-
放牧是草地利用的主要方式之一。过度放牧会导致草地发生不同程度的退化[1]。土壤微环境的退化伴随着不同程度的土壤微生物数量的减少和酶活性的下降[2]。土壤微生物和酶是土壤养分转化和循环的动力,参与有机质分解和腐殖质的形成等各个生化过程,能敏感地反映土壤中各种微环境的变化[3-5]。根际是植物根系、土壤、微生物形成的动态微域。植被的生长能有效维持土壤生态系统的动态平衡[6-7]。研究表明:根际土壤微生物数量普遍高于非根际土壤[8]。随放牧强度的增加,土壤中纤维素酶、多酚氧化酶、脲酶、蛋白酶、碱性磷酸酶和蔗糖酶活性逐渐降低[9];土壤微生物量碳、氮等与脲酶活性呈负相关,与蔗糖酶和碱性磷酸酶活性呈正相关[10];目前,关于放牧对根际土壤微生物及酶活性的影响研究较少,多集中在放牧对土壤养分、土壤微生物功能及遗传多样性的影响等方面[11-12]。内蒙古典型草原是中国西北地区重要的生态屏障,其功能的正常发挥对维持全球及区域性生态系统平衡具有极其重要的作用。由于长期过度放牧和刈割等人类活动的强烈干扰,草原生态环境恶化,退化现象日趋严重[13]。冷蒿Artemisia frigida是菊科Asteraceae蒿属Artemisia多年生草本植物,广布于草原带或荒漠草原带,具有耐旱耐寒、耐践踏、耐土壤贫瘠,生根萌蘖的再生生长能力强等特性[14-15],特别在重度放牧时,即使经过家畜强烈啃食后,仍然能够继续更新繁殖使植株丛扩大,保持一定的生产力水平[16],是过度放牧引起草原退化的指示植物,伴随着草原退化演替的各个阶段。目前,对于冷蒿繁殖特性、构件变化[17-18],及其挥发物和浸提液对牧草的影响等已有相关报道[19],然而关于放牧对其根际土壤微生物数量及酶活性的影响研究还鲜见报道。本研究通过小区控制放牧试验对锡林浩特毛登牧场不同放牧强度处理下冷蒿根际土壤与非根际土壤微生物区系和酶活性进行研究,探讨草原生态系统冷蒿根际土壤微生物和酶活性对放牧扰动的响应机制,为研究冷蒿阻击草原进一步退化的机理提供土壤学方面的理论基础和参考依据。
-
图 1显示:土壤类型与放牧及其交互作用对细菌、放线菌、真菌的影响均呈极显著差异。冷蒿根际土壤细菌数量随放牧强度增加先增加后减少,轻度放牧后细菌数量为22.78×106菌落形成单位·g-1显著高于对照和重度放牧,分别高22.0%和37.0%;轻度、重度放牧后非冷蒿根际土壤细菌数量分别比对照降低45.7%和55.7%;各处理均表现为冷蒿根际土壤细菌数量极显著高于非冷蒿根际土壤(图 1A)。轻度放牧和对照冷蒿根际土壤放线菌数量分别为17.74×105菌落形成单位·g-1和17.32×105菌落形成单位·g-1显著高于重度放牧,分别高72.5%和76.7%,且极显著高于非冷蒿根际土壤;各处理间非冷蒿根际土壤放线菌数量变化不明显(图 1B)。冷蒿根际土壤真菌数量随放牧强度增加先增加后减少,轻度放牧后真菌数量为17.30×103菌落形成单位·g-1,显著高于对照和重度放牧,分别高60.3%和29.4%;轻度放牧、重度放牧后非冷蒿根际土壤真菌数量分别比对照降低47.3%和44.2%;除对照外,轻度放牧、重度放牧冷蒿根际土壤真菌数量均极显著高于非冷蒿根际土壤,分别高2.5倍和1.5倍(图 1C)。
-
放牧对土壤中5种微生物生理类群数量变化的影响差异极显著(表 1);土壤类型对硝化细菌数量变化的影响不明显,对反硝化细菌数量变化的影响差异显著,而对其他3种菌数量变化的影响差异极显著;放牧和土壤类型的交互作用除对氨化细菌、反硝化细菌数量的变化无明显影响外,对其他3种菌数量变化的影响差异极显著。冷蒿根际土壤轻度放牧后,除反硝化细菌、好氧纤维素分解菌数量与对照差异不明显外,氨氧化细菌、硝化细菌数量与对照相比显著降低,分别降低56.5%和41.0%,而氨化细菌数量与对照相比显著增加了1.1倍;重度放牧后,除氨氧化细菌数量与对照差异不显著外,氨化细菌、反硝化细菌数量与对照相比显著增加,分别增加69.0%和46.8%,而硝化细菌、好氧纤维素分解菌数量与对照相比显著降低,分别降低37.5%和57.5%。非冷蒿根际土壤轻度放牧后,除反硝化细菌数量与对照相比差异不显著外,氨化细菌、硝化细菌数量与对照相比增加显著,分别增加1.32和1.54倍,氨氧化细菌、好氧纤维素分解菌数量与对照相比显著降低,分别降低112.0%和64.3%;重度放牧后,除了好氧纤维素分解菌数量与对照相比显著降低了82.0%外,其他4种菌数量与对照相比均显著增加,分别增加101.5%,32.8%,468.1%和54.2%。
表 1 不同放牧强度下冷蒿根际土壤微生物类群变化
Table 1. Variation of soil microbial population of A. frigida rhizosphere under different grazing intensity
土壤类型 处理 氨化细菌/(×102
