-
机械损伤是植物生长过程中所面临最为普遍的胁迫之一[1]。植物不能通过躲避来免受机械损伤以及食叶昆虫和大型草食动物啃食的伤害。植物为了能够生存,在面对胁迫时通过启动体内防御反应信号系统应答外界的伤害,产生相应的防御反应[1],诱导植物体提高抵抗能力[2],从而获得系统免疫性,以提高植物的整体防御能力[3-4]。在植物受到损伤后,非结构性碳水化合物代谢会通过自身的改变来适应外界条件的变化。轻度刈割可以提高冷蒿Artemisia frigida可溶性碳水化合物含量和增加生物量[5],马尾松Pinus massoniana针叶被损伤后可溶性糖先降低,后逐渐恢复到原来水平[6]。冷蒿是菊科Asteraceae蒿属Artemisia呈半匍匐状或直立状生长的多年生小半灌木。已对冷蒿的生态学特性[7]、抗性生理特性[8-9]以及不同放牧条件下抗氧化防御系统[10]和次生代谢产物[11]等变化进行了研究。张汝民等[12]和左照江等[13]对冷蒿挥发物和化感作用等方面的研究,也更加明确了冷蒿在草原退化中的重要地位与作用。本研究以内蒙古草原主要建群植物冷蒿为对象,通过不同强度机械损伤处理冷蒿叶片和枝条(以剪刀损伤和揉捏方式),模拟牲畜对冷蒿枝叶的采食和践踏,从冷蒿体内非结构性碳水化合物代谢入手,研究机械损伤处理后冷蒿叶片和根部蔗糖、葡糖糖、果糖、淀粉质量分数的变化,探讨冷蒿体内非结构性碳水化合物代谢对机械损伤的响应机制。
Responses of non-structural carbohydrate metabolism to mechanical damage in Artemisia frigida
-
摘要: 为了探讨放牧过程牲畜采食和践踏损伤对冷蒿Artemisia frigida体内非结构性碳水化合物代谢的影响,对盆栽冷蒿枝叶采用不同程度(轻度、中度、重度)机械损伤的方式模拟放牧,测定了冷蒿叶片和根部蔗糖、葡萄糖、果糖和淀粉质量分数的变化。结果表明:在损伤初期,轻度和中度处理后冷蒿叶片中蔗糖、葡萄糖和淀粉质量分数显著增加(P<0.05);到损伤24 h,3种处理中蔗糖质量分数基本恢复到对照水平,而葡萄糖和淀粉质量分数显著下降,与对照相比,葡萄糖质量分数降了60.0%,74.6%和80.1%,淀粉质量分数下降了43.4%,45.2%和77.2%。葡萄糖和果糖结合成蔗糖,使其质量分数较高,在冷蒿体内积累。冷蒿根部非结构性碳水化合物质量分数变化与叶片相比是有所不同的。损伤初期,冷蒿根部葡萄糖质量分数上升,3种处理与对照相比分别增加了62.9%,94.3%和34.3%,果糖在轻度机械损伤处理后明显上升;到损伤后期,葡萄糖和果糖恢复到对照水平,蔗糖和淀粉随着损伤加强而下降。根部积累的主要是蔗糖和淀粉。冷蒿受损伤后,体内淀粉、蔗糖、葡萄糖质量分数发生变化,参加应急反应,同时轻度损伤可以增加冷蒿体内非结构性碳水化合物。Abstract: To determine the effect of grazing and trampling damage of livestock on the metabolism of non-structural carbohydrates in Artemisia frigida, mechanical damage at different degrees (light, moderate, and severe) was applied to simulate grazing. The content of starch, fructose, glucose, and sucrose in leaves and roots were determined. Results showed that in the early stage with light and moderate mechanical damage, sucrose, glucose, and starch content of A. frigida leaves increased significantly (P<0.05). Sucrose content under all the three treatments restored to the level of the control in 24 h; whereas glucose decreased by 60.0%, 74.6%, and 80.1%(P<0.05), respectively, under light, moderate, and high treatments, whereas starch content decreased by 43.4%, 45.2%, and 77.2% (P<0.05), respectively, under light, moderate, and heavy treatments. The variation pattern of non-structural carbohydrates in roots differed that in leaves. At early stage glucose content increased, by 62.9%, 94.3%, and 34.3% (P<0.05), respectively, under light, moderate, and heavy treatments. Fructose content increased significantly at early stage of light treatment. At late stages of three treatments, glucose and fructose contents were restored to the control level; however, sucrose and starch contents decreased with increasing damage. Sucrose and starch were accumulated mainly in roots. Thus, after treatments, the content of starch, sucrose, and glucose in A. frigida changed in response to emergency while mild damage increased the content of non-structural carbohydrates.
