GPa。通过肉眼和手感观察,簕竹纤维束相较毛竹纤维束更细、柔韧性更好。纤维束拉伸强度与竹材本身性能、制备工艺、测试方法等有关[39]。纤维束直径对纤维束拉伸性能有着明显的影响,较小的直径有着较大的力学强度。随着竹龄的增加,簕竹纤维束拉伸强度以及模量都呈增大趋势,竹龄为1 a的簕竹纤维束平均拉伸强度和拉伸模量分别达191.7 MPa和21.73 GPa,竹龄为3 a的簕竹分别为325.4 MPa和25.23 GPa。与竹龄1 a的簕竹相比,竹龄3 a的纤维束直径分布更为均匀,说明竹龄3 a的簕竹力学性能范围分布较广。簕竹纤维束最大拉伸强度及模量可分别达1089.4 MPa和80.65 GPa。随着竹龄的增加,纤维细胞壁变厚,纤维长度变长,这都会对纤维束拉伸强度造成正面影响[40]。由图5可知:与基部相比,竹秆中部和梢部的纤维束直径分布更为集中,说明中部和梢部的拉伸性能比基部更稳定。拉伸强度及拉伸模量随竹秆高度增加而逐渐增大,基部变化趋势与纤维长度和宽度基本一致,其拉伸性能可能受到纤维形态的影响。

      图  3  不同竹龄下簕竹纤维束的拉伸强度

      Figure 3.  Tensile strength of fiber bundles of B. blumeana under different bamboo ages

      图  4  不同竹龄下簕竹纤维束的拉伸模量

      Figure 4.  Tensile modulus of fiber bundles of B. blumeana under different bamboo ages

      图  5  竹秆不同纵向部位下簕竹纤维束的拉伸性能

      Figure 5.  Tensile properties of fiber bundles of B. blumeana under different longitudinal parts

    • 竹龄以及纵向部对簕竹气干密度、全干密度、竹材力学性能、竹纤维束拉伸性能有较明显影响。竹龄和纵向部位对半纤维素、长宽比影响不明显。竹龄为1和2 a的簕竹是竹浆造纸的优良选择,竹龄为3和4 a的簕竹竹材的中上部位是竹集成材、竹重组材的优先选择。簕竹纤维束有增强热塑性和热固性树脂的潜质,对于复合材料的性能有一定增强作用。

参考文献 (40)

目录

/

返回文章
返回