留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

针阔混交林中兴安落叶松比例对土壤化学性质和酶化学计量比的影响

王博 周志勇 张欢 朱雍 曹雨松 赵洪涛

王博, 周志勇, 张欢, 等. 针阔混交林中兴安落叶松比例对土壤化学性质和酶化学计量比的影响[J]. 浙江农林大学学报, 2020, 37(4): 611-622. DOI: 10.11833/j.issn.2095-0756.20190525
引用本文: 王博, 周志勇, 张欢, 等. 针阔混交林中兴安落叶松比例对土壤化学性质和酶化学计量比的影响[J]. 浙江农林大学学报, 2020, 37(4): 611-622. DOI: 10.11833/j.issn.2095-0756.20190525
SHAO Huiting, LUO Jiafeng, FEI Ximin. Impact of climate change cognition on public willingness to pay for environmental protection and mitigation actions[J]. Journal of Zhejiang A&F University, 2019, 36(5): 1012-1018. DOI: 10.11833/j.issn.2095-0756.2019.05.022
Citation: WANG Bo, ZHOU Zhiyong, ZHANG Huan, et al. Effect of Larix gmelinii proportion on soil chemical properties and enzymatic stoichiometry in mixed coniferous and broad-leaved forest[J]. Journal of Zhejiang A&F University, 2020, 37(4): 611-622. DOI: 10.11833/j.issn.2095-0756.20190525

针阔混交林中兴安落叶松比例对土壤化学性质和酶化学计量比的影响

DOI: 10.11833/j.issn.2095-0756.20190525
基金项目: “十三五”国家重点研发计划项目 (2017YFC0504002);中央高校基本科研业务费专项资金资助项目 (2015ZCQ-LX-03)
详细信息
    作者简介: 王博,从事森林生态学研究。E-mail: 429080996@qq.com
    通信作者: 周志勇,副教授,博士,从事森林生态学研究。E-mail: zhiyong@bjfu.edu.cn
  • 中图分类号: S718.5

Effect of Larix gmelinii proportion on soil chemical properties and enzymatic stoichiometry in mixed coniferous and broad-leaved forest

  • 摘要:   目的  研究不同比例兴安落叶松Larix gmelinii的针阔混交林土壤的化学性质和酶化学计量比。  方法  按照群落中兴安落叶松材积所占的不同比例(70%、75%、80%、85%、90%、95%),把调查的森林群落分为6种类型,分别监测了各类型群落0~5和5~20 cm土层的养分和生物化学性状等。  结果  分析的5种酶中酸性磷酸酶的活性最高,0~5与5~20 cm土层均值分别为463.74 nmol·g−1·h−1和312.91 nmol·g−1·h−1。在0~5 cm土层中,群落中兴安落叶松比例的增加对亮氨酸氨肽酶的活性有明显的促进作用,兴安落叶松比例为95%的群落亮氨酸氨肽酶活性比兴安落叶松比例为75%和85%的群落显著提高了 57.44%和59.40%。群落中兴安落叶松的比例也影响了土壤中酶的化学计量特征,当兴安落叶松比例达95%时,5~20 cm土层与氮、磷矿化相关的酶计量比显著高于兴安落叶松比例为80%和85%的群落(P95%-80%=0.020, P95%-85%=0.020)。与碳、氮矿化相关的酶计量比在兴安落叶松为95%的群落中最低。土壤的酶活性与土壤养分质量分数间呈现复杂的相关性,并随着土壤深度的增加而改变。在0~5 cm土层,土壤pH与葡萄糖苷酶(BG)、乙酰氨基葡萄糖苷酶(NAG)的活性间存在显著的负相关(PpH-BG=0.010, PpH-NAG=0.030);在5~20 cm土层,亮氨酸氨肽酶(LAP)和乙酰氨基葡萄糖苷酶(NAG)的活性与土壤全氮(TN)质量分数存在显著的正相关(PLAP-TN=0.020, PNAG-TN=2×10−4),酸性磷酸酶(AP)与土壤全磷(TP)质量分数间存在显著的负相关(PAP-TP=0.020)。通过对上述变量进行冗余分析,发现土壤酶的化学计量比在0~5 cm土层主要受到土壤酸碱度的影响,在5~20 cm土层则主要受到土壤全氮和有效氮质量分数的影响。  结论  暖温带针阔混交林中兴安落叶松所占比例是调控土壤养分动态的一个重要生物因子,其调控作用的发挥则主要依赖于土壤中酶的活性及其化学计量特征。图4表4参41
  • 随着环境保护要求的不断提高,环保型木材防腐剂越来越受到重视,此类防腐剂多以高效低毒的有机农药为主成分,配合其他助剂制备成有机型或水基型防腐剂[1-2]。三唑类杀菌剂,如丙环唑、戊唑醇、环丙唑醇、氟环唑和苯醚甲环唑等,既可以单独使用,又可以与铜制剂复配[3-4],是目前常用的木材防腐剂;这些三唑类杀菌剂杀菌谱不尽相同,作用机制也有所差异,应用较广泛的是丙环唑和戊唑醇[5-6]。常见的木材防霉剂有异噻唑啉酮类如卡松、1,2-苯并异噻唑-3-酮(BIT)、4,5-二氯-2-正辛基-3-异噻唑啉酮(DCOI)等,有机碘类如碘丙炔醇丁基氨甲酸酯(IPBC),三唑类等[7],杀菌谱也不尽相同;常用的仓储水果防霉剂如溴菌腈和抑霉唑[8-9],防霉活性较高,但较少应用于木材防霉。菊酯类杀虫剂是常见的防治白蚁的药剂,具有用量少、成本较低、废弃物易回收、环境相对友好等优点;高效氯氟氰菊酯在菊酯类杀虫剂中活性较高、稳定性较强、耐雨水冲刷性能较好。因含有大量羟基等亲水基团[10],木材变色、发霉、腐朽、变形等问题频发,品质降低[11-13],常用亚麻油、桐油、豆油、核桃油等含甘油三脂肪酸酯的植物油[14]和沥青、石蜡等含长链烷烃的矿物油用作木材防水;现代工业多将植物油与动植物蜡等复配成木蜡油[15],用作木材的表面防水处理剂。如马红霞等[16]使用56号石蜡制备木材防水剂,当石蜡质量浓度为5%时,防水效率可达54%;由此可见,石蜡可作为良好的木材防水剂。液体石蜡是经原油分馏得到的无色无味的液态烃类混合物,室温下为液态,用作防水剂时可省去加热融化环节,节约了能源和时间。木材在使用过程中需要多重保护,如防腐、防霉、防虫和防水等,存在工序繁琐、成本高昂等问题,为满足木材不同生物危害防治需要,本研究拟制备一种同时具有防腐、防霉、防虫和防水多项功能的水基型有机木材保护复合制剂,通过室内抑菌圈法筛选不同杀菌剂的抑菌活性,从中挑选活性较好、杀菌谱互补的防腐成分与防霉成分进行复配,并筛选两者的最佳配比;将其与杀虫成分和防水成分复配,制备成可以兑水自动乳化的乳油制剂。制备的复合制剂稳定性好,兼具防水、防腐、防霉、防白蚁等性能,同时处理工序简单,可达到常规生物危害防治要求的目的,为木材保护提供参考。

    1.1.1   杀菌剂、杀虫剂和防水剂

    杀菌剂包括氟环唑(FCZ)、戊唑醇(TEB)、丙环唑(PPZ)、苯醚甲环唑(DCZ)、碘丙炔醇丁基氨甲酸酯(IPBC)、溴菌腈(BMN)、抑霉唑(IMZ)。杀虫剂为高效氯氟氰菊酯(CLT)。防水剂为液体石蜡(化妆品级)。以上试剂购自上海麦克林生化科技有限公司。

    1.1.2   测试菌种

    木材腐朽菌有褐腐菌密粘褶菌Gloeophyllun trabeum、白腐菌彩绒革盖菌Coriolus versicolor。木材混合霉菌有黑曲霉Aspergillus sp.、木霉Trichoderma sp.、青霉Penicillium sp.。木材变色菌可可球二孢Botryodiplodia theobromae。所有菌株均为实验室保存的生物测试标准用菌株。

    测试树种为辐射松Pinus radiata

    预实验通过满细胞法确定辐射松边材吸液(水)量为750~850 kg·m−3;根据三唑类药剂防腐有效载药量(200.0~400.0 g·m−3)[17],换算药剂质量浓度为150.0~300.0 mg·L−1,确定试验用药质量浓度为200.0 mg·L−1

    1.2.1   防腐、防霉成分及配比筛选

    通过室内抑菌效果普筛挑选出效果较好且杀菌谱互补的杀菌剂作为防腐和防霉成分。将挑选出的防腐和防霉成分按照不同配比混合进行复配,再次测试室内抑菌效果,确定效果较好的复配比例作为药剂配伍。

    1.2.2   室内抑菌圈测试

    参照《中华人民共和国药典》的“抗生素微生物检定法”测试抑菌圈。将5种防腐剂(FCZ、TEB、PPZ、DCZ、IPBC)统一配制成质量分数为5.00%的乳油,分别加水稀释到200.0 mg·L−1;防霉剂IMZ配制为400.0 mg·L−1,BMN分别配制为400.0、600.0和800.0 mg·L−1。在各涂满真菌孢子液的马铃薯葡萄糖琼脂(PDA)培养基中,分别摆放4个装有0.3 mL待测药液的牛津杯。随着药液的扩散,培养基上的真菌菌丝会受到抑制形成抑菌圈,抑菌圈直径越大,说明药剂抑菌效果越好。

    1.2.3   制剂性能测试

    乳液稳定性测试。参照GB/T 1603—2001《农药乳液稳定性测定方法》,在100.0 mL室温标准硬水中慢慢加入不同体积样品,边加入边搅拌,加完后继续搅拌30 s;然后在30 ℃恒温水浴中静置1 h,观察不同稀释倍数下样品乳状液分离情况。无浮油、沉淀或沉油则视为乳液稳定性合格。

    防水性能测试。将含液体石蜡质量分数为40.00%的复合制剂分别兑水,稀释液体石蜡质量分数为2.00%、4.00%、8.00%,满细胞法处理试块。辐射松边材尺寸为50 mm×20 mm×10 mm,每组8块试块,室温平衡21 d后称质量,然后蒸馏水浸泡30 min,取出试块,称质量,参照GB/T 1934.1—2009《木材吸水性测定方法》计算吸水率;测量弦向尺寸变化,参照GB/T 29901—2013《木材防水剂的防水效率测试方法》计算防水效率。

    室内防腐性能测试。参照GB/T 13942.1—2009《木材耐久性能第1部分:天然耐腐性实验室试验方法》进行。将待测制剂分别兑水稀释5、10、20倍备用,辐射松边材尺寸为20 mm×20 mm×10 mm,每组6块试块,经真空−0.09 MPa处理10 min,常压浸渍10 min,参照标准测试防腐性能。试块质量损失率<10%,属于Ⅰ级强耐腐;质量损失率为11%~24%,属于Ⅱ级耐腐;质量损失率为25%~44%,属于Ⅲ级稍耐腐;质量损失率>45%,属于Ⅳ级不耐腐。

    室内防霉性能测试。参照GB/T 18261—2013《防霉剂对木材霉菌及变色菌防治效力的试验方法》进行。将待测制剂分别兑水稀释5、10、20倍,辐射松边材尺寸为50 mm×20 mm×10 mm,每组8块试块,参照标准方法处理试块,测试防霉性能。试块表面无菌丝、霉点时,定义侵染值为0;试块表面感染面积<1/4,定义为1;试块表面感染面积1/4~1/2,定义为2;试块表面感染面积1/2~3/4,定义为3;试块表面感染面积>3/4,定义为4。

