-
香榧Torreya grandis ‘Merrillii’是红豆杉科Taxaceae榧属Torreya榧树Torreya grandis中的优良栽培类型,是中国南方特色干果树种,属于国家二级保护植物[1]。其坚果风味香酥、营养丰富,富含油脂、蛋白质、各种微量元素等,尤其富含多不饱和脂肪酸和生育酚、角鲨烯等多种生物活性成分,具有很高的保健、药用和综合开发利用价值[2−7]。近年来,香榧产业不断发展扩大,目前,香榧种植区域覆盖浙江、安徽、江西、贵州等全国11个省,面积达到10余万hm2[8−9]。然而,在长期栽培管理过程中发现,香榧幼龄期容易出现树体徒长、生长过旺的问题,导致树冠光照强度降低,抑制了叶片光合能力,这不仅影响了树体的结实情况,同时严重影响种实品质,极大地限制了香榧产业的发展[9]。
树形调整是影响果实产量品质的关键整形技术,主要指对果树骨干枝数目和开张角度进行调整,并辅以适当的修剪、环剥等手段,从而影响树体骨架结构、枝条空间分布等,最终影响树冠光照强度、树体通风透光能力、叶片光合能力、营养运输等[10]。研究发现:在诸多影响果实品质的因素中,果树树形结构直接影响果实色泽、口感与营养价值[11]。荔枝Litchi chinensis树形缺乏科学管理,枝条分布密集,使得叶片之间相互遮挡,导致树冠内膛郁闭,降低了叶片对光能的利用,影响了光合同化物的积累和分配,导致果实品质降低[12]。苹果Malus pumila果实品质受树冠光照影响,无效光区越大,果实品质越差,对树体结构进行优化后,果实内光合产物分配和积累更多,产量和品质明显提高[13]。梨Pyrus spp.骨干枝数目调整后,平均单果质量、可溶性固形物、可溶性总糖等含量均明显上升,其中棚架形树冠可溶性固形物含量最高,果实品质一致性最好[14]。在早实核桃Juglans regia树形调整中也发现:与自然圆头形相比,骨干分层形和开心形树冠内通风透光性好,种实粗脂肪,蛋白质等含量较高,坚果品质最好[15]。澳洲坚果Macadamia spp.多干开心形和疏散分层形光合性能最佳、坚果品质最好,尤其是多干开心形对脂肪酸含量的提高效果最显著[16]。此外,研究表明拉枝可以打破树体原有的养分平衡关系,调节树体营养物质运输,使光合产物更多供给果实发育,在果实品质形成方面具有决定性作用。研究发现:开张角度对板栗Castanea mollissima树冠内膛光照强度和果实营养物质积累有显著影响,当开张角度大于60°时,果实内的可溶性糖和淀粉含量达到最高[17]。同样,开张角度60°处理后,枣Ziziphus jujuba果中的可溶性糖和维生素C含量升高,果实品质明显提高[18]。随着开张角度增大,泡核桃Juglans sigillata坚果品质明显提升,尤其是显著增加了种实蛋白质和粗脂肪含量[19]。综上所述,科学合理的树形调整不仅有利于果树树形培养,同时可显著提高树体光照强度和光合能力,促进果实营养物质积累,提高果实品质。近年来,有关树形调整技术在核桃等坚果类树种中虽有少量报道,但并未得到广泛的推广应用。目前有关香榧的优质丰产栽培理论与配套树形调控技术仍不完善,关于树形调整如何影响其树冠光照及果实品质的研究仍未见报道。因此,本研究针对香榧树形调整展开研究,分别设置不同的骨干枝数目和骨干枝开张角度处理,分析其对树体光照强度、光合能力、种实光合碳同化物质量分数、油脂品质等的影响,以揭示树形调整对香榧树冠光照和果实品质的影响,探索香榧树体适宜的骨干枝数目和开张角度,为香榧优质丰产、提高品质提供科学依据。
-
研究区位于浙江省杭州市临安区浙江农林大学潘母岗试验基地(30°14′N,119°42′E)。该区属于亚热带季风气候,全年平均气温为17.8 ℃,平均年降水量为1 454.0 mm,平均相对湿度为70.3%,年日照时数为1 765.0 h。土壤全氮质量分数为1.2 g·kg−1,全磷质量分数为1.1 g·kg−1,全钾质量分数为15.7 g·kg−1。基地采用统一的常规施肥管理,每年施用2 ~ 3次复合肥,每年每株共计750 g,每2年施用1次有机肥。
-
材料为2007年种植的香榧树,树龄为20 a,平均地径为12.2 cm,平均树高为1.8 m。2021年11月选择长势一致的香榧树进行不同树形处理,包括骨干枝数目和骨干枝开张角度的单因素和交互试验。在前期预试验的基础上,骨干枝数目设置单骨干枝自然圆头形(对照,ck)、3条骨干枝开心形(N3)和4条骨干枝开心形(N4)处理;骨干枝开张角度设置30°(对照,A30°)、60°(A60°)和80°(A80°)处理,处理时先将骨干枝简单揉压,用拉枝绳缓慢拉动枝条基部,调节至合适角度。采用随机区组设计,每组9株香榧树,每个处理重复5次,共计45株。
-
沿树冠垂直方向由上至下分为上层、中层、下层,每层间隔50 cm,使用照度计(TES-1339R) 测定不同处理下的各层光照强度。采用便携式光合仪(Li-6400)测定叶片净光合速率,测量时选择天气晴朗且无云的上午9:00—11:00。光合有效辐射(PAR)设定为1 200 μmol·m−2·s−1,空气流速为400 µmol·s−1,叶室温度为25 ℃,具体参照刘琏等[20]的方法。
-
可溶性糖和淀粉质量分数测定采用蒽酮比色法,可溶性蛋白质量分数测定采用考马斯亮蓝染色法,具体参照成豪等[21]的方法。
-
含油率的提取参照GB/T 14772—2008《食品中粗脂肪的测定》索氏抽提法[22]。脂肪酸组分分析采用气相色谱仪(Trace 1300),具体参照ZHOU等[23]的方法。
-
数据用3次重复的平均值±标准误表示。采用SPSS 25对数据进行单因素分析,采用Excel 2013绘制图表。
-
本研究调查了不同树形处理下,香榧树冠5—9月的光照强度变化(表1~2)。骨干枝开张角度单因素分析发现:60°处理显著增加了5—9月香榧树冠中层和下层的光照强度,但80°处理会降低树冠光照强度。骨干枝数目和开张角度的交互处理显著提高了5—7月香榧树冠光照强度,其中,N3-A60°和N4-A60°效果最好(P<0.05)。
表 1 树形调整对香榧中层光照强度变化的影响
Table 1. Effect of tree shape adjustment on the change of central layer light intensity
处理 光照强度/klx 5月 6月 7月 8月 9月 ck-A30° 16.92±0.26 c 18.11±0.21 d 32.26±0.57 b 38.48±0.34 a 22.10±0.42 bc ck-A60° 20.28±0.27 b 23.00±0.24 a 37.59±0.37 a 39.85±0.86 a 26.09±0.21 a ck-A80° 15.03±0.17 d 19.97±0.48 c 26.99±0.62 c 36.37±0.69 b 21.66±0.31 cd N3-A30° 20.08±0.35 b 21.11±1.53 bc 27.90±1.16 c 35.55±0.27 bc 22.86±0.44 b N3-A60° 26.85±0.50 a 22.15±0.35 ab 36.72±0.88 a 39.67±0.67 a 25.96±0.22 a N3-A80° 17.61±0.26 c 18.14±0.18 d 31.09±1.08 b 33.88±0.32 c 21.01±0.27 d N4-A30° 16.19±0.27 d 18.11±0.52 d 38.01±0.45 a 34.58±0.61 c 22.09±0.23 bc N4-A60° 25.25±0.72 a 23.33±0.30 a 36.95±0.66 a 39.15±0.36 a 25.83±0.21 a N4-A80° 18.01±0.59 c 14.96±0.27 e 36.10±0.81 ab 33.93±0.43 c 22.08±0.33 bc NE 0.000 0.000 0.000 0.000 0.032 AE 0.000 0.000 0.000 0.000 0.000 NE × AE 0.000 0.000 0.000 ns ns 说明:ck表示单骨干枝自然圆头形;N3~N4分别表示3、4条骨干枝开心形;A30°、A60°、A80°分别表示30°、60°、80°开张角度;同列不同小写字母表示不同处理间差异显著(P<0.05)。NE表示骨干枝效应;AE表示角度效应;NE×AE表示交互效应;P<0.05表示差异显著;ns表示无显著差异。 表 2 树形调整对香榧下层光照强度变化的影响
Table 2. Effect of tree shape adjustment on the change of lower layer light intensity
处理 光照强度/klx 5月 6月 7月 8月 9月 ck-A30° 8.55±0.09 c 11.22±0.32 b 11.75±0.49 cd 14.25±0.43 b 10.15±0.33 cde ck-A60° 9.22±0.23 c 14.18±0.45 a 15.78±1.12 ab 16.55±0.22 a 11.73±0.14 a ck-A80° 7.38±0.46 d 9.83±0.68 c 9.93±1.17 d 12.53±0.35 c 9.64±0.16 de N3-A30° 7.41±0.09 d 9.50±0.43 c 10.64±0.69 d 12.60±0.46 c 10.31±0.19 c N3-A60° 13.93±0.45 a 13.82±0.37 a 13.70±0.45 bc 16.08±0.40 a 11.25±0.22 ab N3-A80° 9.15±0.27 c 8.41±0.12 c 12.20±0.79 cd 12.77±0.37 c 9.56±0.14 e N4-A30° 7.38±0.23 d 10.03±0.36 c 12.10±0.57 cd 13.22±0.36 c 10.34±0.10 c N4-A60° 11.54±0.23 b 13.54±0.33 ab 16.55±0.36 a 16.00±0.27 a 10.72±0.11 bc N4-A80° 7.32±0.17 d 6.65±0.13 d 10.21±0.37 d 12.67±0.62 c 10.22±0.22 cd NE 0.000 0.000 0.004 0.111 ns AE 0.000 0.000 0.000 0.000 0.000 NE × AE 0.000 0.000 0.031 ns 0.007 说明:ck表示单骨干枝自然圆头形;N3~N4分别表示3、4条骨干枝开心形;A30°、A60°、A80°分别表示30°、60°、80°开张角度;同列不同小写字母表示不同处理间差异显著(P<0.05)。NE表示骨干枝效应;AE表示角度效应;NE×AE表示交互效应;P<0.05表示差异显著;ns表示无显著差异。 基于光照强度的结果,进一步以3条骨干枝为代表,于光照条件好的5、7和9月测定并分析骨干枝数目和开张角度交互处理对香榧叶片光合能力的影响。结果表明:骨干枝数目和开张角度的交互处理可有效提高5、7和9月香榧叶片净光合速率、气孔导度、蒸腾速率(图1)。其中,N3-A60°处理效果最好,分别使7和9月香榧叶片的净光合速率提高了46%和38% (P<0.05),气孔导度提高了35%和54%,蒸腾速率提高了34%和30%。
-
由表3~4可见:5—9月香榧种实逐渐成熟,种实内部积累的糖、淀粉等营养物质逐渐转化为蛋白质和油脂,种实中的淀粉和可溶性糖总体呈逐渐下降趋势。与A30°相比,A60°和A80°处理下5—9月香榧种实中可溶性糖质量分数均显著增加(P<0.05)。ck-A60°和ck-A80°处理下5月种实中可溶性糖质量分数分别达到565.11和577.53 mg·g−1,与ck-A30°相比分别高出34%和37%。与A30°相比,A60°处理也显著增加了香榧种实中淀粉质量分数(P<0.05)。相较于单因素试验,骨干枝数目和开张角度的交互处理对5—7月种实中可溶性糖质量分数增加幅度更大,N3-A60°和N4-A60°处理下,5月种实可溶性糖和淀粉质量分数分别达到573.41和576.63 mg·g−1。
表 3 树形调整对香榧种实可溶性糖质量分数的影响
Table 3. Effect of tree shape adjustment on the content of soluble sugar of the seeds
