-
森林植被退化改变了森林结构,导致林地土壤质量下降,引发林地水土流失[1−2]。南方红壤区由于降水丰沛且季节分明,产流率高,退化林地土壤侵蚀严重[3],森林生态系统功能被严重削弱。在森林生态系统中,土壤作为植物生长的基质和环境,其质量是影响森林可持续发展的重要因素。酶作为土壤中最活跃的成分之一,可活化各种养分[4−5],其高低可衡量土壤肥力水平[6],同时对土壤养分的循环过程也有敏感的响应。因此,监测植被恢复中的土壤养分及酶活性,可以更深入地了解土壤退化和恢复程度[7]。
目前,针对退化林地修复过程中土壤养分与酶活性关系的研究集中于人工林恢复措施,普遍认为植被恢复可提高土壤养分含量和酶活性。如张国微等[8]对比了喀斯特山地滇柏Cupressus duclouxiana纯林、刺槐Robinia pseudoacacia纯林和滇柏-刺槐混交林3种人工林与未造林地的差异,发现人工林土壤有机质、全氮、碱解氮、有效磷含量及酶活性均显著高于未造林地,土壤全氮、全磷能解释酶活性变异的60.7%;李欢等[9]对元谋干热河谷沟蚀区域植被恢复前后土壤理化性质与酶活性的关系进行研究,发现植被恢复后土壤酶活性化学计量显著提高,且与土壤碳含量显著正相关;梁燕芳等[10]研究发现:间伐均能提高杂交松人工林土壤养分含量及酶活性,中等强度的间伐对土壤质量的改善效果最明显。
等高反坡阶整地属于人工微地形带状整地措施,能有效拦蓄径流及表土携带的养分[11],提高水分入渗[12]等,进而维持土壤原有组分和理化状态,已成为坡耕地水土保持的重要措施。等高反坡阶整地因工程量小、扰动小、实施简单等特点,也可用作坡面植被恢复的辅助措施[13],可优化林地生长环境,加快植被恢复过程中林木的生长速率,并丰富植物群落结构[14]。此外,在云南松Pinus yunnanensis坡林地生态系统碳储量及分配格局的研究中发现:等高反坡阶整地显著提高云南松林生态系统生物量55.56%,碳增量达29.68%[15]。目前,关于坡林地等高反坡阶整地多围绕植被恢复效果[16]、乔木层及林下碳储量及碳增量[17]等方面开展研究,而就其如何影响植被恢复过程中土壤养分和酶活性的研究鲜有报道。因此,本研究以昆明市松华坝水源区迤者小流域的退化云南松坡林地为对象,研究等高反坡阶整地对土壤养分质量分数和酶活性的影响,揭示该措施退化林地土壤修复机制,为滇中地区红壤坡面退化林地修复提供理论依据。
-
研究区位于云南省昆明市松华坝水源区迤者小流域(24°14′~25°12′N,102°44′~102°48′E),平均海拔为2 220 m,属于典型低纬度高原山地季风气候,年均气温≥10 ℃,年均降水量为785 mm。地带性植被是以云南松为优势种的暖温性针叶林,灌草为云南杨梅Myrica nana、扭黄茅Heteropogon contortus、金丝草Pogonatherum crinitum等。流域受河流迂回切割影响,形成丘陵剥蚀地貌及土壤中轻度流失区,原坡地云南松林因过度砍伐、放牧等人为因素被毁严重,在1985年区域森林覆盖率降至27%[18]。
-
选取林分、林龄、植被密度、立地条件(海拔为2 100 m,坡度为15°,坡向为东北向)、土壤类型(红壤)等条件一致的云南松次生林,设置5 m×20 m样地,样地仅实施等高反坡阶整地,未采取人工造林措施。2022年5月中旬开展研究,设置等高反坡阶整地10 a样地(2009年6月开展研究)和等高反坡阶整地1 a样地(2021年6月开展研究),以相应原状坡面为对照(ck),每类样地均设置3块。2009年布设样地时,云南松林龄为11 a,植被密度为(3 891±49) 株·hm−2。等高反坡阶即沿等高方向从上向下里切外垫,修成一反坡台面,宽为1.2 m,反坡角为5°,以蓄水保土为目的。每个样地共布设3条等高反坡阶,每2个反坡阶之间的坡面水平距离为4 m,反坡阶面积约占样地总面积的18.0%,如图1所示。
-
于2022年5月中旬,用土壤剖面法采集各样地不同土层(0~10、10~20、20~30和30~40 cm)样品,其中0~10 cm定义为表层。为反映反坡阶的作用,在样地内中间反坡阶的阶上1.0 m和阶下1.0 m位置采样,同时采集ck样地的相应位置,每个位置布设3个采样点(图1),分别将同一位置3个采样点同一土层样品混匀后,装入无菌自封袋中;取部分样品用冰袋迅速运回实验室,放入4 ℃冰箱保存,用于土壤酶活性测定,其余土样运回后在室内阴凉处自然干燥,磨碎并过筛用于土壤养分测定。
-
土壤养分测定主要参照《土壤农化分析》[19]。土壤有机质采用重铬酸钾容量法-外加热测定;全氮采用浓硫酸-过氧化氢消煮、凯氏定氮仪测定;全磷采用浓硫酸-过氧化氢消煮、ICP-OES测定;碱解氮采用扩散吸收法;速效磷采用盐酸-氟化铵浸提、紫外可见分光光度计比色法测定;速效钾采用1 mol·L−1中性醋酸铵浸提、火焰光度计测定;pH采用电位法测定。
土壤酶活性测定主要参照《土壤酶及其研究法》[20]。脲酶活性、蔗糖酶活性和酸性磷酸酶活性分别采用苯酚-次氯酸钠、3,5-二硝基水杨酸、磷酸苯二钠紫外可见分光光度计比色法测定;过氧化氢酶活性采用高锰酸钾滴定法测定。
-
运用SPSS 26进行单因素方差分析(one-way ANOVA),显著性水平为0.05;采用Origin 2021进行Pearson相关性分析;采用Canoco 5进行冗余分析(RDA)。
-
如表1所示:研究区土壤pH为4.4~5.2,呈酸性。等高反坡阶整地实施后,阶上和阶下的土壤全氮、全磷、碱解氮、有机质和速效钾质量分数均显著高于ck相应位置(P<0.05),且10 a>1 a>ck。1和10 a表层土壤养分质量分数阶下均显著高于阶上(P<0.05),而ck阶上和阶下的相应位置土壤养分质量分数差异不显著(P>0.05)。随着土层深度的增加,1和10 a阶上和阶下土壤养分质量分数呈先增大后减小的趋势,ck变化不显著(P>0.05)。可见,等高反坡阶整地实施后显著提高了坡林地阶上和阶下的土壤养分质量分数,改变了原状坡面养分分布规律。
表 1 等高反坡阶整地下土壤养分空间分布
Table 1. Spatial distribution of soil nutrients under contour reverse-slope terrace measures
取样
位置土层/
cm实施
措施pH 有机质/
(g·kg−1)全氮/
(g·kg−1)碱解氮/
(mg·kg−1)全磷/
(g·kg−1)速效磷/
(mg·kg−1)速效钾/
(mg·kg−1)阶上 0~10 ck 4.5±0.0 Ca 23.3±0.3 Ca 5.7±0.0 Ca 78.1±1.0 Ba 0.3±0.0 Ba 16.8±0.4 Ba 45.4±0.4 Ba 1 a 4.7±0.0 Ba 34.2±1.5 Ba 8.9±0.1 Ba 104.7±2.5 Aa 0.3±0.0 Ba 16.8±0.4 Ba 53.8±2.2 Aa 10 a 4.9±0.0 Aa 55.6±0.3 Aa 11.9±0.1 Aa 109.2±2.4 Aa 0.7±0.1 Aa 18.7±0.3 Aa 62.2±1.7 Aa 10~20 ck 4.3±0.0 Ca 18.3±0.8 Bb 4.7±0.1 Bab 41.4±0.7 Bb 0.3±0.0 Ba 14.8±0.6 ABb 43.2±0.4 Bb 1 a 4.6±0.1 Bab 18.4±1.5 Bb 5.7±0.2 Bb − 0.3±0.0 Bb 12.8±0.5 Bb 46.4±1.7 ABab 10 a 4.8±0.0 Aa 47.9±0.7 Ab 8.1±0.1 Ab 89.0±0.8 Ab 0.4±0.1 Ab 17.6±1.4 Aa 52.2±0.4 Ab 20~30 ck 4.4±0.0 Ba 13.4±0.8 Bc 3.4±0.2 Cb − 0.3±0.0 Ba 12.1±0.4 Ac 40.6±0.4 Cc 1 a 4.5±0.1 Bb 15.3±1.4 Bbc 5.2±0.2 Bb − 0.3±0.0 Bb 10.9±0.6 Abc 44.2±1.2 Bab 10 a 4.7±0.0 Aa 34.0±0.5 Ac 6.5±0.4 Ac 64.7±2.0 Ac 0.3±0.0 Ab 12.4±0.1 Ab 51.7±0.1 Ab 30~40 ck 4.4±0.1 Aa 8.0±1.3 Bd 2.9±0.1 Bb − 0.2±0.0 Ab 9.9±0.2 Ad 39.6±0.5 Bc 1 a 4.5±0.1 Ab 11.7±0.7 Bc 3.3±0.2 Bc − 0.2±0.0 Ab 10.5±0.7 Ac 43.6±0.8 Bb 10 a 4.9±0.2 Aa 26.0±1.4 Ad 4.4±0.2 Ad 59.6±2.8 Ac 0.3±0.0 Ab 11.2±0.1 Ab 49.7±1.8 Ab 阶下 0~10 ck 4.5±0.0 Ca 20.9±2.1 Ca 6.1±0.2 Ba 84.6±1.8 Ba 0.3±0.0 Ca 17.1±0.2 Ba 45.8±0.2 Ba 1 a 5.1±0.0 Ba 39.4±0.7 Ba 11.8±0.1 Aa 138.9±2.4 Ba 0.5±0.0 Ba 16.0±1.0 Ba 60.6±0.5 Aa 10 a 4.8±0.0 Aa 63.0±0.2 Aa 13.2±0.3 Aa 155.8±4.2 Aa 1.3±0.1 Aa 30.6±0.7 Aa 67.5±0.4 Aa 10~20 ck 4.5±0.0 Ca 16.7±0.6 Cab 5.3±0.2 Ca 56.2±5.0 Bb 0.3±0.0 Ca 15.5±0.3 Bb 44.6±0.5 Ba 1 a 4.9±0.0 Bab 25.8±0.9 Bb 9.2±0.1 Bb 79.0±16.0 Bb 0.4±0.0 Ba 14.8±0.8 Bb 51.6±0.8 Ab 10 a 4.7±0.0Aab 53.0±1.4 Ab 11.5±0.0 Ab 142.0±12.3 Aa 1.0±0.0 Ab 25.9±0.5 Ab 56.8±0.6 Ab 20~30 ck 4.4±0.1 Ba 15.0±0.8 Cb 3.8±0.1 Bb 38.6±5.8 Bc 0.3±0.0 Bab 12.9±0.2 Bc 44.5±0.6 Ba 1 a 4.8±0.1 Abc 21.9±0.8 Bc 6.4±0.5 Ac 50.2±10.4 Bbc 0.3±0.0 Bb 12.0±0.6 Bbc 44.3±0.7 Bb 10 a 4.6±0.0 Ab 39.4±0.9 AC 7.7±0.2 Ac 86.5±0.4 Ab 0.7±0.0 Ac 17.6±0.1 Ac 51.3±0.8 Ac 30~40 ck 4.5±0.0 Aa 10.6±0.7 Bc 3.1±0.3 Bb − 0.2±0.0 Bb 11.7±0.4 Bd 41.7±0.2 Ba 1 a 4.7±0.1 Ac 12.0±1.1 Bd 4.1±0.4 Ad 28.6±4.4 Bc 0.3±0.0 Bb 10.5±0.9 Bc 41.9±0.7 Bb 10 a 4.6±0.1 Ab 26.4±1.3 Ad 5.0±0.0 Ad 63.8±6.3 Ab 0.6±0.0 Ac 16.4±0.8 Ac 50.2±0.3 Ac 说明:ck表示无整地措施;1 a表示实施1 a的等高反坡阶整地;10 a表示实施10 a的等高反坡阶整地;−表示未检出。不同大写字母表示同一土层不同整地措施间差异显著(P<0.05);不同小写字母表示同一整地措施不同土层间差异显著(P<0.05)。 -
