留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同优势菌根类型转变对土壤团聚体组成及性状的影响

马行聪 金文豪 屠嘉莹 盛卫星 陈俊辉 秦华

农正国, 熊忠平, 徐正会, 等. 新疆天山中-西段不同垂直带蚂蚁物种多样性[J]. 浙江农林大学学报, 2025, 42(1): 143−152 doi:  10.11833/j.issn.2095-0756.20240244
引用本文: 马行聪, 金文豪, 屠嘉莹, 等. 不同优势菌根类型转变对土壤团聚体组成及性状的影响[J]. 浙江农林大学学报, 2023, 40(6): 1149-1157. DOI: 10.11833/j.issn.2095-0756.20230376
NONG Zhengguo, XIONG Zhongping, XU Zhenghui, et al. Ant diversity along gradient in the middle-western section of Tianshan Mountains in Xinjiang[J]. Journal of Zhejiang A&F University, 2025, 42(1): 143−152 doi:  10.11833/j.issn.2095-0756.20240244
Citation: MA Xingcong, JIN Wenhao, TU Jiaying, et al. Impact of shifts among mycorrhizal types on soil aggregate composition and characteristics[J]. Journal of Zhejiang A&F University, 2023, 40(6): 1149-1157. DOI: 10.11833/j.issn.2095-0756.20230376

不同优势菌根类型转变对土壤团聚体组成及性状的影响

DOI: 10.11833/j.issn.2095-0756.20230376
基金项目: 国家自然科学基金资助项目(31971631)
详细信息
    作者简介: 马行聪(ORCID: 0009-0000-9654-0447),从事土壤健康与微生物调控研究。E-mail: mxc@stu.zafu.edu.cn
    通信作者: 秦华(ORCID: 0000-0002-8485-6345),教授,博士,从事土壤微生物生态及功能研究。E-mail: qinhua@zafu.edu.cn
  • 中图分类号: S718.8

Impact of shifts among mycorrhizal types on soil aggregate composition and characteristics

  • 摘要:   目的  马尾松Pinus massoniana林向阔叶林转变驱动优势菌根类型由外生菌根(ectomycorrhiza,ECM)转向丛枝菌根(arbuscular mycorrhiza,AM)。不同类型菌根由于其菌丝生物量和分泌物的不同,对土壤团聚体的影响可能存在差异,研究优势菌根类型转变对土壤团聚体组成的影响具有重要的生态学意义。  方法  通过野外调查采样,分析了不同优势菌根类型林分土壤不同粒级团聚体的占比及碳氮质量分数、菌根真菌生物量和胞外酶活性等。  结果  与ECM占优势的马尾松林相比,AM占优势的阔叶林在土壤团聚体的组成、稳定性及碳氮质量分数上存在显著差异,大团聚体(直径d>250 μm)比例和平均质量直径显著升高(P<0.05),而粉黏粒(d<53 μm)占比显著降低(P<0.05)。此外,大团聚体碳氮比显著降低(P<0.05),所有粒级团聚体中β-葡萄糖苷酶活性与β-N-乙酰氨基葡萄糖苷酶活性均显著降低(P<0.05)。大团聚体中易提取态球囊霉素相关土壤蛋白和总球囊霉素相关土壤蛋白趋于升高,微团聚体(d为53~250 μm)和粉黏粒中易提取态球囊霉素相关土壤蛋白、总球囊霉素相关土壤蛋白和麦角固醇质量分数则显著降低(P<0.05)。随机森林结果显示:团聚体有机碳质量分数主要与易提取态球囊霉素相关土壤蛋白、总球囊霉素相关土壤蛋白、ECM生物量和酶活性的变化有关(P<0.05)。  结论  在ECM占优势的马尾松林转变为AM占优势的阔叶林的过程中,土壤团聚体的稳定性显著升高,菌根生物量是团聚体有机碳质量分数变异的重要影响因子。图5参35
  • 蚂蚁作为膜翅目Hymenoptera蚁科Formicidae昆虫,在自然界中具有不可忽视的作用,具备改良土壤、分解有机质、促进土壤碳氮循环、维持微生态平衡等重要作用[12],常被用作各类环境生物多样性的指示物种[34]。全世界已记载的蚂蚁共有16亚科342属14 187种[5],蚂蚁是地球上分布最广、种类及数量最多的社会性昆虫[6]

    当前,中国的蚂蚁群落研究集中在西南地区[79],而对西北地区蚂蚁群落研究报道较少。在新疆地区蚂蚁研究方面,吴坚等[10]记录了新疆地区2亚科、5属、14种;夏永娟等[1112]记录了新疆地区3亚科、16属、43种,其中1新种;COLLINGWOOD等[13]报道准葛尔盆地及其邻近山区的蚂蚁46种,其中27种为中国新纪录种;黄人鑫等[14]报道了新疆蚂蚁42种新记录种。通过上述研究共记载了新疆蚂蚁3亚科20属118种,其中分布于天山的种类仅46种。可见,对新疆蚂蚁的研究,尤其是天山地区的研究还十分有限,且仅限于区系和分类,缺乏蚂蚁物种多样性的研究。近期,翟奖等[15]研究了新疆天山东部与邻近地区蚂蚁分布规律,共报道2亚科、14属、29种,发现蚂蚁物种主要集中在土壤温润、树木高大的人工林内;杨林等[16]对新疆天山中部的蚂蚁物种多样性进行了分析,共报道蚂蚁2亚科27种,北坡的蚂蚁物种多样性显著高于南坡,且中海拔区域的物种多样性最高。这些研究丰富了天山地区蚂蚁分布和物种多样性的研究,也使分布于天山的物种增加至50种。

    天山中-西段主要位于克拉玛依的奎屯至阿克苏地区的库车一线区域,由北坡、山间谷地和南坡组成,于2022年7—8月对新疆天山中-西段的蚂蚁多样性进行调查,探讨蚂蚁群落结构、物种多样性与海拔和植被的关系等问题,并与天山中部的蚂蚁多样性进行比较,以全面揭示干旱区蚂蚁物种多样性随着海拔和植被的变化如何变化,以期为该地区的生物多样性保护提供基础资料。

    新疆天山中-西段海拔为781~3 235 m,依地形划分为北坡独山子垂直带、山间起伏盆地的乌拉斯台和那拉提2个垂直带及南坡的库车垂直带,共4个垂直带。海拔每上升250 m,选取植被典型的1块50 m×50 m样地进行调查,共设置33块样地,其中垂直带中海拔最低的1块样地位于奎屯市独山子区天景颐园,海拔为781 m。各垂直带调查样地的位置及自然概况见表1。受野外自然条件限制,选定样地的海拔会有一定误差,控制在±50 m内。