处理 可溶性糖质量分数/(mg·g−1) 5月 6月 7月 8月 9月 ck-A30° 421.32±4.11 e 487.16±6.23 d 338.34±0.36 d 190.71±4.46 cd 158.85±0.67 c ck-A60° 565.11±8.55 c 541.84±10.31 bc 416.54±2.76 a 228.51±6.35 a 191.20±3.63 a ck-A80° 577.53±3.57 bc 512.94±10.18 cd 387.12±6.36 bc 215.29±2.45 ab 178.70±1.22 b N3-A30° 520.20±14.86 d 479.39±13.79 d 346.86±2.55 d 202.64±3.27 bcd 171.07±2.16 c N3-A60° 590.90±5.07 bc 566.07±15.20 ab 378.60±6.24 c 210.84±1.61 abc 190.53±1.40 a N3-A80° 641.06±8.71 a 585.95±2.65 a 367.76±6.82 cd 198.62±4.46 bcd 178.51±1.99 b N4-A30° 522.59±9.70 d 521.33±17.14 cd 354.34±2.69 d 183.24±1.08 d 166.30±2.92 c N4-A60° 609.05±8.22 b 567.31±2.17 ab 414.99±7.73 a 210.98±0.71 abc 185.28±0.99 ab N4-A80° 566.06±10.40 c 546.50±8.53 bc 408.28±6.78 ab 203.51±10.23 bc 180.70±2.30 ab NE 0.000 0.015 0.000 ns ns AE 0.000 0.000 0.000 0.000 0.000 NE × AE 0.000 0.038 0.017 ns ns 说明:ck表示单骨干枝自然圆头形;N3~N4分别表示3、4条骨干枝开心形;A30°、A60°、A80°分别表示30°、60°、80°开张角度;同列不同小写字母表示不同处理间差异显著(P<0.05)。NE表示骨干枝效应;AE表示角度效应;NE×AE表示交互效应;P<0.05表示差异显著;ns表示无显著差异。 表 4 树形调整对香榧种实淀粉质量分数的影响
Table 4. Effect of tree shape adjustment on the content of starch of the seeds
处理 淀粉质量分数/(mg·g−1) 5月 6月 7月 8月 9月 ck-A30° 521.82±5.06 bc 267.04±16.07 f 110.38±4.14 d 96.55±5.21 d 107.33±1.39 c ck-A60° 650.25±38.93 a 362.11±2.06 cd 141.85±7.26 bc 117.53±8.18 bc 123.31±2.66 a ck-A80° 519.67±7.61 bc 497.72±7.55 a 166.86±9.52 ab 118.15±1.39 bc 104.11±0.37 c N3-A30° 490.65±10.37 c 311.77±8.97 ef 131.72±7.93 cd 115.05±4.91 c 116.52±1.88 b N3-A60° 573.41±12.95 b 393.56±4.00 bc 164.49±3.53 ab 141.76±1.17 a 110.77±0.72 bc N3-A80° 494.41±9.80 c 369.79±17.69 cd 117.27±4.69 cd 113.43±1.68 c 107.72±2.23 c N4-A30° 483.12±1.16 c 323.66±17.75 de 142.93±10.24 bc 118.15±2.31 bc 81.75±1.17 e N4-A60° 576.63±11.28 b 481.64±20.17 a 180.87±4.97 a 130.92±0.99 ab 106.09±1.71 c N4-A80° 508.92±13.08 c 433.41±1.51 b 121.59±5.50 cd 120.08±0.58 bc 95.36±1.77 d NE 0.021 0.001 ns 0.005 0.000 AE 0.000 0.000 0.000 0.000 0.000 NE × AE ns 0.000 0.000 0.038 0.000 说明:ck表示单骨干枝自然圆头形;N3~N4分别表示3、4条骨干枝开心形;A30°、A60°、A80°分别表示30°、60°、80°开张角度;同列不同小写字母表示不同处理间差异显著(P<0.05)。NE表示骨干枝效应;AE表示角度效应;NE×AE表示交互效应;P<0.05表示差异显著;ns表示无显著差异。 -
由表5可见:随着香榧种实成熟,种实可溶性蛋白逐渐积累,8月达到最高值,9月相比8月略有下降。骨干枝开张角度单因素处理对香榧种实可溶性蛋白积累有显著影响(P<0.05),其中A60°处理可显著提高种实可溶性蛋白质量分数,但是开张角度继续增大则不利于种实中可溶性蛋白的增加。ck-A80°处理下,7—9月种实可溶性蛋白质量分数较ck-A30°显著降低(P<0.05)。同时,骨干枝数目增加也显著提高了种实中可溶性蛋白的质量分数,N3-A30°和N4-A30°处理下,种实中可溶性蛋白质量分数分别达到484.14和460.3 mg·g−1。骨干枝数目和开张角度的交互处理也可显著提高种实中可溶性蛋白的质量分数,以60°开张角度与3和4条骨干枝的交互处理促进效果最佳,N3-A60°和N4-A60°处理下,8月种实可溶性蛋白质量分数分别达到647.12和752.61 mg·g−1,较ck-A60°分别提高了13%和31%。
表 5 树形调整对香榧种实可溶性蛋白质量分数的影响
Table 5. Effect of tree shape adjustment on the content of soluble protein of the seeds
处理 可溶性蛋白质量分数/(mg·g−1) 5月 6月 7月 8月 9月 ck-A30° 135.89±6.72 d 146.02±5.22 e 172.30±3.13 fg 402.95±14.91 f 343.21±10.93 d ck-A60° 198.53±10.20 b 217.51±3.28 c 270.21±14.30 c 573.63±3.96 c 573.37±6.35 b ck-A80° 140.62±9.01 cd 151.01±3.82 e 161.66±2.30 g 235.22±5.10 h 235.33±14.75 f N3-A30° 205.62±3.35 b 215.97±10.83 c 240.41±5.43 d 484.14±5.23 d 478.95±5.14 c N3-A60° 286.88±0.64 a 329.74±6.35 b 407.50±11.09 b 647.12±12.21 b 585.41±11.49 b N3-A80° 197.94±8.84 b 200.59±7.38 cd 209.55±4.84 e 270.19±9.19 g 297.18±6.63 e N4-A30° 189.08±2.21 b 200.59±2.57 cd 223.38±2.30 e 456.88±8.05 de 460.3±7.14 c N4-A60° 283.63±8.86 a 363.95±9.76 a 444.75±11.75 a 752.61±7.16 a 680.07±15.65 a N4-A80° 163.67±2.30 c 181.76±2.74 d 195.71±1.51 ef 431.99±13.05 ef 296.71±6.88 e NE 0.000 0.000 0.000 0.000 0.000 AE 0.000 0.000 0.000 0.000 0.000 NE × AE 0.027 0.000 0.000 0.000 0.000 说明:ck表示单骨干枝自然圆头形;N3~N4分别表示3、4条骨干枝开心形;A30°、A60°、A80°分别表示30°、60°、80°开张角度;同列不同小写字母表示不同处理间差异显著(P<0.05)。NE表示骨干枝效应;AE表示角度效应;NE×AE表示交互效应;P<0.05表示差异显著;ns表示无显著差异。 -
含油率是衡量香榧种实品质的重要指标,油脂一般在7月开始积累,因此主要检测各处理7—9月种实的含油率。随着7—9月种实逐渐成熟,含油率逐渐增加,9月达到最大值。与A30°相比,A60°处理下种实含油率显著增加(P<0.05),但开张角度过大(A80°)不利于种实含油率积累。单独的骨干枝数目增加对种实含油率无显著影响,交互处理对种实含油率也无显著影响,说明树形调整对种实含油率的影响主要受到骨干枝开张角度的影响(表6)。
表 6 树形调整对香榧种实含油率的影响
Table 6. Effect of tree shape adjustment on the oil content of the seeds
处理 含油率/% 7月 8月 9月 ck-A30° 28.34±0.16 c 45.96±0.01 abc 51.53±0.63 bcd ck-A60° 29.53±0.12 a 46.52±0.13 ab 53.59±0.53 a ck-A80° 28.09±0.32 c 45.11±0.12 c 50.19±0.44 bcd N3-A30° 28.56±0.21 c 46.17±0.23 abc 51.93±0.27 ab N3-A60° 29.65±0.19 a 47.08±0.24 a 53.89±0.69 a N3-A80° 28.12±0.26 c 45.61±0.11 bc 49.50±0.59 cd N4-A30° 28.65±0.17 bc 45.81±0.73 abc 51.26±0.28 bc N4-A60° 29.46±0.34 ab 47.03±0.38 a 53.90±0.48 a N4-A80° 28.34±0.19 c 45.14±0.20 c 49.04±0.30 d NE ns ns ns AE 0.000 0.001 0.000 NE × AE ns ns ns 说明:ck表示单骨干枝自然圆头形;N3~N4分别表示3、4条骨干枝开心形;A30°、A60°、A80°分别表示30°、60°、80°开张角度;同列不同小写字母表示不同处理间差异显著(P<0.05)。NE表示骨干枝效应;AE表示角度效应;NE×AE表示交互效应;P<0.05表示差异显著;ns表示无显著差异。 9月香榧成熟种实中脂肪酸组分分析发现:香榧油脂主要由棕榈酸、硬脂酸、油酸、亚油酸、亚麻酸和金松酸等组分组成,其中,不饱和脂肪酸油酸和亚油酸占比最高,金松酸质量分数也较高(图2)。研究发现不同树形处理对脂肪酸组分质量分数变化有显著影响(P<0.05)。如表7所示:骨干枝开张角度增大,各脂肪酸组分变化显著(P<0.05),其中,油酸质量分数和占比逐渐降低,亚油酸和金松酸质量分数和占比均逐渐升高,但开张角度过大,不利于油酸、亚油酸、金松酸的积累。骨干枝数目和开张角度的交互处理同样可以显著提高种实中亚油酸和金松酸的质量分数(P<0.05),其中,以N3-A60°和N4-A60°处理下亚油酸和金松酸质量分数最高,分别达到288.81和65.21 mg·g−1。
表 7 树形调整对香榧种实脂肪酸组分的影响
Table 7. Effect of tree shape adjustment on the main fatty acid compositions of the seeds