如图2所示:等高反坡阶整地阶上和阶下的土壤脲酶、蔗糖酶、酸性磷酸酶和过氧化氢酶的活性比ck相应位置均显著提高(P<0.05),且10 a>1 a>ck,10 a等高反坡阶样地的土壤脲酶、蔗糖酶、酸性磷酸酶和过氧化氢酶活性阶下比阶上分别高出24.2%、41.2%、16.9%和2.9%,1 a等高反坡阶样地分别高出19.2%、14.4%、16.1%和4.0%,ck阶上阶下差异不显著(P>0.05)。随着土层深度的增加,阶上与阶下的土壤脲酶、蔗糖酶和过氧化氢酶活性的差异程度明显增加,而酸性磷酸酶活性则呈先增加后降低的趋势。
-
从图3可以看出:ck、1 和10 a样地土壤养分对酶活性的解释率分别为68.0%、88.0%和92.7%。ck和1 a样地的速效磷和全氮对土壤酶活性的解释率达显著水平(P<0.05),解释率分别为65.9%和88.0%;10 a样地的碱解氮、全氮和全磷对土壤酶活性的解释率达显著水平(P<0.05),解释率分别为88.7%、4.9%和2.5%。表明等高反坡阶整地提高了土壤养分指标对酶活性的解释程度,10 a样地的解释率达显著水平的指标最多。
图 3 等高反坡阶整地下土壤养分与酶活性冗余分析
Figure 3. Redundancy analysis of soil nutrients and soil enzyme activities under contour reverse-slope terrace measures
如图4所示:土壤养分与酶活性形成的两两组合中,ck和1 a样地达到显著水平的正相关关系分别有14组和34组(P<0.05),其中均有1组达到极显著水平(P<0.01),相关系数变化范围分别为0.26~0.99和0.53~0.99。10 a样地中,除pH外,其余养分与对应转化功能酶的活性均为正相关,相关系数为0.78~1.00,达极显著水平的组合有15组。等高反坡阶整地提高了土壤养分与具有对应转化功能土壤酶活性间的正相关关系,却降低了pH对土壤养分与酶活性的影响。
-
土壤养分可直接衡量土壤质量和林木生长所需土壤养分元素的潜在供应能力[21−22]。本研究表明:相较于ck,1和10 a样地的土壤养分质量分数在同一土层深度显著提高,说明等高反坡阶整地可促进土壤养分积累。同时,等高反坡阶措施可促进云南松凋落物的蓄积[13],增加土壤储水能力,提高凋落物的分解转化,提高土壤养分质量分数[17]。本研究还发现:土壤养分质量分数阶下显著高于阶上,这与等高反坡阶措施拦截径流、阻拦泥沙、增加养分入渗的作用有关。有研究表明:等高反坡阶对坡耕地径流和泥沙的削减率分别可达65.3%和80.7%[11−14],导致土壤养分质量分数显著提高,其中全氮质量分数增加达1.09倍[23]。与原状坡面相比,等高反坡阶有效阻断了坡面径流的形成,且样地中坡位的土壤同时受到上部阶面截流保护及下部阶面营养富集效应的影响,出现土壤养分阶下高于阶上的结果,且10 a样地的提升效果高于1 a[13]。并且,阶下与阶上土壤养分的差异随着土层深度的增加而减小,即等高反坡阶整地对表层养分质量分数的提升效果更好,这与人工林植被恢复的研究现象相似[24−25]。表明土壤养分具有表聚性[24],林地凋落物分布于土壤表层,通过分解转化可为土壤有机质等养分提供补充[25],随着土层深度的增加,该补充作用逐渐减弱,再加上等高反坡阶整地表层土壤中植物根系的生长更集中,进而呈现出表层提升效果更明显的状况[26]。
-
酶作为土壤生态系统中生化反应的重要催化剂,对土壤质量有指示作用,土壤质量越好,脲酶、蔗糖酶和酸性磷酸酶活性越高。本研究10 a的样地中,土壤中蔗糖酶、脲酶、酸性磷酸酶和过氧化氢酶活性显著提高,这与相关的研究结果相似[27]。有研究表明:等高反坡阶整地对坡耕地根际土壤酶活性有显著提高作用,脲酶、蔗糖酶、过氧化氢酶和酸性磷酸酶活性比对照提高9.58%~92.92%[27]。等高反坡阶整地阻止了土壤养分和水分流失,这类似于植被恢复中的凋落物积累,植被恢复中,水分和土壤温度等环境因子得以改善,土壤动物、微生物的种类和数量、含氧量均为表层土壤高于深层[28−29],本研究的等高反坡阶整地使阶下和表层土壤养分表聚和转化,促进了土壤微生物多样性形成,丰富的碳源及其他养分为酶促反应提供底物,利于胞外酶的产生,进而利于酶的催化反应,酶活性显著提高[30]。同时,本研究土壤酶活性表现出与养分相似的空间分布规律,进一步证明养分积累促进了土壤酶活性。
-
在造林植被恢复、人工藻结皮覆盖相关研究中,养分和酶参与土壤物质能量转化过程时并非独立作用,而是彼此配合[31−32]。土壤养分质量分数与酶活性间存在相互促进的作用机制,酶促反应中,养分作为底物可激发酶活性,酶活性的提高反过来促进养分循环[33]。人工藻结皮覆盖通过提高盐碱地土壤养分质量分数及酶活性有效改善盐碱地土壤质量[31],不同林龄杉木Cunninghamia lanceolata -红豆杉Taxus chinensis混交林改变了土壤养分状态,间接提高了土壤酶活性[32]。本研究的等高反坡阶整地具有提高退化坡林地土壤养分与酶活性正相关关系的作用,10 a样地的效果更明显。其原因在于等高反坡阶整地一方面通过阻断径流,增加入渗,为养分蓄积提供条件,在反应底物逐渐充足的过程中,土壤养分转化的相关酶活性被激活[14];另一方面,养分蓄积刺激植物生长,其根系向土壤分泌更多的酶,可进一步提升土壤养分的转化和循环速率。在参与土壤生理生化反应过程中,土壤养分与酶的配合程度提升[34],最终形成了土壤-植物-养分-酶的稳定复合体系,全面改善土壤质量。土壤养分质量分数和酶活性与pH的相关关系,由ck和1 a样地的正相关变为10 a样地的负相关,说明等高反坡阶整地实施一定时间后,改变了云南松坡林地酸性土壤对养分和酶活性的限制作用,在其他类型林地中也发现了类似的现象[35]。
-
实施等高反坡阶整地后,云南松坡林地的土壤养分质量分数与酶活性显著增加,反坡阶的阶下提高程度高于阶上,且对表层土壤养分和酶活性的提高程度高于下层土壤。等高反坡阶整地显著提高了土壤养分与酶活性的正相关关系,同时改变了土壤pH对养分与酶活性的限制作用,整地10 a的效果尤为明显。因此,等高反坡阶整地可作为退化坡林地恢复的辅助措施,通过提升土壤养分与酶活性间的关联性,改善土壤质量并加快退化林地的恢复进程。
Response of soil nutrients and enzyme activities to contour reverse-slope land preparation in slope forest land of central Yunnan Province
-
摘要:
目的 通过分析等高反坡阶整地对退化坡林地恢复过程中土壤养分与酶活性的影响,揭示该措施生态修复的作用机制。 方法 以昆明市松华坝水源区迤者小流域的退化云南松Pinus yunnanensis坡林地为对象,设置等高反坡阶整地1 a样地(1 a)和10 a样地(10 a),以原状坡面(ck)为对照,比较土壤养分质量分数和酶活性在反坡阶的阶上和阶下及不同土层深度(0~10、10~20、20~30和30~40 cm)的分布差异。 结果 ①等高反坡阶整地显著提高土壤养分质量分数(P<0.05),碳、氮、磷等养分提升达15.3%~236.2%,阶下高于阶上,表层土壤(0~10 cm)增加最明显。②土壤脲酶、蔗糖酶、酸性磷酸酶和过氧化氢酶活性均表现为10 a样地显著高于ck (P<0.05),4种酶活性提升范围在3.7%~587.5%,阶下仍高于阶上,表层土壤酶活性提升显著(P<0.05)。③冗余分析显示:等高反坡阶整地后土壤养分对酶活性的累积解释贡献率升高,ck、1和10 a样地分别为68.0%、88.0%和92.7%;反坡阶整地后土壤养分与酶活性的正相关关系提高,相关系数范围和达极显著性组数(P<0.01)由ck的0.26~0.99和1组,增至10 a样地的0.78~1.00和15组。 结论 退化坡林地实施等高反坡阶整地后,可促进土壤养分蓄积,激发土壤酶活性,增加两者在土壤生理生化反应过程中的配合度,最终改善土壤质量。图4表1参35 Abstract:Objective The aim is to reveal the mechanism of ecological restoration by analyzing the effects of contour reverse-slope terrace on soil nutrients and enzyme activities during the restoration of degraded slope forest . Method The degraded Pinus yunnanensis slope forest land in Yizhe minor watershed of Songhuaba water source area in Kunming City was taken as the research object. 