菌落形成单位·
g-1)氨氧化细菌/(×
102菌落形成单
位·g-1)硝化细菌/(×102
菌落形成单位·
g-1)反硝化细菌/(×
102菌落形成单
位·g-1)好氧纤维素分解
菌/(×102菌落形
成单位·g-1)对照处理 14.63 ± 3.53 B 1.68 ± 0.06 A 9.44 ± 2.94 A 3.89 ± 0.50 B 2.59 ± 0.29 A 冷蒿根际土壤 轻度放牧 30.71 ± 6.64 A 0.73 ± 0.06 B 5.57 ± 1.66 B 3.45 ± 0.51 B 2.93 ± 0.28 A 重度放牧 24.73 ± 8.71 A 1.41 ±0.24 A 5.90 ± 1.32 B 5.71 ± 1.35 A 1.10 ± 0.12 B 变异来源 组间(自由度为2) 792.47 2.899 55.47 17.123 11.336 组内(自由度为24) 529.80 0.311 52.66 11.667 0.881 对照处理 6.18 ± 1.94 b 1.95 ± 0.23 b 2.32 ± 0.91 c 4.87 ± 0.29 b 3.00 ± 0.29 a 非冷蒿根际土壤 轻度放牧 14.39 ± 2.88 a 0.92 ± 0.23 c 5.90 ± 2.10 b 4.24 ± 0.29 b 1.07 ± 0.11b 重度放牧 12.45 ± 3.49 a 2.59 ± 0.57 a 13.18 ± 3.06 a 7.51 ± 0.57 a 0.54 ± 0.12 c 变异来源 组间(自由度为2) 221.23 8.505 367.68 36.015 20.073 组内(自由度为24) 96.93 2.170 58.29 2.437 0.558 P:Fs ** ** 无显著差异 * ** P:Fg ** ** ** ** ** P:Fs×Fg 无显著差异 ** ** 无显著差异 ** 说明:数值均为平均值±标准误。根据最小显著性差异法测验,不同大写字母表示冷蒿根际土壤的差异显著性,不同小写字母表示非冷蒿根际土壤的差异显著性。Fs.土壤类型的影响;Fg.放牧的影响;Fs×Fg.土壤类型与放牧的交互作用。 -
由表 2可知:与对照相比放牧后7种酶活性的变化均表现为冷蒿根际土壤高于非冷蒿根际土壤。土壤类型及其与放牧的交互作用对土壤酶活性的影响差异极显著;放牧除对淀粉酶、转化酶、蛋白酶活性的影响差异显著外,对其他4种酶活性的影响差异极显著。冷蒿根际土壤酶活性在不同放牧强度之间有显著差异;蛋白酶对照区较高,重牧区较低;硝酸还原酶、淀粉酶、转化酶活性对照区较低,放牧区较高;碱性磷酸酶、脱氢酶、脲酶活性轻牧区较高(表 2)。非冷蒿根际土壤酶活性在不同放牧强度之间有显著差异;淀粉酶、蛋白酶活性均表现出对照区较高,重牧区较低;转化酶、脲酶活性轻牧区较低;碱性磷酸酶、脱氢酶、硝酸还原酶活性放牧区较高。
表 2 不同放牧强度对冷蒿根际土壤酶活性的影响
Table 2. Effect of soil enzyme activites of Artemisia frigida rhizosphere under different grazing intensity
土壤类型 处理 碱性磷酸酶/
(mg·g-1·h-1)脱氢酶/(μL·
g-1·h-1)淀粉酶/(mg·
g-1·h-1)转化酶/(mg·
g-1·h-1蛋白酶/(μg·
g-1·h-1)脲酶/(mg·g-1·
h-1)硝酸还原酶/
(mg·g-1·h-4)冷蒿根际土壤 对照处理 10.22 ± 0.94 B 0.54 ± 0.05 C 0.76 ± 0.17 B 6.39 ± 0.47 B 2.90 ± 0.07 A 2.71 ± 0.08 B 2.25 ± 0.12 C 轻度放牧 15.34 ± 1.01 A 1.85 ± 0.31 A 0.84 ± 0.19 A 7.01 ± 0.23 A 13.93 ± 1.45 B 17.21 ± 0.71 A 14.66 ± 1.94 B 重度放牧 7.95 ± 0.74 C 1.29 ± 0.25 B 0.87 ± 0.10 A 6.97 ± 0.09 A 0.07 ± 0.01 B 0.10 ± 0.01 A 0.09 ± 0.01 A 变异来源 组间(自由度为2) 257.569 7.863 0.060 2.148 2.031 53.532 0.004 组内(自由度为24) 19.519 1.319 0.594 2.239 0.207 50.780 0.004 非冷蒿根际土壤 对照处理 4.72 ± 0.92 b 0.25 ± 0.02 c 0.60 ± 0.04 a 5.42 ± 0.35 a 2.53 ± 0.12 a 14.87 ± 0.75 a 0.03 ± 0.01 c 轻度放牧 5.16 ± 