    表 1  新疆天山中-西段蚂蚁群落调查样地概况
    Table 1  Survey sites of ant communities in the middle-western section of Tianshan Mountains in Xinjiang
    垂直带 样地
    编号
    海拔/m 纬度(N) 经度(E) 土壤类型 土壤湿度 植被类型 乔木郁闭度 盖度/% 地被物厚度/cm
    灌木 草本 地被物
    独山子 1 781 44°19′01.12″ 84°52′42.12″ 黄壤 潮湿 落叶阔叶林 0.5 0 70 70 1.0~2.0
    2 1 050 44°12′39.95″ 84°50′46.69″ 黄壤 干燥 落叶阔叶林 0.3 5 75 75 0.5~1.0
    3 1 278 44°09′56.52″ 84°49′39.46″ 黄沙土 干燥 灌丛 0 30 80 80 0.5~1.0
    4 1 540 44°07′11.10″ 84°49′31.52″ 黄沙土 干燥 灌丛 0 30 70 70 0.5~1.0
    5 1 726 44°06′08.44″ 84°48′15.93″ 黄沙土 潮湿 灌丛 0 40 60 60 1.0~2.0
    6 2 029 43°53′15.47″ 84°29′59.35″ 黄壤 湿润 草丛 0 0 95 95 0.5~1.0
    7 2 285 43°50′12.22″ 84°28′14.13″ 棕黄壤 湿润 灌丛 0 30 80 80 2.0~3.0
    8 2 549 43°47′27.07″ 84°27′51.96″ 棕壤 湿润 草丛 0 0 95 95 1.0~2.0
    9 2 773 43°46′43.76″ 84°27′21.36″ 灰黄壤 湿润 锦鸡儿灌丛 0 30 95 95 1.0~2.0
    10 3 023 43°45′14.16″ 84°26′13.54″ 黄沙土 湿 草甸 0 0 95 95 1.0~2.0
    11 3 235 43°44′21.20″ 84°24′57.72″ 灰棕壤 湿 草甸 0 0 85 85 1.0~2.0
    乌拉斯台 11 3 235 43°44′21.20″ 84°24′57.72″ 灰棕壤 湿 草甸 0 0 85 85 1.0~2.0
    12 3 024 43°42′27.20″ 84°26′51.60″ 棕壤 湿 草丛 0 0 80 80 1.0~2.0
    13 2 760 43°41′15.80″ 84°23′57.55″ 棕壤 湿 柏木灌丛 0 50 90 90 1.0~2.0
    14 2 533 43°40′02.69″ 84°24′24.03″ 棕壤 湿润 灌丛 0 30 90 95 0.5~1.0
    15 2 295 43°37′57.52″ 84°18′48.52″ 棕壤 湿润 云杉林 0.6 20 70 100 2.0~3.0
    16 2 000 43°21′36.52″ 84°22′00.32″ 棕壤 湿润 草丛 0 0 100 100 0.5~1.0
    17 1 798 43°20′12.98″ 84°21′30.23″ 棕壤 湿润 针阔混交林 0.4 0 95 95 1.0~2.0
    那拉提 18 1 802 43°13′43.85″ 84°19′15.64″ 棕壤 湿润 针阔混交林 0.5 30 95 95 2.0~3.0
    19 2 020 43°13′31.38″ 84°19′24.66″ 棕壤 湿润 针阔混交林 0.5 70 50 100 1.0~2.0
    20 2 288 43°11′26.28″ 84°19′42.82″ 棕壤 湿润 草丛 0 0 100 100 1.0~2.0
    21 2 548 43°10′06.98″ 84°21′04.21″ 棕壤 湿润 高山柳灌丛 0 90 100 100 2.0~3.0
    22 2 547 42°41′24.77″ 83°41′18.64″ 棕壤 湿润 草丛 0 0 100 100 0.5~1.0
    23 2 785 42°34′51.52″ 83°36′53.84″ 棕壤 湿润 草丛 0 10 95 95 1.0~2.0
    24 3 055 42°30′50.27″ 83°28′54.46″ 棕壤 湿 草丛 0 0 70 70 1.0~2.0
    库车 25 3 058 42°28′36.91″ 83°26′04.32″ 棕壤 湿 草丛 0 0 95 95 1.0~2.0
    26 2 759 42°27′50.54″ 83°24′29.82″ 黄壤 湿润 灌丛 0 50 95 95 1.0~2.0
    27 2 508 42°27′38.24″ 83°23′21.49″ 暗棕壤 湿润 云杉林 0.5 20 95 100 2.0~3.0
    28 2 233 42°26′31.70″ 83°15′21.55″ 黄壤 湿润 草丛 0 0 90 90 1.0~2.0
    29 2 052 42°25′05.20″ 83°16′01.70″ 黄壤 湿润 草丛 0 10 98 98 1.0~2.0
    30 1 773 42°13′34.37″ 83°13′57.53″ 黄沙土 湿润 灌丛 0 40 50 50 0.5~1.0
    31 1 539 42°07′16.52″ 83°09′02.09″ 红壤 干燥 灌丛 0 30 10 30 0.5
    32 1 269 41°51′24.16″ 82°49′08.19″ 黄沙土 干燥 疏灌丛 0 10 10 10 0.5
    33 1 009 41°44′01.62″ 82°55′43.37″ 黄沙土 干燥 落叶阔叶林 0.2 30 30 30 0.5
      说明:乌拉斯台垂直带在该海拔梯度内可选择的典型植被类型样地较少,为更直观地揭示蚂蚁物种数量变化,选择独山子垂直带海拔为3 235 m的样地(编号11)为乌拉斯台垂直带起始点。灌丛指多种灌木组成的灌丛,高于1.0 m,区别于单树种灌丛;疏灌丛指盖度小于10%的灌丛。锦鸡儿Caragana sinica;柏木Cupressus funebris;云杉Picea asperata;高山柳Salix cupularis。土壤湿度以含水量<12%为干燥,12%~15%为湿润,15%~20%为潮湿,>20%为湿。
    下载: 导出CSV 
    | 显示表格

    参考文献[1],在新疆天山中-西段不同海拔采用样地调查法和搜索法进行蚂蚁群落调查,在选定样地内沿对角线选取5个1 m×1 m的样方,每个样方间隔10 m,在采集地表蚂蚁前,先测量每个样方内地被物的厚度。分别采集样地地表样、土壤样和树冠样的蚂蚁,并将蚂蚁保存至装有无水乙醇的离心管,贴上标签。样方调查结束后,5人同时对样地内样方外周围地表、石下、树冠和朽木等微生境进行搜索调查,时间为1 h。将采集到的蚂蚁装入离心管并作标签和记录。依据同种同巢、同种形态相同原则对采集的标本进行归类、编号、登记,将每号标本制作成不超过9头的三角纸干制标本,多余的个体用无水乙醇浸渍保存,依据相关分类学文献[1, 10]鉴定蚂蚁标本,尽可能鉴定到种。

    按照黄钊等[8]的方法,以各类蚂蚁物种个体数占群落物种总数的比例(β)来揭示群落结构特征,采用常规划分标准分为5个类型,即类型 A 为 β≥10.0% ,优势种;类型B为 5.0%≤β<10.0% ,常见种;类型C为 1.0%≤β<5.0% ,较常见种;类型D为 0.1%≤β<1.0% ,较稀有种;类型E为 β<0.1%,稀有种。

    利用Estimate S 9.1.0 对数据进行处理[1718],采用5项主要指标测定物种多样性:物种数目、Shannon-Wiener 多样性指数、Pielou 均匀度指数、Simpson 优势度指数、Jaccard 相似性系数[1, 19],利用SPSS软件中的one-way ANOVA对各垂直带蚂蚁多样性的各个指数进行方差分析并进行多重比较;采用Pearson相关分析方法[20]分析蚂蚁群落多样性各个指数与海拔的相关性,若存在显著相关性,则使用线性和二项式模型进行拟合,基于拟合系数(R2)评价拟合度,并进行显著性t检验,同时分析蚂蚁群落多样性指标与植被特征的相关性。

    在新疆天山中-西段4个垂直带共采集蚂蚁136 247头,经鉴定共29种,隶属于2亚科12属。其中优势种3种,分别为草地铺道蚁Tetramorium caespitum、黑毛蚁Lasius niger和丝光蚁Formica fusca;常见种3种,分别是黄毛蚁L. flavus、光亮黑蚁F. candida和工匠收获蚁 Messor structor;角结红蚁 Myrmica angulinodis、红林蚁F. sinae等10种为较常见种;凹唇蚁F. sanguinea、喜马毛蚁L. himalayanus 和纹头原蚁Proformica striaticeps 3种为较稀有种;诺斯铺道蚁T. nursei、堆土细胸蚁Leptothorax acervorum等10种为稀有种(表2),较常见种和稀有种种类较多。

    表 2  新疆天山中-西段蚂蚁群落结构
    Table 2  Ant community structure of the middle-western section of Tianshan Mountains in Xinjiang
    编号 物种名称 N/头 β/% 物种类型 编号 物种名称 N/头 β/% 物种类型
    1 草地铺道蚁Tetramorium caespitum 31 856 23.38 优势种 16 弯角红蚁Myrmica lobicornis 1 411 1.04 较常见种
    2 黑毛蚁Lasius niger 22 629 16.61 优势种 17 凹唇蚁Formica sanguinea 1 002 0.74 较稀有种
    3 丝光蚁Formica fusca 17 991 13.20 优势种 18 喜马毛蚁Lasius himalayanus 736 0.54 较稀有种
    4 黄毛蚁Lasius flavus 12 247 8.99 常见种 19 纹头原蚁Proformica striaticeps 139 0.10 较稀有种
    5 光亮黑蚁Formica candida 10 500 7.71 常见种 20 诺斯铺道蚁Tetramorium nursei 129 0.09 稀有种
    6 工匠收获蚁Messor structor 9 688 7.11 常见种 21 堆土细胸蚁Leptothorax acervorum 128 0.09 稀有种
    7 角结红蚁Myrmica angulinodis 4 406 3.23 较常见种 22 蒙古原蚁Proformica mongolica 116 0.08 稀有种
    8 红林蚁Formica sinae 4 023 2.95 较常见种 23 长柄心结蚁Cardiocondyla elegans 12 0.01 稀有种
    9 阿富汗红蚁Myrmica afghanica 3 903 2.86 较常见种 24 广布弓背蚁Camponotus herculeanus 5 0 稀有种
    10 艾箭蚁Cataglyphis aenescens 3 695 2.71 较常见种 25 吉市红蚁Myrmica jessensis 4 0 稀有种
    11 满斜结蚁Plagiolepis manczshurica 3 030 2.22 较常见种 26 婀娜收获蚁Messor aralocaspius 3 0 稀有种
    12 草地蚁Formica pratensis 3 009 2.21 较常见种 27 蒙古切胸蚁Temnothorax mongolicus 3 0 稀有种
    13 类干蚁Formica approximans 2 043 1.50 较常见种 28 针毛收获蚁Messor aciculatus 1 0 稀有种
    14 掘穴蚁Formica cunicularia 1 933 1.42 较常见种 29 条纹切胸蚁Temnothorax striatus 1 0 稀有种
    15 中亚凹头蚁Formica mesasiatica 1 604 1.18 较常见种 合计 136 247 100
      说明:N为个体数,β为各类蚂蚁物种个体数占群落物种总数的比例。
    下载: 导出CSV 
    | 显示表格
    2.2.1   物种累积曲线分析

    随着调查样地的增加,实际观察物种数(S)、基于多度(个体数量)的预测值(ACE)、Chao 1和Chao 2值均先急剧上升,后缓慢上升,最后趋于稳定(图1)。蚂蚁物种S为29,与丰富度估计值(ACE值为30.03,Chao1值为30,Chao 2值为29.97)相接近,实际采集到的物种数约为预测值的96.57%~96.76%,可见抽样充分。

    图 1  新疆天山中-西段蚂蚁物种实测值和预测值累积曲线
    Figure 1  Cumulative curve of measured and predicted ant species in the middle-western section of Tianshan Mountains in Xinjiang
    2.2.2   物种数