1-year and 10-year contour reverse-slope terrace preparation trials were set up, with the original slope as a control (ck). Soil nutrients contents and enzyme activities above and below the terrace, as well as those at different soil depths (0 − 10, 10 − 20, 20 − 30, and 30 − 40 cm) were systematically compared. Result (1) Contour reverse-slope terraces displayed a significant increase in soil nutrient contents (P<0.05), and the nutrients such as carbon, nitrogen, and phosphorus increased by 15.3% − 236.2%. The nutrient levels below the terrace were higher than those above the terrace, and the increase in surface soil (0 − 10 cm) was the most significant. (2) The activities of soil urease, sucrase, acid phosphatase, and catalase in 10-year plots were significantly higher than those in ck (P<0.05), and the 4 enzyme activities increased by 3.7% − 587.5%. Soil enzyme activities below the terrace were still higher than those above the terrace. The increase in enzyme activity in the surface soil was significant (P<0.05). (3) Redundancy analysis showed that soil enzyme activities were better interpreted by soil nutrient indicators after soil preparation of contour reverse-slope terrace measures, with ck, 1-year plots, and 10-year plots accounting for 68.0%, 88.0%, and 92.7%, respectively. The positive correlation between soil nutrients contents and enzyme activities increased after soil preparation of contour reverse-slope terrace measures, and the range of correlation coefficients and the number of highly significant groups (P<0.01) increased from 0.26 − 0.99 and 1 group in ck to 0.78 − 1.00 and 15 groups in 10-year plots, respectively. Conclusion The implementation of contour reverse-slope terrace soil preparation in degraded slope forest can increase the accumulation of soil nutrient, stimulate soil enzyme activity, increase the coordination between the two in soil physiological and biochemical reaction, and ultimately improve soil quality. [Ch, 4 fig. 1 tab. 35 ref.] -
开展珍稀濒危植物的群落生态学研究有助于野生植物资源的保护、恢复和可持续更新。群落生态学研究一般通过探究物种的分布范围、群落结构及种内与种间联结关系等,揭示群落生活史、适应性、生长趋势等[1-3]。物种组成与群落结构在一定程度上展现植物对资源的利用能力和群落的稳定程度[4]。汪国海等[5]通过研究濒危植物单性木兰Kmeria septentrionalis的群落结构与空间分布格局,探究其聚集方式和传播途径。濒危物种的生态位宽度与群落总体关联度能够反映物种间的相互关系(竞争或促进作用)及对生境条件的适应状况和资源利用情况等[6-8]。刘万德等[9]对藤枣Eleutharrhena macrocarpa的生境特征和种间联结研究发现:藤枣与下层木呈极显著负相关,减少群落内下层木可以促进藤枣群落可持续生长[3, 9-11]。杨国平等[12]通过建立预测景东翅子树Pterospermum kingtungense群落动态的Lefkovitch矩阵模型,探究濒危物种在特定的小生境片段中的分布区间。因此,基于群落生态学的研究方法,有助于全面评估珍稀濒危物种的内外致濒因子,缓解其濒危态势,实现有效的拯救保护[10-11]。
细果秤锤树Sinojackia microcarpa为中国特有的极小群落野生植物,多分布在浙江临安、建德等地,处于极度濒危和受胁迫状态[13-17]。目前,对秤锤属Sinojackia的研究相对较多。杨国栋等[18]采用生态学理论结合自组织特征映射网络(SOM)方法,划分了野生秤锤树群落的群丛类型。徐惠明等[19]分析了狭果秤锤树S. rehderiana的群落年龄结构,发现该群落具有良好的更新潜力。周赛霞等[20]研究发现:受密度制约或种子扩散限制等,狭果秤锤树的空间聚集分布趋势逐渐减弱。秤锤属物种多表现出竞争能力相对较弱,对外界干扰的响应较为显著[18-19]。本研究通过对细果秤锤树群落的长期动态监测,分析细果秤锤树群落的物种组成、生态位宽度及其与主要树种的种间关联,揭示细果秤锤树的生境适应性与竞争强度,有助于在就地、迁地保护回归实践中建立适宜的生存环境。
1. 研究区概况与研究方法
1.1 研究区概况
浙江省建德市属亚热带北缘季风气候,雨量充沛,四季分明,年平均气温为17.4 ℃。土壤类型以凝灰岩发育的红壤、黄棕色壤土为主,土层浅薄且质地较为疏松,钱塘江水系中上游,境内以低山丘陵地貌为主。细果秤锤树集中分布于浙江省建德市建德林场乌石滩林区(29°32′56″~29°35′43″N,119°33′08″~119°34′05″E),主要分布在林区乌石滩、富家坞和灵山顶,海拔为23~429 m。多生长在岩石裸露率较大的山谷溪沟边的灌丛林中,呈条带状分布,群落生境数年前遭受人为砍伐干扰较严重。
1.2 样地设置与调查
细果秤锤树为典型极小群落野生植物,残存数量较少,因适存的小流域生境使得群落呈带状分布,样地设置受限。2020年8—9月,在全面踏查细果秤锤树野生群落的基础上,参照热带森林科学研究中心(CTFS)的样地建设技术规程,建立0.18 hm2的固定监测样地。使用全站仪在乌石滩、富家坞和灵山顶分别设置3个典型样方开展群落调查,共计9个10 m×20 m样方;在每个样方内设置3个5 m×5 m的下层木样地以及3个1 m×1 m的草本层样地。开展树种定位、地形测定(海拔、经纬度、坡向坡位等)、生境因子测定(土壤理化性质等)。
1.3 物种重要值计算
本研究计算上层木与下层木的物种重要值。上层木重要值=(相对多度+相对频度+相对显著度)/3;下层木重要值=(相对多度+相对频度)/2;相对多度=(某种植物的数量/样地植物的总数量)×100%;相对频度=(某种植物的频度/样地所有植物物种的频度总和)×100%;相对优势度=(某种植物的胸高断面积之和/样地所有物种的胸高断面积之和)×100%。
1.4 生态位特征与种间联结性
物种生态位特征主要采用Levins指数、Shannon-Wiener指数[21-23]反映生态位宽度,Schoener生态位相似性[24-25]与Pianka生态位重叠指数[26]反映生态相似与重叠程度。种间联结分析主要采用总体联结指数[6, 8]、卡方检验(χ2)、联结系数(AC)[24]和Pearson相关系数[8, 22]探究物种间关联性。采用R 4.1.0中spaa包计算生态位宽度、生态位相似性和生态位重叠程度、χ2检验、Pearson相关系数检验结果。
2. 结果与分析
2.1 细果秤锤树群落野外分布与生境分析
细果秤锤树总计509株,其中富家坞分布个体数量最多(243株),灵山顶最少(71株)。群落里单丛萌蘖枝干中的最大胸径为8.10 cm,平均树高为5.40 m(表1)。乌石滩、富家坞、灵山顶细果秤锤树群落的胸径变异系数分别为34%、33%和33%,均表现为较低变异性。
表 1 细果秤锤树群落资源组成Table 1 Composition of population resources of S. microcarpa分布区 数量/
株胸径/
cm树高/
m胸径变异
系数/%树高变异
系数/%乌石滩 195 3.07±1.05 5.00±1.87 34 38 富家坞 243 3.05±1.02 5.40±1.98 33 41 灵山顶 71 2.95±0.98 4.90±2.41 33 54 说明:胸径和树高数值为平均值±标准差 细果秤锤树分布在海拔23~429 m的区域(表2和表3),乌石滩和富家坞受人工干预程度较高,存在人为滥砍及割灌除草等抚育过程。土壤呈较疏松多孔的黏质土,土壤容重为1.06~1.19 g·cm−3,pH为4.72~5.79,偏酸性土壤,有效磷和速效钾偏低。细果秤锤树群落土壤有机质、氮、磷、钾及其速效成分中等,土壤养分条件一般。
表 2 细果秤锤树群落生境调查Table 2 Environmental survey of S. microcarpa population分布区 样地 海拔/m 纬度(N) 经度(E) 坡向 群落特征 乌石滩 P1 58 29°34′16″ 119°33′10″ 西 樟树Cinnamomum camphora-板栗Castanea mollissima混交林 P2 45 29°34′18″ 119°33′60″ 西 板栗林 P3 64 29°34′17″ 119°33′00″ 东北 板栗林 富家坞 P4 58 29°34′57″ 119°33′42″ 东南 柏木Cupressus funebris-南酸枣Choerospondias axiliaris混交林 P5 95 29°34′57″ 119°33′36″ 东南 柏木林 P6 128 29°35′20″ 119°33′24″ 东 柏木-拟赤杨Alniphyllum fortunei混交林 灵山顶 P7 190 29°35′35″ 119°33′52″ 东北 樟树林 P8 384 29°35′11″ 119°33′11″ 东北 毛竹Phyllostachys edulis林 P9 396 29°35′40″ 119°33′10″ 东北 毛竹林 表 3 细果秤锤树群落的生境因素Table 3 Habitat factors of S. microcarpa分布区 海拔/m 土壤容重/