0.67 ab 0.66 ± 0.14 a 0.48 ± 0.09 b 4.47 ± 0.23 c 2.36 ± 0.09 b 10.65 ± 1.53 b 0.08 ± 0.01 a 重度放牧 5.50 ± 0.33 a 0.39 ± O.11 b 0.40 ± 0.12 c 4.91 ± 0.13 b 2.03 ± 0.06 c 11.33 ± 1.12 b 0.05 ± 0.01 b 变异来源 组间(自由度为2) 2.7462 0.777 0.178 4.089 1.162 92.409 0.008 组内(自由度为24) 11.208 0.273 0.195 1.559 0.196 33.211 0.004 P:Fs ** ** ** ** ** ** ** P:Fg ** ** * * * ** ** P:Fs×Fg ** ** ** ** ** ** ** 说明:数值均为平均值±标准误。根据最小显著性差异法测验,不同大写字母表示冷蒿根际土壤的差异显著性,不同小写字母表示非冷蒿根际土壤的差异显著性。Fs.土壤类型的影响;Fg.放牧的影响;Fs×Fg.土壤类梨与放牧的交互作用。 -
表 3显示:放牧扰动下氨化细菌与碱性磷酸酶、脱氢酶、淀粉酶、转化酶、硝酸还原酶活性呈极显著正相关(P<0.01),与脲酶活性呈显著正相关(P<0.05);氨氧化细菌与土壤脱氢酶、硝酸还原酶活性呈极显著负相关(P<0.01),与碱性磷酸酶、淀粉酶活性呈显著负相关(P<0.05);反硝化细菌与蛋白酶活性呈极显著负相关(P<0.01),与碱性磷酸酶、淀粉酶活性呈显著负相关(P<0.05);好氧纤维素分解菌与蛋白酶、脲酶呈极显著正相关(P<0.01),与碱性磷酸酶、淀粉酶呈显著正相关(P<0.05);真菌与硝酸还原酶活性呈极显著正相关(P<0.01),与脱氢酶、淀粉酶活性呈显著正相关(P<0.05)。
表 3 土壤微生物与土壤酶活性的相关性分析
Table 3. Correlation analysis between soil microbial and soil enzyme activity
微生物 碱性磷酸酶 脱氢酶 淀粉酶 转化酶 蛋白酶 脲酶 硝酸还原酶 氨化细菌 0.795** 0.936** 0.660** 0.714** 0.141 0.505* 0.883** 氨氧化细菌 -0.539* -0.698** -0.504* -0.342 -0.421 -0.326 -0.775** 硝化细菌 -0.013 -0.198 -0.351 -0.182 -0.295 -0.415 -0.061 反硝化细菌 -0.552* -0.400 -0.486* -0.347 -0.836** -0.454 -0.442 好氧纤维素分解菌 0.499* 0.172 0.475* 0.442 0.842** 0.702** -0.015 真菌 0.166 0.476* 0.496* 0.386 0.006 0.012 0.742** 放线菌 0.010 -0.015 0.458 0.426 0.170 -0.008 0.279 说明:*表示显著相关(P<0.05),**表示极显著相关(P<0.01)。
Effects of grazing intensity on soil microbial flora and soil enzyme activities in the Artemisia frigida rhizosphere
-
摘要: 为了揭示放牧对退化草原冷蒿Artemisia frigida群落阻击草场进一步退化的机制,以小区控制放牧试验(不放牧、轻度放牧、重度放牧)冷蒿根际与非根际土壤为对象,研究了不同程度放牧干扰对冷蒿根际土壤微生物数量、类群和酶活性的影响及其相互关系。结果表明:各放牧区土壤微生物数量均表现为细菌>放线菌>真菌;各处理之间冷蒿根际土壤微生物细菌、放线菌、真菌数量均显著高于非冷蒿根际土壤(P < 0.05)。冷蒿根际土壤氨化细菌和好氧纤维素分解菌数量高于非冷蒿根际土壤;轻度放牧区冷蒿根际土壤氨化细菌和好氧纤维素分解菌数量显著增加(P < 0.05)。冷蒿根际土壤轻度放牧后碱性磷酸酶、脱氢酶、淀粉酶、转化酶、脲酶、硝酸还原酶活性明显高于对照和重度放牧;各放牧区冷蒿根际土壤7种酶活性显著高于非冷蒿根际土壤(P < 0.05)。相关分析表明,氨化细菌与碱性磷酸酶、脱氢酶、淀粉酶、转化酶、硝酸还原酶活性存在极显著正相关关系(P < 0.01),好氧纤维素分解菌与酶活性存在正相关(P < 0.05)。重度放牧后土壤中微生物数量减少,酶活性降低,轻度放牧使冷蒿根际土壤微生物数量和酶活性显著增加,改善土壤微生态环境。合理放牧有助于冷蒿阻击草原进一步退化。