    从物种的实测值来看,新疆天山中-西段4个垂直带的蚂蚁物种数都接近或等于ACE估计值(表3),其中独山子垂直带海拔2 773 m锦鸡儿灌丛、3 023 m草甸、3 235 m草甸,乌拉斯台垂直带海拔3 024 m草丛,那拉提垂直带海拔2 548 m高山柳灌丛、3055 m草丛及库车垂直带3 058 m草丛样地均未发现蚂蚁。4个垂直带蚂蚁物种数顺序为:独山子垂直带(18种)>那拉提垂直带(14种)>库车垂直带(13种)>乌拉斯台垂直带(10种)。如图2所示:各垂直带的蚂蚁物种数与海拔存在显著(P<0.05)相关性。总体来看,各垂直带的蚂蚁物种数随海拔升高基本呈下降趋势。独山子、乌拉斯台和那拉提垂直带蚂蚁物种数与海拔的二项式变化趋势与线性变化趋势基本一致,线性模型显示乌拉斯台和那拉提垂直带的蚂蚁物种数与海拔分别呈显著(R2=0.770,P=0.022)和极显著(R2=0.739,P=0.013)负相关关系,二项式变化同线性分析趋势一致,但无显著相关性(P>0.05);而库车垂直带物种数与海拔的二项式模型呈现随海拔升高先升高后下降的单峰曲线。

    表 3  各垂直带蚂蚁群落多样性指标
    Table 3  Diversity indexes of ant communities in different vertical zones
    垂直带 物种数/种 ACE估计值 Shannon-Wiener多样性指数 Pielou均匀度指数 Simpson优势度指数
    独山子 18 20.10±0.00 0.515 2±0.153 9 a 0.313 8±0.095 8 a 0.446 3±0.107 8 a
    乌拉斯台 10 10.00±0.00 0.539 9±0.221 6 a 0.348 9±0.121 5 a 0.403 7±0.135 8 a
    那拉提 14 16.54±1.49 0.596 7±0.265 9 a 0.329 9±0.139 0 a 0.316 8±0.132 5 a
    库车 13 13.60±0.00 0.505 8±0.119 1 a 0.408 6±0.103 2 a 0.611 0±0.096 0 a
      说明:同列相同字母表示差异不显著(P>0.05)。数值为平均值±标准误。
    下载: 导出CSV 
    | 显示表格
    图 2  物种数目与海拔的关系
    Figure 2  Relationship between species number and altitude
    2.2.3   多样性指数

    新疆天山中-西段4个垂直带蚂蚁群落多样性指数变化顺序为:那拉提垂直带(0.596 7)>乌拉斯台垂直带(0.539 9)>独山子垂直带(0.515 2)>库车垂直带(0.505 8),但4个垂直带的蚂蚁多样性指数差异不显著(表3)。如图3所示:在4个垂直带上,独山子和乌拉斯台垂直带的蚂蚁多样性指数与海拔存在显著(P<0.05)或极显著(P<0.01)相关性,而那拉提和库车垂直带的蚂蚁多样性指数与海拔的相关性不显著(P>0.05)。总体来看,各垂直带的蚂蚁多样性指数随海拔升高而呈现降低的趋势,二项式变化趋势与线性变化趋势基本一致。其中线性模型显示乌拉斯台垂直带蚂蚁多样性指数与海拔呈显著负相关(P<0.05),二项式变化趋势与线性分析一致,但无相关性。

    图 3  多样性指数与海拔的关系
    Figure 3  Relationship between diversity index and altitude
    2.2.4   均匀度指数

    新疆天山中-西段4个垂直带蚂蚁群落均匀度指数变化顺序为:库车垂直带(0.408 6)>乌拉斯台垂直带(0.348 9)>那拉提垂直带(0.329 9)>独山子垂直带(0.313 8),但4个垂直带的蚂蚁均匀度指数差异不显著(表3)。如图4所示:在4个垂直带上,独山子和乌拉斯台垂直带的蚂蚁均匀度指数与海拔存在显著相关性(P<0.05),而那拉提和库车垂直带的蚂蚁均匀度指数与海拔关系不显著(P>0.05)。其中在独山子垂直带,均匀度指数与海拔的线性模型显著负相关(P<0.05),二项式模型呈现极显著负相关(P<0.01),二项式和线性模型变化趋势不一致;线性模型显示乌拉斯台垂直带蚂蚁群落均匀度指数与海拔化显著负相关(R2=0.697,P<0.05),二项式和线性模型变化趋势不一致,且相关性不显著(P>0.05);线性和二项式模型显示,那拉提和库车垂直带的蚂蚁群落均匀度指数与海拔变化相关性均不显著(P>0.05),但二项式和线性模型变化趋势基本一致。

    图 4  均匀度指数与海拔的关系
    Figure 4  Relationship between Pielou index and altitude
    2.2.5   优势度指数

    新疆天山中-西段4个垂直带蚂蚁群落优势度指数变化顺序为:库车垂直带(0.611 0)>独山子垂直带(0.446 3)>乌拉斯台垂直带(0.403 7)>那拉提垂直带(0.316 8),与多样性指数的变化趋势正相反,但4个垂直带的蚂蚁群落优势度指数差异不显著(表3)。相关分析发现:各垂直带的蚂蚁群落优势度指数与海拔的相关性不显著(P>0.05);4个垂直带的线性模型和二项式模型的变化趋势不一致,二项式模型分析均呈先升高后降低的变化趋势(图5),仅独山子垂直带的二项式模型呈显著性(R2=0.846,P<0.01)。

    图 5  优势度指数与海拔的关系
    Figure 5  Relationship between diversity index and altitude

    新疆天山中-西段各垂直带蚂蚁群落间相似性系数为0.166 7~0.600 0(表4),处于极不相似至中等相似水平;平均值0.289 0,显示中等不相似水平。其中同处于山间盆地的那拉提与乌拉斯台垂直带的蚂蚁群落间相似性最大(0.600 0),乌拉斯台与独山子垂直带的蚂蚁群落间相似性最小(0.166 7),库车与那拉提垂直带之间相似性较低,处于中等不相似水平,其余垂直带间相似性低,处于极不相似水平。总体来说,新疆天山中-西段蚂蚁群落之间相似性较低,群落结构差异较大。

    表 4  新疆天山中-西段各垂直带蚂蚁群落间相似性系数
    Table 4  Similarity coefficients of ant communities in the middle-western section of Tianshan Mountains in Xinjiang
    垂直带 垂直带q
    乌拉斯台 那拉提 库车
    独山子 0.166 7 0.230 8 0.240 0
    乌拉斯台 0.600 0 0.210 5
    那拉提 0.285 7
    平均值 0.289 0
      说明:q为相似性系数, 1≥q≥0.75,极相似;0.75 >q≥0.50,中等相似;0.50 >q≥0.25,中等不相似;0.25>q≥0,极不相似。
    下载: 导出CSV 
    | 显示表格

    表5所示:新疆天山中-西段蚂蚁物种数与乔木郁闭度显著正相关(P<0.05),但与灌木盖度、草木盖度、地被物盖度和地被物厚度相关性不显著;多样性指数、均匀度指数和优势度指数与植被特征的相关性均不显著。

    表 5  蚂蚁多样性与植被特征相关分析
    Table 5  Correlation analysis between ant diversity and vegetation feature      
    植被特征 物种数 多样性
    指数
    均匀度
    指数
    优势度
    指数
    乔木郁闭度 0.424* 0.296 0.285 0.095
    灌木盖度 0.049 0.099 0.114 −0.015
    草本盖度 −0.226 −0.234 −0.234 −0.072
    地被物盖度 −0.161 −0.143 −0.137 −0.075
    地被物厚度 −0.148 −0.240 −0.256 −0.071
      说明:数值为Pearson相关系数,*表示在0.05水平上显著相关。
    下载: 导出CSV 
    | 显示表格

    在新疆天山中-西段4个垂直带共采集蚂蚁136 247头,隶属于2亚科12属29种,物种数略高于新疆天山中段[16](2亚科15属27种),与天山东段[15](2亚科14属29种)相等,但明显高于临近的祁连山国家公园青海片区[21](2亚科6属13种),可能是因为天山中部和祁连山国家公园海拔较高,海拔落差较大,其物种丰富度较低,而新疆天山中-西段和东段由于平均海拔较低,蚂蚁物种丰富度较高,相对海拔高度对蚂蚁物种丰富度也有着重要影响。与同为干旱区的伊朗中部相比,新疆天山中-西段的蚂蚁物种数明显低于伊朗中部[22](8亚科12属34种),可能是伊朗中部纬度和海拔均低于新疆天山,表明耐热性较低的物种更喜欢聚集在中部高海波区域[22],而伊朗中部因适合蚂蚁生存的海拔跨度较大造成物种多样性较高,新疆天山中-西段由于低海拔炎热干燥,高海拔温度过低,适合蚂蚁生存的海拔跨度较小而使多样性较低。

