留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

模拟家畜不同采食强度下高寒草甸土壤水解酶活性的变化特征

张振 梁海彬 陈有超 吴晓芬 蔡延江

杜雪, 李秀娟, 桂思琦, 等. 西红花真菌性病害与生防菌鉴定研究进展[J]. 浙江农林大学学报, 2021, 38(6): 1279-1288. DOI: 10.11833/j.issn.2095-0756.20200809
引用本文: 张振, 梁海彬, 陈有超, 等. 模拟家畜不同采食强度下高寒草甸土壤水解酶活性的变化特征[J]. 浙江农林大学学报, 2023, 40(2): 265-273. DOI: 10.11833/j.issn.2095-0756.20220281
DU Xue, LI Xiujuan, GUI Siqi, et al. Research progress of fungal diseases in Crocus sativus and identification of biocontrol bacteria[J]. Journal of Zhejiang A&F University, 2021, 38(6): 1279-1288. DOI: 10.11833/j.issn.2095-0756.20200809
Citation: ZHANG Zhen, LIANG Haibin, CHEN Youchao, et al. Responses of soil enzyme activities to different defoliation intensities in alpine meadow[J]. Journal of Zhejiang A&F University, 2023, 40(2): 265-273. DOI: 10.11833/j.issn.2095-0756.20220281

模拟家畜不同采食强度下高寒草甸土壤水解酶活性的变化特征

DOI: 10.11833/j.issn.2095-0756.20220281
基金项目: 国家自然科学基金面上资助项目(41877085,41573070);浙江农林大学科研发展基金(2018FR005,2018FR006,2021LFR035)
详细信息
    作者简介: 张振(ORCID: 0000-0002-2796-7524),从事土壤碳与全球气候变化研究。E-mail: zhangzhen@stu.zafu.edu.cn
    通信作者: 陈有超(ORCID: 0000-0002-1366-3941),副教授,博士,从事土壤碳氮循环研究。E-mail: chenyouchao@zafu.edu.cn
  • 中图分类号: S812.2

Responses of soil enzyme activities to different defoliation intensities in alpine meadow

  • 摘要:   目的  探究家畜采食对高寒草甸土壤酶活性的影响,为揭示人为干扰下高寒草甸的退化机制提供依据。  方法  用刈割留茬模拟家畜轻度采食(LD)和重度采食(HD)行为,以未放牧的草地为对照(ck),测定土壤碳、氮、磷获取的酶活性以及土壤理化性质变化特征。  结果  总体上,土壤碳获取酶土壤蔗糖酶、β-葡萄糖苷酶和土壤氮获取酶脲酶的活性在不同采食强度下不存在显著差异,但呈现明显的时间变异; LD处理可显著提高纤维素二糖水解酶活性(P<0.05),而HD处理能降低纤维素二糖水解酶活性;LD处理也会提高氮获取酶亮氨酸氨基肽酶、N-乙酰-β-D-氨基葡萄糖苷酶以及磷获取酸性磷酸酶的活性;家畜的采食行为可能通过改变土壤养分来影响土壤酶活性;高寒草甸土壤酶活性的时间变异受控于土壤温度和土壤养分的变化。  结论  轻度采食行为可能会提高土壤水解酶活性,有助于维持土壤质量。图3表4参44
  • 西红花Crocus sativus为鸢尾科Iridaceae番红花属Crocus多年生草本植物,又称番红花、藏红花,以干燥柱头入药,属药食同源中药材,被历代医家所推崇,被誉为“红色金子”,2018年被浙江省人民政府认定为新“浙八味”之一。西红花原产于伊朗、希腊、印度、西班牙、意大利、摩洛哥等地[1],喜冷凉、耐寒、不耐涝,适合在疏松肥沃、腐殖质丰富、排水良好的沙质土壤种植[2],在中国山东、江苏、北京、河南等20多个省、市都有一定的种植面积。大量研究发现:西红花具有调血脂[3]、抗肿瘤[4]、抗氧化[5-7]、抗癌[8-9]、防治动脉粥样硬化[10]、抗抑郁[11-12]、预防阿尔茨海默症[13]等多种药用活性。除柱头外,副产物花瓣也具有抗氧化的药用活性[14]。但是西红花是三倍体植物,只能通过无性繁殖繁育新球茎,极易积累病害;同时由于西红花种植面积不断扩大,球茎腐烂病逐年加重,大量球茎在田间生长期和收获储藏期腐烂,球茎减产严重,西红花的产量与品质受到影响[15-19]。目前,围绕西红花的研究主要集中于以下方面:①西红花苷、西红花酸等主要药用成分药理活性研究,进一步开发西红花潜在的药用价值[3, 14]。②西红花苷生物合成途径的解析,如对西红花苷生物合成途径相关合成酶基因进行挖掘和功能解析[20-22]。③西红花价格昂贵、产量低,市面上西红花以次充好、品质参差不齐,因此精准、高效地对西红花的真伪进行鉴定显得尤为重要[23-27]。④优化西红花栽培管理模式和施肥方式,以提高西红花的品质,降低病害发生率[28-30]。⑤西红花球茎腐烂病致病菌的分离与鉴定[15]。球茎腐烂病是困扰西红花产业发展的主要问题,致病菌的分离鉴定以及相应杀菌剂或生物农药的开发利用能为产业良性发展提供保障[15]。本研究围绕西红花土壤真菌性病害、西红花内生真菌、西红花真菌性病害生防菌的挖掘鉴定等展开综述,为全面了解西红花真菌性病害、防治现状以及产业化发展提供理论依据。