Abstract: To reveal how Artemisia frigida growing in degraded grasslands resisted further degradation, the effects of grazing disturbance at varying degrees (no grazing, the control; light grazing; and heavy grazing) to microorganism quantity, physiological groups, and enzyme activities of soil microbes in the A. frigida rhizosphere, along with the interrelationships among them, were studied. Results showed that the number of microorganisms in different grazing areas was: bacteria > actinomyces > fungus. The counts of bacteria, actinomyces, and fungi in the A. frigida rhizosphere were significantly higher than in the non-rhizosphere (P < 0.05). The count of ammonifying bacteria and aerobic cellulose decomposers in the rhizosphere were also significantly higher (P < 0.05) than that in non-rhizosphere; under light grazing, ammonifying bacteria and aerobic cellulose decomposers in the rhizosphere were significantly higher (P < 0.05). Compared to the control and the heavy grazing treatment, activities of soil alkaline phosphatase, dehydrogenase amylase, invertase, urease, and nitrate reductase in the rhizosphere with the light grazing treatment were higher (P < 0.05). In each grazing area, seven kinds of soil enzyme activities in the rhizosphere of A. frigida were significantly higher than those in the non-rhizosphere (P < 0.05). The correlation analysis indicated a highly significant positive correlation between ammonifying bacteria and activities of soil alkaline phosphatase, dehydrogenase, amylase, invertase, and nitrate reductase (P < 0.01); aerobic cellulose decomposers also had a positive correlation with soil enzyme activities (P < 0.05). After heavy grazing, the number of microorganisms in the soil decreased, and soil enzyme activities decreased both in the A. frigida rhizosphere and non-rhizosphere. Thus, the number of soil microorganisms and soil enzyme activities in the A. frigida rhizosphere increased with light grazing and improved the soil ecological environment meaning reasonable grazing could help the A. frigida population in degraded grasslands to further resist degradation.