    目前,全球蚂蚁物种多样性沿海拔梯度变化主要呈现5种模式[23]:①随海拔升高蚂蚁多样性呈递减的趋势(物种多样性最高出现在低海拔区域)[24];②低高原模式(300 m以下最低海拔的高多样性);③单峰模式,即在中海拔区域物种多样性最高,可用“中域效应”来解释(海拔高于300 m)[25];④随海拔升高蚂蚁多样性呈现多个峰值,可用“多域效应”来解释[26];⑤无规律模式。研究表明:在沿海拔梯度的5种模式中,最常见的是单峰模式和递减模式[2729]。中海拔地区的物种丰富度较高是由于高海拔或低海拔地区的气候严酷和高海拔地区资源的可利用性有限[3031];物种丰富度随海拔升高而下降,原因是海拔升高,温度和生产力下降[32]。通过对新疆天山中-西段4个垂直带的物种数和多样性指数分析发现:蚂蚁物种多样性沿海拔梯度变化总体呈现随海拔升高而降低的趋势,主要原因是随着海拔的升高气温会逐渐降低而影响蚂蚁的生存;4个垂直带的物种数和多样性指数与海拔变化显著相关,均匀度指数和优势度指数与海拔的相关显著性不尽相同,这与天山中部南北坡的蚂蚁多样性变化规律一致[16]。除了气温以外,还可能受到湿度的制约。与藏东南、四川西部大凉山和云南地区自然保护区不同,新疆天山位居中国内陆,印度洋季风因受到喜马拉雅山脉的阻挡而无法到达,太平洋季风虽可以到达,但距离较远,因此新疆天山常年较干旱,雨水较少,湿度较低,植被类型多以草地及灌木为主,蚂蚁物种丰富度也较低;从4个垂直带来看,蚂蚁物种数独山子垂直带(18种)>那拉提垂直带(14种)>库车垂直带(13种)>乌拉斯台垂直带(10种),独山子垂直带位于天山北坡,库车垂直带位于天山南坡,可见天山的北坡蚂蚁物种数比南坡要多,可能是因为新疆天山位于北半球,南坡为阳坡,北坡为阴坡,南坡日照时间长,水分蒸发量大,土壤湿度低,蚂蚁物种较少,这与天山中部南北坡的蚂蚁物种分布一致[16]。因此湿度也成为制约蚂蚁物种多样性的因素之一。同时温度和湿度也影响着植被类型、土壤结构和微生境等,故蚂蚁物种多样性受到多种因素的影响。

    从群落相似性来看,那拉提与乌拉斯台垂直带的蚂蚁群落间相似性较高,其原因可能是这2个垂直带地理位置相邻,海拔高度和植被类型相似,相同的生境提供了相同的栖息场所和食物资源,从而孕育了较多相同的蚂蚁种类;而其余各垂直带间的群落相似性较低,处于极不相似至中等不相似水平,蚂蚁群落组成差异明显。相关性分析表明:天山中-西段蚂蚁群落的物种数与多样性指数与海拔变化呈显著负相关,海拔梯度显著影响该区域的蚂蚁物种多样性。有研究表明:凋落物覆盖率增高可增加蚂蚁的物种丰富度[33],但蚂蚁物种丰富度与凋落物的数量间无显著相关性,本研究中各垂直带蚂蚁物种数与草本盖度、地被物的盖度和厚度负相关,但相关性不显著,与前人研究结果一致[34];物种数与乔木郁闭度呈显著正相关,在四川王朗自然保护区[ 35]、青藏高原西南坡[36]和西北坡[37]等地区的研究也存在这种相关关系,可能是高大的乔木给蚂蚁提供了较理想的栖息场所、食物来源,蚂蚁群落得以发展。从栖息生境来看,天山中-西段的植被多为草丛和灌丛,仅在海拔相对较低的地方分布有阔叶林、针阔混交林,生态系统脆弱,保护和利用好区域内的昆虫生物多样性,对维持和改善生态系统具有重要意义。

    在新疆天山中-西段4个垂直带共记录到蚂蚁2亚科12属29种,优势种为草地铺道蚁、黑毛蚁和丝光蚁。新疆天山中-西段的蚂蚁物种多样性明显高于祁连山国家公园青海片区,与天山东段和中段接近,低于同为干旱区的伊朗中部。整体而言,天山中-西段4个垂直带蚂蚁群落多样性指数随海拔升高而呈现降低趋势。物种数和多样性指数与海拔显著负相关,且物种数与乔木郁闭度显著正相关,海拔显著影响该地区的蚂蚁物种多样性,同时坡向、湿度、植被等也起到重要作用。各垂直带间的蚂蚁群落相似性总体较低,表明蚂蚁群落分化明显。

    感谢西南林业大学图书馆房华老师和研究生杨蕊、韩秀、杨林、钱怡顺在标本采集和样地调查,本科生杨润娇、何丽华、杨洋和潘宇航在标本整理与制作中的帮助。

  • 图  1  不同菌根类型森林土壤团聚体粒级占比及平均质量直径

    Figure  1  Proportion of soil aggregate size and mean weight diameter in forests dominated by different mycorrhizal types

    图  2  不同优势菌根类型森林土壤团聚体各粒级碳氮质量分数及碳氮比

    Figure  2  Soil organic C, total N and the ratio of C to N of three aggregate fractions in forests dominated by different mycorrhizal types

    图  3  各粒级土壤团聚体易提取态球囊霉素、总球囊霉素和麦角固醇质量分数

    Figure  3  Contents of EE-GRSP, T-GRSP and ergosterol of three aggregate fractions in forests dominated by different mycorrhizal types

    图  4  各粒级土壤团聚体胞外酶活性

    Figure  4  Extracellular enzyme activities of three soil aggregate fractions

    图  5  基于随机森林预测的各粒级土壤团聚体有机碳变异的相关因子

    Figure  5  Random forest predicted factors associated with soil organic carbon of three soil aggregate fractions

  • [1] 梅孔灿, 陈岳民, 范跃新, 等. 凋落叶和磷添加对马尾松林土壤碳激发效应的影响[J]. 土壤学报, 2022, 59(4): 1089 − 1099.

    MEI Kongcan, CHEN Yuemin, FAN Yuexin, et al. Effects of litters and phosphorus addition on soil carbon priming effect in Pinus massoniana forest [J]. Acta Pedologica Sinica, 2022, 59(4): 1089 − 1099.
    [2] 屠嘉莹, 金文豪, 盛卫星, 等. 林分改变驱动的优势菌根真菌类型变化影响土壤有机碳积累[J/OL]. 土壤学报, 2022-09-23[2023-06-01]. https://kns.cnki.net/kcms/detail/32.1119.P.20220922.0908.004.html.

    TU Jiaying, JIN Wenhao, SHENG Weixing, et al. The change in dominant mycorrhizal fungi type induced by stand transformation affects soil organic carbon accumulation[J/OL]. Acta Pedologica Sinica, 2022-09-23[2023-06-01]. https://kns.cnki.net/kcms/detail/32.1119.P.20220922.0908.004.html.
    [3] CHEEKE T E, PHILLIPS R P, BRZOSTEK E R, et al. Dominant mycorrhizal association of trees alters carbon and nutrient cycling by selecting for microbial groups with distinct enzyme function [J]. New Phytologist, 2017, 214(1): 432 − 442.
    [4] QIN Hua, CHEN Junhui, WU Qifeng, et al. Intensive management decreases soil aggregation and changes the abundance and community compositions of arbuscular mycorrhizal fungi in Moso bamboo (Phyllostachys pubescens) forests [J]. Forest Ecology and Management, 2017, 400: 246 − 255.
    [5] 刘满强, 胡锋, 陈小云. 土壤有机碳稳定机制研究进展[J]. 生态学报, 2007, 27(6): 2642 − 2650.

    LIU Manqiang, HU Feng, CHEN Xiaoyun, et al. A review on mechanisms of soil organix carbon stabilization [J]. Acta Ecologica Sinica, 2007, 27(6): 2642 − 2650.
    [6] 金文豪, 邵帅, 陈俊辉, 等. 不同类型菌根对土壤碳循环的影响差异研究进展[J]. 浙江农林大学学报, 2021, 38(5): 953 − 962.

    JIN Wenhao, SHAO Shuai, CHEN Junhui, et al. Research progress in the impact of different mycorrhizal types on soil carbon cycling [J]. Journal of Zhejiang A&F University, 2021, 38(5): 953 − 962.
    [7] LIU Ruiqiang, HE Yanghui, ZHOU Guiyao, et al. Mycorrhizal effects on decomposition and soil CO2 flux depend on changes in nitrogen availability during forest succession [J]. Journal of Ecology, 2021, 109(11): 3929 − 3943.
    [8] SMITH S E, READ D. Mycorrhizal Symbiosis [M]. London: Academic Press, 2008.
    [9] QIN Hua, NIU Liming, WU Qifeng, et al. Bamboo forest expansion increases soil organic carbon through its effect on soil arbuscular mycorrhizal fungal community and abundance [J]. Plant and Soil, 2017, 420: 407 − 421.
    [10] TISDALL J M, OADES J M. Organic matter and water-stable aggregates in soils [J]. Journal of Soil Science, 1982, 33: 141 − 163.
    [11] SIX J, BOSSUYT H, DEGRYZE S, et al. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics [J]. Soil &Tillage Research, 2004, 79(1): 7 − 31.
    [12] RILLIG M C, MUMMEY D L. Mycorrhizas and soil structure [J]. New Phytologist, 2006, 171(1): 41 − 53.
    [13] ZHENG Weishuang, MORRIS E K, RILLIG M C. Ectomycorrhizal fungi in association with Pinus sylvestris seedlings promote soil aggregation and soil water repellency [J]. Soil Biology and Biochemistry, 2014, 78: 326 − 331.
    [14] THORNTON R H, COWIE J D, MCDONALD D C. Mycelial aggregation of sand soil under Pinus radiata [J]. Nature, 1956, 177(4501): 231 − 232.
    [15] WANG Qiong, JIN Taotao, FU Yao, et al. Spatial change in glomalin-related soil protein and its relationships with soil enzyme activities and microbial community structures during urbanization in Nanchang, China [J/OL]. Geoderma, 2023, 434: 116476[2023-06-01]. doi: 10.1016/j.geoderma.2023.116476.
    [16] 钟思远, 张静, 褚国伟, 等. 南亚热带森林丛枝菌根真菌与土壤结构的关系[J]. 生态科学, 2018, 37(5): 16 − 24.