    室内防白蚁测试。参照GB/T 18260—2015《木材防腐剂对白蚁毒效实验室试验方法》进行。将待测制剂分别兑水稀释5、10、20倍,辐射松边材尺寸为20 mm×20 mm×10 mm,每组5块试块,参照标准方法处理试块,测试室内防白蚁性能。试块蚁蛀程度为完好无损,定义试样完好等级为10;微痕蛀蚀,定义为9.5;轻微蛀蚀,截面面积<3%的蛀蚀,定义为9;中等蛀蚀,截面面积3%~10%的蛀蚀,定义为8;中等蛀蚀,截面面积10%~30%的蛀蚀,定义为7;严重蛀蚀,截面面积30%~50%的蛀蚀,定义为6;非常严重蛀蚀,截面面积50%~75%的蛀蚀,定义为4;试块几乎完全被蛀毁,定义完好等级为0。

    表1可以看出:5种防腐剂(FCZ、TEB、PPZ、DCZ和 IPBC)对木材腐朽菌(彩绒革盖菌和密粘褶菌)均具有较好的抑制效果,但FCZ、TEB和PPZ对变色菌(可可球二孢)和混合霉菌几乎没有抑制作用,只有DCZ对可可球二孢有抑制效果,因此优选DCZ作为防腐成分。IPBC和IMZ对所测试菌种均有较好的抑制效果,BMN和IMZ虽然对混合霉菌和变色菌有抑制作用,但抑菌圈均小于IPBC。因此,优先IPBC作为防霉成分。

    表 1  各杀菌剂的室内抑菌效果
    Table 1  Result of inhibition zones test by bactericide
    杀菌剂质量浓度/
    (mg·L−1)
    抑菌圈大小/mm
    彩绒革
    盖菌
    密粘
    褶菌
    可可球
    二孢
    混合
    霉菌
    FCZ 200.0 >45.0 >45.0 0 0
    TEB 200.0 >45.0 >45.0 0 0
    PPZ 200.0 >45.0 >45.0 0 0
    DCZ 200.0 >45.0 >45.0 11.4 0
    IPBC 200.0 >45.0 >45.0 34.6 21.9
    BMN 800.0 37.2 35.4 12.8 10.6
    600.0 38.1 29.0 9.0 9.4
    400.0 26.8 31.8 8.3 7.1
    IMZ 400.0 39.2 41.6 26.9 12.7
    下载: 导出CSV 
    | 显示表格

    将DCZ和IPBC按质量比1∶1、1∶3、3∶1的比例配制混合药剂,测试DCZ+IPBC复配药剂对腐朽菌和霉菌的抑制效果;将其他3种三唑类防腐药剂(FCZ、TEB和PPZ)与IPBC按照质量比1∶1配制复配药剂,作为对照测试抑菌效果。由表2可以看出:DCZ+IPBC复配药剂对木材腐朽菌、变色菌和混合霉菌的抑制效果较好,其中按照1∶1比例复配的药剂效果最高。相其他三唑类与IPBC的复配药剂,抑菌效果亦有所提高。由此确认防腐/防霉复配药剂,DCZ和IPBC按照1∶1进行配制。

    表 2  不同三唑类药剂与IPBC复配的抑菌效果
    Table 2  Result of inhibition zones test by compounded of different preservatives
    组分质量浓度/
    (mg·L−1)
    抑菌圈大小/mm
    彩绒革
    盖菌
    密粘
    褶菌
    可可球
    二孢
    混合
    霉菌
    DCZ 200.0 >45.0 >45.0 11.4 0
    DCZ+IPBC 150.0+50.0 >45.0 >45.0 22.4 15.1
    DCZ+IPBC 100.0+100.0 >45.0 >45.0 31.0 23.6
    DCZ+IPBC 50.0+150.0 >45.0 >45.0 29.1 23.7
    IPBC 200.0 >45.0 >45.0 30.6 21.9
    FCZ+IPBC 100.0+100.0 >45.0 >45.0 25.7 21.8
    PPZ+IPBC 100.0+100.0 >45.0 >45.0 25.8 22.5
    TEB+IPBC 100.0+100.0 >45.0 >45.0 24.0 21.0
    下载: 导出CSV 
    | 显示表格

    为探索CLT对白蚁的防治效果,设计含梯度载药量的辐射松边材室内抗白蚁效果测试,拟定辐射松边材载药量分别为5.0、10.0、15.0、20.0、30.0 g·m−3。由表3可知:试块中CLT载药量达10.9 g·m−3以上时,白蚁蛀蚀完好值>8.0,质量损失率<11%,而未添加药剂处理的对照木材,完好值仅4.6,质量损失率>40%。因此,设计的复合制剂中防虫成分的目标载药量为7.5~30.0 g·m−3

    表 3  不同CLT载药量木材的白蚁蛀蚀结果
    Table 3  Result of lab anti-termite test of cyhalothrin
    载药量/
    (g·m−3)
    白蚁蛀蚀
    完好值
    质量损
    失率/%
    载药量/
    (g·m−3)
    白蚁蛀蚀
    完好值
    质量损
    失率/%
    4.642.9±14.615.58.010.5±1.4
    5.38.011.3±0.721.89.15.2±1.4
    10.98.65.9±1.532.18.45.1±1.9
      说明:−表示未添加药剂
    下载: 导出CSV 
    | 显示表格

    综上,本研究设计制备了含苯醚甲环唑、碘丙炔醇丁基氨甲酸酯、高效氯氟氰菊酯、液体石蜡等多种有效成分的木材保护复合制剂,通过调试乳化剂和助溶剂的用量和配比,最终配制出稳定、均相、透明、入水可自乳化的乳油制剂。制剂制备时按比例称取原药和乳化剂,加入助溶剂,充分溶解混匀后加入液体石蜡,搅拌均匀即可。测试使用的制剂为乳油,组成成分质量分数为0.20%苯醚甲环唑、0.20%碘丙炔醇丁基氨甲酸酯、0.02%高效氯氟氰菊酯和40.00%液体石蜡。

    2.2.1   乳液稳定性测试

    制剂兑水稀释250倍,制剂呈乳白色,初入水时呈乳白色团雾状,可自动扩散,摇匀后呈均匀的乳状液,静置1 h未见分层、析油和沉淀,稳定性可保持3~4 h;过夜后破乳,药液表面有大量浮油,颠倒摇匀后可恢复乳液状,不影响正常使用。

    2.2.2   防水性能测试

    参照标准方法用该制剂处理辐射松边材,经水浸泡30 min后测试试块的吸水率和防水效率。由表4可知:未添加药剂处理的木材,吸水率为54.7%;随着制剂中石蜡质量分数升高,木材试块中石蜡含量相应增加,试块吸水率依次降低,从43.5%下降到26.6%,木材防水效率则随之增强,从44.4%提升到了77.8%。

    表 4  防水剂处理后试块的防水性能
    Table 4  Efficiency of waterproof
    稀释
    倍数
    制剂中液体石
    蜡质量分数/%
    试块中液体石
    蜡含量/(kg·m−3)
    吸水
    率/%
    防水效
    率/%
    5849.126.6±7.477.8±19.1
    10419.435.0±17.368.9±22.1
    20210.543.5±15.144.4±20.6
    0054.7±5.80
      说明:−表示未添加药剂
    下载: 导出CSV 
    | 显示表格
    2.2.3   室内耐腐性能测试

    表5可知:未处理木材受白腐菌侵染后质量损失率达75.7%,受褐腐菌侵染质量损失率为19.4%,而所有处理试块质量损失率均低于6%,达到强耐腐。制剂稀释20倍后处理试块,试块中DCZ和IPBC载药量超过71.1 g·m−3,试块质量损失率可达1%,达到Ⅰ级强耐腐。值得注意的是,稀释20倍的药液处理后,试块质量损失率低于稀释5倍的药液,原因是高质量浓度制剂处理后,试块内含有大量的液体石蜡,在长达3个月的试验期内,液体石蜡自动扩散到培养基,试块质量损失增加。但取样现场也发现:高质量浓度制剂处理的试块无腐朽菌菌丝附着生长,说明添加防水剂实际进一步提升了制剂的防腐性能。

    表 5  制剂处理后试块的室内耐腐性能
    Table 5  Result of lab sand block test on sapwood P. radiate
    稀释
    倍数
    彩绒革盖菌密粘褶菌
    试块DCZ+IPBC
    载药量/(g·m−3)
    质量损
    失率/%
    试块DCZ+IPBC
    载药量/(g·m−3)
    质量损
    失率/%
    5311.2+311.25.5±0.6320.6+320.63.6±0.3
    10150.9+150.92.7±0.2139.0+139.03.4±0.4
    2071.2+71.20.6±0.171.1+71.11.0±0.2
    075.7±4.3019.4±2.1
      说明:−表示未添加药剂
    下载: 导出CSV 
    | 显示表格
    2.2.4   室内防霉性能测试

    参照标准方法用该制剂处理辐射松边材,测试室内防霉效果。由表6可知:未处理木材的霉菌和变色菌侵染值为4,该制剂稀释5倍时,试块表面的DCZ和IPBC含量均达0.165 g·m−2,处理试块变色菌和混合霉菌侵染值均为0,防治效果优良。在实际使用中可根据木材树种的天然耐腐性及所处环境适当增减制剂的用量,以达到理想的防霉效果。

    表 6  室内防霉测试结果
    Table 6  Result of lab mildew proof test
    稀释
    倍数
    可可球二孢混合霉菌
    DCZ+IPBC载药
    量/(g·m−2)
    侵染值DCZ+IPBC载药
    量/(g·m−2)
    侵染值
    50.165+0.16500.202+0.2020
    100.106+0.1061.50.148+0.1480.5
    200.045+0.0454.00.048+0.0483.3
    04.004.0
      说明:−表示未添加药剂
    下载: 导出CSV 
    | 显示表格
    2.2.5   室内抗白蚁测试

    表7可知:不同稀释倍数的制剂处理后,试块质量损失率均<3%,而未添加抗虫剂的对照试块,质量损失率为42.9%;制剂稀释5倍时,试块载药量达29.1 g·m−3,试块白蚁蛀蚀完好值为9.6;稀释20倍时,试块载药量为7.6 g·m−3, 试块白蚁蛀蚀完好值为8.9,而未处理木材的白蚁蛀蚀后完好值仅为4.7,质量损失率达42.9%,显示该制剂的防治白蚁效果优良。结合表3可知:相比单用高效氯氟氰菊酯时,复合制剂处理材在同等载药量下对白蚁的防治效果要好得多;当高效氯氟氰菊酯质量浓度为15.0、30.0 g·m−3时,该复合制剂防治白蚁的效果远远优于单剂,由此可知其他组分的加入起到了增效作用。

    表 7  室内抗白蚁测试结果
    Table 7  Result of lab anti-termite test
    稀释
    倍数
    木材中高效氯氟氰菊酯
    载药量/(g·m−3)
    质量损
    失率/%
    白蚁蛀蚀
    完好值
    529.12.8±0.59.6
    1014.72.6±0.39.2
    207.62.5±0.78.9
    042.9±14.64.7
      说明:−表示未添加药剂
    下载: 导出CSV 
    | 显示表格