-
Key words:
- soil science /
- grazing /
- Artemisia frigida /
- rhizosphere microbe /
- soil enzyme activity
-
表 1 不同放牧强度下冷蒿根际土壤微生物类群变化
Table 1. Variation of soil microbial population of A. frigida rhizosphere under different grazing intensity
土壤类型 处理 氨化细菌/(×102
菌落形成单位·
g-1)氨氧化细菌/(×
102菌落形成单
位·g-1)硝化细菌/(×102
菌落形成单位·
g-1)反硝化细菌/(×
102菌落形成单
位·g-1)好氧纤维素分解
菌/(×102菌落形
成单位·g-1)对照处理 14.63 ± 3.53 B 1.68 ± 0.06 A 9.44 ± 2.94 A 3.89 ± 0.50 B 2.59 ± 0.29 A 冷蒿根际土壤 轻度放牧 30.71 ± 6.64 A 0.73 ± 0.06 B 5.57 ± 1.66 B 3.45 ± 0.51 B 2.93 ± 0.28 A 重度放牧 24.73 ± 8.71 A 1.41 ±0.24 A 5.90 ± 1.32 B 5.71 ± 1.35 A 1.10 ± 0.12 B 变异来源 组间(自由度为2) 792.47 2.899 55.47 17.123 11.336 组内(自由度为24) 529.80 0.311 52.66 11.667 0.881 对照处理 6.18 ± 1.94 b 1.95 ± 0.23 b 2.32 ± 0.91 c 4.87 ± 0.29 b 3.00 ± 0.29 a 非冷蒿根际土壤 轻度放牧 14.39 ± 2.88 a 0.92 ± 0.23 c 5.90 ± 2.10 b 4.24 ± 0.29 b 1.07 ± 0.11b 重度放牧 12.45 ± 3.49 a 2.59 ± 0.57 a 13.18 ± 3.06 a 7.51 ± 0.57 a 0.54 ± 0.12 c 变异来源 组间(自由度为2) 221.23 8.505 367.68 36.015 20.073 组内(自由度为24) 96.93 2.170 58.29 2.437 0.558 P:Fs ** ** 无显著差异 * ** P:Fg ** ** ** ** ** P:Fs×Fg 无显著差异 ** ** 无显著差异 ** 说明:数值均为平均值±标准误。根据最小显著性差异法测验,不同大写字母表示冷蒿根际土壤的差异显著性,不同小写字母表示非冷蒿根际土壤的差异显著性。Fs.土壤类型的影响;Fg.放牧的影响;Fs×Fg.土壤类型与放牧的交互作用。 表 2 不同放牧强度对冷蒿根际土壤酶活性的影响
Table 2. Effect of soil enzyme activites of Artemisia frigida rhizosphere under different grazing intensity
土壤类型 处理 碱性磷酸酶/
(mg·g-1·h-1)脱氢酶/(μL·
g-1·h-1)淀粉酶/(mg·
g-1·h-1)转化酶/(mg·
g-1·h-1蛋白酶/(μg·
g-1·h-1)脲酶/(mg·g-1·
h-1)硝酸还原酶/
(mg·g-1·h-4)冷蒿根际土壤 对照处理 10.22 ± 0.94 B 0.54 ± 0.05 C 0.76 ± 0.17 B 6.39 ± 0.47 B 2.90 ± 0.07 A 2.71 ± 0.08 B 2.25 ± 0.12 C 轻度放牧 15.34 ± 1.01 A 1.85 ± 0.31 A 0.84 ± 0.19 A 7.01 ± 0.23 A 13.93 ± 1.45 B 17.21 ± 0.71 A 14.66 ± 1.94 B 重度放牧 7.95 ± 0.74 C 1.29 ± 0.25 B 0.87 ± 0.10 A 6.97 ± 0.09 A 0.07 ± 0.01 B 0.10 ± 0.01 A 0.09 ± 0.01 A 变异来源 组间(自由度为2) 257.569 7.863 0.060 2.148 2.031 53.532 0.004 组内(自由度为24) 19.519 1.319 0.594 2.239 0.207 50.780 0.004 非冷蒿根际土壤 对照处理 4.72 ± 0.92 b 0.25 ± 0.02 c 0.60 ± 0.04 a 5.42 ± 0.35 a 2.53 ± 0.12 a 14.87 ± 0.75 a 0.03 ± 0.01 c 轻度放牧 5.16 ± 0.67 ab 0.66 ± 0.14 a 0.48 ± 0.09 b 4.47 ± 0.23 c 2.36 ± 0.09 b 10.65 ± 1.53 b 0.08 ± 0.01 a 重度放牧 5.50 ± 0.33 a 0.39 ± O.11 b 0.40 ± 0.12 c 4.91 ± 0.13 b 2.03 ± 0.06 c 11.33 ± 1.12 b 0.05 ± 0.01 b 变异来源 组间(自由度为2) 2.7462 0.777 0.178 4.089 1.162 92.409 0.008 组内(自由度为24) 11.208 0.273 0.195 1.559 0.196 33.211 0.004 P:Fs ** ** ** ** ** ** ** P:Fg ** ** * * * ** ** P:Fs×Fg ** ** ** ** ** ** ** 说明:数值均为平均值±标准误。根据最小显著性差异法测验,不同大写字母表示冷蒿根际土壤的差异显著性,不同小写字母表示非冷蒿根际土壤的差异显著性。Fs.土壤类型的影响;Fg.放牧的影响;Fs×Fg.土壤类梨与放牧的交互作用。 表 3 土壤微生物与土壤酶活性的相关性分析