    ZHONG Siyuan, ZHANG Jing, CHU Guowei, et al. The relationship between arbuscular mycorrhizal fungi and soil structure in southern subtropical forest [J]. Ecological Science, 2018, 37(5): 16 − 24.
    [17] CHEN Junhui, WU Qifeng, LI Songhao, et al. Diversity and function of soil bacterial communities in response to long-term intensive management in a subtropical bamboo forest [J/OL]. Geoderma, 2019, 354: 113894[2023-06-01]. doi: 10.1016/j.geoderma.2019.113894.
    [18] CHEN Junhui, CHEN De, XU Qiufang, et al. Organic carbon quality, composition of main microbial groups, enzyme activities, and temperature sensitivity of soil respiration of an acid paddy soil treated with biochar [J]. Biology and Fertility of Soils, 2018, 55(2): 185 − 197.
    [19] WANG Shanshan, WANG Zhongqian, FAN Bo, et al. Litter inputs control the pattern of soil aggregate-associated organic carbon and enzyme activities in three typical subtropical forests [J/OL]. Forests, 2022, 13(8): 1210[2023-06-01]. doi: 10.3390/f13081210.
    [20] JIN Wenhao, TU Jiaying, WU Qifeng, et al. Moso bamboo expansion decreased soil heterotrophic respiration but increased arbuscular mycorrhizal mycelial respiration in a subtropical broadleaved forest [J/OL]. Forest Ecosystems, 2023, 10: 100116[2023-06-01]. doi: 10.1016/j.fecs.2023.100116.
    [21] ELLIOTT E T. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils [J]. Soil Science Society of America Journal, 1986, 50(3): 627 − 633.
    [22] SITU Gaoming, ZHAO Yuanlai, ZHANG Lei, et al. Linking the chemical nature of soil organic carbon and biological binding agent in aggregates to soil aggregate stability following biochar amendment in a rice paddy[J/OL]. Science of the Total Environment, 2022, 847(15): 157460[2023-06-01]. doi: 10.1016/j.scitotenv.2022.157460.
    [23] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.

    LU Rukun. Analytical Methods for Soil and Agro-chemistry [M]. Beijing: China Agricultural Science and Technology Press, 2000.
    [24] SINSABAUGH R L, HILL B H, FOLLSTAD SHAH J J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment [J]. Nature, 2009, 462(7274): 795 − 798.
    [25] AWAD A, MAJCHERCZYK A, SCHALL P, et al. Ectomycorrhizal and saprotrophic soil fungal biomass are driven by different factors and vary among broadleaf and coniferous temperate forests [J]. Soil Biology and Biochemistry, 2019, 131: 9 − 18.
    [26] 曹梦, 李勇, 孙忠祥, 等. QuEChERS-HPLC法测定土壤中麦角甾醇含量[J]. 分析实验室, 2019, 38(2): 162 − 166.

    CAO Meng, LI Yong, SUN Zhongxiang, et al. A new QuEChERS-HPLC method for determining ergosterol in soil [J]. Chinese Journal of Analysis Laboratory, 2019, 38(2): 162 − 166.
    [27] 叶思源, 陈展, 曹吉鑫, 等. 模拟酸雨和接种外生菌根真菌对马尾松土壤养分、土壤团聚体及有机碳组分的影响[J]. 生态学杂志, 2019, 38(4): 1141 − 1148.

    YE Siyuan, CHEN Zhan, CAO Jixin, et al. Effects of simulated acid rain and ectomycorrhizal fungi on soil nutrient, soil aggregate and organic carbon fraction under masson pine ( Pinus massoniana) seedlings [J]. Chinses Journal of Ecology, 2019, 38(4): 1141 − 1148.
    [28] SALAKO F K, HAUSER S. Influence of different fallow management systems on stability of soil aggregates in southern Nigeria [J]. Communications in Soil Science and Plant Analysis, 2007, 32(9/10): 1483 − 1498.
    [29] LIU Hongfei, WANG Xiukang, LIANG Chutao, et al. Glomalin-related soil protein affects soil aggregation and recovery of soil nutrient following natural revegetation on the Loess Plateau [J/OL]. Geoderma, 2020, 357(1): 113921[2023-06-01]. doi: 10.1016/j.geoderma.2019.113921.
    [30] 肖玖军, 邢丹, 毛明明, 等. AM真菌对桑树根围土壤团聚体的影响机制[J]. 土壤学报, 2020, 57(3): 773 − 782.

    XIAO Jiujun, XING Dan, MAO Mingming, et al. Mechanism of arbuscular mycorrhizal fungal affecting soil aggregates in rhizosphere of mulberry (Morus alba) [J]. Acta Pedologica Sinica, 2020, 57(3): 773 − 782.
    [31] 肖复明, 范少辉, 汪思龙, 等. 毛竹林地土壤团聚体稳定性及其对碳贮量影响研究[J]. 水土保持学报, 2008, 22(2): 131 − 134.

    XIAO Fuming, FAN Shaohui, WANG Silong, et al. Moso bamboo plantation soil aggregate stability and its impact on carbon storage [J]. Journal of Soil and Water Conservation, 2008, 22(2): 131 − 134.
    [32] PELLITIER P T, ZAK D R. Ectomycorrhizal fungi and the enzymatic liberation of nitrogen from soil organic matter: why evolutionary history matters [J]. New Phytologist, 2018, 217(1): 68 − 73.
    [33] FU Xianheng, SONG Qilong, LI Shiqing, et al. Dynamic changes in bacterial community structure are associated with distinct priming effect patterns [J/OL]. Soil Biology and Biochemistry, 2022, 169: 108671[2023-06-01]. doi: 10.1016/j.soilbio.2022.108671.
    [34] BUNN R A, SIMPSON D T, BULLINGTON L S, et al. Revisiting the ‘direct mineral cycling’ hypothesis: arbuscular mycorrhizal fungi colonize leaf litter, but why? [J]. The ISME Journal, 2019, 13(8): 1891 − 1898.
    [35] ZHAO Yingzhi, LIANG Chenfei, SHAO Shuai, et al. Linkages of litter and soil C∶N∶P stoichiometry with soil microbial resource limitation and community structure in a subtropical broadleaf forest invaded by Moso bamboo [J]. Plant and Soil, 2021, 465(1/2): 473 − 490.
  • [1] 邵帅, 王中乾, 潘灵强, 郑云游, 郑旭理, 田立斌, 徐秋芳.  毛竹扩张对常绿阔叶林土壤微生物残体碳累积的影响 . 浙江农林大学学报, 2024, 41(5): 1005-1012. doi: 10.11833/j.issn.2095-0756.20230626
    [2] 章磊, 徐祎萌, 白美霞, 周燕, 秦华, 徐秋芳, 陈俊辉.  生物质炭配施有机物料对红壤碳组分及酶生态化学计量特征的影响 . 浙江农林大学学报, 2024, 41(3): 506-516. doi: 10.11833/j.issn.2095-0756.20230468
    [3] 王瑞萍, 杨兴, 高玉蓉, 陆扣萍, 何丽芝, 吴家森, 王海龙.  锰改性生物质炭对砷铅在大蒜中积累及土壤酶活性的影响 . 浙江农林大学学报, 2024, 41(5): 1024-1036. doi: 10.11833/j.issn.2095-0756.20230584
    [4] 胡澳, 赵毅辉, 吴继来, 吴艳萍, 李同欣, 严一博, 叶建丰, 王懿祥.  采伐后植被自然恢复对马尾松次生林土壤有机碳及其活性组分的影响 . 浙江农林大学学报, 2024, 41(6): 1189-1200. doi: 10.11833/j.issn.2095-0756.20240264
    [5] 谢林峰, 凌晓晓, 黄圣妍, 高浩展, 吴家森, 陈俊辉, 黄坚钦, 秦华.  临安区山核桃林地土壤水解酶活性空间分布特征及土壤肥力评价 . 浙江农林大学学报, 2022, 39(3): 625-634. doi: 10.11833/j.issn.2095-0756.20210417
    [6] 朱丹苗, 陈俊辉, 姜培坤.  杉木人工林土壤有机碳和微生物特征及其影响因素的研究进展 . 浙江农林大学学报, 2021, 38(5): 973-984. doi: 10.11833/j.issn.2095-0756.20200598
    [7] 韩米雪, 郁红艳, 刘潘洋, 饶德安, 滕跃, 邹路易.  大气二氧化碳摩尔分数升高对土壤有机碳稳定性的影响 . 浙江农林大学学报, 2021, 38(5): 963-972. doi: 10.11833/j.issn.2095-0756.20200502
    [8] 赵晶, 郝孟婕, 王清宇, 刘美英.  不同植被恢复模式下光伏电站土壤有机碳储量分布特征 . 浙江农林大学学报, 2021, 38(5): 1033-1039. doi: 10.11833/j.issn.2095-0756.20210500
    [9] 陈文博, 王旭东, 石思博, 季诗域, 叶正钱, 任泽涛, 刘璋.  长期菌渣化肥配施对稻田土壤酶活性的影响及交互效应 . 浙江农林大学学报, 2021, 38(1): 21-30. doi: 10.11833/j.issn.2095-0756.20200139
    [10] 金文豪, 邵帅, 陈俊辉, 秦华.  不同类型菌根对土壤碳循环的影响差异研究进展 . 浙江农林大学学报, 2021, 38(5): 953-962. doi: 10.11833/j.issn.2095-0756.20210531
    [11] 朱荣玮, 葛之葳, 阮宏华, 徐瑾, 彭思利.  外源氮输入下土壤有机碳与土壤微生物生物量碳分形特征 . 浙江农林大学学报, 2019, 36(4): 656-663. doi: 10.11833/j.issn.2095-0756.2019.04.004
    [12] 刘鹤龄, 饶良懿, 图尔荪, 唐菱珮.  北方土石山区水蚀及水保措施对土壤有机碳的影响 . 浙江农林大学学报, 2019, 36(4): 646-655. doi: 10.11833/j.issn.2095-0756.2019.04.003
    [13] 戴奥娜, 刘肖肖, 王兵, 戴伟.  丝栗栲林下土壤有机碳及其组分的时空年变化特征 . 浙江农林大学学报, 2018, 35(3): 405-411. doi: 10.11833/j.issn.2095-0756.2018.03.003
    [14] 王艺, 丁贵杰.  干旱胁迫下外生菌根真菌对马尾松幼苗生长和微量元素吸收的影响 . 浙江农林大学学报, 2012, 29(6): 822-828. doi: 10.11833/j.issn.2095-0756.2012.06.004
    [15] 徐桂林, 方晰, 田大伦, 唐志娟, 张铸三.  杉木林地不同更新方式土壤有机碳垂直分布及储量 . 浙江农林大学学报, 2009, 26(3): 333-340.
    [16] 高志勤, 傅懋毅.  不同毛竹林土壤碳氮养分的季节变化特征 . 浙江农林大学学报, 2006, 23(3): 248-254.
    [17] 刘守赞, 郭胜利, 白岩.  黄土高原沟壑区梁坡地土壤有机碳质量分数与土地利用方式的响应 . 浙江农林大学学报, 2005, 22(5): 490-494.
    [18] 李正才, 傅懋毅, 杨校生.  经营干扰对森林土壤有机碳的影响研究概述 . 浙江农林大学学报, 2005, 22(4): 469-474.
    [19] 方晰, 田大伦, 项文化, 雷丕峰.  杉木人工林土壤有机碳的垂直分布特征 . 浙江农林大学学报, 2004, 21(4): 418-423.
    [20] 姜培坤, 徐秋芳, 杨芳.  雷竹土壤水溶性有机碳及其与重金属的关系 . 浙江农林大学学报, 2003, 20(1): 8-11.
  • 期刊类型引用(8)