处理 脂肪酸组分/(mg·g−1) 棕榈酸 硬脂酸 油酸 亚油酸 亚麻酸 二十碳二烯酸 金松酸 ck-A30° 39.04±0.23 cd 11.47±0.07 b 164.59±0.95 b 240.73±1.39 f 1.60±0.01 fg 3.64±0.02 a 47.48±0.28 f ck-A60° 44.52±0.21 a 10.50±0.05 c 151.62±0.71 c 262.57±1.22 d 1.82±0.01 d 3.45±0.02 b 54.59±0.26 c ck-A80° 38.96±0.16 cd 9.92±0.04 d 149.08±0.62 d 242.67±1.00 f 1.66±0.01 e 2.83±0.01 e 50.35±0.21 e N3-A30° 40.75±0.10 b 12.36±0.03 a 176.29±0.43 a 231.78±0.57 g 1.61±0.00 f 3.01±0.01 c 46.51±0.11 g N3-A60° 41.01±0.25 b 6.84±0.04 h 132.17±0.80 e 288.81±1.74 a 1.94±0.01 b 1.98±0.01 i 59.40±0.36 b N3-A80° 38.76±0.22 d 7.38±0.04 f 117.32±0.66 f 265.62±1.49 cd 1.89±0.01 c 2.56±0.01 g 55.18±0.31 c N4-A30° 41.03±0.11 b 9.96±0.03 d 150.38±0.39 cd 246.87±0.64 e 1.57±0.00 g 2.92±0.01 d 53.37±0.14 d N4-A60° 44.31±0.19 a 7.98±0.03 e 132.52±0.56 e 277.39±1.16 b 1.87±0.01 c 2.78±0.01 f 65.21±0.38 a N4-A80° 39.36±0.11 c 7.24±0.02 g 104.93±0.30 g 268.38±0.77 c 2.11±0.01 a 2.26±0.01 h 59.88±0.17 b NE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 AE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 NE × AE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 说明:ck表示单骨干枝自然圆头形;N3~N4分别表示3、4条骨干枝开心形;A30°、A60°、A80°分别表示30°、60°、80°开张角度;同列不同小写字母表示不同处理间差异显著(P<0.05)。NE表示骨干枝效应;AE表示角度效应;NE×AE表示交互效应;P<0.05表示差异显著。 -
果实品质是衡量果实好坏的重要指标,提高果实品质是增加经济效益的关键,也是果树栽植和整形的出发点和落脚点[24]。研究表明:科学的树形有利于培养良好的树体结构,在提高树冠通风透光能力的同时,促进叶片光合作用[25−26]。研究发现:桃树Prunus persica ‘V’形树形处理下冠层内光照分布最为均匀,净光合速率最高,果实色泽最好,香气含量最高[27−28]。‘砀山酥梨’‘玉露香梨’‘黄冠’等不同品种梨树不同树形处理也发现:Y字形树冠整体光照情况、净光合速率、果实品质均优于其他树形[29]。此外,骨干枝开张角度也是树形调整的重要因素。研究发现:开张角度105°和120°处理提高了‘富士’苹果树冠内膛和中下部叶片的光合能力和果实中可溶性固形物含量[30]。本研究也发现:骨干枝60°开张角度显著增加了5—9月香榧树冠中层和下层的光照强度。同时,3条骨干枝开心形和开张角度60°交互处理显著提高了5、7和9月香榧叶片净光合速率、气孔导度、蒸腾速率。以上研究表明:树形调整对香榧树冠整体光照强度及叶片光合能力有显著影响。
可溶性糖、淀粉等碳水化合物是果实中重要的营养物质,其含量高低也是果实品质形成的重要因素[31−32]。研究表明:合理的树形调整不仅能够提高树冠光照强度和叶片光合能力,同时能够促进糖、淀粉等营养物质在果实中积累,提高果实品质[33]。例如,扇形树形有利于葡萄Vitis vinifera果实中总糖的积累[34]。多主枝平棚形鲜黄梨Pyrus pyrifolia树冠冠层开度和冠下光照显著高于V字形和疏散分层形树形,其透光性最好,光合能力最强,果实中可溶性总糖、葡萄糖、果糖、蔗糖含量最高[35]。不同开张角度处理的‘富士’苹果中可溶性糖质量分数也显著提高,其中,开张角度为110°~120°时达到最高[36−37]。本研究也发现:树形调整有利于香榧种实中营养物质的积累,骨干枝数目和开张角度增加均能显著提高5—7月香榧种实中可溶性糖、淀粉质量分数。二者交互处理效果更好,N4-A60°和N4-A60°处理下,5月种实可溶性糖和淀粉质量分数分别达到609.05和576.63 mg·g−1。以上研究表明:香榧树形调整可显著促进种实中碳水化合物的积累。
核桃、香榧等坚果种实中蛋白质以及油脂质量分数高低是评价其品质的重要指标。在核桃和澳洲坚果研究中发现:多主枝开心形和分层形树形可有效提高坚果品质,增加种实蛋白和脂肪酸质量分数,尤其是显著提高了不饱和脂肪酸油酸和亚油酸的占比[16, 38]。开张角度也显著增加了泡核桃种实蛋白质和粗脂肪质量分数[18]。本研究发现:随着香榧种实逐渐成熟,5—9月种实可溶性糖、淀粉质量分数逐渐降低,蛋白质和油脂质量分数逐渐积累。N3-A60°和N4-A60°处理下,蛋白质和油脂质量分数最高。脂肪酸组分分析也表明:N3-A60°和N4-A60°处理可显著提高香榧种实中不饱和脂肪酸亚油酸和金松酸的质量分数,9月种实成熟时,二者质量分数分别达到288.81和65.21 mg·g−1。以上研究表明:不同树形调整促进了糖、淀粉等碳水化合物在香榧种实中的积累,同时也显著促进了种实中碳水化合物向蛋白质和油脂的转化。因此,树形调整对香榧种实品质形成具有重要作用,生产上可通过构建和培养合理树形来实现香榧的提质增效。
-
树形调整对香榧种实品质有显著的促进作用,其中以3和4条骨干枝与60°开张角度处理最佳。树形调整显著提高了香榧树冠通风透光能力,增加了树冠中层和下层的光照强度,使叶片可以更好地进行光合作用,净叶片光合作用显著增强,显著促进了5—7月香榧种实中可溶性糖、淀粉的积累,显著促进了7—9月种实中可溶性糖、淀粉向蛋白质和油脂的转化,提高了种实中可溶性蛋白质量分数和含油率,同时促进了不饱和脂肪酸亚油酸和金松酸的积累。
Effects of tree shape adjustment on canopy light intensity and seed quality of Torreya grandis ‘Merrillii’
-
摘要:
目的 研究不同树形调整对香榧Torreya grandis ‘Merrillii’树冠光照强度和光合速率的影响,阐明不同骨干枝数目和开张角度处理下香榧种实中碳水化合物、油脂等变化规律,揭示树形调整对香榧种实品质的影响,为香榧树形培养、提质增效提供科学依据。 方法 设置不同骨干枝数目和骨干枝开张角度单因素和交互处理试验,测定树冠光照强度、叶片光合速率,分析可溶性糖、淀粉、可溶性蛋白质量分数、含油率及脂肪酸组分变化。 结果 骨干枝开张角度调整对香榧树冠光照强度有显著影响。与对照相比,60°处理下5—9月香榧树冠中层和下层的光照强度显著增加(P<0.05),7月树冠中层光照强度最高达到40 klx,但80°开张角度则会降低树冠光照强度。同时,骨干枝数目和开张角度的交互处理下,5、7和9月香榧叶片净光合速率、气孔导度、蒸腾速率均显著提高(P<0.05)。碳水化合物检测发现,3和4条骨干枝与60°开张角度(N3-A60°和N4-A60°)处理下香榧种实中可溶性糖和淀粉质量分数显著增加(P<0.05),5月香榧种实可溶性糖和淀粉质量分数分别达到609.05和576.63 mg·g−1。树形调整也显著促进了香榧种实中可溶性蛋白和油脂的积累(P<0.05)。 结论 树形调整对香榧树冠光照强度、叶片光合能力和种实品质有明显的促进作用,其中以3和4条骨干枝与60°开张角度处理最佳。图2表7参38 Abstract:Objective This study aimed to investigate the impact of adjusting the number and opening angle of skeleton branches of Torreya grandis ‘Merrillii’ on canopy light intensity and leaf photosynthesis. Additionally, it aimed to elucidate alterations in carbohydrate, oil content, and other components to reveal the effect of tree shape adjustment on seed quality and provide a scientific basis for the tree cultivation. Method Experiments with different numbers and opening angles of skeleton branches were conducted using single-factor and interactive treatments to examine canopy light intensity, leaf photosynthesis, and the contents of soluble sugar, starch, soluble protein, oil and fatty acid components. Result Adjusting the opening angle of skeleton branches significantly influenced canopy light intensity. Under the opening angle of 60°, the light intensity in the central and lower layers of the canopy notably increased (P<0.05) from May to September, peaking at 40 klx in the central layer in July. However, an excessively wide opening angle of 80° led to a decrease of canopy light intensity. Under the interactive treatment of different numbers and opening angles of skeleton branches, the net photosynthetic rate, stomatal conductance, and transpiration rate of the leaves significantly increased in May, July and September (P<0.05). Carbohydrate analysis revealed that the contents of soluble sugar and starch in seeds under 3 and 4 branches with the opening angle of 60° adjustment (N3-A60° and N4-A60°) were significantly increased (P<0.05). The content of soluble sugar and starch in the seeds reached 609.05 and 576.63 mg·g−1, respectively. Furthermore, tree shape adjustment significantly promoted the accumulation of soluble protein and oil in the seeds. Conclusion The tree shape adjustment of T. grandis ‘Merrillii’ can enhance the canopy light intensity, leaf photosynthesis and seed quality, and the 3 and 4 skeleton branches with the opening angle of 60° has the best promotion effect. [Ch, 2 fig. 7 tab. 38 ref.] -
Key words:
- Torreya grandis ‘Merrillii’ /
- tree shape adjustment /
- light intensity /
- seed quality
-
抚育间伐是常用的森林管理措施[1],因伐除林冠相对密集的部分树木,增加了太阳辐射,改变了森林小气候和土壤微生境,必然影响森林生态系统的养分和生物地球化学循环过程,以及该循环过程的核心环节——土壤微生物活动和酶活性。目前,土壤胞外酶研究更多关注于碳、氮和磷循环相关的降解酶,如碳酶[β-葡糖苷酶(BG)、纤维二糖水解酶(CBH)、β-木糖苷酶(BX)],氮酶[β-1,4-N-乙酰氨基葡萄糖苷酶(NAG)、亮氨酸氨基肽酶(LAP)]和磷酶[酸性或碱性磷酸酶(AcP)],其活性可作为微生物资源分配的代理指标[2]。在养分循环期间酶活性的相对丰度变化可反映微生物群落的代谢水平。SINSABAUGH等[3]最先通过整合分析发现:在全球尺度上碳、氮和磷循环相关酶计量比接近1∶1∶1,表明土壤酶化学计量比呈稳态性。但也有研究发现:土壤酶化学计量比呈非稳态性[4−6],说明微生物可能受到能量或关键营养物质(即碳、氮和磷)的限制[7]。