    细菌、真菌、病毒等微生物都能引起西红花病害,以真菌引起的病害最为常见,造成的经济损失也最为严重[31],西红花球茎腐烂病成为当前制约西红花产业发展的主要因素。球茎腐烂病是球茎生长期间的主要病害,常见于连作田及排水差的田块,通常由真菌引起,每年有30%以上的种植面积遭受病害[15],严重影响球茎、柱头的产量和品质。

    西红花球茎腐烂病主要有黑腐病和白腐病2种,其中黑腐病主要发生在球茎休眠期,白腐病主要发生在球茎大田生长期[32]。邹凤莲等[33]从西红花种球中分离到1株链格孢菌Alternaria alternata,回接试验发现其可引起西红花球茎腐烂,并与青霉菌一起感染球茎;相比感染单种真菌病害,腐烂更加严重。表明西红花球茎腐烂病可能是多种致病菌共同作用的结果。张国辉等[34]通过组织分离法从感病球茎中分离得到了2种致病真菌,分别为炭疽菌Anthracnose sp. 和尖孢镰刀菌Fusarium oxysporum;回接试验发现:这2种真菌共同感染西红花球茎从而引起腐烂病的发生。王海玲[32]从腐烂球茎中分离获得巴西曲霉Aspergillus brasiliensis、尖孢镰刀菌F. oxysporum和桔青霉菌Penicillium citrinum等3种致病菌,但是这3种菌复合接种是否引起球茎腐烂,目前尚无明确的报道。WANI等[35]从健康球茎中分离出内生真菌红棕孔韧革菌CSE26菌株Porostereum sp.,经球茎回接及田间植株回接试验,发现该菌产生的水解酶和氯代甲氧苯基代谢物可引起西红花球茎腐烂,但病症较轻,表明红棕孔韧革菌是一种致病性较弱的病原菌。吴李芳[15]分离得到了尖孢镰刀菌和腐皮镰刀菌F. solani,通过回接试验证明:此2种真菌是新发现的能引起西红花球茎腐烂的致病真菌。ZHANG等[36]从浙江省建德市西红花专业合作社采样,并从黑腐病的球茎中分离鉴定了1种新的能引起西红花球茎腐烂的离生青霉菌菌株P. solitum。迄今为止,已公开报道的引起西红花球茎腐烂的致病菌包括曲霉属Aspergillus sp.、镰刀菌属Fusarium sp.、青霉菌属Penicillium sp.、炭疽菌属Anthracnose sp. 和链格孢菌属Alternaria sp.,其中镰刀菌属还会引起其他药用植物如黄芪Astragalus membranaceus[16]、人参Panax ginseng[19]、半夏Pinellia ternata[37]等根茎的腐烂(表1)。因此,防治镰刀菌属真菌病害可减少西红花田间病害的发生,在生产上具有实际应用价值。