    1. 江峰,谭晓萍,周小青,叶正钱. 衢州市城市绿地土壤特性及改良措施. 林业科技通讯. 2024(08): 80-84 . 百度学术
    2. 霍佳,吕刚,李坤衡. 辽西半干旱区典型城市土壤质量评价. 生态科学. 2023(05): 181-187 . 百度学术
    3. 杨涛,王丽,杜红霞. 绿地类型及植物配置对西安城市绿地土壤理化性质的影响. 现代园艺. 2023(22): 25-30+33+38 . 百度学术
    4. 周文娟. 园林土壤质量管理探讨配置的几点思考. 四川农业科技. 2019(01): 71-72 . 百度学术
    5. 唐赛男,王成,裴男才,张昶,王子研,段文军,孙睿霖. 广州南沙区河涌沿岸植物景观特征及其与人类活动的关系. 浙江农林大学学报. 2019(02): 375-385 . 本站查看
    6. 翁俊. 洪泽湖古堰森林公园的植物种类及应用. 黑龙江农业科学. 2018(01): 96-99 . 百度学术
    7. 秦娟,许克福. 我国城市绿地土壤质量研究综述与展望. 生态科学. 2018(01): 200-210 . 百度学术
    8. 施健健,蔡建国,刘朋朋,魏云龙. 杭州花港观鱼公园森林固碳效益评估. 浙江农林大学学报. 2018(05): 829-835 . 本站查看

    其他类型引用(3)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20230376

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2023/6/1149

图(5)
计量
  • 文章访问数:  1179
  • HTML全文浏览量:  158
  • PDF下载量:  254
  • 被引次数: 11
出版历程
  • 收稿日期:  2023-06-26
  • 修回日期:  2023-09-28
  • 录用日期:  2023-10-10
  • 网络出版日期:  2023-11-23
  • 刊出日期:  2023-11-23

不同优势菌根类型转变对土壤团聚体组成及性状的影响

doi: 10.11833/j.issn.2095-0756.20230376
    基金项目:  国家自然科学基金资助项目(31971631)
    作者简介:

    马行聪(ORCID: 0009-0000-9654-0447),从事土壤健康与微生物调控研究。E-mail: mxc@stu.zafu.edu.cn

    通信作者: 秦华(ORCID: 0000-0002-8485-6345),教授,博士,从事土壤微生物生态及功能研究。E-mail: qinhua@zafu.edu.cn
  • 中图分类号: S718.8

摘要:   目的  马尾松Pinus massoniana林向阔叶林转变驱动优势菌根类型由外生菌根(ectomycorrhiza,ECM)转向丛枝菌根(arbuscular mycorrhiza,AM)。不同类型菌根由于其菌丝生物量和分泌物的不同,对土壤团聚体的影响可能存在差异,研究优势菌根类型转变对土壤团聚体组成的影响具有重要的生态学意义。  方法  通过野外调查采样,分析了不同优势菌根类型林分土壤不同粒级团聚体的占比及碳氮质量分数、菌根真菌生物量和胞外酶活性等。  结果  与ECM占优势的马尾松林相比,AM占优势的阔叶林在土壤团聚体的组成、稳定性及碳氮质量分数上存在显著差异,大团聚体(直径d>250 μm)比例和平均质量直径显著升高(P<0.05),而粉黏粒(d<53 μm)占比显著降低(P<0.05)。此外,大团聚体碳氮比显著降低(P<0.05),所有粒级团聚体中β-葡萄糖苷酶活性与β-N-乙酰氨基葡萄糖苷酶活性均显著降低(P<0.05)。大团聚体中易提取态球囊霉素相关土壤蛋白和总球囊霉素相关土壤蛋白趋于升高,微团聚体(d为53~250 μm)和粉黏粒中易提取态球囊霉素相关土壤蛋白、总球囊霉素相关土壤蛋白和麦角固醇质量分数则显著降低(P<0.05)。随机森林结果显示:团聚体有机碳质量分数主要与易提取态球囊霉素相关土壤蛋白、总球囊霉素相关土壤蛋白、ECM生物量和酶活性的变化有关(P<0.05)。  结论  在ECM占优势的马尾松林转变为AM占优势的阔叶林的过程中,土壤团聚体的稳定性显著升高,菌根生物量是团聚体有机碳质量分数变异的重要影响因子。图5参35

English Abstract

农正国, 熊忠平, 徐正会, 等. 新疆天山中-西段不同垂直带蚂蚁物种多样性[J]. 浙江农林大学学报, 2025, 42(1): 143−152 doi:  10.11833/j.issn.2095-0756.20240244
引用本文: 马行聪, 金文豪, 屠嘉莹, 等. 不同优势菌根类型转变对土壤团聚体组成及性状的影响[J]. 浙江农林大学学报, 2023, 40(6): 1149-1157. DOI: 10.11833/j.issn.2095-0756.20230376
NONG Zhengguo, XIONG Zhongping, XU Zhenghui, et al. Ant diversity along gradient in the middle-western section of Tianshan Mountains in Xinjiang[J]. Journal of Zhejiang A&F University, 2025, 42(1): 143−152 doi:  10.11833/j.issn.2095-0756.20240244
Citation: MA Xingcong, JIN Wenhao, TU Jiaying, et al. Impact of shifts among mycorrhizal types on soil aggregate composition and characteristics[J]. Journal of Zhejiang A&F University, 2023, 40(6): 1149-1157. DOI: 10.11833/j.issn.2095-0756.20230376
  • 马尾松Pinus massoniana广泛分布于中国南部和东南部,种植面积超过200万 hm2,具有重要的经济价值和生态功能[1]。近年来,马尾松林植物多样性较低,受病虫害严重,大面积马尾松逐渐被砍伐或被其他树种自然替代,从而转变为阔叶林以提升森林的生态效益[2]。然而,阔叶林和马尾松林的凋落物数量和质量、根系性状、土壤微生物等均存在较大差异[1, 3],影响土壤碳循环过程,造成不同林分固碳能力差异显著。土壤团聚体和土壤有机碳之间关系密切,两者相互促进。有研究表明:土壤有机碳可以作为一种胶结剂参与大团聚体的形成过程,而土壤团聚体产生的空间隔离则会对有机碳产生物理保护作用,进而提高有机碳的稳定性[46]。土壤有机碳和土壤团聚体与菌根真菌关系密切,而林分转变引起的重要变化之一,是与根系共生的菌根真菌类型的改变[7],但是目前关于林分转变导致的优势菌根类型变化如何影响土壤团聚体特性及稳定性的影响还不清楚。