    针对不同的木材败坏防治需求,本研究制备了一种具有防腐、防霉、防虫、防水多功能的复合制剂,类型为乳油,有效成分为苯醚甲环唑、碘丙炔醇丁基氨甲酸酯、高效氯氟氰菊酯和液体石蜡。

    该制剂兑水稀释后呈乳液状,稳定性可保持3~4 h,符合GB/T 1603—2001 《农药乳液稳定性测定方法》的规定。石蜡作为常见的防水剂被广泛应用,多数所使用的时熔点较高的固体石蜡[18],而该制剂以液体石蜡为防水组分,优点是室温下即为液体,无需加热融化,缺点是液体石蜡密度较小,相较常规药剂,兑水稀释后稳定性差,药液兑水约 4 h 后就会分层破乳;不过,稍微搅拌即可恢复乳状,基本不影响正常使用。该制剂防水性能较好,然而应注意的是防水剂含量很大,大剂量液体石蜡的使用,存在一定的消防隐患,后期应配合表面阻燃处理。石蜡基防水剂的主要防水机制是通过石蜡的疏水作用[19],石蜡的使用同时增强了木材的尺寸稳定性[20],石蜡分子量较大,不易进入木材内部,因此需要将其乳化成细小的乳状液,然而,乳化剂的过量使用可能会有石蜡的疏水性降低的风险,需要在以后的开发中引起重视。结合室内耐腐试验菌丝生长状况可以发现:防水剂液体石蜡的加入,可以明显增加药剂的防腐性能,而木材中石蜡的含量很高,当木材与环境中土壤或者水体接触时,石蜡会从木材中自由扩散到环境中,可能会增加药剂流失的风险。

    室内防霉测试结果来看,将制剂稀释 5 倍使用,即辐射松试块苯醚甲环唑和碘丙炔醇丁基氨甲酸酯载药量均为 0.165 g·m −2 时,混合霉菌的生长才能被完全抑制,这与李晓文等[21]的IPBC防霉效果结论一致。室内防霉测试所选的温湿度条件适合霉菌生长,且霉菌的孢子液人为接种,因此,通常可以通过室内防霉测试的药剂,在实际生产中的防霉效果也会很好。

    室内防白蚁测试结果可知:制剂稀释 20 倍后,试块受白蚁蛀蚀程度仍较低,质量损失率较小,防蚁性能优异。同时,比较单独使用高效氯氟氰菊酯和添加防水剂后的防白蚁效果可以看出:防水剂的添加明显增加了药剂的防白蚁效果。分析原因可能是石蜡是一种化石能源,白蚁不喜食。

    为满足木材不同生物危害防治需要,本研究制备出一种含石蜡水基型有机多功能木材防腐剂,可以一次处理基本满足木材常规保护的要求。该木材保护复合制剂同时具有防腐、防霉、防虫、防水多功能,剂型为乳油,质量分数分别为0.20%的苯醚甲环唑和碘丙炔醇丁基氨甲酸酯、0.02%的高效氯氟氰菊酯和40.00%的液体石蜡。

    当环境中生物危害较轻时,可将该复合制剂稀释20倍使用,当生物危害较重时,可将复合制剂稀释5倍甚至直接使用。将制剂稀释5到10倍处理木材,即木材中液体石蜡为25.0~50.0 kg·m−3,苯醚甲环唑和碘丙炔醇丁基氨甲酸酯为150.0~300.0 g·m−3,高效氯氟氰菊酯载药量为15.0~30.0 g·m−3,可满足多大多数生物危害的防治需求。

  • 图  1  不同比例兴安落叶松林土壤酶活性指标

    不同字母表示差异显著(P<0.05)。0~5 cm土层用大写字母表示,5~20 cm土层用小写字母表示

    Figure  1  Soil enzymatic activity in different L. gmelinii stands

    图  2  不同比例兴安落叶松林土壤酶化学计量比

    不同字母表示差异显著(P<0.05)。0~5 cm土层用大写字母表示,5~20 cm土层用小写字母表示

    Figure  2  Soil ecoenzymatic activity stoichiometry in different L. gmelinii stands

    图  3  不同比例兴安落叶松林土壤微生物指标

    不同字母表示差异显著(P<0.05)。0~5 cm土层用大写字母表示,5~20 cm土层用小写字母表示

    Figure  3  Soil microbial indexes in different L. gmelinii stands

    图  4  0~5(A)和5~20 cm(B)土壤酶活性和酶化学计量比与土壤理化因子的冗余分析(RDA)

    土壤酶化学计量比用SES表示

    Figure  4  0−5 (A) and 5−20 cm(B) redundancy analysis of soil enzyme activities and ecoenzymatic stoichiometry

    表  1  不同比例兴安落叶松林地土壤(0~5 cm)化学性质

    Table  1.   Soil chemical properties in the depth of 0−5 cm of in different L. gmelinii stands

    兴安落叶松比例/%pHSOC/(g·kg−1)TN/(g·kg−1)TP/(g·kg−1)EOOC/(g·kg−1)AHN/(g·kg−1)C∶NN∶PC∶P
    704.69 a107.96 a3.66 a0.65 bcd49.65 a0.21 a29.18 a5.55 ab163.20 a
    754.95 a109.71 a3.85 a0.90 ac33.27 a0.26 a28.68 a4.23 b119.92 a
    805.15 a85.06 a3.43 a0.52 d33.16 a0.29 a24.98 a6.75 a174.83 a
    855.08 a91.11 a3.68 a0.72 bcd42.26 a0.66 a25.43 a5.10 ab127.20 a
    904.80 a87.56 a3.53 a0.69 bcd32.70 a0.32 a23.67 a5.23 ab122.32 a
    954.70 a126.63 a4.32 a1.09 a42.34 a0.32 a29.82 a3.98 b115.48 a
      说明:不同小写字母表示差异显著(P<0.05)
    下载: 导出CSV

    表  2  不同比例兴安落叶松林地土壤(5~20 cm)化学性质

    Table  2.   Soil chemical properties in the depth of 0−5 cm of in different L. gmelinii stands

    兴安落叶松比例/%pHSOC/(g·kg−1)TN/(g·kg−1)TP/(g·kg−1)EOOC/(g·kg−1)AHN/(g·kg−1)C∶NN∶PC∶P
    705.15 a47.21 ab1.41 b0.50 ab9.16 a0.14 a33.45 a2.80 b94.38 b
    755.06 a45.44 ab1.70 b0.26 ab15.40 ab0.13 a26.76 a15.07 ab369.03 ab
    805.45 a35.33 ab1.57 b0.47 b14.33 ab0.16 a22.36 a3.42 b76.97 b
    855.21 a29.40 b1.59 b0.57 ab14.15 ab0.21 a18.86 a2.82 b51.29 b
    904.88 a38.16 ab1.58 b0.14 ab13.97 ab0.16 a24.73 a26.18 ab294.67 ab
    954.93 a55.37 a2.74 a0.08 a25.23 b0.21 a20.18 a39.06 a779.56 a
      说明:不同小写字母表示差异显著(P<0.05)
    下载: 导出CSV

    表  3  不同比例兴安落叶松林地土壤(0~5 cm)酶活性与土壤化学性质间Pearson相关系数

    Table  3.   Peaeson correlation between soil enzymes, ecoenzymate stoichiometry and physicochemical properties in the depth of 0−5 cm of in different L. gmelinii stands

    指标MBC∶MBNC∶PN∶PC∶NSES(N∶P)SES(C∶P)SES(C∶N)AHNEOOCLAP
    SOC 0.11 0.36 −0.09 0.64** 0.37 −0.25 −0.44* 0.06 0.60** 0.21
    pH −0.53* −0.23 0.14 −0.43 −0.41 −0.29 0.21 0.09 −0.22 −0.29
    MBC 0.11 −0.05 −0.30 0.30 0.33 −0.13 −0.36 −0.02 0.15 0.30
    MBN −0.35 −0.07 −0.36 0.36 0.22 −0.31 −0.36 0.03 0.11 0.05
    TN 0.27 0.09 0.10 0.03 0.30 −0.28 −0.41 0.25 0.75*** 0.15
    TP 0.03 −0.37 −0.68** 0.34 0.29 −0.20 −0.33 0.11 0.41 0.36
    BG 0.64** −0.05 −0.09 0.01 0.24 0.49* 0.04 0.11 0.19 0.67**
    CBH 0.21 −0.18 −0.30 0.07 0.03 0.26 0.09 −0.17 −0.07 0.72***
    NAG 0.44 −0.07 −0.22 0.18 0.73*** −0.12 −0.69*** −0.04 0.26 0.63**
    AP 0.28 −0.10 −0.21 0.09 0.13 −0.15 −0.20 −0.03 0.23 0.81***
    LAP 0.49* −0.12 −0.27 0.13 0.16 0.12 −0.08 −0.28 −0.10
    EOOC 0.08 0.07 0.10 0.04 0.21 −0.19 −0.28 0.45*
    AHN −0.11 −0.13 0.03 −0.17 0.02 0.05 0.00
    SES(C∶N) −0.04 −0.11 −0.05 −0.13 −0.86*** 0.49*
    SES(C∶P) 0.46* −0.10 −0.06 −0.09 0.02
    SES(N∶P) 0.32 0.03 −0.02 0.10
    C∶N −0.19 0.51* −0.23
    N∶P 0.15 0.71***
    C∶P 0.01
    指标 AP NAG CBH BG TP TN MBN MBC pH
    SOC 0.35 0.48* 0.04 0.23 0.69 *** 0.78 *** 0.49* 0.59** −0.64**
    pH −0.30 −0.50* −0.15 −0.54* −0.40 −0.44 −0.21 -0.50*
    MBC 0.46* 0.46* 0.23 0.27 0.64** 0.51* 0.88***
    MBN 0.27 0.24 0.10 −0.05 0.58** 0.33
    TN 0.38 0.43 −0.02 0.27 0.62**
    TP 0.44 0.51* 0.24 0.23
    BG 0.66** 0.62** 0.49*
    CBH 0.73*** 0.33
    NAG 0.69***
      说明:土壤酶化学计量比用SES表示,*表示P<0.05,**表示P<0.01,***表示P<0.001
    下载: 导出CSV

    表  4  不同比例兴安落叶松林地土壤(5~20 cm)酶活性与土壤化学性质间Pearson相关系数

    Table  4.   Peaeson correlation between soil enzymes, ecoenzymate stoichiometry and physicochemical properties in the depth of 5−20 cm of in different L. gmelinii stands