    表 1  西红花球茎腐烂致病真菌及其来源
    Table 1  Summary of pathomycete isolation from rotting bulbs of C. sativus
    菌株类型分离部位参考文献菌株类型分离部位参考文献
    尖孢镰刀菌 Fusarium oxysporum腐烂球茎[15]炭疽菌 Anthracnose sp.腐烂球茎[34]
    腐皮镰刀菌 F. solani腐烂球茎[15]红棕孔韧革菌 Porostereum sp.健康球茎[35]
    巴西曲霉 Aspergillus brasiliensis腐烂球茎[32]离生青霉菌 P. solitum腐烂球茎[36]
    桔青霉菌 Penicillium citrinum腐烂球茎[32]齐整小核菌 Sclerotium rolfsii腐烂球茎[38]
    链格孢菌 Alernaria alternata健康球茎[33]
    下载: 导出CSV 
    | 显示表格

    植物内生真菌是指广泛寄生于植物组织或细胞内部,但不会引起宿主感染的真菌[39],通常与宿主形成互惠的共生关系[40]

    研究表明:同一物种内生真菌的种类和数量会受品种、生长条件、取材的组织部位等因素影响,并常存在显著差异[41]。因此,分离西红花内生真菌需要对植株的不同组织部位(如根、茎、叶等)分别取材。目前,西红花内生真菌的分离主要采用组织分离法,即分别将不同部位的西红花组织切成小块彻底消毒后,将其置于马铃薯葡萄糖培养基上25 ℃培养,待其生长出菌落后挑其边缘进行纯化,已纯化的内生真菌还需要进行形态学鉴定和分子水平鉴定。西红花内生真菌形态学鉴定主要包括真菌的宏观和微观特征。宏观特征如菌落正反面颜色、菌落质地(絮状、毛毡状、质密、疏松)、菌落生长速度、菌落表面是否产生液滴等[42-44];微观特征如菌丝形状、孢子形状(卵形、倒棒形、倒梨形、卵圆形、椭圆形等)、有无隔膜、有无孢子等[45]。西红花内生真菌分子水平鉴定指采用通用引物对真菌基因组DNA特定基因序列进行扩增。目前西红花分子鉴定的引物主要包括:内部转录间隔区引物(ITS)、RNA聚合酶Ⅱ亚基引物(RPB2)和β-微管蛋白基因引物(β-tubulin)[46]

    内生真菌可从宿主中吸取营养供给自身生长所需,并产生代谢物刺激植物组织的生长与发育,提高宿主对生物或非生物胁迫的耐受性,调控宿主细胞次生代谢产物的生物合成,具有单独生产与宿主相同或相似活性物质的能力,是有益的微生物资源[35]。此外,内生真菌及其代谢产物还具有抑菌[47-49]、固氮[50]、提高植物抗性[50-51]、抗癌[48]等多种功能。可见内生真菌具有促进植物生长、提高抗性的作用。