(g·cm−3)土壤pH 土壤有机
质/(g·kg−1)土壤总孔
隙度/%土壤碱解氮/
(mg·kg−1)土壤有效磷/
(mg·kg−1)土壤速效钾/
(mg·kg−1)乌石滩 70±26 a 1.01±0.10 a 5.46±0.20 a 38.84±3.66 a 61.74±3.67 a 103.41±3.08 a 6.23±0.82 a 82.46±3.22 a 富家坞 109±39 a 1.12±0.06 a 5.47±0.43 a 40.76±1.22 a 57.72±2.25 a 97.61±6.90 a 5.79±1.26 a 82.93±6.82 a 灵山顶 370±110 a 1.07±0.09 a 5.23±0.15 a 45.74±3.42 a 59.72±3.44 a 107.71±8.72 a 5.54±1.45 a 95.48±14.02 a 变化范围 23~429 1.00~1.19 4.72~5.79 36.81~48.38 55.20~62.42 91.04~113.67 5.30~7.84 75.69~102.80 说明:数值为平均值±标准差。同列不同小写字母表示同一指标不同分布区之间差异显著(P<0.05) 2.2 细果秤锤树群落物种组成
细果秤锤树样地内共记录到胸径≥1 cm的木本植物401株,隶属于35科50属51种。其中优势科有樟科Lauraceae (5属6种)、山茶科Theaceae (3属4种)、壳斗科Fagaceae (3属3种)、马鞭草科Verbenaceae (3属3种)、安息香科Styracaceae (2属3种)、大戟科Euphorbiaceae (2属2种)、金缕梅科Hamamelidaceae (2属2种)、漆树科Anacardiaceae (2属2种)、茜草科Rubiaceae (2属2种)、榆科Ulmaceae (2属2种)。樟树的平均胸径最大,达30.8 cm,有22株;平均胸径较大的树种有臭椿Ailanthus altissima、枫香Liquidambar formosana、柏木、南酸枣和毛竹。
样地中重要值≥1%的上层木物种共16种,重要值排前4位的物种是毛竹、柏木、板栗和细果秤锤树,这4个物种重要值之和为49.85%,是群落优势树种(表4)。下层中阔叶箬竹Indocalamus latifolius的重要值最高,为15.48%;重要值排前3位的物种有水团花Adina pilulifera、毛花连蕊茶Camellia fraterna和细果秤锤树(表5)。细果秤锤树在上、下木层中重要值分别为9.50%和4.60%,是主要建群种之一。
表 4 细果秤锤树群落上层木主要物种的重要值和生态位宽度Table 4 Important values and niche breadth of the dominant species in upper wood layer of S. microcarpa community编号 物种 重要值/
%生态位宽度 编号 物种 重要值/
%生态位宽度 Levins
指数Shannon-Wiener
指数Levins
指数Shannon-Wiener
指数1 毛竹 19.63 1.96 0.68 11 杉木 2.00 1.78 0.63 2 柏木 10.84 2.48 1.00 12 黄檀 1.95 2.29 0.90 3 板栗 9.88 2.80 1.13 13 白花泡桐 1.70 1.00 0.00 4 细果秤锤树 9.50 5.87 1.92 14 盐肤木 1.51 1.00 0.00 5 樟树 8.44 1.82 0.64 15 木油桐 1.27 1.96 0.68 6 南酸枣 2.75 1.83 0.80 16 大叶白纸扇 1.21 2.00 0.69 7 拟赤杨 2.34 1.95 0.68 17 厚壳树 0.99 1.00 0.00 8 枫香 2.32 1.00 0.00 18 臭椿 0.96 1.00 0.00 9 木蜡树 2.18 2.70 1.05 19 檵木 0.88 1.63 0.00 10 棕榈 2.09 2.78 1.06 说明:木蜡树Toxicodendron sylvestr;棕榈Trachycarpus fortunei;杉木Cunninghamia lanceolata;黄檀Dalbergia hupeana;白花泡桐Paulownia fortunei;盐肤木Rhus chinensis;木油桐Vernicia montana;大叶白纸扇Mussaenda shikokiana;厚壳树Ehretia thysiflora;檵木Loropetalum chinensis 表 5 细果秤锤树群落下层木主要物种的重要值和生态位宽度值Table 5 Important value and niche breadth of the dominant species in lower wood layer of S. microcarpa community编号 物种 重要值/% 生态位宽度 编号 物种 重要值/% 生态位宽度 Levins
指数Shannon-Wiener
指数Levins
指数Shannon-Wiener
指数1 阔叶箬竹 15.48 1.98 0.84 9 短柄枹栎 2.41 1.84 0.65 2 水团花 8.45 3.43 1.30 10 紫麻 2.30 1.08 0.16 3 细果秤锤树 4.60 6.82 2.00 11 木荷 1.86 1.00 0.00 4 毛花连蕊茶 4.58 4.95 1.77 12 华箬竹 1.63 1.00 0.00 5 茶 4.44 4.09 1.73 13 杉木 1.59 1.28 0.38 6 檵木 3.05 4.39 1.60 14 海金子 1.58 1.92 0.74 7 窄基红褐柃 2.98 1.00 0.00 15 黄檀 1.54 2.81 1.06 8 杭州榆 2.69 1.00 0.00 16 朱砂根 1.45 3.90 1.57 说明:窄基红褐柃Eurya rubiginosa var. attenuata;杭州榆Ulmus changii;短柄枹栎Quercus glandulifera;木荷Schima superba;华箬竹Sasa sinica;朱砂根Ardisia crenata 2.3 细果秤锤树群落生态位宽度
细果秤锤树具有最大的生态位宽度,Levins的生态位宽度指数及Shannon-Wiener的生态位宽度指数在上层木中分别为5.87%和1.92%(表5),板栗、棕榈、木蜡树与柏木的生态位宽度依次降低。细果秤锤树在上层木林层与下层木林层中生态位宽度差异不明显,说明细果秤锤树的种对竞争具有一定优势,在所调查的小流域生境中具有较强的适应能力,分布幅度较广。
2.4 细果秤锤树群落生态位相似性与重叠程度
细果秤锤树群落上层木物种生态位相似性和生态位重叠值最大均为盐肤木-臭椿(表6)。细果秤锤树与上层优势树种樟树生态相似性值最高(0.62),白花泡桐次之(0.59)。生态位宽度较大的柏木和黄檀的生态位相似性达0.65,而生态位宽度较窄的枫香和臭椿的生态位相似性为0,说明生态位相似性与生态位宽度有一定关联。生态位重叠值在0.8~1.0的种对有杉木-盐肤木和南酸枣-枫香,大于0.5的种对有39对(占20.53%),其中生态位重叠值小于0.1的种对共有90对(占47.37%)。上层木树种间生态位重叠值总体偏低,对资源利用的利用策略存在差异。细果秤锤树与樟树(0.62)和黄檀(0.59)具有较大的生态位重叠,存在较大的生态和资源利用相似性。
表 6 细果秤锤树群落上层木主要优势种间的生态位相似性比例和生态位重叠指数Table 6 Niche similarity and niche overlap of dominant plant species in S. microcarpa community in the upper wood layer编号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 1 0 0 0.06 0 0 0.14 0 0 0.27 0.58 0 0.07 0.42 0 0 0 0.42 0 2 0 0.04 0.34 0 0.23 0.41 0.45 0.26 0.43 0 0.52 0 0 0.19 0.74 0.19 0 0.55 3 0 0.02 0.35 0.15 0.41 0.04 0.04 0 0.04 0 0.04 0.52 0 0.04 0.04 0.04 0 0 4 0.09 0.54 0.47 0.42 0.43 0.18 0.15 0.13 0.25 0.20 0.21 0.38 0.04 0.02 0.21 0.16 0.04 0.19 5 0 0 0.11 0.62 0.40 0 0 0 0 0.42 0 0.34 0 0 0 0.52 0 0 6 0 0.15 0.49 0.48 0.68 0.23 0.23 0.09 0.14 0.40 0.14 0.27 0 0.14 0.14 0.54 0 0 7 0.12 0.46 0.01 0.33 0 0.22 0.57 0.71 0.29 0.14 0.15 0 0.14 0.15 0.15 0.15 0.14 0 8 0 0.49 0.05 0.22 0 0.32 0.72 0.42 0.49 0 0.58 0 0 0.58 0.42 0.48 0 0 9 0 0.41 0 0.32 0 0.17 0.96 0.59 0 0 0 0 0 0 0 0 0 0 10 0.27 0.58 0.05 0.25 0 0.22 0.24 0.65 0 0.27 0.73 0 0.27 0.49 0.66 0.48 0.27 0.24 11 0.64 0 0 0.32 0.62 0.54 0.12 0 0 0.28 0 0.07 0.38 0 0 0.42 0.38 0 12 0 0.65 0.06 0.24 0 0.25 0.18 0.73 0 0.89 0 0 0 0.68 0.75 0.48 0 0.32 13 0.09 0 0.63 0.59 0.30 0.39 0 0 0 0 0.04 0 0 0 0 0 0 0 14 0.59 0 0 0.09 0 0 0.19 0 0 0.45 0.63 0 0 0 0 0 1.00 0 15 0 0.30 0.06 0.04 0 0.27 0.20 0.81 0 0.80 0 0.90 0 0 0.42 0.48 0 0 16 0 0.87 0.04 0.40 0 0.16 0.12 0.48 0 0.79 0 0.88 0 0 0.59 0.42 0 0.58 17 0 0.20 0.04 0.28 0.66 0.75 0.13 0.55 0 0.54 0.52 0.61 0 0 0.67 0.40 0 0 18 0.59 0 0 0.09 0 0 0.19 0 0 0.45 0.63 0 0 1.00 0 0 0 0 19 0 0.86 0 0.46 0 0 0 0 0 0.39 0 0.43 0 0 0 0.80 0 0 说明:编号所代表物种见表4。对角线下方为生态位相似性,对角线上方为生态位重叠值 下层木物种生态位相似性为0~0.96,生态位重叠为0~0.10,最大值种对均为海金子Pittosporum illiciodes-紫麻Oreocnide frutescens。细果秤锤树与下层优势树种檵木生态相似性值最高(0.86);与水团花(0.51)和茶Camellia sinensis (0.48)具有较大生态重叠(表7)。下层木主要物种生态位重叠平均值为0.23,且多数种对的生态位重叠在其平均值附近,表明下层木主要物种的竞争关系相对稳定。