-
Key words:
- botany /
- Artemisia frigida /
- mechanical damage /
- non-structural carbohydrate
-
-
[1] 宋恒,王长泉. 机械伤害诱导的植物防御机制和信号转导[J]. 植物学报, 2013, 48(4):461-469. SONG Heng, WANG Changquan. Mechanism of wound-induced defense response and signal transduction in plants[J]. Chin Bull Bot, 2013, 48(4):461-469. [2] LEÓN J, ROJO E, SÁNCHEZ-SERRANO J J. Wound signalling in Plants[J]. J Exp Bot, 2001, 52(354):1-9. [3] DOMBROWSKI J E, HIND S R, MARTIN R C, et al. Wounding systemically activates a mitogenactivated protein kinase in forage and turf grasses[J]. Plant Sci, 2011, 180(5):686-693. [4] 冯远娇,金琼,王建武. 机械损伤对Bt玉米化学防御的系统诱导效应[J]. 植物生态学报,2010,34(6):695-703. FENG Yuanjiao, JIN Qiong, WANG Jianwu. Systemic induced effects of mechanical wounding on the chemical defense of Bt corn (Zea mays)[J]. Chin J Plant Ecol, 2010, 34(6):695-703. [5] 王静,杨持,韩文权,等. 刈割强度对冷蒿可溶性碳水化合物的影响[J]. 生态学报,2003,23(5):908-913. WANG Jing, YANG Chi, HAN Wenquan, et al. Effects on water-soluble carbohydrate of Artemisia frigida under different defoliation intensities[J]. Acta Ecol Sin, 2003, 23(5):908-913. [6] 王燕,戈峰, 李镇宇. 马尾松诱导化学物质变化的时空动态[J]. 生态学报,2001,21(8):1256-1261. WANG Yan, GE Feng, LI Zhenyu. Spatial-tempetial trends of induced chemical change in pine Pinus massoniana[J]. Acta Ecol Sin, 2001, 21(8):1256-1261. [7] 占布拉,陈世璜,张昊,等. 冷蒿的特性和生态地理分布的研究[J]. 内蒙古农牧学院学报,1999,20(1):1-7. Zhanbula, CHEN Shihuang, ZHANG Hao, et al. The characteristics ecological and geographical distribution of Artemisia feigida[J]. J Inner Mongolia Inst Agric Anim Husb, 1999, 20(1):1-7. [8] 吴建华,张汝民,高岩.干旱胁迫对冷蒿保护酶活性及膜脂过氧化作用的影响[J]. 浙江林学院学报,2010,27(3):329-333. WU Jianhua, ZHANG Rumin, GAO Yan. Membrane lipid peroxidation and protective enzyme systems with drought stressed Artemisia frigida leaves[J]. J Zhejiang For Coll, 2010, 27(3):329-333. [9] 周海燕. 水分胁迫对冷蒿和差不嘎蒿体内水分状况的影响[J]. 中国沙漠,1999,19(增刊1):26-29. ZHOU Haiyan. Water state of Artemisia Feigida and Artemisia halodendron under fifferent water stress conditions[J]. J Desert Res, 1999, 19(supp 1):26-29. [10] 贾丽,刘盟盟,张洪芹,等. 冷蒿抗氧化防御系统对机械损伤的响应[J]. 浙江农林大学学报,2016,33(3):462-470. JIA Li, LIU Mengmeng, ZHANG Hongqin, et al. Antioxidant defense system responses of Artemisia frigida to mechanical damage[J]. J Zhejiang A & F Univ, 2016, 33(3):462-470. [11] 刘盟盟,贾丽,张洪芹,等. 机械损伤对冷蒿叶片次生代谢产物的影响[J]. 