    外生菌根(ectomycorrhiza,ECM)真菌和丛枝菌根(arbuscular mycorrhiza,AM)真菌是重要的陆地植物共生真菌,能够与陆地80%以上的植物形成菌根共生体[8],它们对植物生长、植物群落和生态系统过程的影响已经被广泛研究[89]。菌根能够通过根外菌丝缠绕土壤颗粒从而形成团聚体,进而影响土壤结构[6, 1013]。THORNTON等[14]研究发现:ECM真菌对土壤团聚体具有促进作用。相比于ECM,AM根外菌丝数量较少[6],因此对土壤颗粒的缠绕聚集作用可能较弱。除了菌丝的缠绕作用,菌丝代谢物是土壤团聚体的重要黏合剂。研究表明:ECM真菌菌丝分泌的疏水化合物是重要的土壤团聚体的黏合剂[14],AM真菌则通过其细胞壁组分球囊霉素相关土壤蛋白(glomalin-related soil protein,GRSP)胶结团聚土壤颗粒[15],其在土壤中能稳定存在3~12 a,对土壤团聚体具有深远影响[4, 16]。QIN等[4]研究发现:阔叶林转变为毛竹Phyllostachys pubescens林过程中,AM促进了土壤大团聚体形成。但是,目前关于不同菌根类型转变对土壤团聚体组成影响的研究还较少,不同类型菌根对土壤团聚体组成及稳定性的影响研究还不够深入。

    土壤团聚体主要通过对微生物的空间隔离,从物理层面保护土壤有机碳[5]。微生物则主要通过分泌胞外水解酶获取土壤中的碳、氮、磷等养分[17]。有研究表明:水解酶活性与有机质的分解与矿化过程具有显著相关性[18]。例如,β-葡萄糖苷酶和β-纤维二糖苷酶可以将土壤有机质中的纤维素和半纤维素分解为纤维素二糖、果糖等低分子量糖[19]。因此,通过酶活性可以体现微生物对团聚体中有机碳的利用与转化过程。菌根真菌对水解酶活性的影响已被广泛报道[20],在不同养分条件下,菌根真菌可能促进或抑制微生物分泌水解酶[2, 7],但是不同类型菌根对团聚体中水解酶活性的影响还不清楚。

    马尾松林是典型的ECM优势林,而阔叶林为AM优势林。本研究以中国亚热带2种典型林分马尾松林和阔叶林为对象,通过湿筛分离土壤团聚体,测定2种林分不同粒级的土壤团聚体有机碳质量分数、麦角固醇质量分数、GRSP以及土壤水解酶活性,进而探讨不同菌根类型对土壤团聚体组成和特征的影响及其可能的作用机制,为评估不同菌根类型对亚热带森林土壤碳汇的影响提供参考依据。

    • 研究区位于浙江省建德市杨村桥镇十里埠村、白云亭以及玉泉寺后山(29°54′~29°58′N,119°43′~119°48′E)。该区位于浙江省西部,温暖湿润,四季分明,雨热同期,属于亚热带北缘季风区,年均气温为17.4 ℃,年均降水量为1 600.0 mm,年均日照总时数为1 760.0 h。土壤类型为红壤,植被类型主要有常绿阔叶林、落叶阔叶林、针叶林以及针阔混交林。本研究选择亚热带森林演替过程中的初级和终级阶段,分别为马尾松林和阔叶林。

      阔叶林主要树种有白栎Quercus fabri、枫香Liquidambar formosana、栲树Castanopsis fargesii,林下植被有连蕊茶Camellia cuspidata、芒萁Dicranopteris dichotoma等。马尾松林下植被主要为芒萁等蕨类植物。

    • 于2021年8月在建德市杨村桥镇十里埠村、白云亭以及玉泉寺后山分别建立样地,样地之间分别间隔8~10 km,每个样地均包括相互接壤的马尾松林和阔叶林样地。根据建德市林业局记录的信息,所选阔叶林的地点原本均生长马尾松,在20~25 a前部分马尾松林砍伐后被阔叶林替代。在每个样地的马尾松林和阔叶林中分别选择3个样方(10 m×10 m),每个样方之间距离为20 m以上,利用五点取样法采集0~20 cm表层原状土壤(3个样地共计18个样方),保存于塑料盒内置于冰上带回实验室分析。

    • 土壤团聚体的筛分按照ELLIOTT[21]的方法,通过土壤团聚体分析仪分离出不同粒级的水稳性团聚体,主要包括直径(d)>250 μm的大团聚体、d为53~250 μm的微团聚体以及d<53 μm的粉黏粒。选择2000、250、53 μm的筛子(由上往下),形成套筛,每个样品称取25 g,置于最上层筛子中,去除根和石头,将套筛放置在水桶中,水桶中装去离子水至一定高度。筛子浸入水中放置30 min,后开启土壤团聚体分析仪,上下振荡10 min,振幅3~4 cm。最后依次获得不同粒径的团聚体,将筛子上的团聚体在50 ℃烘干,记录每个样品的各粒径团聚体的质量。重复上述操作,将样品冻干,用于团聚体性质和酶活性测定。

      平均质量直径(mean weight diameter, DMW)作为水稳性团聚体稳定性的指标[22],计算公式为DMW=${\displaystyle \sum _{i=1}^{n}X{W}_{i}}$。其中:X是团聚体每个部分的平均直径,Wii团聚体在整个样本中所占的比例,n是团聚体分级的数量(n=3)。

    • 土壤各粒级团聚体有机碳采用重铬酸钾-浓硫酸外加热法测定,全氮采用凯式定氮法测定[23]。此外,测定5种土壤酶活性,分别为与微生物碳获取相关的β-葡萄糖苷酶(β-glucosidase,BG)、β-纤维二糖苷酶(β-D-cellobiosidase,CEL),与微生物氮获取相关的β-N-乙酰氨基葡萄糖苷酶(N-acetyl-β-glucosaminidase,NAG)、亮氨酸氨基肽酶(leucineaminopeptidase,LEU)以及与微生物磷获取相关的酸性磷酸酶(phosphatase,PHOS)。土壤酶活性测定参照CHEN等[18]荧光微孔板检测法,称取2 g鲜土于离心管中,加入30 mL pH 5.0的乙酸钠缓冲液,在25 ℃、180 r·min−1振荡30 min,用磁力搅拌器搅拌1 min,吸取200 μL土壤悬液于96孔板中,立即加入底物,于25 ℃黑暗培养3 h,在365 nm激发波长和450 nm发射波长下进行荧光定量,计算酶活性。5种酶活性的单位均为nmol·g−1·h−1

      使用酶活性向量角(vector angle, VA)和向量长度(vector length, VL)[24]评估不同土壤团聚体粒级中微生物碳、氮、磷代谢限制,计算公式为:VA=Degrees[ATAN2(x, y)],VL=$ \sqrt{{x}^{2}+{y}^{2}} $。其中:x为碳磷获取酶的比值,y为碳氮获取酶的比值,x用(BG+CEL)/(BG+CEL+PHOS)表示,y用(BG+CEL)/(BG+CEL+NAG+LEU)表示。土壤向量角表示微生物受到相对氮或磷限制,向量角越大,受到磷限制越大,向量角越小,受到氮限制更强;向量长度越大表示微生物受到碳限制越大。Degrees为将弧度转换成角度函数,ATAN2表示将根据给定的x轴及y轴坐标,返回正切值。

    • AM真菌生物量以球囊霉素相关土壤蛋白表示,分别测定易提取态球囊霉素相关土壤蛋白(easily extractable glomalin-related soil protein, EE-GRSP)和总球囊霉素相关土壤蛋白(total glomalin-related soil protein, T-GRSP)[22]。称取1 g土壤,用柠檬酸钠溶液提取EE-GRSP和T-GRSP,EE-GRSP在高温高压下提取1次,T-GRSP多次提取,直至浸提液无色透明。以牛血清蛋白为标线,采用考马斯亮蓝法显色,在分光光度计上测定。

      根据AWAD等[25]使用的方法,首先测定鲜土中的麦角固醇质量分数,然后称取30 g鲜土于塑料瓶中,将其置于25 ℃、恒定湿度的生物培养箱中培养5个月,在此期间,外生菌根真菌死亡,5个月后再次测定土壤中的麦角固醇质量分数,ECM生物量即为培养前的麦角固醇质量分数减去培养后的麦角固醇质量分数。麦角固醇提取与测定参考曹梦等[26]的方法。称取鲜土4 g,加入4 mL色谱级甲醇,涡旋振荡后离心,吸取上清液于2 mL装有50 mg N-丙基-乙二胺键合硅胶和100 mg无水硫酸镁的离心管中,涡旋后离心,取上清液过0.22 μm有机系滤膜,采用液相色谱法上机测定,同时制作麦角固醇的标准曲线。使用的色谱柱为Agilent HC-C18 (250.0 mm × 4.6 mm,5 μm),以色谱级甲醇为流动相,流速为1 mL·min−1,进样量为20 μL,柱温为25 ℃,波长为280 nm。

    • 采用双因素方差分析(two-way ANOVA)比较ECM优势林和AM优势森林中不同粒级土壤团聚体之间的有机碳质量分数、胞外酶活性、GRSP和ECM真菌生物量差异。采用独立样本t检验分析ECM真菌占优势森林和AM真菌占优势森林同一粒级团聚体的占比与团聚体稳定性,运用SPSS 21.0进行分析。采用Origin 2021作图。基于随机森林的回归分析通过R语言rfPermute包进行。

    • 图1A所示:阔叶林土壤中大团聚体(d>250 μm)占比显著高于马尾松林土壤(P<0.05),而微团聚体(d为53~250 μm)和粉黏粒(d<53 μm)呈现相反趋势,其中粉黏粒占比的下降达到显著水平(P<0.05)。此外,马尾松林土壤团聚体平均质量直径显著低于阔叶林土壤(P<0.05)(图1B)。