    指标MBC∶MBNC∶PN∶PC∶NSES(N∶P)SES(C∶P)SES(C∶N)AHNEOOCLAP
    SOC −0.33 0.53* 0.48* 0.58** 0.54* 0.10 −0.39 −0.02 0.55* 0.44*
    pH 0.34 −0.65** −0.59** −0.02 −0.53* 0.23 0.58** 0.15 −0.37 −0.46*
    MBC −0.13 0.77*** 0.76*** −0.15 0.59** −0.26 −0.66** 0.26 0.74*** 0.55*
    MBN −0.56* 0.83*** 0.85*** −0.20 0.58** −0.20 −0.60** 0.16 0.85*** 0.50*
    TN −0.42 0.77*** 0.81*** −0.30 0.52* −0.30 −0.61** 0.41 0.91*** 0.53*
    TP 0.14 −0.90*** −0.88*** 0.15 −0.50* 0.40 0.66** −0.24 −0.59** −0.32
    BG −0.15 0.21 0.23 −0.17 0.24 0.46* 0.08 −0.31 0.48* 0.08
    CBH −0.14 0.44 0.50* −0.28 0.42 −0.23 −0.49* 0.64** 0.59** 0.15
    NAG −0.32 0.70*** 0.75*** −0.26 0.71*** −0.17 −0.67** 0.19 0.64** 0.28
    AP −0.25 0.53* 0.60** −0.40 0.36 −0.29 −0.48* 0.30 0.59** 0.30
    LAP −0.15 0.31 0.31 −0.05 0.33 −0.26 −0.43 0.13 0.45*
    EOOC −0.37 0.73*** 0.74*** −0.28 0.43 −0.05 −0.39 0.18
    AHN 0.10 0.17 0.25 −0.37 0.01 −0.63** −0.38
    SES(C∶N) 0.15 −0.71*** −0.74*** 0.13 −0.79*** 0.59**
    SES(C∶P) 0.07 −0.37 −0.44 0.40 0.02
    SES(N∶P) −0.15 0.60** 0.58** 0.11
    C∶N 0.03 −0.14 −0.23
    N∶P −0.37 0.99***
    C∶P −0.33
    指标 AP NAG CBH BG TP TN MBN MBC pH
    SOC 0.21 0.38 0.30 0.15 −0.42 0.59** 0.56** 0.51* −0.4
    pH −0.27 −0.35 −0.14 −0.10 0.62** −0.39 −0.62** −0.68**
    MBC 0.45* 0.53* 0.45* 0.21 −0.73*** 0.74*** 0.85***
    MBN 0.63** 0.73*** 0.51* 0.42 −0.68*** 0.88***
    TN 0.69*** 0.75*** 0.69*** 0.35 −0.64**
    TP −0.53* −0.62** −0.41 −0.19
    BG 0.67** 0.61** 0.36
    CBH 0.75*** 0.70***
    NAG 0.86***
      说明:土壤酶化学计量比用SES表示,*表示P<0.05,**表示P<0.01,***表示P<0.001
    下载: 导出CSV
  • [1] 曾凡鹏, 迟光宇, 陈欣, 等. 辽东山区不同林龄落叶松人工林土壤-根系C∶N∶P生态化学计量特征[J]. 生态学杂志, 2016, 35(7): 1819 − 1825.

    ZENG Fanpeng, CHI Guangyu, CHEN Xin, et al. The stoichiometric characteristics of C, N and P in soil and root of larch (Larix spp.) plantation at different stand ages in mountainous region of eastern Liaoning Province, China [J]. Chin J Ecol, 2016, 35(7): 1819 − 1825.
    [2] 梅莉, 张卓文, 谷加存, 等. 水曲柳和落叶松人工林乔木层碳、氮储量及分配[J]. 应用生态学报, 2009, 20(8): 1791 − 1796.

    MEI Li, ZHANG Zhuowen, GU Jiacun, et al. Carbon and nitrogen storages and allocation in tree layers of Fraxinus mandshurica and Larix gmelinii plantations [J]. Chin J Appl Ecol, 2009, 20(8): 1791 − 1796.
    [3] 纪文婧, 程小琴, 韩海荣, 等. 不同林龄华北落叶松人工林生物量及营养元素分布特征[J]. 应用与环境生物学报, 2016, 22(2): 277 − 284.

    JI Wenjing, CHENG Xiaoqin, HAN Hairong, et al. The biomass and nutrient distribution in Larix principis-ruppechtii Magyr plantations at different forest age [J]. Chin J Appl Environ Biol, 2016, 22(2): 277 − 284.
    [4] 唐仕姗, 杨万勤, 殷睿, 等. 中国森林生态系统凋落叶分解速率的分布特征及其控制因子[J]. 植物生态学报, 2014, 38(6): 529 − 539.

    TANG Shishan, YANG Wanqin, YIN Rui, et al. Spatial characteristics in decomposition rate of foliar litter and controlling factors in Chinese forest ecosystems [J]. Chin J Plant Ecol, 2014, 38(6): 529 − 539.
    [5] 潘建平, 王华章, 杨秀琴. 落叶松人工林地力衰退研究现状与进展[J]. 东北林业大学学报, 1997, 25(2): 59 − 63.

    PAN Jianping, WANG Huazhang, YANG Xiuqin. Research state and advance on soil degradation under Larch plantations [J]. J Northeast For Univ, 1997, 25(2): 59 − 63.
    [6] 王理德, 王方琳, 郭春秀, 等. 土壤酶学硏究进展[J]. 土壤, 2016, 48(1): 12 − 21.

    WANG Lide, WANG Fanglin, GUO Chunxiu, et al. Review: progress of soil enzymology [J]. Soils, 2016, 48(1): 12 − 21.
    [7] 曹慧, 孙辉, 杨浩, 等. 土壤酶活性及其对土壤质量的指示研究进展[J]. 应用与环境生物学报, 2003, 9(1): 105 − 109.

    CAO Hui, SUN Hui, YANG Hao, et al. A review soil enzyme activity and its indication for soil quality [J]. Chin J Appl Environ Biol, 2003, 9(1): 105 − 109.
    [8] PAZ-FERREIRO J, FU Shenglei, MWNDEZ A, et al. Interactive effects of biochar and the earthworm pontoscolex corethrurus on plant productivity and soil enzyme activities [J]. J Soil Sediment, 2014, 14(3): 483 − 494.
    [9] 刘捷豹, 陈光水, 郭剑芬, 等. 森林土壤酶对环境变化的响应研究进展[J]. 生态学报, 2017, 37(1): 110 − 117.

    LIU Jiebao, CHEN Guangshui, GUO Jianfen, et al. Advances in research on the responses of forest soil enzymes to environmental change [J]. Acta Ecol Sin, 2017, 37(1): 110 − 117.
    [10] HILL B H, ELONEN C M, SEIFERT L R, et al. Microbial enzyme stoichiometry and nutrient limitation in US streams and rivers [J]. Ecol Indic, 2012, 18: 540 − 551.
    [11] OLANDER L P, VITOUSEK P M. Regulation of soil phosphatase and chitinase activityby N and P availability [J]. Biogeochemistry, 2000, 49(2): 175 − 191.
    [12] SINSABAUGH R L, HILL B H, SHAH J J F. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment [J]. Nature, 2009, 462: 795 − 798.
    [13] 吴秀芝, 阎欣, 王波, 等. 荒漠草地沙漠化对土壤-微生物-胞外酶化学计量特征的影响[J]. 植物生态学报, 2018, 42(10): 1022 − 1032.

    WU Xiuzhi, YAN Xin, WANG Bo, et al. Effects of desertification on the C∶N∶P stoichiometry of soil, microbes, and extracellular enzymes in a desert grassland [J]. Chin J Plant Ecol, 2018, 42(10): 1022 − 1032.
    [14] 袁萍, 周嘉聪, 张秋芳, 等. 中亚热带不同森林更新方式生态酶化学计量特征[J]. 生态学报, 2018, 38(18): 6741 − 6748.

    YUAN Ping, ZHOU Jiacong, ZHANG Qiufang, et al. Patterns of ecoenzymatic stoichiometry in midsubtropical forest regeneration [J]. Acta Ecol Sin, 2018, 38(18): 6741 − 6748.
    [15] 牛瑞龙, 高星, 徐福利, 等. 秦岭中幼林龄华北落叶松针叶与土壤的碳氮磷生态化学计量特征[J]. 生态学报, 2016, 36(22): 7384 − 7392.

    NIU Ruilong, GAO Xing, XU Fuli, et al. Carbon,nitrogen,and phosphorus stoichiometric characteristics of soil and leaves from young and middle aged Larix principis-rupprechtii growing in a Qinling Mountain plantation [J]. Acta Ecol Sin, 2016, 36(22): 7384 − 7392.
    [16] ALLISON S D, VITOUSEK P M. Responses of extracellular enzymes to simple and complex nutrient inputs [J]. Soil Biol Biochem, 2004, 37(5): 937 − 944.
    [17] 牛小云, 孙晓梅, 陈东升, 等. 辽东山区不同林龄日本落叶松人工林土壤微生物、养分及酶活性[J]. 应用生态学报, 2015, 26(9): 2663 − 2672.

    NIU Xiaoyun, SUN Xiaomei, CHEN Dongsheng, et al. Soil microorganisms,nutrients and enzyme activity of Larix kaempferi plantation under different ages in mountainous region of eastern Liaoning Province,China [J]. Chin J Appl Ecol, 2015, 26(9): 2663 − 2672.
    [18] 刘欣, 彭道黎, 邱新彩. 华北落叶松不同林型土壤理化性质差异[J]. 应用与环境生物学报, 2018, 24(4): 735 − 743.

    LIU Xin, PENG Daoli, QIU Xincai. Differences in soil physicochemical properties between different forest types of Larix principis-rupprechtii [J]. Chin J Appl Environ Biol, 2018, 24(4): 735 − 743.
    [19] CHEN Guangcheng, GAO Min, PANG Bopeng, et al. Top-meter soil organic carbon stocks and sources in restored mangrove forests of different ages [J]. For Ecol Manage, 2018, 422: 87 − 94.
    [20] 魏圣钊, 李林, 骆晓, 等. 不同连栽代次的巨桉(Eucalyptus grandis)人工林土壤酶活性及其与土壤理化性质的关系[J]. 应用与环境生物学报, 2019, 25(6): 1312 − 1318.

    WEI Shengzhao, LI Lin, LUO Xiao, et al. Soil enzyme activities and their relationships to soil physicochemical properties in different successive rotation plantations of Eucalyptus grandis [J]. Chin J Appl Environ Biol, 2019, 25(6): 1312 − 1318.
    [21] 邓娇娇, 周永斌, 殷有, 等. 油松和蒙古栎混交对土壤微生物群落功能多样性的影响[J]. 生态学杂志, 2017, 36(11): 3028 − 3035.

    DENG Jiaojiao, ZHOU Yongbin, YIN You, et al. Effects of mixed Pinus tabuliformis and Quercus mongolica plantation on the functional diversity of soil microbial community [J]. Chin J Ecol, 2017, 36(11): 3028 − 3035.
    [22] 刘旭军, 田慧霞, 程小琴, 等. 凋落物处理对不同林龄华北落叶松针阔混交林土壤磷组分的影响[J]. 生态学杂志, 2019, 38(10): 3024 − 3032.

    LIU Xujun, TIAN Huixia, CHENG Xiaoqin, et al. Effects of litter manipulation on soil phosphorus fractions in Larix principis-rupprechtii conifer and broadleaved forests at different ages [J]. Chin J Ecol, 2019, 38(10): 3024 − 3032.
    [23] 张雪. 根河林业局森林资源变化及其发展对策[D]. 呼和浩特: 内蒙古农业大学, 2018.

    ZHANG Xue. Study on Forest Resources Change and Development Countermeasures of Genhe Forest Bureau[D]. Huhehaote: Inner Mongolia Agricultural University, 2018.
    [24] 孙海滨, 王美莲, 张红星, 等. 大兴安岭森林火灾与气象因子相关性研究[J]. 内蒙古农业大学学报, 2012, 33(5/6): 87 − 90.

    SUN Haibin, WANG Meilian, ZHANG Hongxing, et al. Correlation analysis betweeb forest fire and meteorological elements in daxinganling mountain [J]. J Inn Mong Agric Univ, 2012, 33(5/6): 87 − 90.
    [25] SAIYAA-CORK K R, SINSABAUGH R L, ZAK D R. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil [J]. Soil Biol Biochem, 2002, 34(9): 1309 − 1315.
    [26] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
    [27] VANCE E D, BROOKES P C, JENKINSON D S. An extraction method for measuring soil microbial biomass C [J]. Soil Biol Biochem, 1987, 19(6): 703 − 707.
    [28] 乔航, 莫小勤, 罗艳华, 等. 不同林龄油茶人工林土壤酶化学计量及其影响因素[J]. 生态学报, 2019, 39(6): 1887 − 1896.