表 7 细果秤锤树群落下层木主要优势种间的生态位相似性比例和生态位重叠指数Table 7 Niche similarity and niche overlap of dominant plant species in S.microcarpa community in the lower wood layer编号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 0.09 0.32 0.21 0.16 0.20 0.34 0.02 0.25 0 0 0.09 0.09 0 0 0 2 0.04 0.51 0.43 0.53 0.52 0.29 0.46 0 0 0.13 0.56 0.19 0 0 0 3 0.30 0.65 0.36 0.48 0.63 0.33 0.38 0.23 0.01 0.10 0.07 0 0.01 0 0 4 0.34 0.58 0.38 0.59 0.53 0.46 0.54 0 0.08 0.39 0.24 0.11 0.11 0.17 0.08 5 0.18 0.58 0.53 0.64 0.55 0.27 0.47 0 0.34 0.19 0.21 0.11 0.34 0.06 0 6 0.19 0.65 0.86 0.52 0.62 0.44 0.34 0.04 0.04 0.24 0.13 0.13 0.07 0.09 0.12 7 0.31 0.27 0.32 0.47 0.21 0.36 0.14 0.34 0 0.39 0.29 0.24 0.04 0.17 0.16 8 0.02 0.56 0.47 0.75 0.48 0.41 0.15 0 0.05 0.18 0.17 0 0.06 0.03 0.01 9 0.35 0 0.41 0 0 0.09 0.70 0 0 0 0 0 0 0 0 10 0 0 0.02 0.20 0.75 0.07 0 0.08 0 0.01 0 0 0.96 0 0 11 0 0.12 0.03 0.41 0.10 0.29 0.44 0.10 0 0.01 0.11 0 0.05 0.22 0.64 12 0.06 0.77 0.12 0.44 0.32 0.12 0.33 0.24 0 0 0.14 0.35 0 0 0 13 0.13 0.35 0 0.29 0.23 0.26 0.50 0.01 0 0 0 0.48 0 0 0 14 0 0 0.02 0.21 0.75 0.08 0.01 0.08 0 1.00 0.05 0 0 0 0.04 15 0 0 0 0.45 0.13 0.19 0.35 0.05 0 0 0.32 0 0 0 0 16 0 0 0 0.21 0 0.24 0.33 0.02 0 0 0.93 0 0 0.04 0 说明:编号所代表物种见表5。对角线下方为生态位相似性,对角线上方为生态位重叠值 2.5 细果秤锤树群落联结性与Pearson相关分析
细果秤锤树群落上层木12个优势种间总体联结性方差比率为1.23,大于1,即种间存在一定程度正联结;其显著检验统计量为11.05,高于χ2分布临界值,表明上层木群落间总体上呈显著的正联结关系。下层木12个优势种间总体联结性方差比率为0.58,小于1,即种间存在一定程度负联结;其显著检验统计量为5.19,介于χ2分布临界值之间,即下层木12个优势种间呈不显著负联结关系。
χ2检验主要反映不同种对之间联结的显著度。联结系数检验结果显示:上层和下层各12个优势木中,正、负联结种对数相接近。细果秤锤树群落上层木中正、负联结的种对分别为27和28个(各占种对数的40.91%和42.42%),正负关联比为0.96∶1.00。种对间总体显著率为12.12%,种间联结较松散,无联结的种对占16.67%,细果秤锤树与其他种之间都不存在联结性。下层木种对联结显著度的分布大致与上层木相似,正负关联比0.83∶1.00。细果秤锤树与水团花呈显著正联结关系。细果秤锤树-阔叶箬竹、细果秤锤树-茶、细果秤锤树-檵木、细果秤锤树-窄基红褐柃表现出极显著负关联(表8)。
表 8 细果秤锤树群落12个优势种χ2检验、联结系数(AC)及Pearson相关检验结果Table 8 Result of χ2 test, association coefficient (AC) and Pearson correlation coefficient of the 12 dominant species in S. microcarpa community检验方法 检验结果 数值范围 上层木 下层木 检验方法 检验结果 数值范围 上层木 下层木 种对数 占比/% 种对数 占比/% 种对数 占比/% 种对数 占比/% χ2 正相关 P≤0.01 0 0 0 0 AC 负相关 −0.2≤AC<0 2 3.03 2 3.03 0.01<P≤0.05 2 3.03 7 10.61 −0.6≤AC<−0.2 3 4.54 3 4.54 P>0.05 25 37.88 22 33.33 AC≤−0.6 23 34.85 30 45.46 无关联 χ2=0 11 16.67 2 3.03 负相关 P≤0.01 0 0 0 0 Pearson
相关检验正相关 P≤0.01 13 19.70 0 0 0.01<P≤0.05 6 9.09 5 7.58 0.01<P≤0.05 0 0 0 0 P>0.05 22 33.33 30 45.45 P>0.05 25 37.88 31 46.97 无关联 0<P<0.20 0 0 0 0 AC 正相关 AC≥0.6 9 13.64 20 30.30 负相关 P≤0.01 0 0 0 0 0.2≤AC<0.6 8 12.12 2 3.03 0.01<P≤0.05 0 0 0 0 0<AC<0.2 8 12.12 7 10.61 P>0.05 28 42.42 35 53.03 无关联 AC =0 13 19.70 2 3.03 上层木中总体显著率为19.70%(极显著正关联13个,P<0.01),不显著(P>0.05)正关联25个,占37.88%;不显著负关联28个,占比42.42%。细果秤锤树与其他树种为无联结关系,整个细果秤锤树群落处于优势发展趋势(表8)。下层木中总体显著率为0,不显著正关联31个,占46.97%;不显著负关联35个,占53.03%。细果秤锤树与水团花、毛花连蕊茶、杭州榆、短柄枹栎呈不显著正关联,与阔叶箬竹、茶、檵木、窄基红褐柃呈不显著负关联。
3. 讨论
3.1 物种组成与群落结构
建德市野生细果秤锤树群落动态监测样地内树种组成相对简单,细果秤锤树多生长在次生常绿阔叶林和针阔混交林中,群落优势树种主要为毛竹、柏木、板栗和细果秤锤树。这与秤锤属调查样地内的物种组成及数量相类似[13, 15-16]。调查发现:细果秤锤树群落中缺乏小径级个体或幼苗,这可能是因为秤锤属的种子萌发困难或遭受了人为的抚育等干扰,影响了幼苗的更新[13-14]。细果秤锤树是小流域生境群落中的优势种,早期生长喜较为荫蔽的环境,群落中高大上层木树种如樟树、毛竹、柏木等可在其幼苗更新时期起到遮光作用,以保护幼苗不受高温、强光照影响。在细果秤锤树生长后期,对光照需求增强,可间伐上层木,对高度接近细果秤锤树的树种进行一定程度的抚育,降低群落郁闭度[12, 16-17]。
3.2 生态位宽度与生态位重叠程度
生态位宽度作为植物群落的环境适应力和资源利用能力的衡量性指标,值越大,反映物种适应能力越强,在群落中更具优势[22, 27]。细果秤锤树在群落物种中重要值排在第4位,但生态位宽度却排在首位。可能是其喜光、耐贫瘠、喜微酸性土壤等生长特性有利于细果秤锤树在小溪流水域附近广泛分布。细果秤锤树的生态位宽度较大还可能与本研究的样地设置有关。本研究以细果秤锤树生长的位置为核心展开设置并调查,且呈聚集分布均匀的群落使得其占较大资源位或较大资源量,与极小群落植物圆叶玉兰Magnolia sinensis[28]、小花木兰Oyama sieboldii[29]、缙云秋海棠Begonia jinyunensis[30]在所处群落中生态位宽度均较大这一研究结果相同,表明在该分布点的研究区域生境条件下,生态位宽度大小与细果秤锤树致濒机制无必然联系。研究中有一些物种的生态位宽度大小排序与其重要值大小排序不同,如樟树、南酸枣等,这说明生态位宽度和重要值在物种之间的表现方式略有不同且并无显著关联性。