Table 3. Correlation analysis between soil microbial and soil enzyme activity
微生物 碱性磷酸酶 脱氢酶 淀粉酶 转化酶 蛋白酶 脲酶 硝酸还原酶 氨化细菌 0.795** 0.936** 0.660** 0.714** 0.141 0.505* 0.883** 氨氧化细菌 -0.539* -0.698** -0.504* -0.342 -0.421 -0.326 -0.775** 硝化细菌 -0.013 -0.198 -0.351 -0.182 -0.295 -0.415 -0.061 反硝化细菌 -0.552* -0.400 -0.486* -0.347 -0.836** -0.454 -0.442 好氧纤维素分解菌 0.499* 0.172 0.475* 0.442 0.842** 0.702** -0.015 真菌 0.166 0.476* 0.496* 0.386 0.006 0.012 0.742** 放线菌 0.010 -0.015 0.458 0.426 0.170 -0.008 0.279 说明:*表示显著相关(P<0.05),**表示极显著相关(P<0.01)。 -
[1] LIANG Yan, HAN Guodong, ZHOU He, et al. Grazing intensity on vegetation dynamics of a typical steppe in northeast Inner Mongolia [J]. Rangeland Ecol Manage, 2009, 62(4): 328-336. [2] LI Jinhua, LI Zhenqing, REN Jizhou. The effects of grazing on grassland plants [J]. Acta Pratacul Sin, 2002, 11(1): 4-11. [3] MAKOI J H, NDAKIDEMI P A. Selected soil enzymes: examples of their potential roles in the ecosystem [J]. Afr J Biotechnol, 2008, 7(3): 181-191. [4] CIARKOWSKA K, SOŁEK-PODWIKA K, WIECZOREK J. Enzyme activity as an indicator of soil-rehabilitation processes at a zinc and lead ore mining and processing area [J]. J Environ Manage, 2014, 132(132C): 250-256. [5] LI Junjian, ZHOU Xiaomei, YAN Junxia, et al. Effects of regenerating vegetation on soil enzyme activity and microbial structure in reclaimed soils on a surface coal mine site [J]. Appl Soil Ecol, 2015, 87: 56-62. [6] 马月婷, 张丽静, 杜明新, 等.不同种植年限白沙蒿对根际土壤营养元素的影响[J].草业科学, 2014, 31(2): 224-231. MA Yueting, ZHANG Lijing, DU Mingxin, et al. Effects of different ages Artemisia sphaerocephala on the content of nutrient elements in rhizosohere soil [J]. Pratac Sci, 2014, 31(2): 224-231. [7] ZHANG Xiangqian, HUANG Guoqin, BIAN Xinmin, et al. Effects of nitrogen fertilization and root interaction on the agronomic traits of intercropped maize, and the quantity of microorganisms and activity of enzymes in the rhizosphere[J]. Plant Soil, 2013, 368(1/2): 407-417. [8] BADRI D V, WEIR T L, van der LELIE D, et al. Rhizosphere chemical dialogues: plant-microbe interactions [J]. Curr Opin Biotechnol, 2009, 20(6): 642-650. [9] 王启兰, 曹广民, 王长庭.放牧对小嵩草草甸土壤酶活性及土壤环境因素的影响[J].植物营养与肥料学报, 2007, 13(5): 856-864. WANG Qilan, CAO Guangmin, WANG Changting. The impact of grazing on the activities of soil enzymes and soil environmental factors in alpine Kobresia pygmaea meadow [J]. Plant Nut Fertil Sci, 2007, 13(5): 856-864. [10] 牛得草, 江世高, 秦燕, 等.围封与放牧对土壤微生物和酶活性的影响[J].