    QIAO Hang, MO Xiaoqin, LUO Yanhua, et al. Patterns of soil ecoenzymatic stoichiometry and its influencing factors during stand development in Camellia oleifera plantations [J]. Acta Ecol Sin, 2019, 39(6): 1887 − 1896.
    [29] 史军, 刘纪远, 高志强, 等. 造林对土壤碳储量影响的研究[J]. 生态学杂志, 2005, 24(4): 410 − 416.

    SHI Jun, LIU Jiyuan, GAO Zhiqiang, et al. A review on the influence of afforestation on soil carbon storage [J]. Chin J Ecol, 2005, 24(4): 410 − 416.
    [30] 魏孝荣, 邵明安. 黄土高原小流域土壤pH、阳离子交换量和有机质分布特征[J]. 应用生态学报, 2009, 20(11): 2710 − 2715.

    WEI Xiaorong, SHAO Ming’ an. Distribution characteristics of soil pH, CEC and organic matter in a small watershed of the Loess Plateau [J]. Chin J Appl Ecol, 2009, 20(11): 2710 − 2715.
    [31] MOLLA M A Z, CHOWDHURY A A, ISLAM A, et al. Microbial mineralization of organic phosphate in soil [J]. Plant Soil, 1984, 78(3): 393 − 399.
    [32] ALLISON V J, CONDRON L M, PELTZER D A, et al. Changes in enzyme activities and soil microbial community composition along carbon and nutrient gradients at the Franz Josef chronosequence, New Zealand [J]. Soil Biol Biochem, 2007, 39(7): 1770 − 1781.
    [33] 陈立新, 段文标, 乔璐. 落叶松人工林根际与非根际土壤养分特征及酸度研究[J]. 水土保持学报, 2011, 25(3): 131 − 135.

    CHEN Lixin, DUAN Wenbiao, QIAO Lu. Study on nutrition characteristics and acidity in rhizosphere and non-rhizosphere soils in Larch plantations [J]. J Soil Water Conserv, 2011, 25(3): 131 − 135.
    [34] 张立欣, 段玉玺, 王博, 等. 库布齐沙漠不同人工固沙灌木林土壤微生物量与土壤养分特征[J]. 应用生态学报, 2017, 28(12): 3871 − 3880.

    ZHANG Lixin, DUAN Yuxi, WANG Bo, et al. Characteristics of soil microorganisms and soil nutrients in different sand-fixation shrub plantations in Kubuqi Desert [J]. Chin J Appl Ecol, 2017, 28(12): 3871 − 3880.
    [35] 赵娜, 孟平, 张劲松, 等. 华北低丘山地不同退耕年限刺槐人工林土壤质量评价[J]. 应用生态学报, 2014, 25(2): 351 − 358.

    ZHAO Na, MENG Ping, ZHANG Jingsong, et al. Soil quality assessment of Robinia psedudoacia plantations with various ages in the Grain-for-Green Program in hilly area of North China [J]. Chin JAppl Ecol, 2014, 25(2): 351 − 358.
    [36] 段益莉, 李继侠, 江强, 等. 长白山东坡不同海拔落叶松土壤微生物碳代谢及酶活性研究[J]. 生态环境学报, 2019, 28(4): 652 − 660.

    DUAN Yili, LI Jixia, JIANG Qiang, et al. Soil microbial carbon metabolism and enzyme activity of Larix olgensis along an altitudinal gradient on the eastern slope of Changbai Mountain, Northeast China [J]. Ecol Environ Sci, 2019, 28(4): 652 − 660.
    [37] ZHANG Xinyu, DONG Wenyu, DAI Xiaoqin, et al. Responses of absolute and specific soil enzyme activities to long term additions of organic and mineral fertilizer [J]. Sci Total Environ, 2015, 536: 59 − 67.
    [38] RAIESI F, BEHESHTI A. Soil specific enzyme activity shows more clearly soil responses to paddy rice cultivation than absolute enzyme activity in primary forests of northwest Iran [J]. Appl Soil Ecol, 2014, 75: 63 − 70.
    [39] 林诚, 王飞, 李清华, 等. 不同施肥制度对黄泥田土壤酶活性及养分的影响[J]. 中国土壤与肥料, 2009(6): 24 − 27.

    LIN Cheng, WANG Fei, LI Qinghua, et al. Effects of different fertilizer application strategies on nutrients and enzymatic activities in yellow clayey soil [J]. Soil Fert Sci China, 2009(6): 24 − 27.
    [40] BLOOM A, CHAPIN I F S, MOONEY H. Resource limitation in plants--an economic analogy [J]. Ann Rev Ecol Syst, 1985, 16: 363 − 392.
    [41] TIAN Hanqin, CHEN Guangsheng, ZHANG Chi, et al. Pattern and variation of C∶N∶P ratios in China’ s soils: a synthesis of observational data [J]. Biogeochemistry, 2010, 98: 139 − 151.
  • [1] 辛鹏程, 魏天兴, 陈宇轩, 于欢, 沙国良, 郭鑫, 任康.  山西西南部黄土丘陵区典型林分生态化学计量特征 . 浙江农林大学学报, 2024, 41(3): 549-556. doi: 10.11833/j.issn.2095-0756.20230573
    [2] 潘丽霞, 姜振辉, 张雯怡, 周家树, 刘娟, 蔡延江, 李永夫.  秸秆及其生物质炭输入对毛竹林土壤氨氧化微生物与氮循环相关酶活性的影响 . 浙江农林大学学报, 2024, 41(1): 1-11. doi: 10.11833/j.issn.2095-0756.20230388
    [3] 杨娟, 刘占军, 任振强, 娜荷芽, 赵娅茹, 吴梦瑶, 陈林, 李学斌, 周金星, 万龙, 庞丹波.  贺兰山西坡不同植被类型土壤理化性质和酶活性特征 . 浙江农林大学学报, 2024, 41(4): 787-796. doi: 10.11833/j.issn.2095-0756.20230485
    [4] 王润柳, 刘欣艺, 徐其静, 侯磊, 王克勤.  滇中坡林地土壤养分与酶活性对等高反坡阶整地的响应 . 浙江农林大学学报, 2024, 41(4): 769-777. doi: 10.11833/j.issn.2095-0756.20230545
    [5] 谭蕊, 于水强, 李玉, 王祥福, 徐新颖, 李愿会, 王维枫.  间伐恢复对松栎混交林表层土壤酶活性及酶化学计量的影响 . 浙江农林大学学报, 2024, 41(6): 1201-1210. doi: 10.11833/j.issn.2095-0756.20240185
    [6] 颜顾浙, 方伟, 卢络天, 蒋逸捷, 张笑, 马晓敏, 邱巍, 徐秋芳.  土壤酶活性对不同植物连作的差异响应 . 浙江农林大学学报, 2023, 40(3): 520-530. doi: 10.11833/j.issn.2095-0756.20220494
    [7] 隋夕然, 吴丽芳, 王妍, 王紫泉, 肖羽芯, 刘云根, 杨波.  滇中岩溶高原不同石漠化程度土壤团聚体养分及酶活性特征 . 浙江农林大学学报, 2022, 39(1): 115-126. doi: 10.11833/j.issn.2095-0756.20210168
    [8] 方伟, 余晓, 王晶, 徐秋芳, 梁辰飞, 秦华, 陈俊辉.  施加石灰石粉和微生物肥料对发病山核桃林土壤化学性质和微生物群落的影响 . 浙江农林大学学报, 2020, 37(2): 273-283. doi: 10.11833/j.issn.2095-0756.2020.02.011
    [9] 何姗, 刘娟, 姜培坤, 周国模, 王会来, 李永夫, 吴家森.  经营管理对森林土壤有机碳库影响的研究进展 . 浙江农林大学学报, 2019, 36(4): 818-827. doi: 10.11833/j.issn.2095-0756.2019.04.023
    [10] 姚兰, 张焕朝, 胡立煌, 王艮梅, 方炎明.  黄山不同海拔植被带土壤活性有机碳、氮及其与酶活性的关系 . 浙江农林大学学报, 2019, 36(6): 1069-1076. doi: 10.11833/j.issn.2095-0756.2019.06.003
    [11] 许宇星, 王志超, 竹万宽, 杜阿朋.  雷州半岛3种速生人工林下土壤生态化学计量特征 . 浙江农林大学学报, 2018, 35(1): 35-42. doi: 10.11833/j.issn.2095-0756.2018.01.005
    [12] 刘肖肖, 戴伟, 戴奥娜.  北京山地4种阔叶林土壤酶活性及动力学特征 . 浙江农林大学学报, 2018, 35(5): 794-801. doi: 10.11833/j.issn.2095-0756.2018.05.002
    [13] 张洪芹, 臧晓琳, 蔡宙霏, 程路芸, 马元丹, 宝音陶格涛, 张汝民, 高岩.  放牧对冷蒿根际微生物区系及土壤酶活性的影响 . 浙江农林大学学报, 2017, 34(4): 679-686. doi: 10.11833/j.issn.2095-0756.2017.04.014
    [14] 朱仁欢, 李玮, 郑子成, 李廷轩, 洪月, 何秋佳, 田宗渠.  退耕植茶地土壤碳氮磷生态化学计量学特征 . 浙江农林大学学报, 2016, 33(4): 612-619. doi: 10.11833/j.issn.2095-0756.2016.04.009
    [15] 孙鹏跃, 徐福利, 王渭玲, 王玲玲, 牛瑞龙, 高星, 白小芳.  华北落叶松人工林地土壤养分与土壤酶的季节变化及关系 . 浙江农林大学学报, 2016, 33(6): 944-952. doi: 10.11833/j.issn.2095-0756.2016.06.004
    [16] 邬奇峰, 徐巧凤, 秦华, 张金林, 钱马, 钱嘉文.  杀菌剂氰氨化钙对集约经营雷竹林土壤生物学性质的影响 . 浙江农林大学学报, 2014, 31(3): 352-357. doi: 10.11833/j.issn.2095-0756.2014.03.004
    [17] 郭帅, 徐秋芳, 沈振明, 李松昊, 秦华, 李永春.  雷竹林土壤氨氧化微生物对不同肥料的响应 . 浙江农林大学学报, 2014, 31(3): 343-351. doi: 10.11833/j.issn.2095-0756.2014.03.003
    [18] 王俊龙, 王丹, 俞飞, 沈卫东, 邹翠翠, 张汝民, 侯平.  模拟酸雨与凋落物对柳杉幼苗根际土壤酶活性的影响 . 浙江农林大学学报, 2014, 31(3): 373-379. doi: 10.11833/j.issn.2095-0756.2014.03.007
    [19] 叶玲燕, 傅伟军, 姜培坤, 李永夫, 张国江, 杜群.  浙江省森林表层土壤基本化学性质和有机碳储量的空间变异 . 浙江农林大学学报, 2012, 29(6): 803-810. doi: 10.11833/j.issn.2095-0756.2012.06.001
    [20] 姜海燕, 闫伟.  大兴安岭兴安落叶松林土壤微生物分布特征 . 浙江农林大学学报, 2010, 27(2): 228-232. doi: 10.11833/j.issn.2095-0756.2010.02.011
  • 期刊类型引用(0)