生态位相似性特征反映种间资源利用的相似程度,重叠值特征衡量生态位相似的树种在特定空间环境下资源利用的差异性,两者结合衡量种间资源竞争程度[31-33]。细果秤锤树与上层优势树种樟树和黄檀的生态相似性与生态重叠性均最高。可能是因为樟树、黄檀是对环境适应性广泛的泛化种,也可能是适合调查区域环境的特化种,因此出现与细果秤锤树较高的生态位重叠值,也表明这些种对间生态学特性比较一致,或者对生境的要求比较相似[8]。一般来说,当多个物种同时具有较大的生态位宽度时,它们之间存在较高生态位重叠的可能性更大[21]。但是,具有较大生态位宽度的物种也可能与较小生态位宽度的物种间存在较大的生态位重叠[21, 31]。这是因为细果秤锤树与水团花、毛花连蕊茶为中生植物,在资源有限的条件下,它们对资源环境的竞争比较大,且对资源的利用和需求相近[32],因此,它们之间的联系也更为紧密,具有较高的生态位重叠[22, 26]。且细果秤锤树所在群落中物种之间的生态位重叠程度总体偏低,说明细果秤锤树群落中大多物种对资源利用的相似程度降低,物种之间竞争较弱,生态位可通过产生分化来降低种间竞争使得物种间在群落的结构与功能上互补且稳定[7, 22]。本研究发现:细果秤锤树群落大部分种对间的相关性比较弱,表明物种联结性较弱。种间负联结关系占主导,但大部分优势种种对间关联性比较低,说明样地中的不同物种间不存在紧密的相互关系,缺乏竞争或相互促进的趋势,物种间具有独立性,受外界的干扰较小[30]。
4. 结论
细果秤锤树群落中物种组成较为简单,群落结构相对单一,细果秤锤树群落幼树较少,更新相对较差。细果秤锤树生态位宽度最大,在时空上占据着优势地位,属于稍耐阴、耐贫瘠、适应力较强的植物,能更好利用资源和空间。调查样地中多数树种生态位重叠度较高,大部分物种间的竞争较强,对资源利用的相似程度高。树种间不存在较显著的种间相关联结,植物种间缺乏较强的相互依赖或竞争趋势。本研究明确了细果秤锤树生存的独特环境结构和群落间相互关系,对维持其野生群落的幼苗更新和群落规模增长具有重要作用。
-
表 1 等高反坡阶整地下土壤养分空间分布
Table 1. Spatial distribution of soil nutrients under contour reverse-slope terrace measures
取样
位置土层/
cm实施
措施pH 有机质/
(g·kg−1)全氮/
(g·kg−1)碱解氮/
(mg·kg−1)全磷/
(g·kg−1)速效磷/
(mg·kg−1)速效钾/
(mg·kg−1)阶上 0~10 ck 4.5±0.0 Ca 23.3±0.3 Ca 5.7±0.0 Ca 78.1±1.0 Ba 0.3±0.0 Ba 16.8±0.4 Ba 45.4±0.4 Ba 1 a 4.7±0.0 Ba 34.2±1.5 Ba 8.9±0.1 Ba 104.7±2.5 Aa 0.3±0.0 Ba 16.8±0.4 Ba 53.8±2.2 Aa 10 a 4.9±0.0 Aa 55.6±0.3 Aa 11.9±0.1 Aa 109.2±2.4 Aa 0.7±0.1 Aa 18.7±0.3 Aa 62.2±1.7 Aa 10~20 ck 4.3±0.0 Ca 18.3±0.8 Bb 4.7±0.1 Bab 41.4±0.7 Bb 0.3±0.0 Ba 14.8±0.6 ABb 43.2±0.4 Bb 1 a 4.6±0.1 Bab 18.4±1.5 Bb 5.7±0.2 Bb − 0.3±0.0 Bb 12.8±0.5 Bb 46.4±1.7 ABab 10 a 4.8±0.0 Aa 47.9±0.7 Ab 8.1±0.1 Ab 89.0±0.8 Ab 0.4±0.1 Ab 17.6±1.4 Aa 52.2±0.4 Ab 20~30 ck 4.4±0.0 Ba 13.4±0.8 Bc 3.4±0.2 Cb − 0.3±0.0 Ba 12.1±0.4 Ac 40.6±0.4 Cc 1 a 4.5±0.1 Bb 15.3±1.4 Bbc 5.2±0.2 Bb − 0.3±0.0 Bb 10.9±0.6 Abc 44.2±1.2 Bab 10 a 4.7±0.0 Aa 34.0±0.5 Ac 6.5±0.4 Ac 64.7±2.0 Ac 0.3±0.0 Ab 12.4±0.1 Ab 51.7±0.1 Ab 30~40 ck 4.4±0.1 Aa 8.0±1.3 Bd 2.9±0.1 Bb − 0.2±0.0 Ab 9.9±0.2 Ad 39.6±0.5 Bc 1 a 4.5±0.1 Ab 11.7±0.7 Bc 3.3±0.2 Bc − 0.2±0.0 Ab 10.5±0.7 Ac 43.6±0.8 Bb 10 a 4.9±0.2 Aa 26.0±1.4 Ad 4.4±0.2 Ad 59.6±2.8 Ac 0.3±0.0 Ab 11.2±0.1 Ab 49.7±1.8 Ab 阶下 0~10 ck 4.5±0.0 Ca 20.9±2.1 Ca 6.1±0.2 Ba 84.6±1.8 Ba 0.3±0.0 Ca 17.1±0.2 Ba 45.8±0.2 Ba 1 a 5.1±0.0 Ba 39.4±0.7 Ba 11.8±0.1 Aa 138.9±2.4 Ba 0.5±0.0 Ba 16.0±1.0 Ba 60.6±0.5 Aa 10 a 4.8±0.0 Aa 63.0±0.2 Aa 13.2±0.3 Aa 155.8±4.2 Aa 1.3±0.1 Aa 30.6±0.7 Aa 67.5±0.4 Aa 10~20 ck 4.5±0.0 Ca 16.7±0.6 Cab 5.3±0.2 Ca 56.2±5.0 Bb 0.3±0.0 Ca 15.5±0.3 Bb 44.6±0.5 Ba 1 a 4.9±0.0 Bab 25.8±0.9 Bb 9.2±0.1 Bb 79.0±16.0 Bb 0.4±0.0 Ba 14.8±0.8 Bb 51.6±0.8 Ab 10 a 4.7±0.0Aab 53.0±1.4 Ab 11.5±0.0 Ab 142.0±12.3 Aa 1.0±0.0 Ab 25.9±0.5 Ab 56.8±0.6 Ab 20~30 ck 4.4±0.1 Ba 15.0±0.8 Cb 3.8±0.1 Bb 38.6±5.8 Bc 0.3±0.0 Bab 12.9±0.2 Bc 44.5±0.6 Ba 1 a 4.8±0.1 Abc 21.9±0.8 Bc 6.4±0.5 Ac 50.2±10.4 Bbc 0.3±0.0 Bb 12.0±0.6 Bbc 44.3±0.7 Bb 10 a 4.6±0.0 Ab 39.4±0.9 AC 7.7±0.2 Ac 86.5±0.4 Ab 0.7±0.0 Ac 17.6±0.1 Ac 51.3±0.8 Ac 30~40 ck 4.5±0.0 Aa 10.6±0.7 Bc 3.1±0.3 Bb − 0.2±0.0 Bb 11.7±0.4 Bd 41.7±0.2 Ba 1 a 4.7±0.1 Ac 12.0±1.1 Bd 4.1±0.4 Ad 28.6±4.4 Bc 0.3±0.0 Bb 10.5±0.9 Bc 41.9±0.7 Bb 10 a 4.6±0.1 Ab 26.4±1.3 Ad 5.0±0.0 Ad 63.8±6.3 Ab 0.6±0.0 Ac 16.4±0.8 Ac 50.2±0.3 Ac 说明:ck表示无整地措施;1 a表示实施1 a的等高反坡阶整地;10 a表示实施10 a的等高反坡阶整地;−表示未检出。不同大写字母表示同一土层不同整地措施间差异显著(P<0.05);不同小写字母表示同一整地措施不同土层间差异显著(P<0.05)。 -
[1] 汤景明, 翟明普, 付林胜. 森林植被恢复研究进展[J]. 湖北林业科技, 2012(3): 35 − 39. TANG Jingming, ZHAI Mingpu, FU Linsheng. Research progress on forest vegetation restoration [J]. Hubei Forestry Science and Technology, 2012(3): 35 − 39. [2] DENG Lei, SHANGGUAN Zhouping. Afforestation drivers soil carbon and nitrogen changes in China [J]. Land Degradation &Development, 2017, 28(1): 151 − 165. [3] 梁楚欣, 范弢, 陈培云. 滇东石漠化坡地不同恢复模式下云南松林土壤碳氮磷化学计量特征及其影响因子[J]. 浙江农林大学学报, 2023, 40(3): 511 − 519. LIANG Chuxin, FAN Tao, CHEN Peiyun. Stoichiometric characteristics and influencing factors of soil C, N and P in Pinus yunnanensis forests under different restoration modes on rocky desertification slope land in eastern Yunnan [J]. Journal of Zhejiang A&F University, 2023, 40(3): 511 − 519. [4] 陈小花, 陈宗铸, 雷金睿, 等. 清澜港红树林湿地土壤酶活性与理化性质的关系[J]. 林业科学研究, 2022, 35(2): 171 − 179. CHEN Xiaohua, CHEN Zongzhu, LEI Jinrui, et al. Relationship between soil enzyme activities and physicochemical properties in mangrove wetland of Qinglan Port [J]. Forest Research, 2022, 35(2): 171 − 179. [5] SAMUEL A D, BUNGAU S G, TIT D M, et al. Effects of long term application of organic and mineral fertilizers on soil enzymes [J]. Revista de Chimie, 2018, 69(10): 2608 − 2612. [6] GONG Shiwei, ZHANG Tao, GUO Rui, et al. Response of soil enzyme activity to warming and nitrogen addition in a meadow steppe [J]. Soil Research, 2015, 53(3): 242 − 252. [7] 张童, 刘宇飞, 隋心, 等. 土地利用方式对黑龙江西部地区土壤理化性质和酶活性的影响[J]. 