    西红花主要活性成分(如西红花苷、西红花酸等)药用价值较高,但产量低、价格昂贵。因此,许多科研工作者将目光转向了西红花内生真菌的研究。WANI等[52]发现:西红花内生真菌被孢霉Mortierella alpina CS10E4在促进西红花生长、增加类胡萝卜素积累、提高植株抗性等方面具有显著效果;田间试验表明:经过内生处理的西红花植株,球茎总生物量、球茎大小、柱头生物量、顶端出芽芽数、不定根数等形态和生理性状均有显著改善。分子机制可能是该菌通过调控关键代谢途径基因的表达,将代谢流引向促进类胡萝卜素合成的路径,从而显著提高寄主类胡萝卜素的含量。ZHENG等[53]从西红花内生真菌酒色青霉P. vinaceum培养物的活性成分中分离到了喹唑啉生物碱化合物,认为其具有潜在的细胞毒性和抗真菌活性。WANI等[54]研究发现:西红花内生真菌甘瓶霉Phialophora mustea可提高寄主植物对多种环境胁迫因子的耐受性,代谢产物具有潜在的抗菌和抗癌活性。多数内生真菌还会产生大量吲哚乙酸(IAA)以促进宿主植物的生长[42, 54]。此外,WEN等[55]对内生真菌胞外多糖(EPS)的研究发现:EPS能有效清除超氧化物阴离子自由基,是一种潜在的生物活性来源,适用于制药和食品工业。

    由此可见,内生菌是重要的生物资源。研究植物内生菌,了解植物与微生物之间的关系,有助于促进西红花的可持续栽培,提高产量。

    生物防治菌是存在于种植土壤或植物根系表面的微生物,可通过多种机制抑制病原菌,如拮抗作用[56]、溶菌作用、营养和空间竞争[57]、提高植物抗性[58]、促进植物生长[59]、产生抗生素或刺激植物防御反应等。因此,生防菌可作为化学药剂的环保替代品,在降低西红花发病率的同时,对环境和寄主无任何损伤[31]。目前西红花栽培方面研究较为成熟的生防菌有假单胞菌Pseudomonas[60]、木霉菌Trichoderma[61]和芽孢杆菌Bacillus[62]等。

    芽孢杆菌是一种能够有效防治西红花真菌病害的生防细菌。陶中云等[63]从西红花土壤中分离并鉴定了1株蜂房类芽孢杆菌Paenibacillus alvei ZJUB2011-1菌株,该菌株对西红花球茎腐烂病的防治效率高达57.14%,与多菌灵防治效率相当[64]。吴李芳[15]从西红花根际土壤中分离到1株对西红花球茎腐烂病具有较好防治效果的解淀粉芽孢杆菌Bacillus amyloliquefaciens C612菌株,发现C612菌株通过产生脂肽类抗生素抑制病原菌的生长,并且对西红花有较好的促生长作用。KOUR等[65]从西红花根际土壤中分离了3种芽孢杆菌,分别为苏云金芽孢杆菌B. thuringiensis DC1菌株、巨大芽孢杆菌B. megaterium VC3菌株和解淀粉芽孢杆菌B. amyloliquefaciens DC8菌株;田间试验发现这3株芽孢杆菌都能明显促进西红花植株生长,降低球茎发病率。此外,GUPTA等[66]发现枯草芽孢杆菌B. subtilis、荧光假单胞菌P. fluorescens和棘孢木霉菌T. asperellum不仅降低了西红花病原菌数量和病害发生率,有效防治西红花球茎腐烂病,还有利于延长西红花的花期(表2)。目前,针对芽孢杆菌生物防治和促进植物生长方面已开展了系统的研究,部分菌株已实现商品化,产生了较大的经济效益[67]