    其他类型引用(1)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20190525

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2020/4/611

图(4) / 表(4)
计量
  • 文章访问数:  2388
  • HTML全文浏览量:  758
  • PDF下载量:  344
  • 被引次数: 1
出版历程
  • 收稿日期:  2019-09-06
  • 修回日期:  2020-02-14
  • 网络出版日期:  2020-07-21
  • 刊出日期:  2020-07-21

针阔混交林中兴安落叶松比例对土壤化学性质和酶化学计量比的影响

doi: 10.11833/j.issn.2095-0756.20190525
    基金项目:  “十三五”国家重点研发计划项目 (2017YFC0504002);中央高校基本科研业务费专项资金资助项目 (2015ZCQ-LX-03)
    作者简介:

    王博,从事森林生态学研究。E-mail: 429080996@qq.com

    通信作者: 周志勇,副教授,博士,从事森林生态学研究。E-mail: zhiyong@bjfu.edu.cn
  • 中图分类号: S718.5

摘要:   目的  研究不同比例兴安落叶松Larix gmelinii的针阔混交林土壤的化学性质和酶化学计量比。  方法  按照群落中兴安落叶松材积所占的不同比例(70%、75%、80%、85%、90%、95%),把调查的森林群落分为6种类型,分别监测了各类型群落0~5和5~20 cm土层的养分和生物化学性状等。  结果  分析的5种酶中酸性磷酸酶的活性最高,0~5与5~20 cm土层均值分别为463.74 nmol·g−1·h−1和312.91 nmol·g−1·h−1。在0~5 cm土层中,群落中兴安落叶松比例的增加对亮氨酸氨肽酶的活性有明显的促进作用,兴安落叶松比例为95%的群落亮氨酸氨肽酶活性比兴安落叶松比例为75%和85%的群落显著提高了 57.44%和59.40%。群落中兴安落叶松的比例也影响了土壤中酶的化学计量特征,当兴安落叶松比例达95%时,5~20 cm土层与氮、磷矿化相关的酶计量比显著高于兴安落叶松比例为80%和85%的群落(P95%-80%=0.020, P95%-85%=0.020)。与碳、氮矿化相关的酶计量比在兴安落叶松为95%的群落中最低。土壤的酶活性与土壤养分质量分数间呈现复杂的相关性,并随着土壤深度的增加而改变。在0~5 cm土层,土壤pH与葡萄糖苷酶(BG)、乙酰氨基葡萄糖苷酶(NAG)的活性间存在显著的负相关(PpH-BG=0.010, PpH-NAG=0.030);在5~20 cm土层,亮氨酸氨肽酶(LAP)和乙酰氨基葡萄糖苷酶(NAG)的活性与土壤全氮(TN)质量分数存在显著的正相关(PLAP-TN=0.020, PNAG-TN=2×10−4),酸性磷酸酶(AP)与土壤全磷(TP)质量分数间存在显著的负相关(PAP-TP=0.020)。通过对上述变量进行冗余分析,发现土壤酶的化学计量比在0~5 cm土层主要受到土壤酸碱度的影响,在5~20 cm土层则主要受到土壤全氮和有效氮质量分数的影响。  结论  暖温带针阔混交林中兴安落叶松所占比例是调控土壤养分动态的一个重要生物因子,其调控作用的发挥则主要依赖于土壤中酶的活性及其化学计量特征。图4表4参41

English Abstract

王博, 周志勇, 张欢, 等. 针阔混交林中兴安落叶松比例对土壤化学性质和酶化学计量比的影响[J]. 浙江农林大学学报, 2020, 37(4): 611-622. DOI: 10.11833/j.issn.2095-0756.20190525
引用本文: 王博, 周志勇, 张欢, 等. 针阔混交林中兴安落叶松比例对土壤化学性质和酶化学计量比的影响[J]. 浙江农林大学学报, 2020, 37(4): 611-622. DOI: 10.11833/j.issn.2095-0756.20190525
SHAO Huiting, LUO Jiafeng, FEI Ximin. Impact of climate change cognition on public willingness to pay for environmental protection and mitigation actions[J]. Journal of Zhejiang A&F University, 2019, 36(5): 1012-1018. DOI: 10.11833/j.issn.2095-0756.2019.05.022
Citation: WANG Bo, ZHOU Zhiyong, ZHANG Huan, et al. Effect of Larix gmelinii proportion on soil chemical properties and enzymatic stoichiometry in mixed coniferous and broad-leaved forest[J]. Journal of Zhejiang A&F University, 2020, 37(4): 611-622. DOI: 10.11833/j.issn.2095-0756.20190525
  • 兴安落叶松Larix gmelinii是中国东北地区三大针叶树种之一[1],20世纪70年代成为该地区主要造林树种,但由此也带来了林分结构简单、群落物种多样性降低与森林地力衰退等一系列问题[2]。森林土壤养分含量的增加依赖于地表凋落物[3]和地下有机物的输入,以及微生物进行的分解利用[4],因此,森林生态系统的物质生产能力和树种组成则是调控落叶松林土壤质量与养分利用状态的关键生物因子[5]。研究清楚土壤养分含量及决定其周转的微生物胞外酶的活性随群落中兴安落叶松所占比例的变化动态,对全面衡量东北地区针阔混交林在气候变化情景下的演替趋势具有重要的生态学意义。土壤酶是生化反应的催化剂[6],土壤中生化反应的进行需要酶的参与[7]。土壤酶不仅是检验土壤质量变化的指标[8],也是影响土壤碳(C)、氮(N)、磷(P)循环的主要限制因子[9]。土壤酶化学计量比反映土壤微生物对养分需求的差别,可以在一定程度上反映土壤养分的有效性[10]。与土壤C、N、P循环相关的酶主要有β-1,4-葡萄糖苷酶[β-1,4-glucosidase(BG)]、β-1,4-N-乙酰氨基葡萄糖苷酶[β-1,4-N-acetylglucos-aminidase(NAG)]、亮氨酸氨基肽酶[leucine aminopeptidase(LAP)]、酸性磷酸酶[acid or alkaline phosphatase(AP)]、α-纤维素酶[α-cellulases (CBH)],其中BG、CBH与纤维素降解有关,NAG与蛋白质水解有关。有效性氮的升高会导致NAG和LAP活性的降低,提高对其他养分元素分解酶的投入[11],LAP与几丁质和肽聚糖降解有关。AP与有机磷矿化有关。在土壤酶活性的基础上,SINSABAUGH等[12]采用ln(xBG+xCBH)∶ln(xNAG+xLAP)∶ln(xAP) (x为酶活性)表示土壤酶化学计量比对土壤C∶N∶P化学计量比和土壤C、N、P循环的影响。土壤C∶N∶P化学计量比与土壤C、N、P循环有关[13],土壤化学计量比可以反映土壤元素调节机制[14],进而对植物生长和生理机能进行调控。前人研究大多集中在不同林龄、不同林型对土壤理化性质、土壤化学计量比等方面,例如:随林龄的增加,土壤C∶P、N∶P增大,P成为限制因子[15]。土壤微生物通过分泌胞外酶从土壤中获取需要的养分[16],土壤微生物数量随林龄增大而降低[17]。华北落叶松Larix principis-rupprechtii-白桦Betula platyphylla混交林土壤有机质、全氮、全钾、全磷含量高于华北落叶松纯林[18],但对华北落叶松所占不同比例的针阔混交林的土壤酶化学计量比的研究较少。土壤中C、N、P等养分的有效性主要取决于与其矿化相关的水解酶的强弱。有研究表明:微生物胞外酶活性[8]及其化学计量比[12]是衡量土壤微生物和森林生态系统功能的重要生化指标。在森林生态系统中,土壤理化性质[19]、土壤酶活性[20]、土壤微生物群落结构及其功能[21]和土壤养分有效性[22]又受到树种组成的影响。尽管大兴安岭地区森林群落结构相对简单,但其优势树种兴安落叶松和白桦在物质生产能力、凋落物性状等方面存在较大的差异,随着群落中兴安落叶松所占比例的变化,量化不同群落的土壤养分状况、土壤酶活性及其生态计量比,并以此为基础探讨兴安落叶松所占比例与土壤生化性状间的内在驱动机理,为客观了解东北地区寒温带针阔混交林的演替趋势提供理论依据。

    • 研究区域位于内蒙古自治区根河市根河国家湿地森林公园(50°25′30″~51°17′00″N,120°41′30″~122°42′30″E), 属寒温带大陆性气候,昼夜温差大,冬长夏短,年平均气温−5.3 ℃。土壤为酸性棕色针叶林土,土层浅,砾石含量高,且存在永冻层[23],年降水量为450.0 ~550.0 mm[24]。主要乔木为兴安落叶松、白桦。主要灌木为红豆越橘Vaccinium vitis-idaea、山刺玫Rosa davurica、杜香Ledum palustre、兴安杜鹃Rhododendron dauricum、笃斯越橘Vaccinium uliginosum等。主要草本为鹿蹄草Pyrola calliantha、地榆Sanguisorba officinalis、山芹Ostericum sieboldii等。

    • 2018年7月,为研究东北地区退化森林演替规律,在50°56.662 5′~51°00.748 3′N的范围,从北向南,按照兴安落叶松的长势,对该区域林龄相近的兴安落叶松群落进行了调查。每个地点调查3个20 m×20 m样方,样方之间间距为20 m。对布设样地进行了每木检尺,测量了群落内胸径大于5 cm乔木的胸径、树高、冠幅,以及灌木、草本的盖度、株数、高度等信息。按《中国立木材积表》计算每个森林群落内的树木材积所占比例,并按兴安落叶松占整个群落的材积比(70%、75%、80%、85%、90%、95%)把调查样地分为了6个梯度,每个样方内挖取3个剖面,取0~5、5~20 cm土样,并在实验室过2 mm筛。一部分风干测定土壤理化性质,一部分冷冻保存测定土壤酶活性和微生物量。

      采用96微孔酶标板荧光分析法测定β-1,4-葡糖苷酶(BG)、α-纤维素酶(CBH)、β-1,4-N-乙酰氨基葡萄糖苷酶(NAG)、亮氨酸氨基肽酶(LAP)、酸性磷酸酶(AP)活性[25]。称取1 g鲜土放在1 000 mL烧杯中,加入125 mL 50 mmol·L−1的醋酸钠缓冲液(pH=5), 涡旋振荡1 min, 使用移液器向96微孔酶标板中分别对应加入250 μL缓冲液、200 μL土壤匀浆样品、50 μL标物、50 μL底物。在培养箱以25 ℃黑暗条件下培养4 h 后,加入10 μL 1 mol·L−1的氢氧化钠终止反应。采用多功能酶标仪(Spectramax 190) 测定其荧光度。

      根据《土壤农业化学分析方法》测定土壤理化性质[26]。土壤pH用pH计测定(mm=1.0∶2.5);土壤有机碳(SOC)采用高温外热重铬酸钾氧化容量法测定,使用硫酸亚铁溶液滴定;全氮(TN)、碱解氮(AHN)使用凯氏定氮仪测定;全磷(TP)采用高氯酸-硫酸(HClO4-H2SO4)消煮-钼锑抗比色法测定;易氧化碳(EOOC)采用高锰酸钾氧化法测定;土壤微生物量的测定采用氯仿熏蒸浸提法[26-27]