间伐措施对土壤胞外酶活性和酶化学计量的影响仍不确定。如土壤酶活性在森林间伐后会增加[8]、减少[9]或保持不变[10]。大多数研究主要围绕不同间伐强度对酶活性的影响[11]。间伐措施的影响效果还会随森林恢复过程而发生改变。如QIU等[12]对塞罕坝林场内华北落叶松Larix principis-rupprechtii人工林进行间伐恢复9 a后的结果显示:间伐措施显著增加了土壤BG、NAG+LAP和AcP活性。而LULL等[13]对地中海栎Quercus ilex林间伐后5个月至7 a内,氮和磷循环酶的活性并未发生显著改变。间伐处理和林下移除可在短时间内减少微生物对土壤资源的竞争,进而改变酶的活性[14]。但随树木生长速度和土壤养分含量的变化,微生物资源利用策略也发生改变,可能造成微生物受到不同养分的限制[15]。
目前,关于间伐处理对土壤胞外酶活性的研究大多侧重于间伐强度和人工林生态系统的研究,而对天然林生态系统间伐后不同恢复阶段土壤酶活性的研究较少。鉴于此,本研究采用空间代替时间的方法,探讨北亚热带秦岭松栎混交林在抚育间伐后不同恢复时间内林地表层土壤酶活性、酶化学计量比的变化规律,为制定森林可持续经营方案及合理的生态恢复措施提供理论依据。
1. 研究地区与研究方法
1.1 研究区概况
研究区位于陕西省安康市宁东林业局新矿林场(33°20′~33°26′N,108°32′~108°34′E),地处秦岭山脉,海拔为1 400.0~1 800.0 m。该区属于北亚热带与温带过渡区,年均气温为8.5 ℃,年平均降水量为908.0 mm,土壤为山地棕壤。研究区域为20世纪70年代末采伐后天然更新形成的次生针阔混交林[16],采取的是低强度间伐和林冠下补植等保护经营作业法。林内主要以油松Pinus tabuliformis、锐齿槲栎Quercus aliena var. acutiserrata、华山松Pinus armandii为主要建群种,伴生有漆树Toxicodendron vernicifluum、小叶女贞Ligustrum quihoui、青榨槭Acer davidii等树种。林下植被以卫矛Euonymus alatus、木姜子Litsea pungens、披针叶薹草Carex lanceolata、龙牙草Agrimonia pilosa、茜草Rubia cordifolia为主。
2021年10月,根据研究区内实际间伐处理、林木生长和分布状况,选择立地条件基本一致的林分,设置3种间伐处理,即未间伐(ck)、间伐恢复5 a (5 a,2018年间伐)和间伐恢复13 a (13 a,2010年间伐)。每个间伐处理设置4块面积为20 m×30 m的样地,共计12块样地。为防止样地之间相互干扰,样方之间的间隔不小于100 m。进行间伐处理后林下物种数量增加,更新了枫杨Pterocarya stenoptera、栗Castanea mollissima、桤木Alnus cremastogyne、灯台树Cornus controversa和胡桃楸Juglans mandshurica等树种。其中各样地内物种丰富度和Shannon-Wiener指数参照刘思泽等[17]的方法计算。样地调查基本概况见表1。
表 1 试验样地基本概况Table 1 Basic survey of test plots间伐后恢
复时间/a海拔/
m株数密度/
(株·hm−2)胸径/
cm郁闭度 物种
丰富度Shannon-Wiener
指数凋落物量/
(t·hm−2·a−1)林内主要树种 ck 1 585.00±61.85 1 420±88 14.60±0.49 0.7 25 2.48 7.01±0.37 油松、锐齿槲栎、华山松、毛樱桃、垂柳、
木姜子、三桠乌药5 1 457.32±13.14 1 208±355 13.80±0.84 0.5 32 2.78 5.69±0.26 锐齿槲栎、栗、油松、白桦、垂柳、
榆树、桤木13 1 757.57±20.17 1 254±207 13.80±1.19 0.6 29 2.68 6.55±0.29 毛樱桃、油松、锐齿槲栎、漆树、水蜡树、
木姜子、灯台树说明:毛樱桃Prunus tomentosa,垂柳Salix babylonica,三桠乌药Lindera obtusiloba,白桦Betula platyphylla,榆树Ulmus pumila,水蜡树Ligustrum obtusifolium。 1.2 采样设计
2023年7月,根据S型取样方法,在ck、5 a、13 a间伐样地内,用直径为3.6 cm的土钻采集0~10 cm的表层土样,为避免样品受到污染,将土壤混合储存于灭菌自封袋中,再用便携冷藏箱带回实验室。在室内充分混匀后过2 mm筛。一份新鲜土样于4 ℃冰箱保存,用于有效氮、土壤酶活性和土壤微生物生物量的测定;另一份土壤样品自然风干,用于其他土壤理化性质的测定。
1.3 测定指标及方法
1.3.1 土壤理化性质测定
土壤含水率采用105 ℃烘干法;土壤pH采用电位法(土水体积质量比为1.0∶2.5);土壤总氮采用元素分析仪测定;土壤有机碳采用重铬酸钾氧化-外加热法;土壤有效氮指铵态氮和硝态氮的总和,分别采用2 mol·L−1氯化钾浸提-靛酚蓝比色法、氯化钾提取-双波长紫外分光光度法测定;土壤总磷采用硫酸-高氯酸-钼锑抗比色法[18]。微生物生物量碳、氮采用氯仿熏蒸法,使用岛津总有机碳分析仪测定。
1.3.2 土壤胞外酶活性及酶计量的测定与计算
参照SAIYA-CORK等[19]的方法,测定与碳、氮、磷循环密切相关的酶活性,各种土壤酶的名称、简称及底物见表2。其中,水解酶(BG、BX、CBH、NAG、LAP、AcP)活性采用微孔板荧光法,用多功能酶标仪在365 nm波长处激发,450 nm波长处荧光测定;氧化酶(POX、PER)活性采用DOPA-紫外分光光度法,用多功能酶标仪在450 nm波长处测定。
表 2 土壤胞外酶的简称及所用底物Table 2 Soil enzyme along with their enzyme abbreviation and substrate of soil enzyme酶名称 简称 底物 β-葡糖苷酶β-glucosidase BG 4-MUB-β-D-glucoside β-木糖苷酶β-xalosidase BX 4-MUB-β-D-xylopyranoside 纤维二糖水解酶Cellobiohydrolase CBH 4-MUB-β-D-cellobioside β-N-乙酰氨基葡萄糖苷酶β-N-acetylglucosaminidase NAG 4-MUB-N-acetyl-β-D-glucosaminde 亮氨酸氨基肽酶Leucine aminopeptidase LAP L-leucine-7-amido-4 methylcounarin 酸性磷酸酶Acid phosphatase AcP 4-MUB-phosphatase 酚氧化物酶Phenol oxidase POX L-dihydroxyphenylalanine(L-DOPA) 过氧化物酶Peroxidase PER L-dihydroxyphenylalanine(L-DOPA) and H2O2 说明:MUB为甲基伞形酮酰Methylumbelliferyl。 通过计算碳、氮和磷酶活性的比值研究土壤胞外酶化学计量[20],同时,采用酶计量的载体分析,即用矢量长度(VL)及矢量角(VA)分析间伐处理对微生物能量和营养的相对限制状况[21],计算公式如下。
$$ {E}_\text{C/N}\text{}\text=\text{}\text{ln}{H}_{\mathrm{B}\mathrm{G}}\text{/ln}\text{(}{H}_{\text{NAG}}\text+{H}_{\text{LAP}}\text{)}\text{;}\text{}\text{}\text{} $$ (1) $$ {E}_\text{C/P}\text{}\text=\text{}\text{ln}{H}_{\text{BG}}\text{/ln}{H}_{{\mathrm{Ac}}\mathrm{P}};\text{}\text{}\text{}\text{}\text{}$$ (2) $$ {E}_\text{N/P}\text{= ln}\text{(}{H}_{\text{NAG}}\text+{H}_{\text{LAP}}\text{)}\text{/ln}{H}_{{\mathrm{Ac}}\mathrm{P}}; $$ (3) $$ {V}_{\text{L}}\text=\text{SQRT}\text{[}\text{(}{E}_\text{C/N}\text{)}^2\text+\text{(}{E}_\text{C/P}\text{)}^2\text{]}\text{;} $$ (4) $$ {V}_{\text{A}}\text=\text{Degrees}\text{[}\text{ATAN2}\text{(}{E}_\text{C/P}\text{,}\text{}{E}_\text{C/N}\text{)}\text{]}\text{。}$$ (5) 式(1)~(5)中:$ {E}_\text{C/N} $、$ {E}_\text{C/P} $、$ {E}_\text{N/P} $分别为土壤碳获取酶/氮获取酶比值、土壤碳获取酶/磷获取酶比值、土壤氮获取酶/磷获取酶比值;$ {H}_{\mathrm{B}\mathrm{G}}\mathrm{、}{H}_{\text{NAG}}\mathrm{、}{H}_{\text{LAP}}\mathrm{、}{H}_{{\mathrm{Ac}}\mathrm{P}} $分别为BG、NAG、LAP、AcP的酶活性;SQRT为平方根函数,Degrees为角度转换函数,ATAN2为反正切函数。VL越大,表明碳限制越严重。VA以45°为分界线,>45°为磷限制,<45°为氮限制。偏离程度越大,限制程度越强。
1.4 数据分析
使用SPSS 25.0对不同间伐恢复时间下的土壤理化性质、胞外酶活性、酶化学计量比、酶矢量长度和角度的差异进行单因素方差分析(one-way ANOVA)和最小显著性差异法(LSD)(P<0.05);利用Sperman检验分析与土壤酶活性和酶矢量变化显著相关的土壤因子,利用Origin 2021绘图。以酶活性及其矢量作为物种因子,土壤理化性质作为环境因子,利用Canoco 5.0进行冗余分析。通过方差膨胀因子(VIF)判断解释变量之间的线性关系,剔除共线性较强(VIF>5)的变量,对剩余的pH、有效氮、有机碳和全磷共4个变量进行研究。
2. 结果与分析
2.1 间伐恢复对土壤理化性质的影响
从表3可见:间伐恢复对土壤pH、有效氮、全磷、碳氮比、氮磷比、有机碳、微生物量碳、微生物量氮和微生物量碳氮比均有显著影响(P<0.05)。恢复5 a的土壤pH显著高于ck (P<0.05)。恢复13 a的土壤全磷、微生物量碳和微生物量氮均显著高于ck (P<0.05),分别是ck的1.28、1.19和1.15倍。土壤有效氮、碳氮比和氮磷比均显著低于ck (P<0.05)。恢复5 a的土壤有机碳显著降低了25.93% (P<0.05),但恢复13 a的土壤有机碳质量分数逐渐恢复至未间伐前水平。间伐恢复对土壤含水率和全氮无显著影响。
表 3 不同间伐恢复时间下土壤理化特性状况Table 3 Soil physical and chemical properties under different thinning treatments间伐后恢复时间/a pH 含水率/% 有效氮/(mg·kg−1) 全氮/(g·kg−1) 全磷/(g·kg−1) 碳氮比 ck 5.48±0.10 b 37.28±4.01 a 21.34±1.96 a 4.58±0.86 a 0.60±0.08 b 10.02±1.16 a 5 5.98±0.13 a 35.10±6.81 a 17.19±0.48 ab 3.28±0.68 a 0.52±0.10 b 9.34±1.41 ab 13 5.76±0.17 ab 40.37±1.67 a 16.56±0.58 b 3.93±0.44 a 0.77±0.07 a 8.55±1.32 b 间伐后恢复时间/a 氮磷比 有机碳/(g·kg−1) 微生物量碳/(g·kg−1) 微生物量氮/(g·kg−1) 微生物量碳氮比 ck 7.49±0.71 a 35.94±3.84 a 1.14±0.04 b 0.20±0.01 b 5.97±0.37 ab 5 6.45±0.95 ab 26.62±2.79 b 1.14±0.09 b 0.22±0.01 ab 5.09±0.13 b 13 5.04±0.34 b 33.33±2.27 ab 1.36±0.02 a 0.23±0.01 a 6.11±0.33 a 说明:数据均为平均值±标准误。不同小写字母表示不同处理间差异显著 (P<0.05)。 2.2 间伐恢复对土壤酶活性及胞外酶计量比的影响