草业科学, 2013, 30(4): 528-534. NIU Decao, JIANG Shigao, QIN Yan, et al. Effects of grazing and fencing on soil microorganisms and enzymes activities [J]. Pratac Sci, 2013, 30(4): 528-534. [11] HAN Guodong, HAO Xiying, ZHAO Mengli, et al. Effect of grazing intensity on carbon and nitrogen in soil and vegetation in a meadow steppe in Inner Mongolia [J]. Agric Ecosyst Environ, 2007, 125(1): 21-32. [12] ESCH E H, HERNÁNDEZ D L, PASARI J R, et al. Response of soil microbial activity to grazing, nitrogen deposition, and exotic cover in a serpentine grassland [J]. Plant Soil, 2013, 366(1/2): 671-682. [13] 侯扶江, 杨中艺.放牧对草地的作用[J].生态学报, 2006, 26(1): 244-264. HOU Fujiang, YANG Zhongyi. Effects of grazing of livestock on grassland [J]. Acta Ecol Sin, 2006, 26(01): 244-264. [14] 王静, 杨持.冷蒿抗寒生理特性的研究[J].内蒙古大学学报(自然科学版), 2002, 33(6): 673-676. WANG Jing, YANG Chi. A study of cold resistance physiology characteristic of Artemisia frigida [J]. Acta Sci Nat Univ Neimongol, 2002, 33(6): 673-676. [15] 周海燕.中国东北科尔沁沙地2种建群植物的抗旱机理[J].植物研究, 2002, 22(1): 51-55. ZHOU Haiyan. Drought-resistant mechanism of two edificatos in Horqin sandy land of northeast China [J]. Bull Bot Res, 2002, 22(1): 51-55. [16] 孙英杰, 李衍青, 赵爱芬, 等.科尔沁沙地沙漠化恢复过程中冷蒿种群的扩散对策研究[J].草业学报, 2014, 23(1): 3-11. SUN Yingjie, LI Yanqing, ZHAO Aifen, et al. Research on the spread strategy of Artemisia frigida populations during the desertification recovery process in Horqin sandy land [J]. Acta Pratac Sin, 2014, 23(1): 3-11. [17] 王静, 杨持, 尹俊, 等.冷蒿种群在放牧干扰下遗传多样性的变化[J].生态学报, 2004, 24(11): 2465-2471. WANG Jing, YANG Chi, YIN Jun, et al. Changes of the genetic diversity of Artemisia frigida population under the disturbance of grazing [J]. Acta Ecol Sin, 2004, 24(11): 2465-2471. [18] 王静, 杨持, 王铁娟.冷蒿(Artemisia frigida)种群在放牧干扰下构件的变化[J].生态学报, 2006, 26(3): 960-965. WANG Jing, YANG Chi, WANG Tiejuan. Changes of model of Artemisia frigida populations under the disturbance of grazing [J]. Acta Ecol Sin, 2006, 26(3): 960-965. [19] ZHANG Rumin, ZUO Zhaojiang, GAO Peijun, et al. Allelopathic effects of VOCs of Artemisia frigida Willd. on the regeneration of pasture grasses in Inner Mongolia [J]. J Arid Environ, 2012, 87: 212-218. [20] 林先贵.土壤微生物研究原理与方法[M].北京:高等教育出版社, 2010. [21] 关松荫.土壤酶及其研究法[M].北京:农业出版社, 1987. [22] SICILIANO S D, PALMER A S, WINSLEY T, et al. Soil fertility is associated with fungal and bacterial richness, whereas pH is associated with community composition in polar soil microbial communities [J]. Soil Biol Biochem, 2014, 78(6): 10-20. [23] BACH E M, BAER S G, MEYER C K, et al. Soil texture affects soil microbial and structural recovery during grassland restoration [J]. Soil Biol Biochem, 2010, 42(12): 2182-2219. [24] 胡静, 侯向阳, 王珍, 等.