    表 2  已报道的西红花生防菌
    Table 2  Biocontrol bacterium of C. sativus had been reported
    菌株名称菌株类型来源作 用参考文献
    蜂房类芽孢杆菌 Paenibacillus alvei ZJUB2011-1细菌根际土壤防治球茎腐烂病     [63]
    解淀粉芽孢杆菌 Bacillus amyloliquefaciens C612细菌根际土壤抑制病原菌生长     [15]
    苏云金芽孢杆菌 B. thuringiensis DC1细菌根际土壤抑制病原菌,促进植株生长[65]
    巨大芽孢杆菌 B. megaterium VC3细菌根际土壤抑制病原菌,促进植株生长[65]
    解淀粉芽孢杆菌 B. amyloliquefaciens DC8细菌根际土壤抑制病原菌,促进植株生长[65]
    枯草芽孢杆菌 B. subtilis细菌生防药剂防治球茎腐烂病     [66]
    荧光假单胞菌 Pseudomonas fluorescens细菌生防药剂防治球茎腐烂病     [66]
    棘孢木霉菌 Trichoderma asperellum真菌生防药剂防治球茎腐烂病     [66]
    解淀粉芽孢杆菌 B. amyloliquefaciens W2细菌根际土壤防治球茎腐烂病     [67]
    下载: 导出CSV 
    | 显示表格

    生防菌作为化学农药的良好替代品,可改善环境污染、降低农药残留,药用植物生防菌的挖掘与验证也是科学研究的热点。ANISHA等[68]从生姜Zingiber officinale中分离到1株顶孢属真菌Acremonium sp.,具有良好的抑菌活性;进一步研究发现:该菌可产生胶霉毒素(gliotoxin),对病原菌具有较强的拮抗作用,表明该菌具有生物防治潜力。HAN等[69]从人参根际土壤中分离到1株具有较高抗菌活性的紫色色杆菌Chromobacterium sp. JH7菌株,该菌能产生几丁质酶、蛋白酶等抗菌分子,为开发人参生物防治剂提供了理论依据。姜云等[70]研究发现:施用生防菌株FG14可湿性粉剂能有效防治人参锈腐病,效率高达68.69%。将三菌合剂“宁盾”施用于浙贝母Fritillaria thunbergii根腐病地块,发现其对植株有显著促生长、防病作用[71](表3)。综上所述,生防菌对药用植物的绿色高效种植、提升品质具有重要作用和广阔的应用前景。

    表 3  生防菌在其他药用植物的挖掘与验证
    Table 3  The excavation and verification of biocontrol bacteria in other traditional Chinese medicine plants
    菌株名称菌株类型来源功能参考文献
    顶孢属真菌 Acremonium sp.真菌 健康生姜  产生胶霉毒素抑制病原菌[68]
    紫色色杆菌 Chromobacterium sp. JH7细菌 人参根际土壤产生几丁质酶、蛋白酶抑制病原菌[69]
    深海链霉菌 Streptomyces scopuliridis细菌 人参根际土壤产生几丁质酶、蛋白酶抑制病原菌[69]
    灰锈赤链霉菌 S. griseorubiginosus放线菌川芎根茎  抑制4种川芎根腐病原菌[72]
    团孢链霉菌 S. agglomeratus放线菌川芎根茎  抑制4种川芎根腐病原菌[72]
    解淀粉芽孢杆菌 B. amyloliquefaciens C10细菌 人参根际土壤改变真菌群落结构[73]
    萎缩芽孢杆菌 B. atrophaeus SXKF16-1细菌 黄芪根际土壤定植于根际土壤,改善土壤微生态环境[74]
    哈茨根霉 Trichoderma harzianum TharDOB-31真菌 健康姜黄根茎定植于根茎,产生抗真菌化合物[75]
    下载: 导出CSV 
    | 显示表格