从图1可见:间伐恢复对不同土壤酶活性的影响并不一致。恢复13 a时土壤BX、AcP和NAG+LAP活性显著下降(P<0.05),较ck分别降低了25.39%、22.92%和46.25%,同时土壤BG活性还显著提高(P<0.05),是ck的1.34倍(P<0.05)。土壤氧化酶(POX、PER)和CBH活性变化趋势与前4种酶不同,在恢复5 a时活性最低,在恢复13 a时活性最高。
通过矢量分析发现:VA>45°,且EN/P<1、EC/N>1 (图2A),表明研究区土壤微生物生长代谢主要受碳和磷共同限制。森林土壤EC/P和EN/P显著偏离1,且随间伐后时间的持续而逐渐恢复或显著增大(P<0.05,图2B)。VA和VL在3个间伐恢复间均有明显差异(图2C~D)。与ck相比,间伐恢复5 a的VA显著降低了4.42%,13 a的VL是ck的1.13倍(P<0.05)。表明间伐措施在恢复初期能够缓解土壤微生物受磷限制的状况,而后随恢复时间的持续,微生物受碳限制程度显著增加(P<0.05)。
2.3 土壤酶整体变化和土壤理化性质的相关性分析及冗余分析
相关性分析(表4)表明:水解酶活性与有效氮、有机碳和微生物量碳氮比均呈正相关关系。其中土壤碳获取酶(BG、CBH)与土壤全磷、有机碳、微生物量碳呈显著(P<0.05)或极显著(P<0.01)正相关,BX活性与土壤有效氮、微生物量碳氮比呈显著正相关(P<0.05)。土壤氮获取酶(NAG+LAP)和磷获取酶(AcP)均与土壤有效氮呈极显著正相关(P<0.01)。酚氧化物酶(PER)除与pH呈显著负相关外(P<0.05),还与有机碳、微生物量碳氮比呈极显著正相关(P<0.01)。VA仅与pH呈极显著负相关(P<0.01)。VL与全磷和微生物量碳呈显著正相关外(P<0.05),还与氮磷比呈极显著负相关(P<0.01)。
表 4 土壤酶变化与土壤理化性质的相关性分析Table 4 Correlation analysis between soil enzyme changes and soil physical and chemical properties指标 pH IN TP SOC MBC MBC/MBN N/P POX −0.54 −0.29 −0.04 −0.07 0.26 0.30 −0.04 PER −0.65* 0.19 0.32 0.45* 0.22 0.52** 0.21 BG 0.28 0.35 0.73** 0.55** 0.63** 0.38 −0.25 BX −0.53 0.54** −0.01 0.27 0.10 0.45* 0.56 CBH −0.01 0.24 0.46* 0.43* 0.53** 0.65** 0.17 AcP −0.72* 0.57** −0.38 0.06 −0.13 0.22 0.85** NAG+LAP 0.17 0.66** −0.08 0.14 −0.01 0.00 0.60 VA −0.95** 0.01 −0.30 −0.06 −0.04 0.35 0.43 VL 0.45 −0.28 0.70** 0.31 0.48* 0.15 −0.63* 说明:IN为土壤有效氮,TP为土壤全磷,SOC为土壤有机碳,MBC为微生物量碳,MBN为微生物量氮,N/P为氮磷比。POX为酚氧化物酶,PER为过氧化物酶,BG为β-葡糖苷酶,BX为β-木糖苷酶,CBH为纤维二糖水解酶,AcP为酸性磷酸酶,NAG+LAP为氮获取酶(β-N-乙酰氨基葡萄糖苷酶和亮氨酸氨基肽酶总和),VA为酶矢量角度,VL为酶矢量长度。*表示显著相关(P<0.05),**表示极显著相关(P<0.01)。 冗余分析(图3)表明:剔除存在共线性关系的变量后,pH、有效氮、有机碳和全磷共解释了酶活性和酶矢量变异的73.71%。其中pH和有机碳是对土壤酶整体变化解释度最高的因子,分别解释了变量的48.80%和13.10%,且pH与酶指标变化显著相关(P<0.05)。
3. 讨论
3.1 间伐恢复年限对土壤理化性质及微生物生物量的影响
间伐改变了秦岭松栎混交林表层土壤pH和养分质量分数,但在不同恢复阶段规律不一致。在本研究中,间伐导致pH提高,尤其是间伐恢复5 a后,这与许多学者的研究结果一致。如对云杉Picea crassifolia[22]林和火炬松Pinus taeda[23]林研究表明:间伐减少了针叶凋落物作为有机酸主要输入组分的产生,从而显著提高土壤表层pH。本研究中针叶树种的胸高断面积占比在间伐后有所降低,这在一定程度上能缓解土壤酸化。同时,间伐后土壤含水率、全氮、全磷和有机碳质量分数均呈先减少后逐步恢复的趋势。这可能是因为间伐短期内树冠层郁闭度减小,导致土壤蒸发增强的同时,也促进林下植被的快速生长,加快了土壤水分的消耗[24]。凋落物作为土壤最主要的有机碳源,通过微生物转化为腐殖质的同时也改变了土壤pH,影响凋落物的分解,改变土壤养分水平[25]。相较于ck,间伐恢复5、13 a后,凋落物量分别恢复至81.16%和93.41%,间伐恢复13 a的土壤全氮、全磷和有机碳质量分数有所提高,表明随时间的持续,林分结构及相关生态过程在一定程度上得到恢复。此外,本研究中微生物量碳、氮和土壤有效氮在间伐恢复13 a后的变化趋势不一致,可能因为间伐后林地内出现了栗、桤木和水蜡树等阳性植物,以及毛樱桃、白桦和漆树等阔叶树种,林地内相对多度增加,根系密度和根系分泌物增多,有利于土壤微生物生物量的积累[26]。而林下喜光物种的快速生长[27],对土壤游离态氮的需求增大,导致土壤有效氮质量分数有所降低。这与周璇等[28]对8年生柳杉Cryptomeria japonica人工林进行间伐后的研究结果一致。
3.2 间伐恢复年限对土壤酶活性的影响
在本研究中,间伐恢复年限导致土壤BX、AcP和NAG+LAP活性显著降低,但对其他土壤酶活性影响趋势不同,如POX、PER、BG和CBH通常在间伐恢复5 a时活性最低,在13 a时恢复到间伐前水平或高于未间伐处理(如BG)。这与其他研究结果相似,但并不完全一致[29−30]。这种结果可能是由于不同的林分环境以及微生物利用资源多寡的差异,导致土壤酶活性对同一干扰方式的不同改变[31]。随着间伐恢复时间的持续,易分解有机物质减少而难降解的碳相对较多[32],POX、PER和BG、CBH作为土壤中主要的木质素降解酶和纤维素降解酶,其活性得到显著提高,以增强微生物利用顽固性有机碳的能力。这与MEISAM等[33]的研究结果一致。而以分解几丁质和蛋白质、半纤维素等易分解物质为主的NAG+LAP、BX活性的显著降低也映证了SINSABAUGH等[34]的资源分配理论。
土壤胞外酶与土壤养分输入和微生物量等密切相关[35]。通过相关分析发现:BG和CBH活性与微生物量碳、全磷显著正相关,表明土壤微生物数量的变化与碳循环土壤酶活性的变化关系最为密切,而全磷则是磷素限制环境中影响微生物生长的主要因素[7, 16]。有效氮质量分数的减少虽然在一定程度上能促使氮获取酶的产生,但同样也会降低土壤微生物的活性和限制酶促反应底物供应,从而减少部分酶的释放[36],这与孙鹏跃等[37]的研究结果一致。冗余分析发现:土壤pH也是影响土壤酶活性的主要因素,并与部分酶变化表现出负相关关系,这与多数研究结果是一致的[3]。有研究表明:大多数土壤酶在特定的pH范围(最适值在4.0~5.5)内表现出最大的活性和稳定性,当pH超过这个范围时,酶活性会降低[38]。
3.3 间伐恢复年限对酶化学计量比和微生物养分限制的影响
本研究中所有处理的土壤酶矢量角度均>45°,符合亚热带地区森林土壤微生物更受磷素限制的理论[39]。同时参与土壤碳、氮和磷循环相关酶计量比偏离了表层土壤中接近1∶1∶1的平均水平[3],也在一定程度上反映了秦岭区域松栎混交林间伐恢复过程中微生物受碳和磷的共同限制,这与薛悦等[40]对安康市火池塘林区撂荒地恢复过程的研究结果相一致。与未间伐样地相比,间伐后恢复5 a时显著降低的酶矢量角度表征了微生物受到的磷限制减弱,随时间进程减弱效应逐渐消失,林内物种丰富度的提高和凋落物量的增加,促使土壤微生物分泌更多碳获取酶(如BG)来降解有机质,释放磷以供给微生物活动,以缓解磷限制,这些过程都会导致微生物碳限制的进一步增加。相关性分析结果中,酶矢量长度与微生物量碳呈显著正相关,证实了微生物需要更多的碳源来满足代谢活动所耗的能量,这与CUI等[41]的研究结果相似。
4. 结论
间伐改变了松栎混交林区域内的年凋落物总量及针叶与阔叶的凋落量比例,同时改变了林内物种丰富度和林分郁闭度,从而影响了土壤基本理化性质。抚育间伐在一定程度上能够缓解土壤微生物受磷限制的状况,但随恢复时间持续,林内凋落物量逐渐增加使土壤微生物受碳限制更为严重。
-
表 1 树形调整对香榧中层光照强度变化的影响
Table 1. Effect of tree shape adjustment on the change of central layer light intensity
处理 光照强度/klx 5月 6月 7月 8月 9月 ck-A30° 16.92±0.26 c 18.11±0.21 d 32.26±0.57 b 38.48±0.34 a 22.10±0.42 bc ck-A60° 20.28±0.27 b 23.00±0.24 a 37.59±0.37 a 39.85±0.86 a 26.09±0.21 a ck-A80° 15.03±0.17 d 19.97±0.48 c 26.99±0.62 c 36.37±0.69 b 21.66±0.31 cd N3-A30° 20.08±0.35 b 21.11±1.53 bc 27.90±1.16 c 35.55±0.27 bc 22.86±0.44 b N3-A60° 26.85±0.50 a 22.15±0.35 ab 36.72±0.88 a 39.67±0.67 a 25.96±0.22 a N3-A80° 17.61±0.26 c 18.14±0.18 d 31.09±1.08 b 33.88±0.32 c 21.01±0.27 d N4-A30° 16.19±0.27 d 18.11±0.52 d 38.01±0.45 a 34.58±0.61 c 22.09±0.23 bc N4-A60° 25.25±0.72 a 23.33±0.30 a 36.95±0.66 a 39.15±0.36 a 25.83±0.21 a N4-A80° 18.01±0.59 c 14.96±0.27 e 36.10±0.81 ab 33.93±0.43 c 22.08±0.33 bc NE 0.000 0.000 0.000 0.000 0.032 AE 0.000 0.000 0.000 0.000 0.000 NE × AE 0.000 0.000 0.000 ns ns 说明:ck表示单骨干枝自然圆头形;N3~N4分别表示3、4条骨干枝开心形;A30°、A60°、A80°分别表示30°、60°、80°开张角度;同列不同小写字母表示不同处理间差异显著(P<0.05)。NE表示骨干枝效应;AE表示角度效应;NE×AE表示交互效应;P<0.05表示差异显著;ns表示无显著差异。 表 2 树形调整对香榧下层光照强度变化的影响
Table 2. Effect of tree shape adjustment on the change of lower layer light intensity