    • 数据统计在R 3.5.3中完成, 使用R 3.5.3和SigmaPlot 12.5软件作图。土壤酶化学计量比采用ln(xBG+xCBH)∶ln(xNAG+xLAP)∶ln(xAP)(x为酶活性)表示。采用Pearson相关性分析土壤酶活性、土壤酶化学计量比与土壤理化性质之间的关系。采用Canoco 5软件进行冗余分析(RDA)。

    • 0~5 cm土层各梯度间AP、NAG、BG、CBH活性均无显著差异,兴安落叶松比例为95%的群落LAP活性比兴安落叶松比例为75%和85%的群落显著提高57.44%和59.40%。5~20 cm土层各梯度间AP、NAG、BG、CBH、LAP活性均无显著差异。5种酶活性中AP酶活性最高,0~5与5~20 cm土层均值分别为463.74和312.91 nmol·g−1·h−1(图1)。

      图  1  不同比例兴安落叶松林土壤酶活性指标

      Figure 1.  Soil enzymatic activity in different L. gmelinii stands

      0~5 cm土层土壤酶化学计量比C∶N、土壤酶化学计量比C∶P、土壤酶化学计量比N∶P均无显著变化。5~20 cm土层土壤酶化学计量比C∶P无显著差异,土壤酶化学计量比C∶N随兴安落叶松所占比例的增加先增加后降低,且兴安落叶松比例为95%的群落显著低于兴安落叶松比例为80%和85%的群落(P95%-80%=0.030, P95%-85%=0.030)。土壤酶化学计量比N∶P随兴安落叶松所占比例的增加先降低后增加,且兴安落叶松比例为70%和95%的群落显著高于兴安落叶松比例为80%、85%的群落(P70%-80%=0.020, P70%-85%=0.020, P95%-80%=0.020, P95%-85%=0.020) (图2)。

      图  2  不同比例兴安落叶松林土壤酶化学计量比

      Figure 2.  Soil ecoenzymatic activity stoichiometry in different L. gmelinii stands

    • 0~5 cm土层各梯度之间土壤微生物量碳(MBC)无显著差异,兴安落叶松比例为80%的群落MBC质量分数最低,最低值为525.10 mg·kg−1;兴安落叶松比例为95%的群落MBC质量分数最高,最大值为1 035.80 mg·kg−1。5~20 cm土层兴安落叶松比例为95%的群落MBC质量分数显著高于兴安落叶松比例为80%的群落(P95%-80%=0.040)。0~5 cm土层各梯度之间微生物量氮(MBN)无显著差异,兴安落叶松比例为80%的群落MBN质量分数最低,最低值为68.73 mg·kg−1;兴安落叶松比例为90%的群落MBN质量分数最高,最大值为140.72 mg·kg−1。5~20 cm土层兴安落叶松比例为95%的群落MBN显著高于兴安落叶松比例为80%和85% 的群落(P95%-80%=0.002, P95%-85%=0.040) (图3)。总体上看,土壤微生物量随兴安落叶松所占比例的增加呈现先增加后降低再增加的趋势。

      图  3  不同比例兴安落叶松林土壤微生物指标

      Figure 3.  Soil microbial indexes in different L. gmelinii stands

    • 表1表2显示:0~5与5~20 cm土层各梯度之间土壤pH无显著差异。5~20 cm 土层,兴安落叶松比例为95%的群落土壤有机碳(SOC)质量分数显著高于兴安落叶松比例为85%的群落(P95%-85%=0.030)。5~20 cm土层兴安落叶松比例为95%的群落全氮(TN)质量分数显著高于其他兴安落叶松群落(P95%-70%=0.001, P95%-75%=0.007, P95%-80%=9×10−4, P95%-85%=0.001, P95%-90%=0.001)。0~5 cm土层兴安落叶松比例为95%的群落土壤全磷(TP)质量分数显著高于兴安落叶松比例为70%、80%、85%、90%的群落(P95%-70%=0.050, P95%-80%=0.001, P95%-85%=0.030, P95%-90%=0.040),兴安落叶松比例为75%的群落土壤TP质量分数显著高于兴安落叶松比例为80%的群落(P75%-80%=0.050)。5~20 cm土层兴安落叶松比例为95%的群落TP质量分数显著低于兴安落叶松比例为80%的群落(P95%-80%=0.010)。5~20 cm土层兴安落叶松比例为95%的群落易氧化碳(EOOC)质量分数显著高于兴安落叶松比例为70%的群落(P95%-70%=0.010)。0~5与5~20 cm土层各梯度之间碱解氮(AHN)和土壤C∶N均无显著差异。0~5 cm土壤N∶P随兴安落叶松所占比例的变化呈现先降低后增加再降低的趋势,兴安落叶松比例为80%的群落显著高于兴安落叶松比例为95%、75%的群落(P80%-95%=0.010, P80%-75%=0.030),5~20 cm土层土壤N∶P与5~20 cm土层 TP变化规律相反,兴安落叶松比例为95%的群落土壤N∶P显著高于兴安落叶松比例为70%、80%、85%的群落(P95%-70%=0.020, P95%-80%=0.003, P95%-85%=0.003)。5~20 cm土壤C∶P呈现先增加后降低再增加的趋势,兴安落叶松比例为95%的群落显著高于兴安落叶松比例为70%、80%、85%的群落(P95%-70%=0.030, P95%-80%=0.006, P95%-85%=0.005)。

      表 1  不同比例兴安落叶松林地土壤(0~5 cm)化学性质

      Table 1.  Soil chemical properties in the depth of 0−5 cm of in different L. gmelinii stands

      兴安落叶松比例/%pHSOC/(g·kg−1)TN/(g·kg−1)TP/(g·kg−1)EOOC/(g·kg−1)AHN/(g·kg−1)C∶NN∶PC∶P
      704.69 a107.96 a3.66 a0.65 bcd49.65 a0.21 a29.18 a5.55 ab163.20 a
      754.95 a109.71 a3.85 a0.90 ac33.27 a0.26 a28.68 a4.23 b119.92 a
      805.15 a85.06 a3.43 a0.52 d33.16 a0.29 a24.98 a6.75 a174.83 a
      855.08 a91.11 a3.68 a0.72 bcd42.26 a0.66 a25.43 a5.10 ab127.20 a
      904.80 a87.56 a3.53 a0.69 bcd32.70 a0.32 a23.67 a5.23 ab122.32 a
      954.70 a126.63 a4.32 a1.09 a42.34 a0.32 a29.82 a3.98 b115.48 a
        说明:不同小写字母表示差异显著(P<0.05)

      表 2  不同比例兴安落叶松林地土壤(5~20 cm)化学性质

      Table 2.  Soil chemical properties in the depth of 0−5 cm of in different L. gmelinii stands

      兴安落叶松比例/%pHSOC/(g·kg−1)TN/(g·kg−1)TP/(g·kg−1)EOOC/(g·kg−1)AHN/(g·kg−1)C∶NN∶PC∶P
      705.15 a47.21 ab1.41 b0.50 ab9.16 a0.14 a33.45 a2.80 b94.38 b
      755.06 a45.44 ab1.70 b0.26 ab15.40 ab0.13 a26.76 a15.07 ab369.03 ab
      805.45 a35.33 ab1.57 b0.47 b14.33 ab0.16 a22.36 a3.42 b76.97 b
      855.21 a29.40 b1.59 b0.57 ab14.15 ab0.21 a18.86 a2.82 b51.29 b
      904.88 a38.16 ab1.58 b0.14 ab13.97 ab0.16 a24.73 a26.18 ab294.67 ab
      954.93 a55.37 a2.74 a0.08 a25.23 b0.21 a20.18 a39.06 a779.56 a
        说明:不同小写字母表示差异显著(P<0.05)
    • RDA排序图结果(图4)显示:0~5 cm土层第1轴和第2轴的解释变量分别为30.03%和12.86%(图4A),土壤pH(F=2.7,P=0.040)是土壤酶活性和酶化学计量比的显著影响因子。5~20 cm土层第1轴和第2轴的解释变量分别为42.86%和17.17%(图4B),土壤TN(F=8.9,P=0.002)和AHN(F=10.1,P=0.034)是土壤酶活性和酶化学计量比的显著影响因子。表3表4中土壤微生物量和酶活性与土壤理化性质之间相关性分析表明:在0~5 cm土层,土壤BG、CBH与AP,土壤NAG、LAP与AP呈显著正相关(PBG-AP=0.001, PCBH-AP=3×10−4, PNAG-AP=8×10−4, PLAP-AP=1×10−5) (表3)。5~20 cm土层土壤MBC、MBN与SOC、TN、EOOC、CBH、NAG、AP、LAP显著正相关(PMBC-SOC=0.020, PMBC-TN=2×10−4, PMBC-EOOC=2×10−4, PMBC-CBH=0.050, PMBC-NAG=0.020, PMBC-AP=0.050, PMBC-LAP=0.010, PMBN-SOC=0.010, PMBN-TN=4×10−7, PMBN-EOOC=3×10−6, PMBN-CBH=0.020, PMBN-NAG=3×10−4, PMBN-AP=0.003, PMBN-LAP=0.030) (表4)。0~5 cm土层BG、NAG与pH呈显著负相关(PpH-BG=−0.010, PpH-NAG=−0.030)。5~20 cm土层 LAP、NAG与TN呈显著正相关(PLAP-TN=0.020, PNAG-TN=2×10−4)。AP与TP呈显著负相关(PAP-TP=−0.020)。5~20 cm土层土壤酶化学计量比C∶N与土壤N∶P、C∶P呈显著负相关(PSES(C∶N)-N∶P=−2×10−4, PSES(C∶N)-C∶P=−4×10−4),土壤酶化学计量比N∶P与土壤N∶P、土壤C∶P呈显著正相关(PSES(N∶P)-N∶P=0.007, PSES(N∶P)-C∶P=0.005)。

      表 3  不同比例兴安落叶松林地土壤(0~5 cm)酶活性与土壤化学性质间Pearson相关系数

      Table 3.  Peaeson correlation between soil enzymes, ecoenzymate stoichiometry and physicochemical properties in the depth of 0−5 cm of in different L. gmelinii stands

      指标MBC∶MBNC∶PN∶PC∶NSES(N∶P)SES(C∶P)SES(C∶N)AHNEOOCLAP
      SOC 0.11 0.36 −0.09 0.64** 0.37 −0.25 −0.44* 0.06 0.60** 0.21
      pH −0.53* −0.23 0.14 −0.43 −0.41 −0.29 0.21 0.09 −0.22 −0.29
      MBC 0.11 −0.05 −0.30 0.30 0.33 −0.13 −0.36 −0.02 0.15 0.30
      MBN −0.35 −0.07 −0.36 0.36 0.22 −0.31 −0.36 0.03 0.11 0.05
      TN 0.27 0.09 0.10 0.03 0.30 −0.28 −0.41 0.25 0.75*** 0.15
      TP 0.03 −0.37 −0.68** 0.34 0.29 −0.20 −0.33 0.11 0.41 0.36
      BG 0.64** −0.05 −0.09 0.01 0.24 0.49* 0.04 0.11 0.19 0.67**
      CBH 0.21 −0.18 −0.30 0.07 0.03 0.26 0.09 −0.17 −0.07 0.72***
      NAG 0.44 −0.07 −0.22 0.18 0.73*** −0.12 −0.69*** −0.04 0.26 0.63**
      AP 0.28 −0.10 −0.21 0.09 0.13 −0.15 −0.20 −0.03 0.23 0.81***
      LAP 0.49* −0.12 −0.27 0.13 0.16 0.12 −0.08 −0.28 −0.10
      EOOC 0.08 0.07 0.10 0.04 0.21 −0.19 −0.28 0.45*
      AHN −0.11 −0.13 0.03 −0.17 0.02 0.05 0.00
      SES(C∶N) −0.04 −0.11 −0.05 −0.13 −0.86*** 0.49*
      SES(C∶P) 0.46* −0.10 −0.06 −0.09 0.02
      SES(N∶P) 0.32 0.03 −0.02 0.10
      C∶N −0.19 0.51* −0.23
      N∶P 0.15 0.71***
      C∶P 0.01
      指标 AP NAG CBH BG TP TN MBN MBC pH
      SOC 0.35 0.48* 0.04 0.23 0.69 *** 0.78 *** 0.49* 0.59** −0.64**
      pH −0.30 −0.50* −0.15 −0.54* −0.40 −0.44 −0.21 -0.50*
      MBC 0.46* 0.46* 0.23 0.27 0.64** 0.51* 0.88***
      MBN 0.27 0.24 0.10 −0.05 0.58** 0.33
      TN 0.38 0.43 −0.02 0.27 0.62**
      TP 0.44 0.51* 0.24 0.23
      BG 0.66** 0.62** 0.49*
      CBH 0.73*** 0.33
      NAG 0.69***
        说明:土壤酶化学计量比用SES表示,*表示P<0.05,**表示P<0.01,***表示P<0.001