      图  1  不同菌根类型森林土壤团聚体粒级占比及平均质量直径

      Figure 1.  Proportion of soil aggregate size and mean weight diameter in forests dominated by different mycorrhizal types

      图2所示:阔叶林土壤仅粉黏粒的土壤有机碳和全氮显著低于马尾松林土壤(P<0.05)。此外,大团聚体的有机碳和全氮质量分数均高于其他2个粒级。阔叶林土壤大团聚体的碳氮比显著低于马尾松林土壤(P<0.05)。

      图  2  不同优势菌根类型森林土壤团聚体各粒级碳氮质量分数及碳氮比

      Figure 2.  Soil organic C, total N and the ratio of C to N of three aggregate fractions in forests dominated by different mycorrhizal types

    • 图3所示:EE-GRSP、T-GRSP和麦角固醇均主要存在于土壤大团聚体中,大团聚中的EE-GRSP和T-GRSP呈现出阔叶林高于马尾松林的趋势,而麦角固醇呈现相反的趋势。阔叶林土壤的微团聚体和粉黏粒中的EE-GRSP、T-GRSP和麦角固醇质量分数均显著低于马尾松林土壤(P<0.05)。

      图  3  各粒级土壤团聚体易提取态球囊霉素、总球囊霉素和麦角固醇质量分数

      Figure 3.  Contents of EE-GRSP, T-GRSP and ergosterol of three aggregate fractions in forests dominated by different mycorrhizal types

    • 图4可见:阔叶林土壤3个粒级团聚体的β-葡萄糖苷酶(BG)和β-N-乙酰氨基葡萄糖苷酶(NAG)活性均低于马尾松林(P<0.05)。t检验结果表明:仅粉黏粒的β-纤维二糖苷酶(CEL)活性与微团聚体的PHOS活性在2个林分之间存在显著差异(P<0.05),但双因素分析表明:阔叶林团聚体中CEL活性低于马尾松林,PHOS活性高于马尾松林。

      图  4  各粒级土壤团聚体胞外酶活性

      Figure 4.  Extracellular enzyme activities of three soil aggregate fractions

      向量分析发现:3个粒级团聚体的向量角都大于45°,且阔叶林显著低于马尾松林(P<0.05);阔叶林土壤大团聚体的向量长度显著高于马尾松林大团聚体,微团聚体和粉黏粒的向量长度在2个林分之间差异不显著。

    • 土壤大团聚体有机碳与总氮、EE-GRSP、LEU、T-GRSP、CEL和NAG紧密相关(P<0.05,图5A);微团聚体有机碳与总氮、EE-GRSP、T-GRSP、BG和ECM生物量显著相关(P<0.05,图5B);粉黏粒中的有机碳变异主要与EE-GRSP、总氮和ECM相关(P<0.05,图5C)。

      图  5  基于随机森林预测的各粒级土壤团聚体有机碳变异的相关因子

      Figure 5.  Random forest predicted factors associated with soil organic carbon of three soil aggregate fractions

    • 相比于ECM优势马尾松林,AM优势阔叶林土壤大团聚体占比更高,粉黏粒占比更低,因此推测ECM有利于微团聚体和粉黏粒的产生,AM可能与土壤大团聚体的形成具有更加紧密的关系。叶思源等[27]研究表明:ECM真菌显著升高了土壤团聚体中粉黏粒比例,相应降低了大团聚体比例,该结论与本研究结果基本相同。本研究中,阔叶林土壤微团聚体和粉黏粒中ECM生物量低于马尾松林,可能在马尾松林中,ECM分泌胶结物质形成大团聚体的比例较少,导致其在微团聚体和粉黏粒中较高。随机森林分析表明:ECM生物量与微团聚体和粉黏粒中的有机碳变异显著相关,但对大团聚体有机碳没有显著贡献。可能是ECM促进大团聚体形成的能力较差,而AM在促进土壤大团聚体形成方面的作用已经被广泛报道,例如QIN等[4]研究发现:AM生物量与土壤大团聚体占比显著相关。AM真菌菌丝在土壤中广泛延伸,通过对土壤颗粒的缠绕作用,促进土壤大团聚体产生[9]。而ECM真菌在植物根系表面形成“哈氏网”,主要在根系表面聚集,通过缠绕作用形成大团聚体的能力相对较差[6]。此外,AM真菌的代谢产物GRSP是促进土壤大团聚体的重要机制之一。GRSP作为“胶水”将土壤粉黏粒和微团聚体黏结成大团聚体,导致其在大团聚体中较高,这与SITU等[22]的研究结果一致。本研究表明:土壤团聚体中大团聚体的EE-GRSP和T-GRSP质量分数明显高于微团聚体和粉黏粒,印证了GRSP对土壤大团聚体形成的重要作用。综上表明:与ECM相比,阔叶林中AM占优势,更有利于促进土壤大团聚体的形成。

      本研究表明:马尾松林转变为阔叶林显著提升了土壤团聚体的平均质量直径。平均质量直径表征土壤团聚体大小分布状况,值越大表明团聚体的平均粒径团聚度越高,稳定性越强[28]。一般来说,大团聚体占比越多,土壤平均质量直径越大,土壤团聚体稳定性越高。因此,本研究中阔叶林土壤团聚体的稳定性比马尾松林更高,主要是由于阔叶林中的大团聚体比例显著高于马尾松林,增加了土壤团聚体的稳定性,其机制可能与GRSP有关。LIU等[29]研究表明:GRSP在大团聚体中显著增加,平均质量直径也随之增加,土壤团聚体稳定性增加。GRSP被认为是稳定存在的胶黏剂,可以在土壤中存在3~12 a[29],因此对土壤团聚体的稳定性具有深远影响。本研究随机森林分析表明:EE-GRSP和T-GRSP均与土壤团聚体有机碳显著相关。此外,有机质与土壤团聚体的平均质量直径存在正向相关[3031],较高平均质量直径有利于土壤有机质质量分数的提升。因此推测AM通过提高土壤团聚体稳定性,促进有机碳固存,这与屠嘉莹等[2]的研究结果一致,阔叶林土壤的有机质质量分数显著高于马尾松林。总的来说,相比于ECM优势林,AM优势林可促进土壤大团聚体的形成,提高团聚体的稳定性,有利于土壤有机碳固存。

    • 土壤团聚体通过对微生物的空间隔离,稳定土壤有机碳[5],而微生物通过分泌胞外酶获取土壤中的有机碳[17],因此水解酶活性在一定程度上体现了团聚体中有机碳的转化过程。本研究3个粒级的土壤团聚体碳氮循环相关酶活性在2种不同优势菌根类型森林中的趋势总体一致,均表现为阔叶林显著低于马尾松林。有研究表明:ECM优势马尾松林土壤整体受到强烈的氮限制[2, 6]。本研究也表明:马尾松林土壤大团聚体中的碳氮比显著高于阔叶林,一方面说明马尾松林中土壤氮有效性较低,为了植物更好生长,需要增强氮循环酶活性,从而获得更多的氮素。ECM真菌可以分泌特异性胞外酶[7, 32],进而分解有机质获取有效氮源,因此氮相关酶活性较高。然而微生物不能单一获取土壤中的氮素,而是进行对复杂有机质的共同代谢过程,因此提高了微生物碳获取相关酶活性[33]。相较于ECM,AM直接分泌胞外酶的能力十分有限[34],其更多通过与微生物的相互作用提高水解酶活性[4, 34],但是其正负影响效应受到土壤养分等因素影响。有研究报道了AM通过与微生物竞争氮,抑制胞外酶活性[7]。因此,相比于ECM,AM对水解酶活性可能存在负向影响。此外,WANG等[19]研究了不同林型对于土壤团聚体酶活性的影响,表明不同林型凋落物质量的差异是驱动土壤团聚体中酶活性变化的主要因素。ECM优势生态系统凋落物碳氮比较高,凋落物质量较低[2, 6],而AM优势生态系统中含有相对丰富的氮源,凋落物质量较高。由于本研究中马尾松林的凋落物质量较低,导致了氮循环酶活性较高,这与WANG等[19]的研究结果一致。因此,ECM优势林向AM优势林转变,通过降低水解酶活性更有利于土壤团聚体对有机碳的保护。向量长度分析表明:阔叶林土壤大团聚体中的碳限制较弱,因此微生物对获取碳源的投入更少[35],这可能是阔叶林土壤大团聚体中碳循环相关酶(BG)活性相较于马尾松林较低的原因之一。以往的研究证实微生物碳获取酶活性与有机碳损失显著相关[20],随机森林结果也显示酶活性与团聚体中有机碳变异显著相关。因此,马尾松林向阔叶林转变可能降低了团聚体碳循环相关酶活性,减少了微生物对有机碳的利用和转化。

    • 马尾松林向阔叶林转变,其优势菌根类型由ECM转变为AM。同时,这个过程增加了大团聚体的占比,提高了土壤团聚体稳定性,大团聚体中有机碳呈上升趋势,微团聚体和粉黏粒中的有机碳显著降低。此外,相比于ECM优势马尾松林,AM优势阔叶林土壤团聚体中具有较低的碳氮循环相关酶活性。碳循环相关酶活性、GRSP以及ECM生物量是影响团聚体中有机碳变异的重要因子。综上,以ECM为优势的马尾松林转变为以AM为优势的阔叶林时,提高了土壤团聚体对有机碳的保护作用,降低了土壤团聚体中酶活性,有利于土壤有机碳固存。

参考文献 (35)

目录

/

返回文章
返回