处理 光照强度/klx 5月 6月 7月 8月 9月 ck-A30° 8.55±0.09 c 11.22±0.32 b 11.75±0.49 cd 14.25±0.43 b 10.15±0.33 cde ck-A60° 9.22±0.23 c 14.18±0.45 a 15.78±1.12 ab 16.55±0.22 a 11.73±0.14 a ck-A80° 7.38±0.46 d 9.83±0.68 c 9.93±1.17 d 12.53±0.35 c 9.64±0.16 de N3-A30° 7.41±0.09 d 9.50±0.43 c 10.64±0.69 d 12.60±0.46 c 10.31±0.19 c N3-A60° 13.93±0.45 a 13.82±0.37 a 13.70±0.45 bc 16.08±0.40 a 11.25±0.22 ab N3-A80° 9.15±0.27 c 8.41±0.12 c 12.20±0.79 cd 12.77±0.37 c 9.56±0.14 e N4-A30° 7.38±0.23 d 10.03±0.36 c 12.10±0.57 cd 13.22±0.36 c 10.34±0.10 c N4-A60° 11.54±0.23 b 13.54±0.33 ab 16.55±0.36 a 16.00±0.27 a 10.72±0.11 bc N4-A80° 7.32±0.17 d 6.65±0.13 d 10.21±0.37 d 12.67±0.62 c 10.22±0.22 cd NE 0.000 0.000 0.004 0.111 ns AE 0.000 0.000 0.000 0.000 0.000 NE × AE 0.000 0.000 0.031 ns 0.007 说明:ck表示单骨干枝自然圆头形;N3~N4分别表示3、4条骨干枝开心形;A30°、A60°、A80°分别表示30°、60°、80°开张角度;同列不同小写字母表示不同处理间差异显著(P<0.05)。NE表示骨干枝效应;AE表示角度效应;NE×AE表示交互效应;P<0.05表示差异显著;ns表示无显著差异。 表 3 树形调整对香榧种实可溶性糖质量分数的影响
Table 3. Effect of tree shape adjustment on the content of soluble sugar of the seeds
处理 可溶性糖质量分数/(mg·g−1) 5月 6月 7月 8月 9月 ck-A30° 421.32±4.11 e 487.16±6.23 d 338.34±0.36 d 190.71±4.46 cd 158.85±0.67 c ck-A60° 565.11±8.55 c 541.84±10.31 bc 416.54±2.76 a 228.51±6.35 a 191.20±3.63 a ck-A80° 577.53±3.57 bc 512.94±10.18 cd 387.12±6.36 bc 215.29±2.45 ab 178.70±1.22 b N3-A30° 520.20±14.86 d 479.39±13.79 d 346.86±2.55 d 202.64±3.27 bcd 171.07±2.16 c N3-A60° 590.90±5.07 bc 566.07±15.20 ab 378.60±6.24 c 210.84±1.61 abc 190.53±1.40 a N3-A80° 641.06±8.71 a 585.95±2.65 a 367.76±6.82 cd 198.62±4.46 bcd 178.51±1.99 b N4-A30° 522.59±9.70 d 521.33±17.14 cd 354.34±2.69 d 183.24±1.08 d 166.30±2.92 c N4-A60° 609.05±8.22 b 567.31±2.17 ab 414.99±7.73 a 210.98±0.71 abc 185.28±0.99 ab N4-A80° 566.06±10.40 c 546.50±8.53 bc 408.28±6.78 ab 203.51±10.23 bc 180.70±2.30 ab NE 0.000 0.015 0.000 ns ns AE 0.000 0.000 0.000 0.000 0.000 NE × AE 0.000 0.038 0.017 ns ns 说明:ck表示单骨干枝自然圆头形;N3~N4分别表示3、4条骨干枝开心形;A30°、A60°、A80°分别表示30°、60°、80°开张角度;同列不同小写字母表示不同处理间差异显著(P<0.05)。NE表示骨干枝效应;AE表示角度效应;NE×AE表示交互效应;P<0.05表示差异显著;ns表示无显著差异。 表 4 树形调整对香榧种实淀粉质量分数的影响
Table 4. Effect of tree shape adjustment on the content of starch of the seeds
处理 淀粉质量分数/(mg·g−1) 5月 6月 7月 8月 9月 ck-A30° 521.82±5.06 bc 267.04±16.07 f 110.38±4.14 d 96.55±5.21 d 107.33±1.39 c ck-A60° 650.25±38.93 a 362.11±2.06 cd 141.85±7.26 bc 117.53±8.18 bc 123.31±2.66 a ck-A80° 519.67±7.61 bc 497.72±7.55 a 166.86±9.52 ab 118.15±1.39 bc 104.11±0.37 c N3-A30° 490.65±10.37 c 311.77±8.97 ef 131.72±7.93 cd 115.05±4.91 c 116.52±1.88 b N3-A60° 573.41±12.95 b 393.56±4.00 bc 164.49±3.53 ab 141.76±1.17 a 110.77±0.72 bc N3-A80° 494.41±9.80 c 369.79±17.69 cd 117.27±4.69 cd 113.43±1.68 c 107.72±2.23 c N4-A30° 483.12±1.16 c 323.66±17.75 de 142.93±10.24 bc 118.15±2.31 bc 81.75±1.17 e N4-A60° 576.63±11.28 b 481.64±20.17 a 180.87±4.97 a 130.92±0.99 ab 106.09±1.71 c N4-A80° 508.92±13.08 c 433.41±1.51 b 121.59±5.50 cd 120.08±0.58 bc 95.36±1.77 d NE 0.021 0.001 ns 0.005 0.000 AE 0.000 0.000 0.000 0.000 0.000 NE × AE ns 0.000 0.000 0.038 0.000 说明:ck表示单骨干枝自然圆头形;N3~N4分别表示3、4条骨干枝开心形;A30°、A60°、A80°分别表示30°、60°、80°开张角度;同列不同小写字母表示不同处理间差异显著(P<0.05)。NE表示骨干枝效应;AE表示角度效应;NE×AE表示交互效应;P<0.05表示差异显著;ns表示无显著差异。 表 5 树形调整对香榧种实可溶性蛋白质量分数的影响
Table 5. Effect of tree shape adjustment on the content of soluble protein of the seeds
处理 可溶性蛋白质量分数/(mg·g−1) 5月 6月 7月 8月 9月 ck-A30° 135.89±6.72 d 146.02±5.22 e 172.30±3.13 fg 402.95±14.91 f 343.21±10.93 d ck-A60° 198.53±10.20 b 217.51±3.28 c 270.21±14.30 c 573.63±3.96 c 573.37±6.35 b ck-A80° 140.62±9.01 cd 151.01±3.82 e 161.66±2.30 g 235.22±5.10 h 235.33±14.75 f N3-A30° 205.62±3.35 b 215.97±10.83 c 240.41±5.43 d 484.14±5.23 d 478.95±5.14 c N3-A60° 286.88±0.64 a 329.74±6.35 b 407.50±11.09 b 647.12±12.21 b 585.41±11.49 b N3-A80° 197.94±8.84 b 200.59±7.38 cd 209.55±4.84 e 270.19±9.19 g 297.18±6.63 e N4-A30° 189.08±2.21 b 200.59±2.57 cd 223.38±2.30 e 456.88±8.05 de 460.3±7.14 c N4-A60° 283.63±8.86 a 363.95±9.76 a 444.75±11.75 a 752.61±7.16 a 680.07±15.65 a N4-A80° 163.67±2.30 c 181.76±2.74 d 195.71±1.51 ef 431.99±13.05 ef 296.71±6.88 e NE 0.000 0.000 0.000 0.000 0.000 AE 0.000 0.000 0.000 0.000 0.000 NE × AE 0.027 0.000 0.000 0.000 0.000 说明:ck表示单骨干枝自然圆头形;N3~N4分别表示3、4条骨干枝开心形;A30°、A60°、A80°分别表示30°、60°、80°开张角度;同列不同小写字母表示不同处理间差异显著(P<0.05)。NE表示骨干枝效应;AE表示角度效应;NE×AE表示交互效应;P<0.05表示差异显著;ns表示无显著差异。 表 6 树形调整对香榧种实含油率的影响
Table 6. Effect of tree shape adjustment on the oil content of the seeds
处理 含油率/% 7月 8月 9月 ck-A30° 28.34±0.16 c 45.96±0.01 abc 51.53±0.63 bcd ck-A60° 29.53±0.12 a 46.52±0.13 ab 53.59±0.53 a ck-A80° 28.09±0.32 c 45.11±0.12 c 50.19±0.44 bcd N3-A30° 28.56±0.21 c 46.17±0.23 abc 51.93±0.27 ab N3-A60° 29.65±0.19 a 47.08±0.24 a 53.89±0.69 a N3-A80° 28.12±0.26 c 45.61±0.11 bc 49.50±0.59 cd N4-A30° 28.65±0.17 bc 45.81±0.73 abc 51.26±0.28 bc N4-A60° 29.46±0.34 ab 47.03±0.38 a 53.90±0.48 a N4-A80° 28.34±0.19 c 45.14±0.20 c 49.04±0.30 d NE ns ns ns AE 0.000 0.001 0.000 NE × AE ns ns ns 说明:ck表示单骨干枝自然圆头形;N3~N4分别表示3、4条骨干枝开心形;A30°、A60°、A80°分别表示30°、60°、80°开张角度;同列不同小写字母表示不同处理间差异显著(P<0.05)。NE表示骨干枝效应;AE表示角度效应;NE×AE表示交互效应;P<0.05表示差异显著;ns表示无显著差异。 表 7 树形调整对香榧种实脂肪酸组分的影响
Table 7. Effect of tree shape adjustment on the main fatty acid compositions of the seeds
处理 脂肪酸组分/(mg·g−1) 棕榈酸 硬脂酸 油酸 亚油酸 亚麻酸 二十碳二烯酸 金松酸 ck-A30° 39.04±0.23 cd 11.47±0.07 b 164.59±0.95 b 240.73±1.39 f 1.60±0.01 fg 3.64±0.02 a 47.48±0.28 f ck-A60° 44.52±0.21 a 10.50±0.05 c 151.62±0.71 c 262.57±1.22 d 1.82±0.01 d 3.45±0.02 b 54.59±0.26 c ck-A80° 38.96±0.16 cd 9.92±0.04 d 149.08±0.62 d 242.67±1.00 f 1.66±0.01 e 2.83±0.01 e 50.35±0.21 e N3-A30° 40.75±0.10 b 12.36±0.03 a 176.29±0.43 a 231.78±0.57 g 1.61±0.00 f 3.01±0.01 c 46.51±0.11 g N3-A60° 41.01±0.25 b 6.84±0.04 h 132.17±0.80 e 288.81±1.74 a 1.94±0.01 b 1.98±0.01 i 59.40±0.36 b N3-A80° 38.76±0.22 d 7.38±0.04 f 117.32±0.66 f 265.62±1.49 cd 1.89±0.01 c 2.56±0.01 g 55.18±0.31 c N4-A30° 41.03±0.11 b 9.96±0.03 d 150.38±0.39 cd 246.87±0.64 e 1.57±0.00 g 2.92±0.01 d 53.37±0.14 d N4-A60° 44.31±0.19 a 7.98±0.03 e 132.52±0.56 e 277.39±1.16 b 1.87±0.01 c 2.78±0.01 f 65.21±0.38 a N4-A80° 39.36±0.11 c 7.24±0.02 g 104.93±0.30 g 268.38±0.77 c 2.11±0.01 a 2.26±0.01 h 59.88±0.17 b NE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 AE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 NE × AE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 说明:ck表示单骨干枝自然圆头形;N3~N4分别表示3、4条骨干枝开心形;A30°、A60°、A80°分别表示30°、60°、80°开张角度;同列不同小写字母表示不同处理间差异显著(P<0.05)。NE表示骨干枝效应;AE表示角度效应;NE×AE表示交互效应;P<0.05表示差异显著。 -