割草和放牧对大针茅根际与非根际土壤养分和微生物数量的影响[J].应用生态学报, 2015, 26(11): 3482-3488. HU Jing, HOU Xiangyang, WANG Zhen, et al. Effects of mowing and grazing on soil nutrients and soil microbes in rhizosphere and bulk soil of Stipa grandis in a typical steppe [J]. Chin J Appl Ecol, 2015, 26(11): 3482-3488. [25] 文都日乐, 张静妮, 李刚, 等.放牧干扰对贝加尔针茅草原土壤微生物与土壤酶活性的影响[J].草地学报, 2010, 18(4): 517-522. WENDU Rile, ZHANG Jingni, LI Gang, et al. Effect of grazing disturbance on soil microorganisms and soil enzyme activities of Stipa baicalensis Rosev. Steppe [J]. Acta Agrect Sin, 2010, 18(4): 517-522. [26] 闫瑞瑞, 闫玉春, 辛晓平, 等.不同放牧梯度下草甸草原土壤微生物和酶活性研究[J].生态环境学报, 2011, 20(2): 259-265. YAN Ruirui, YAN Yuchun, XIN Xiaoping, et al. Changes in microorganisms and enzyme activities in soil under different grazing intensities in meadow steppe, Inner Mongolia [J]. Ecol Environ Sci, 2011, 20(2): 259-265. [27] 胡开辉, 罗庆国, 汪世华, 等.化感水稻根际微生物类群及酶活性变化[J].应用生态学报, 2006, 17(6): 1060-1064. HU Kaihui, LUO Qingguo, WANG Shihua, et al. Effects of allelopathic rice on rhizospheren microbial flora and enzyme activity [J]. Chin J Appl Ecol, 2006, 17(6): 1060-1064. [28] SCHALLER K. Soil enzymes-valuable indicators of soil fertility and environmental impacts [J]. Bull Univ Agric Sci Vet Med Clujn Hortic, 2009, 66(2): 911-916. [29] FINKENBEIN P, KRETSCHMER K, KUKA K, et al. Soil enzyme activities as bioindicators for substrate quality in revegetation of a subtropical coal mining dump [J]. Soil Biol Biochem, 2013, 56: 87-89. [30] 孙瑞莲, 赵秉强, 朱鲁生, 等.长期定位施肥对土壤酶活性的影响及其调控土壤肥力的作用[J].植物营养与肥料学报, 2003, 9(4): 406-410. SUN Ruilian, ZHAO Bingqiang, ZHU Lusheng, et al. Effects of long-term fertilization on soil enzyme activities and its role in adjusting-controlling soil fertility [J]. Plant Nut Fertil Sci, 2003, 9(4): 406-410. [31] 向泽宇, 王长庭, 宋文彪, 等.草地生态系统土壤酶活性研究进展[J].草业科学, 2011, 28(10): 1801-1806. XIANG Zeyu, WANG Changting, SONG Wenbiao, et al. Advances on soil enzymatic activities in grassland ecosystem [J]. Pratac Sci, 2011, 28(10): 1801-1806. [32] 高雪峰, 韩国栋, 张功, 等.荒漠草原不同放牧强度下土壤酶活性及养分含量的动态研究[J].草业科学, 2007, 24(2): 10-13. GAO Xuefeng, HAN Guodong, ZHANG Gong, et al. Study on dynamics of soil enzyme activity and nutrient of desert steppe under different grazing intensities [J]. Pratac Sci, 2007, 24(2): 10-13. [33] ANDREONI V, CAVALCA L, RAO M A, et al. Bacterial communities and enzyme activities of PAHs polluted soils[J]. Chemosphere, 2004, 57(5): 401-412. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2017.04.014