    西红花优质种质资源匮乏,土地连作障碍,有效的杀菌剂或生物农药匮乏,众多不利因素导致球茎腐烂病日益严重,品质和产量难以保障[15]。要解决这些困扰产业发展的核心问题,可从以下方面集中科研攻关。一是基于现代宏基因组测序技术挖掘西红花球茎腐烂致病菌、生防菌。获得不同菌株并进行功能验证,分析西红花球茎腐烂病与根际土壤微生物群落的关系,为杀菌剂或生物农药的开发提供理论依据[76-77]。如已有研究[76]通过对人参锈腐病的根际土壤、感病人参根部分别进行宏基因组测序,比较土壤微生物群落和感病人参根部微生物群落差异,分析土壤中金属元素等与锈腐病发生的相关性,系统挖掘人参锈腐病的潜在致病菌,探明了连作土壤中金属离子失衡是人参锈腐病的潜在连作障碍诱因。二是基于合成生物学和发酵工程原理,将中药活性物质代谢合成的催化酶基因在大肠埃希菌Escherichia coli、酵母、烟草Nicotiana tabacum等模式原核和真核物种中进行基因表达重构,以实现药效物质的异源高效生物合成,从而解决目前优质中药药源紧缺、药效物质不稳定等问题。目前托品烷生物碱-莨菪碱(hyoscyamine)、青蒿素(artemisinin)等药用活性物质已实现基于合成生物学技术方法的异源生物全合成[78-80]。因此,从分子水平解析西红花苷、西红花酸等主要活性成分代谢合成的催化酶基因或调控基因,能为优质西红花转基因新品种的培育以及基于合成生物学技术手段的西红花主要活性成分的异源生物合成提供理论和应用依据[81-82]。三是脱毒中药种苗的规模化应用可有效缓解中药植物连作引起的病虫害频发的生产问题。目前,滁菊Chrysanthemum morifolium [83]、半夏Pinellia ternata[84]、怀地黄Rehmannia glutinosa [85]等中药材脱毒种苗在生产上的规模化应用有效扭转了土地连作引起的病虫害频发、严重影响生产效能的不利局面。西红花植株病害严重,创制西红花脱毒新种质,能为生产上提供可靠的优质西红花种源,提高生产效益[86-89]

  • 图  1  不同采样时间和采食强度下土壤微生物量碳和微生物量氮

    Figure  1  Soil microbial C and N concentration under different defoliation intensity and sampling time

    图  2  不同采食强度下土壤水解酶活性

    Figure  2  Soil hydrolytic enzyme activities under different defoliation intensities

    图  3  土壤水解酶活性与环境因子的冗余分析

    Figure  3  Redundancy analysis of soil hydrolytic enzyme activity and environmental factors

    表  1  不同采样时间和采食强度下的土壤理化性质

    Table  1.   Soil physical and chemical properties under different defoliation intensity and sampling time

    月份采食
    行为
    土壤含
    水量/%
    土壤温
    度/℃
    pH土壤有机碳/
    (g·kg−1)
    可溶性有机碳/
    (mg·kg−1)
    铵态氮/
    (mg·kg−1)
    硝态氮/
    (mg·kg−1)
    全氮/
    (g·kg−1)
    水溶性氮/
    (mg·kg−1)
    7ck17.98±0.98 Aa23.60±2.50 Aa5.71±0.02 Ba63.84±3.90 Ab67.78±6.35 Aa36.33±3.42 Aa10.68±0.69 Ba7.07±0.15 Aa17.66±1.11 Aa
    LD17.18±1.41 Ba23.13±2.65 Aa5.56±0.05 Ba54.57±1.34 Cc63.63±4.11 Ba35.67±2.90 ABa9.59±0.56 Ba7.02±0.26 Aa19.54±0.82 Ba
    HD19.40±1.10 Aa23.05±2.81 Aa5.72±0.04 Aa71.68±0.70 Aa75.59±1.47 Aa39.74±4.67 ABa8.93±1.42 Ca7.51±0.23 Aa15.69±1.61 Ca
    8ck19.18±0.63 Aa18.20±1.22 ABa5.81±0.03 Aa70.14±2.73 Aa53.45±6.51 Aab16.37±1.14 Ba14.54±2.60 Ba6.26±0.15 Ba32.17±3.87 Ba
    LD15.90±1.07 Ba18.13±0.89 ABa5.82±0.03 Aa71.35±2.39 Ba46.10±3.75 Cb27.37±2.23 Ba13.90±1.52 Ba6.27±0.14 Ba33.83±1.99 Aa
    HD18.35±1.28 Aa18.33±0.78 ABa5.73±0.03 Aa73.14±1.54 Aa68.53±6.35 Aa22.36±6.03 BCa10.87±1.76 Ba6.09±0.11 Ba33.82±3.66 Aa
    9ck18.20±2.24 Aa13.25±0.69 Ba5.42±0.03 Ca72.57±0.45 Ab55.81±4.70 Ab7.25±1.66 Ca24.54±2.90 Ab5.30±0.12 Cab20.93±1.20 Ba
    LD22.33±0.98 Aa13.20±0.74 Ba5.49±0.03 Ca77.64±1.01 Aa79.62±1.48 Aa10.18±2.57 Ca25.15±1.42 Aab5.54±0.11 Ca21.69±1.96 Ba
    HD20.00±0.82 Aa13.33±0.80 Ba5.47±0.05 Ba66.98±0.53 Bc75.78±2.99 Aa12.93±2.49 Ca32.93±3.06 Aa5.22±0.05 Cb25.51±1.65 Ba
      说明:不同大写字母表示同一采食强度不同时间差异显著(P<0.05);不同小写字母表示同一时间不同采食强度间差异显著(P<0.05)
    下载: 导出CSV