农学学报, 2021, 11(5): 33 − 41. ZHANG Tong, LIU Yufei, SUI Xin, et al. Land use patterns: effects on soil physical and chemical properties and enzyme activities in the western Heilongjiang [J]. Journal of Agriculture, 2021, 11(5): 33 − 41. [8] 张国微, 薛建辉, 马洁, 等. 喀斯特退化山地不同类型人工林土壤养分与酶活性[J]. 生态学杂志, 2024, 43(3): 616 − 622. ZHANG Guowei, XUE Jianhui, MA Jie, et al. Soil nutrients and enzyme activities in different types of plantations in karst degraded mountainous sites [J]. Chinese Journal of Ecology, 2024, 43(3): 616 − 622. [9] 李欢, 魏雅丽, 闫帮国, 等. 元谋干热河谷沟蚀地区植被恢复对土壤养分和酶活性的影响[J]. 土壤通报, 2020, 51(5): 1118 − 1126. LI Huan, WEI Yali, YAN Bangguo, et al. Effect of vegetation restoration on soil nutrients and enzyme activities in the gully eroded areas of Yuanmou dry-hot valley [J]. Chinese Journal of Soil Science, 2020, 51(5): 1118 − 1126. [10] 梁燕芳, 罗华龙, 蒋林, 等. 不同间伐强度对杂交松人工林土壤理化性质及酶活性的影响[J]. 北华大学学报(自然科学版), 2022, 23(4): 521 − 529. LIANG Yanfang, LUO Hualong, JIANG Lin, et al. Effects of different thinning intensities on soil physicochemical properties and enzyme activities in hybrid pine plantation [J]. Journal of Beihua University (Natural Science), 2022, 23(4): 521 − 529. [11] 唐佐芯, 王克勤, 李秋芳, 等. 等高反坡阶对坡耕地产流产沙和氮磷迁移的作用研究[J]. 水土保持研究, 2013, 20(1): 1 − 8. TANG Zuoxin, WANG Keqin, LI Qiufang, et al. Study on contour reverse-slope terrace controlling soil and water loss and nitrogen and phosphorus transfer in the sloping farmland [J]. Research of Soil and Water Conservation, 2013, 20(1): 1 − 8. [12] 陈雪, 宋娅丽, 王克勤, 等. 基于Van Genuchten模型的等高反坡阶下土壤水分特征[J]. 水土保持研究, 2019, 26(5): 45 − 52. CHEN Xue, SONG Yali, WANG Keqin, et al. Moisture characteristics under contour reverse-slope terrace based on Van Genuchten model [J]. Research of Soil and Water Conservation, 2019, 26(5): 45 − 52. [13] 王帅兵, 王克勤, 宋娅丽, 等. 等高反坡阶对昆明市松华坝水源区坡耕地氮、磷流失的影响[J]. 水土保持学报, 2017, 31(6): 39 − 45. WANG Shuaibing, WANG Keqin, SONG Yali, et al. Effects of contour reverse-slope terrace on nitrogen and phosphorus loss in sloping farmland in the water resource area of Songhua Dam in Kunming City [J]. Journal of Soil and Water Conservation, 2017, 31(6): 39 − 45. [14] 王震, 王克勤, 赵洋毅, 等. 山坡退化林地林木生长对微地形人工干预的响应[J]. 应用生态学报, 2019, 30(8): 2583 − 2590. WANG Zhen, WANG Keqin, ZHAO Yangyi, et al. Responses of tree growth to artificial intervention on micro-topography in degraded woodland on hillslope [J]. Chinese Journal of Applied Ecology, 2019, 30(8): 2583 − 2590. [15] 李学峰, 王克勤, 宋娅丽, 等. 等高反坡阶对滇中云南松林生态系统碳储量及增量分配格局的影响[J]. 水土保持研究, 2019, 26(5): 21 − 27. LI Xuefeng, WANG Keqin, SONG Yali, et al. Effects of contour reverse-slope terrace on carbon storage and incremental distribution of Pinus yunnanensis forest ecosystem in middle of Yunnan Province [J]. Research of Soil and Water Conservation, 2019, 26(5): 21 − 27. [16] 华锦欣, 王克勤, 张香群, 等. 等高反坡阶对松华坝水源区弃荒坡地植被恢复的初期影响[J]. 西南林业大学学报, 2016, 36(3): 116 − 120. HUA Jinxin, WANG Keqin, ZHANG Xiangqun, et al. Initial influence on vegetation restoration of sloping wasteland under the reverse-slope level terrace in the water resource area of Songhua Dam [J]. Journal of Southwest Forestry University, 2016, 36(3): 116 − 120. [17] 李学峰, 宋娅丽, 王克勤, 等. 等高反坡阶对滇中云南松林下碳储量及增量分配格局的影响[J]. 水土保持研究, 2019, 26(4): 19 − 25. LI Xuefeng, SONG Yali, WANG Keqin, et al. Effects of contour reverse-slope terrace on carbon storage and incremental distribution in understory layer of Pinus yunnanensis forest in middle Yunnan Province [J]. Research of Soil and Water Conservation, 2019, 26(4): 19 − 25. [18] 赵语. 松华坝水源区保护研究[D]. 昆明: 云南大学, 2015. ZHAO Yu. Research on the Protection of the Water Source Area of Songhua Dam [D]. Kunming: Yunnan University, 2015. [19] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000. BAO Shidan. Soil Agrochemical Analysis [M]. Beijing: China Agricultural Publishing House, 2000. [20] 关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986. GUAN Songyin. Soil Enzyme and Its Research Methods [M]. Beijing: Agricultural Publishing House, 1986. [21] SEONGJUN K, CHOONSIG K, SEUNG H H, et al. A multi-site approach toward assessing the effect of thinning on soil carboncontents across temperate pine, oak, and larch forests [J]. Forest Ecology and Management, 2018, 424: 62 − 70. [22] SCHJOERRING J K, CAKMAK I, WHITE P J. Plant nutrition and soil fertility: synergies for acquiring global green growth and sustainable development [J]. Plant and Soil, 2019, 434(1): 1 − 6. [23] 刘晓微, 赵洋毅, 王克勤, 等. 坡耕地等高反坡阶整地年限对土壤改良和玉米产量的影响[J]. 水土保持学报, 2022, 36(1): 307 − 315. LIU Xiaowei, ZHAO Yangyi, WANG Keqin, et al. Effects of site preparation years of contour reverse-slope terrace on soil improvement and corn yield in sloping farmland [J]. Journal of Soil and Water Conservation, 2022, 36(1): 307 − 315. [24] 窦沛彤, 贺思腾, 高成杰, 等. 