      图  4  0~5(A)和5~20 cm(B)土壤酶活性和酶化学计量比与土壤理化因子的冗余分析(RDA)

      Figure 4.  0−5 (A) and 5−20 cm(B) redundancy analysis of soil enzyme activities and ecoenzymatic stoichiometry

      表 4  不同比例兴安落叶松林地土壤(5~20 cm)酶活性与土壤化学性质间Pearson相关系数

      Table 4.  Peaeson correlation between soil enzymes, ecoenzymate stoichiometry and physicochemical properties in the depth of 5−20 cm of in different L. gmelinii stands

      指标MBC∶MBNC∶PN∶PC∶NSES(N∶P)SES(C∶P)SES(C∶N)AHNEOOCLAP
      SOC −0.33 0.53* 0.48* 0.58** 0.54* 0.10 −0.39 −0.02 0.55* 0.44*
      pH 0.34 −0.65** −0.59** −0.02 −0.53* 0.23 0.58** 0.15 −0.37 −0.46*
      MBC −0.13 0.77*** 0.76*** −0.15 0.59** −0.26 −0.66** 0.26 0.74*** 0.55*
      MBN −0.56* 0.83*** 0.85*** −0.20 0.58** −0.20 −0.60** 0.16 0.85*** 0.50*
      TN −0.42 0.77*** 0.81*** −0.30 0.52* −0.30 −0.61** 0.41 0.91*** 0.53*
      TP 0.14 −0.90*** −0.88*** 0.15 −0.50* 0.40 0.66** −0.24 −0.59** −0.32
      BG −0.15 0.21 0.23 −0.17 0.24 0.46* 0.08 −0.31 0.48* 0.08
      CBH −0.14 0.44 0.50* −0.28 0.42 −0.23 −0.49* 0.64** 0.59** 0.15
      NAG −0.32 0.70*** 0.75*** −0.26 0.71*** −0.17 −0.67** 0.19 0.64** 0.28
      AP −0.25 0.53* 0.60** −0.40 0.36 −0.29 −0.48* 0.30 0.59** 0.30
      LAP −0.15 0.31 0.31 −0.05 0.33 −0.26 −0.43 0.13 0.45*
      EOOC −0.37 0.73*** 0.74*** −0.28 0.43 −0.05 −0.39 0.18
      AHN 0.10 0.17 0.25 −0.37 0.01 −0.63** −0.38
      SES(C∶N) 0.15 −0.71*** −0.74*** 0.13 −0.79*** 0.59**
      SES(C∶P) 0.07 −0.37 −0.44 0.40 0.02
      SES(N∶P) −0.15 0.60** 0.58** 0.11
      C∶N 0.03 −0.14 −0.23
      N∶P −0.37 0.99***
      C∶P −0.33
      指标 AP NAG CBH BG TP TN MBN MBC pH
      SOC 0.21 0.38 0.30 0.15 −0.42 0.59** 0.56** 0.51* −0.4
      pH −0.27 −0.35 −0.14 −0.10 0.62** −0.39 −0.62** −0.68**
      MBC 0.45* 0.53* 0.45* 0.21 −0.73*** 0.74*** 0.85***
      MBN 0.63** 0.73*** 0.51* 0.42 −0.68*** 0.88***
      TN 0.69*** 0.75*** 0.69*** 0.35 −0.64**
      TP −0.53* −0.62** −0.41 −0.19
      BG 0.67** 0.61** 0.36
      CBH 0.75*** 0.70***
      NAG 0.86***
        说明:土壤酶化学计量比用SES表示,*表示P<0.05,**表示P<0.01,***表示P<0.001
    • 土壤SOC、TN、微生物量、酶活性均随兴安落叶松所占比例的变化而发生改变,这是因为兴安落叶松所占比例的变化改变了林分环境,进而影响了凋落物的输入、土壤微生物量以及土壤理化性质,从而改变土壤酶的活性[28]。植物凋落物作为土壤主要的有机碳源,通过微生物转化为腐殖质[29]。随着兴安落叶松所占比例的改变,兴安落叶松比例为80%、85%的群落SOC质量分数较低而pH较高,这是因为土壤pH的变化与有机质分解过程中产生的H+多少有关[30],改变了微生物酶活性,进而影响凋落物的分解。有机物中的磷需要在土壤微生物和磷酸酶作用下转化为无机磷才可被植物吸收利用[31],但本研究发现:0~5 cm土层AP活性与TP质量分数无关,5~20 cm土层AP酶活性随TP质量分数增加而降低,且AP活性在5种酶中最高。由于AP酶活性与有效磷呈显著负相关[32],说明研究地区土壤可能缺乏有效磷。前人研究表明:当全磷为0.8~1.0 g·kg−1时,土壤可能会出现供磷不足[33],且由于研究地区土壤呈酸性,磷会形成难溶的磷酸铁(FePO4)和磷酸铝(AlPO4), 从而降低有效磷含量[28]。虽然研究地区土壤TP质量分数普遍低于0.8 g·kg−1,但研究地区是否缺磷还需要结合土壤化学计量比进一步探讨。

      土壤微生物量的多少与土壤养分以及有机质密切相关[34-35],有机物分解也受到土壤酶活性与土壤微生物量等的影响[36]。在兴安落叶松所占比例不同的针阔混交林中,0~5 cm土层SOC、TN、EOOC和AHN质量分数均无显著变化,0~5 cm土层由于各梯度之间EOOC和AHN无显著变化,微生物量随兴安落叶松所占比例的改变无显著变化。5~20 cm土层兴安落叶松比例为95%的群落,土壤SOC、TN、EOOC和AHN质量分数达最大值,此时土壤微生物量也达最大值。前人发现:土壤酶活性与土壤微生物和土壤环境密切相关[37],NAG酶活性随微生物量增加而增大[38]。本研究发现:在5~20 cm土层土壤微生物量与CBH、NAG、LAP呈显著正相关,说明在5~20 cm土层,随落兴安叶松所占比例的变化,土壤微生物量与土壤碳氮养分以及土壤微生物量与土壤碳氮酶活性变化具有趋同性。

    • 土壤酶化学计量可以衡量微生物对养分的需求情况[14]。本研究结果表明:5~20 cm土层TN、AHN是影响土壤酶活性的显著因子,相关性分析也证明了5~20 cm土层土壤酶化学计量比N∶P和土壤酶化学计量比C∶P与TN呈显著正相关。研究发现:5~20 cm土层土壤酶化学计量比C∶N与土壤酶化学计量比N∶P变化规律相反,表明随兴安落叶松所占比例的变化,氮元素成为土壤微生物的限制因素。相关性分析显示:0~5 cm土层土壤酶化学计量比与土壤化学计量比均无显著相关性,表明0~5 cm土层土壤酶化学计量关系比较复杂,与多种因素有关。

      本研究区域中,仅有5~20 cm土层土壤酶化学计量比N∶P与土壤N∶P呈显著正相关,土壤酶化学计量比C∶N与土壤N∶P和土壤C∶P显著负相关,表明土壤酶化学计量和土壤化学计量比之间存在差异,进一步证实了土壤酶化学计量和土壤化学计量比结果不一致的结论[14]。这是因为土壤化学计量反映的是土壤养分状况而非微生物可利用养分的状况,而土壤酶化学计量比既受到土壤微生物和土壤养分元素的影响,还受到有效性碳氮磷的调控[39]。RDA分析也表明:5~20 cm土层土壤酶化学计量比受到TN、AHN的影响,进一步证实了上述观点。

    • 全球尺度上,土壤ln(xCBH+xBG)∶ln(xNAG+xLAP)∶ln(xAP) = 1∶1∶1[12]( x为酶活性)。兴安落叶松比例为95%的群落上下土层土壤酶化学计量比C∶N均小于1,这表明林地受到氮元素的限制。0~5和5~20 cm土层土壤酶化学计量比C∶P、土壤酶化学计量比N∶P均小于1,这表明研究地区普遍缺乏微生物可利用的有效磷。5~20 cm土层兴安落叶松比例为95%、70% 时土壤酶化学计量比N∶P显著高于80%与85%,这表明兴安落叶松比例为80%与85%的群落AP酶活性较高,有效磷元素相对缺乏。因为当土壤养分利用率较低时,土壤微生物增加了相应酶的活性,以提高有效氮和有效磷等养分的供应,这与BLOOM等[40]认为微生物会将其资源最优地分配给获取最有限的资源观点相一致。

      0~5 cm土层兴安落叶松比例为70%、80%群落的土壤C∶P大于中国土壤C∶P(136),土壤N∶P低于中国土壤N∶P(9.3)[41],这说明兴安落叶松比例为70%、80%的群落缺乏磷元素,5~20 cm土层兴安落叶松比例为75%、90%、95%的群落土壤N∶P、C∶P高于中国土壤N∶P(9.3)、土壤C∶P(136)[41],表明兴安落叶松比例为75%、90%、95%的群落普遍存在磷元素的限制。

    • 在兴安落叶松所占比例不同的针阔混交林中5种酶中AP酶活性最高。兴安落叶松比例不同的群落所受的限制因子存在差异,0~5 cm土层兴安落叶松比例为70%、90%的群落、5~20 cm土层兴安落叶松比例为75%、90%、95%的群落受到TP限制。5~20 cm土层兴安落叶松比例为80%、85%的群落可能受到土壤有效磷限制。兴安落叶松比例为95%的群落上下层均受到土壤有效氮的限制。0~5和5~20 cm土壤酶化学计量比与全球土壤酶化学计量比标准值1∶1∶1有所偏离,0~5 cm土层土壤酸碱度是影响土壤酶化学计量比的关键因子,而在5~20 cm土层,则主要受到土壤全氮和有效氮质量分数的影响。由此可见,暖温带针阔混交林中兴安落叶松所占比例是调控土壤养分动态的一个重要生物因子,而其调控作用的发挥则主要依赖于土壤中酶的活性及其化学计量特征。

    • 感谢内蒙古农业大学张秋良教授、内蒙古大兴安岭森林生态系统国家级野外研究站张广亮技术员、根河林业局于海俊先生,以及张欢、朱雍、曹雨松、郭金粲等同志的帮助。

参考文献 (41)

目录

/

返回文章
返回