[1] WU Jiasheng, HUANG Jiandiao, HONG Yiwei, et al. De novo transcriptome sequencing of Torreya grandis reveals gene regulation in sciadonic acid biosynthesis pathway [J]. Industrial Crops &Products, 2018, 120: 47 − 60. [2] SUO Jinwei, TONG Ke, WU Jiasheng, et al. Comparative transcriptome analysis reveals key genes in the regulation of squalene and β-sitosterol biosynthesis in Torreya grandis [J]. Industrial Crops &Products, 2019, 131: 182 − 193. [3] SUO Jinwei, MA Zhenmin, ZHAO Bing, et al. Metabolomics reveal changes in flavor quality and bioactive components in post-ripening Torreya grandis nuts and the underlying mechanism [J/OL]. Food Chemistry, 2023, 406: 134987[2024-01-11]. doi: 10.1016/j.foodchem.2022.134987. [4] YAN Jingwei, ZENG Hao, CHEN Wenchao, et al. New insights into the carotenoid biosynthesis in Torreya grandis kernels [J]. Horticultural Plant Journal, 2023, 2(6): 1 − 11. [5] ZHANG Zuying, TAO Liu, GAO Lingling, et al. Transcription factors TgbHLH95 and TgbZIP44 cotarget terpene biosynthesis gene TgGPPS in Torreya grandis nuts [J]. Plant Physiology, 2023, 193(2): 1161 − 1176. [6] LOU Heqiang, ZHENG Shan, CHEN Wenchao, et al. Transcriptome-referenced association study provides insights into the regulation of oil and fatty acid biosynthesis in Torreya grandis kernel [J/OL]. Journal of Advanced Research, 2023[2024-01-11]. doi: 10.1016/j.jare.2023.01.007. [7] YAN Jingwei, ZENG Hao, CHEN Weijie, et al. Effects of tree age on flavonoids and antioxidant activity in Torreya grandis nuts via integrated metabolome and transcriptome analyses [J]. Food Frontiers, 2023, 4: 358 − 367. [8] HU Yuanyuan, ZHANG Yongling, YU Weiwu, et al. Novel insights into the influence of seed sarcotesta photosynthesis on accumulation of seed dry matter and oil content in Torreya grandis cv. “Merrillii” [J]. Frontiers in Plant Science, 2018, 8: 2179. [9] 何风杰, 洪小玲, 邱智敏, 等. 台州市香榧产业发展现状、存在问题及对策[J]. 果树资源学报, 2023, 4(2): 77 − 80. HE Fengjie, Hong Xiaoling, QIU Zhimin, et al. Development status, existing problem and countermeasure of Torreya grandis ‘Merrillii’ in Taizhou city [J]. Journal of Fruit Resources, 2023, 4(2): 77 − 80. [10] 叶淑媛, 曾燕如, 胡渊渊, 等. 香榧初结果母枝性状变化规律与结实能力的关系[J]. 浙江农林大学学报, 2022, 39(1): 41 − 49. YE Shuyuan, ZENG Yanru, HU Yuanyuan, et al. Relationship between character changing and seed-bearing capacity of initial seed-bearing mother shoots in Torreya grandis ‘Merrillii’ [J]. Journal of Zhejiang A&F University, 2022, 39(1): 41 − 49. [11] 郝婕, 索相敏, 李学营, 等. 不同整形修剪模式下富士苹果树体结构及相关因素分析[J]. 东北农业科学, 2017, 18(12): 2528 − 2535. HAO Jie, SUO Xiangmin, LI Xueying, et al. Analysis on Fuji apple tree structures and related factors under different pruning modes [J]. Journal of Northeast Agricultural Sciences, 2017, 18(12): 2528 − 2535. [12] 贺梅英. 荔枝龙眼示范园间伐技术经济效益评价[J]. 广东农业科学, 2015, 42(18): 37 − 42. HE Meiying. Economic benefit evaluation of thinning technology in litchi and longan demonstration orchards [J]. Guangdong Agricultural Sciences, 2015, 42(18): 37 − 42. [13] 苏渤海, 范崇辉, 李国栋, 等. 红富士苹果改形过程中不同树形光照分布及其对产量品质的影响[J]. 西北农林科技大学学报(自然科学版), 2008, 36(1): 158 − 162. SU Bohai, FAN Chonghui, LI Guodong, et al. Effects of modifying between light distribution, yield and quality of different shapes on ‘Red Fuji’ apple [J]. Journal of Northwest A&F University (Natural Science Edition), 2008, 36(1): 158 − 162. [14] 牟红梅, 于强, 李庆余, 等. ‘莱阳茌梨’高光效树形光合特性与果实品质的研究[J]. 北方园艺, 2018, 12: 58 − 62. MOU Hongmei, YU Qiang, LI Qingyu, et al. Research on photosynthetic characteristics and fruit quality of high light use efficiency tree shape on ‘Laiyang pear’ [J]. Northern Horticulture, 2018, 12: 58 − 62. [15] 刘丙花, 唐贵敏, 梁静. 不同树形对早实核桃‘鲁光’坚果产量和品质的影响[J]. 果树学报, 2021, 38(1): 73 − 81. LIU Binghua, TANG Guimin, LIANG Jing. Effects of different tree shapes on yield and quality of ‘Luguang’ walnut [J]. Journal of Fruit Science, 2021, 38(1): 73 − 81. [16] 何双凌, 岳海, 陈宇春, 等. 不同树形澳洲坚果‘O. C’坐果特征与产量的关系[J]. 西部林业科学, 2023, 52(5): 7 − 12. HE Shuangling, YUE Hai, CHEN Yuchun. Effect of setting fruit characteristics and yield of ‘O. C’ macadamia nut in different tree shapes [J]. Journal of West China Forestry Science, 2023, 52(5): 7 − 12. [17] 熊欢, 郭素娟, 彭晶晶, 等. 树体结构对板栗冠层光照分布和果实产量及品质的影响[J]. 南京林业大学学报(自然科学版), 2014, 38(2): 68 − 74. XIONG Huan, GUO Sujuan, PENG Jingjing. Effect of tree structure on light distribution and yield and quality of Castanea mollissima Bl. [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2014, 38(2): 68 − 74. [18] 李艳芳. 拉枝对枣树结果、叶片营养和光合特性的影响[D]. 保定: 河北农业大学, 2010. LI Yanfang. The Effects of Branch on Fruiting, Leaf Nutrition and Photosynthetic Characteristics in Chinese Jujube [D]. Baoding: Agricultural University of Hebei Province, 2010. [19] 蔡虎, 张文娥, 吴浪, 等. 拉枝对黔核7号泡核桃叶片营养、成花及坚果品质的影响[J]. 果树学报, 2022, 39(1): 60 − 67. CAI Hu, ZHANG Wene, WU Lang, et al. Effects of branch bending angle on leaf nutrition, flower formation and nut quality of Qianhe 7 walnut [J]. Journal of Fruit Science, 2022, 39(1): 60 − 67. [20] 刘琏, 陆吕佳, 胡渊渊, 等. 