干热河谷不同恢复群落对林下物种多样性和土壤理化性质的影响[J]. 浙江农林大学学报, 2022, 39(3): 616 − 624. DOU Peitong, HE Siteng, GAO Chengjie, et al. Effects of different restoration communities on understory species diversity and soil physical and chemical properties in dry-hot valley [J]. Journal of Zhejiang A&F University, 2022, 39(3): 616 − 624. [25] GOLUBTSOV V A, VANTEEVA Y V, VOROPAY N N. Effect of humidity on the stable carbon isotopic composition of soil organic matter in the Baikal region [J]. Eurasian Soil Science, 2021, 54(10): 1463 − 1474. [26] 杜娟, 黄海霞, 姚志勇, 等. 不同恢复年限对柠条林地土壤养分含量和酶活性的影响[J]. 草原与草坪, 2023, 43(1): 100 − 107. DU Juan, HUANG Haixia, YAO Zhiyong, et al. Effects of restoration years on soil nutrients and enzyme activities in Caragana korshinskiis forest land soils [J]. Grassland and Turf, 2023, 43(1): 100 − 107. [27] 刘晓微, 王克勤, 赵洋毅, 等. 等高反坡阶措施下玉米苗期根系分泌物特征及其对根际土壤酶活性的响应[J]. 四川农业大学学报, 2021, 39(4): 477 − 485. LIU Xiaowei, WANG Keqin, ZHAO Yangyi, et al. Characteristics of maize root exudates at seedling stage and their response to rhizosphere soil enzyme activities under contour reverse-slope terrace [J]. Journal of Sichuan Agricultural University, 2021, 39(4): 477 − 485. [28] 李晗, 吕刚, 李叶鑫, 等. 露天煤矿排土场不同植被恢复模式土壤养分和酶活性的差异性[J]. 生态学杂志, 2022, 41(5): 919 − 924. LI Han, LÜ Gang, LI Yexin, et al. The differences of soil nutrients and enzyme activities of different vegetation restoration models in open cast coal mine dump [J]. Chinese Journal of Ecology, 2022, 41(5): 919 − 924. [29] 隋夕然, 吴丽芳, 王妍, 等. 滇中岩溶高原不同石漠化程度土壤团聚体养分及酶活性特征[J]. 浙江农林大学学报, 2022, 39(1): 115 − 126. SUI Xiran, WU Lifang, WANG Yan, et al. Characteristics of nutrient and enzyme activity in soil aggregates of different rocky desertification levels in central Yunnan Plateau [J]. Journal of Zhejiang A&F University, 2022, 39(1): 115 − 126. [30] 宋思意, 吕思扬, 邱岭军, 等. 华西雨屏区常绿阔叶林不同深度土壤氮矿化及酶活性对模拟氮沉降的响应[J]. 生态学报, 2022, 42(22): 9045 − 9056. SONG Siyi, LÜ Siyang, QIU Lingjun, et al. Responses of soil nitrogen mineralization and enzyme activities at different depths to nitrogen additions in an evergreen broad-leaved forest [J]. Acta Ecologica Sinica, 2022, 42(22): 9045 − 9056. [31] 刘太坤, 高班, 谢作明, 等. 人工藻结皮对河套平原盐碱土理化性质和酶活性的影响[J]. 水土保持研究, 2022, 29(4): 133 − 139. LIU Taikun, GAO Ban, XIE Zuoming, et al. Effects of artificial algal crusts on physicochemical properties and enzyme activities of saline-alkali soil in Hetao plain [J]. Research of Soil and Water Conservation, 2022, 29(4): 133 − 139. [32] 赵洋, 余雯静, 何易蔓, 等. 套种南方红豆杉对杉木人工林土壤肥力的影响[J]. 应用与环境生物学报, 2024, 30(2): 344 − 352. ZHAO Yang, YU Wenjing, HE Yiman, et al. Effects of understory Taxus chinensis var. mairei planting on soil fertility of Chinese fir plantations [J]. Chinese Journal of Applied and Environmental Biology, 2024, 30(2): 344 − 352. [33] 黄瑞灵, 王西文, 马国虎, 等. 模拟氮沉降对高寒湿地土壤理化性质和酶活性的影响[J]. 草地学报, 2022, 30(6): 1343 − 1349. HUANG Ruiling, WANG Xiwen, MA Guohu, et al. Effects of simulated nitrogen deposition on soil physicochemical properties and enzyme activities in alpine wetland [J]. Acta Agrestia Sinica, 2022, 30(6): 1343 − 1349. [34] 赵娜, 沈爱红, 石云, 等. 贺兰山东麓冲积扇区不同微地形土壤理化性质及酶活性特征研究[J]. 西南农业学报, 2023, 36(11): 2451 − 2463. ZHAO Na, SHEN Aihong, SHI Yun, et al. Characterization of physicochemical properties and enzymatic activities of different micro-topographical soils in alluvial fan area at eastern foot of the Helan Mountain [J]. Southwest China Journal of Agricultural Sciences, 2023, 36(11): 2451 − 2463. [35] 陈佳, 姚成硕, 林勇明, 等. 武夷山林地土壤酶活性差异及土壤肥力质量评价[J]. 山地学报, 2021, 39(2): 194 − 206. CHEN Jia, YAO Chengshuo, LIN Yongming, et al. Soil enzyme activity difference in woodlands, and soil fertility quality evaluation in Mount Wuyi, China [J]. Mountain Research, 2021, 39(2): 194 − 206. 期刊类型引用(8)
1. 李琨,胡兆贵,张茂付,甘燕玲,李苏春,刘芳,林海萍. 巾子峰国家森林公园常绿阔叶林木本植物优势种的生态位和种间联结性. 浙江农林大学学报. 2025(01): 45-54 . 本站查看
2. 阳艳芳,罗来开,尹明月,台昌锐,童跃伟,赵凯. 濒危植物细果秤锤树果实浸提液化感作用. 安徽农业科学. 2024(04): 93-96+102 . 百度学术
3. 黄安玲,姜金香,任志琴,胡优琼,王志威. 基于MaxEnt模型的玉竹潜在适生区及关键生态因子分析. 中国实验方剂学杂志. 2024(18): 178-185 . 百度学术
4. 吴卫华,吴家森,吴文骁,吕江波,傅国林,张晔华,郑小军,屠娟丽,梅旭东. 珍稀植物浙江安息香群落种间生态位及种间联结. 东北林业大学学报. 2024(12): 46-54 . 百度学术
5. 郑永敏,吕江波,吴文骁,邓建平,周燕,吴家森. 新安江森林公园阔叶林木本植物生态位与种间联结性. 森林与环境学报. 2024(06): 619-627 . 百度学术
6. 郝秀东,韦嘉胜,欧阳绪红,秦琳娟. 国内外近20年珍稀濒危植物的研究现状与发展趋势. 南宁师范大学学报(自然科学版). 2024(04): 122-130 . 百度学术
7. 张孟文,钟才荣,吕晓波,方赞山,程成. 海南清澜港海南海桑群落中物种生态位特征和种间联结性. 植物资源与环境学报. 2023(05): 70-77 . 百度学术
8. 朱子丞,戚春林,杨小波,李东海,苏凡. 鹦哥岭野茶群落物种组成与竞争关系研究. 林草资源研究. 2023(06): 129-136 . 百度学术
其他类型引用(4)
-
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20230545