浙江农林大学学报,2015,32(6):845-852. LIU Mengmeng, JIA Li, ZHANG Hongqin, et al. Mechanical damage on secondary metabolites from Artemisia frigida leaves[J]. J Zhejiang A & F Univ, 2015, 32(6):845-852. [12] 张汝民, 王玉芝, 侯平, 等. 几种牧草幼苗对冷蒿茎叶水浸提液的化感作用的生理响应[J]. 生态学报, 2010, 30(8):2197-2220. ZHANG Rumin,WANG Yuzhi,HOU Ping,et al. Physiological responses to allelopathy of aquatic stem and leaf extract of Artemisia frigida in seedling of several pasture plants[J]. Acta Ecol Sin, 2010, 30(8):2197-2220. [13] 左照江,张汝民,王勇,等. 损伤冷蒿挥发性有机化合物(VOCs)成分分析及其对牧草根系生长发育的影响[J]. 生态学报,2010,30(19):5131-5139. ZUO ZhaoJiang, ZHANG RuMin, WANG Yong, et al. The composition of volatile organic compounds (VOCs) emitted from damaged Artemisia frigida Willd. plants and their effects on root growth and development of pasture plants[J]. Acta Ecol Sin, 2010, 30(19):5131-5139. [14] 张治安,张美善,蔚荣海. 植物生理学实验指导[M]. 北京:中国农业科学技术出版社,2004. [15] 王燕,李镇宇,戈峰. 马尾松受害诱导的化学物质滞后变化[J]. 昆虫学报,2000,43(3):291-296. WANG Yan, LI Zhenyu, GE Feng. Lag-change of chemical components in needles of injured pine, Pinus massoniana[J]. Acta Entomol Sin, 2000, 43(3):291-296. [16] 李镇宇,陈华盛,袁小环,等. 油松对赤松毛虫的诱导化学防御[J]. 林业科学,1998,34(2):43-50. LI Zhenyu, CHEN Huasheng, YUAN Xiaohuan, et al. Induced chemical defenses of Pinus tabulaeformis Carr. to Dendrolmus spectabilis Butler[J]. Sci Silv Sin, 1998, 34(2):43-50. [17] 李镇宇,王燕,陈华盛,等. 油松对赤松毛虫的诱导化学防御及滞后诱导抗性[J]. 林业科学,2000,36(1):66-70. LI Zhenyu, WANG Yan, CHEN Huasheng, et al. Induced chemical defenses and delayed induced resistance of Pinus tabulaeformis Carr. to Dendrolimus spectabilis Butler[J]. Sci Silv Sin, 2000, 36(1):66-70. [18] 李镇宇,王燕,陈华盛,等. 赤松毛虫的危害对小油松针叶内物质含量的影响[J]. 北京林业大学学报,1999,21(5):41-45. LI Zhenyu, WANG Yan, CHEN Huasheng, et al. Affection of contents of some substances in needle of Pinus tabulaeformis Carr. induced by Dendrolimus spectabilis Butler[J]. J Beijing For Univ, 1999, 21(5):41-45. [19] 张鹏翀,胡增辉,沈应柏,等. 不同损伤对合作杨光合特性的影响[J]. 北京林业大学学报,2010,32(1):46-52. ZHANG Pengchong, HU Zenghui, SHEN Yingbai, et al. Effects of three types of wound on photosynthetic activity of Populus simonii×P. pyramidalis ‘Opera 8277’ seedlings[J]. J Beijing For Univ, 2010, 32(1):46-52. [20] DONAGHY D J, FULKERSON W J. Priority for allocation of water-soluble carbohydrate reserves during regrowth of Lolium perenne[J]. Grass Forage Sci, 1998, 53(3):211-218. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2016.04.011