不同月份不同树龄香榧叶片光合特性的变化[J]. 浙江农林大学学报, 2022, 39(1): 32 − 40. LIU Lian, LU Lüjia, HU Yuanyuan, et al. Changes of photosynthesis in leaves of Torreya grandis ‘Merrillii’ in different months and different tree ages [J]. Journal of Zhejiang A&F University, 2022, 39(1): 32 − 40. [21] 成豪, 吴家胜, 马爽, 等. 树形调整对香榧成花和坐果的影响[J]. 林业科学, 2023, 59(11): 49 − 58. CHENG Hao, WU Jiasheng, MA Shuang, et al. Effects of tree shape adjustment on flower formation and fruit setting of Torreya grandis cv. Merrillii [J]. Scientia Silvae Sinicae, 2023, 59(11): 49 − 58. [22] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 食品中粗脂肪的测定: GB/T 14772—2008[S]. 北京: 中国标准出版社, 2009. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Determination of Crude Fat in Foods: GB/T 14772−2008 [S]. Beijing: Standards Press of China, 2009. [23] ZHOU Minying, SONG Lili, YE Shan, et al. New sights into lipid metabolism regulation by low temperature in harvested Torreya grandis nuts [J]. Research Article, 2019, 99: 4226 − 4234. [24] HAMADZIRIPI E T, THERON K I, MULLER M, et al. Apple compositional and peel color differences resulting from canopy microclimate affect consumer preference for eating quality and appearance [J]. Nature, 2006, 439(7075): 457 − 461. [25] 魏钦平, 鲁韧强, 张显川, 等. 富士苹果高干开心形光照分布与产量品质的关系研究[J]. 园艺学报, 2004, 31(3): 291 − 296. WEI Qinping, LU Renqiang, ZHANG Xianchuan, et al. Relationships between distribution of relative light intensity and yield and quality in different tree canopy shapes for ‘Fuji’ apple [J]. Acta Horticulturae Sinica, 2004, 31(3): 291 − 296. [26] 史祥宾, 刘凤之, 程存刚, 等. 设施葡萄不同新梢间距处理对冠层光环境及果实品质的影响[J]. 园艺学报, 2018, 45(3): 436 − 446. SHI Xiangbin, LIU Fengzhi, CHENG Cungang, et al. Effects of different new shoots spacing on canopy light environment and fruit quality of grapevine under protected cultivation [J]. Acta Horticulturae Sinica, 2018, 45(3): 436 − 446. [27] 张海旺, 张文臣, 贾浩, 等. 不同树形桃树冠层光照分布对果实产量和品质的影响[J]. 北方园艺, 2024(4): 21 − 27. ZHANG Haiwang, ZHANG Wenchen, JIA Hao, et al. Effects of light distribution in canopy of peach trees with different tree shapes on fruit yield and quality [J]. Northern Horticulture, 2024(4): 21 − 27. [28] 张红欢, 杨兴旺, 冀晓昊, 等. 树形对促早栽培桃冠层结构、光合特性及果实品质的影响[J]. 果树学报, 2024, 41(3): 470 − 480. ZHANG Honghuan, YANG Xingwang, JI Xiaohao, et al. Effects of tree shape on canopy structure, photosynthetic characteristics and fruit quality of early cultivated peach [J]. Journal of Fruit Science, 2024, 41(3): 470 − 480. [29] 刘珊珊, 令狐田, 赵志华, 等. 不同树形对砀山酥梨冠层结构、光合特性及果实品质的影响[J]. 果树资源学报, 2021, 3(5): 41 − 49. LIU Shanshan, LING Hutian, ZHAO Zhihua, et al. Effects of different tree shapes on canopy structure, photosynthetic characteristics, fruit quality of ‘Dangshan’ pear [J]. Journal of Fruit Resources, 2021, 3(5): 41 − 49. [30] 赵国栋, 贾林光, 张新生, 等. 拉枝角度对‘宫崎短枝富士’树体生长、果实品质和质地的影响[J]. 西北农业学报, 2021, 30(1): 102 − 108. ZHAO Guodong, JIA Linguang, ZHANG Xinsheng, et al. Effect of branch bending angle on growth, fruit quality and texture properties of Malus domestica Borkh ‘Miyazakifuji’ [J]. Acta Agriculturae Boreali-occidentalis Sinica, 2021, 30(1): 102 − 108. [31] 黄丽, 王亮, 赵迎丽, 等. 3种梨贮藏期间果实品质、可溶性糖和有机酸含量变化[J]. 食品研究与开发, 2023, 44(10): 46 − 52. HUANG Li, WANG Liang, ZHAO Yingli, et al. Changes in fruit quality, soluble sugar and organic acid content of three pear species during storage [J]. Food Research and Development, 2023, 44(10): 46 − 52. [32] 沈乐意, 王立如, 徐悦, 等. 不同砧木对‘阳光玫瑰’葡萄果实品质及糖异生相关基因表达的影响[J]. 农业生物技术学报, 2023, 31(12): 2490 − 2505. SHEN Leyi, WANG Liru, XU Yue, et al. Effect of different rootstocks on fruit quality and expression of genes related to gluconeogenesis in ‘Shine Muscat’ grapes (Vitis vinfera) [J]. Journal of Agricultural Biotechnology, 2023, 31(12): 2490 − 2505. [33] 于文剑, 杨丽, 张俊环, 等. 杏果实风味形成及调控机制研究进展[J]. 果树学报, 2023, 40(12): 2624 − 2637. YU Wenjian, YANG Li, ZHANG Junhuan, et al. Research progress on the mechanism of flavor formation and regulation in apricot [J]. Journal of Fruit Science, 2023, 40(12): 2624 − 2637. [34] 赵旗峰, 郭文娇, 荀志丽, 等. 树形对酿酒葡萄果实糖含量及蔗糖代谢相关酶活性的影响[J]. 河南农业科学, 2021, 50(5): 122 − 128. ZHAO Qifeng, GUO Wenjiao, XUN Zhili, et al. Effect of tree shape on sugar content and enzymes activities of sucrose metabolism in wine grape fruit [J]. Journal of Henan Agricultural Sciences, 2021, 50(5): 122 − 128. [35] 汪志辉, 熊碧玲, 刘燕, 等. 树形对鲜黄梨果实糖积累及山梨醇转化相关酶活性的影响[J]. 林业科学, 2011, 47(4): 27 − 32. WANG Zhihui, XIONG Biling, LIU Yan, et al. Effects of tree shape on the sugar accumulation and activity of sorbitol-invertase of Pyrus pyrifolia ‘Sunhwang’ [J]. Scientia Silvae Sinicae, 2011, 47(4): 27 − 32. [36] 林敏娟, 王建军, 吴翠云. 不同拉枝角度富士苹果叶片营养物质含量与果实品质之间的关系[J]. 塔里木大学学报, 2012, 24(3): 36 − 39. LIN Minjuan, WANG Jianjun, WU Cuiyun. Leaf nitrogen, phosphorus and potassium of different branch angle impact on fruit quality in Fuji [J]. Journal of Tarim University, 2012, 24(3): 36 − 39. [37] 王振磊, 林敏娟, 吴翠云. 不同拉枝角度对富士苹果树体生理特性和果实品质的影响[J]. 新疆农业科学, 2013, 50(8): 1462 − 1467. WANG Zhenlei, LIN Minjuan, WU Cuiyun. Effect of different branch bending angles on physiological characteristics and fruit quality of Fuji apple [J]. Xinjiang Agricultural Sciences, 2013, 50(8): 1462 − 1467. [38] 刘雪芳, 刘慧芳, 常月梅. ‘中林1号’核桃不同树形坚果品质分析[J]. 天津农业科学, 2021, 27(9): 19 − 23. LIU Xuefang, LIU Huifang, CHANG Yuemei. analysis on quality of ‘Zhonglin No. 1’ walnut with different tree shapes [J]. Tianjin Agricultural Sciences, 2021, 27(9): 19 − 23. -
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20240178