    表  2  双因素方差分析检验采食强度和采样时间对土壤理化性质的影响

    Table  2.   Two-way ANOVA of the effects of defoliation intensity and sampling time on soil physicochemical properties

    因素土壤含水量土壤温度pH土壤有机碳可溶性有机碳铵态氮硝态氮全氮水溶性氮微生物量碳微生物量氮
    采食强度 0.404 0.003 0.175 1.511 7.711** 1.345 0.385 0.171 0.406 0.830 0.188
    采样时间 3.131 24.117** 62.138** 19.465** 8.957** 38.195** 69.507** 101.126** 38.269** 9.595** 3.170
    采食强度×采样时间 2.523 0.033 1.330 12.816** 4.009* 1.648 3.232* 2.104 0.863 1.864 0.873
      说明:数值为方差分析的F值;*表示P<0.05;**表示P<0.01
    下载: 导出CSV

    表  3  双因素方差分析检验采食强度和采样时间对土壤胞外酶活性的影响

    Table  3.   Two-way ANOVA of the effects of defoliation intensity and sampling time on soil extracellular enzyme activities

    因素蔗糖酶β-葡萄糖苷酶β-木糖苷酶纤维二糖水解酶脲酶亮氨酸氨基肽酶N-乙酰-β-D-氨基葡萄糖苷酶酸性磷酸酶
    采食强度 1.749 0.435 1.534 9.232** 1.108 12.470** 32.906** 0.324
    采样时间 94.212** 24.420** 46.811** 59.608** 9.623** 358.530** 6.536** 11.718**
    采食强度×采样时间 0.759 1.920 1.898 2.117 1.028 50.590** 8.497** 12.521**
      说明:数值为方差分析的F值;**表示P<0.01
    下载: 导出CSV

    表  4  土壤水解酶活性和土壤环境因子的关系

    Table  4.   Correlations between soil hydrolytic enzyme activities and the environmental factors

    土壤性质蔗糖酶β-葡萄糖苷酶β-木糖苷酶纤维二糖水解酶亮氨酸氨基肽酶
    硝态氮 −0.74** −0.32 −0.67** −0.38 0.38
    铵态氮 0.74** 0.61* 0.63** 0.55 −0.52
    全氮 0.79** 0.69** 0.83** 0.76** −0.59*
    pH 0.45 0.22 0.51 0.22 −0.72**
    水溶性氮 −0.28 −0.58* −0.37 −0.64** 0.36
    微生物量碳 0.64** 0.17 0.48 0.13 −0.80**
    土壤温度 0.83** 0.61* 0.67** 0.47 −0.60*
      说明:*表示P<0.05;**表示P<0.01
    下载: 导出CSV
  • [1] CAO Guangmin, TANG Yanhong, MO Wenhong, et al. Grazing intensity alters soil respiration in an alpine meadow on the Tibetan plateau [J]. Soil Biology &Biochemistry, 2004, 36(2): 237 − 243.
    [2] LONG Ruijun, SHANG Zhanhua, GUO Xusheng, et al. The yak grazing system on the Qinghai-Tibetan plateau and its status [J]. The Rangeland Journal, 2008, 30(2): 241 − 246.
    [3] DONG Shikui, SHANG Zhanhuan, GAO Jixi, et al. Enhancing sustainability of grassland ecosystems through ecological restoration and grazing management in an era of climate change on Qinghai-Tibetan Plateau [J]. Agriculture,Ecosystems &Environment, 2020, 287(10): 66 − 84.
    [4] 向泽宇, 王长庭, 宋文彪, 等. 草地生态系统土壤酶活性研究进展[J]. 草业科学, 2011, 28(10): 1801 − 1806.

    XIANG Zeyu, WANG Changting, SONG Wenbiao, et al. Advance on soil activities in grassland ecosystem [J]. Pratacultural Science, 2011, 28(10): 1801 − 1806.
    [5] BURNS R G, DEFOREST J L, MARXSEN J, et al. Soil enzymes in a changing environment: current knowledge and future directions [J]. Soil Biology and Biochemistry, 2013, 58(2): 216 − 234.
    [6] GAVRICHKOVA O, MOSCATELLI M C, KUZYAKOV Y, et al. Influence of defoliation on CO2 efflux from soil and microbial activity in a Mediterranean grassland [J]. Agriculture,Ecosystems &Environment, 2010, 136(1): 87 − 96.
    [7] 张洪芹, 臧晓琳, 蔡宙霏, 等. 放牧对冷蒿根际微生物区系及土壤酶活性的影响[J]. 浙江农林大学学报, 2017, 34(4): 679 − 686.

    ZHANG Hongqin, ZANG Xiaolin, CAI Zhoufei, et al. Effects of grazing intensity on soil microbial flora and soil enzyme activities in the Artemisia frigida rhizosphere [J]. Journal of Zhejiang A&F University, 2017, 34(4): 679 − 686.
    [8] 刘肖肖, 戴伟, 戴奥娜. 北京山地4种阔叶林土壤酶活性及动力学特征[J]. 浙江农林大学学报, 2018, 35(5): 794 − 801.

    LIU Xiaoxiao, DAI Wei, DAI Aona. Soil enzyme activity and their kinetics in broadleaf forests of Beijing mountainous areas [J]. Journal of Zhejiang A&F University, 2018, 35(5): 794 − 801.
    [9] CENINI V L, FORNARA D A, MCMULLAN G, et al. Chronic nitrogen fertilization and carbon sequestration in grassland soils: evidence of a microbial enzyme link [J]. Biogeochemistry, 2015, 126(3): 301 − 313.
    [10] KONG Ling, CHU L M. Subtropical urban turfs: carbon and nitrogen pools and the role of enzyme activity [J]. Journal of Environmental Sciences, 2018, 65: 18 − 28.
    [11] ZHOU Xiaoqi, CHEN Chengrong, WANG Yanfen, et al. Warming and increased precipitation have differential effects on soil extracellular enzyme activities in a temperate grassland [J]. Science of the Total Environment, 2013, 444: 552 − 558.
    [12] 刘发央, 龙瑞军. 不同放牧强度对牦牛夏季放牧行为的影响[J]. 兰州大学学报(自然科学版), 2009, 45(2): 55 − 60.

    LIU Fayang, LONG Ruijun. Effect of different grazing intensities on grazing behavior of yak in summer [J]. Journal of Lanzhou University (Natural Sciences), 2009, 45(2): 55 − 60.
    [13] 和占星, 黄梅芬, 雷波, 等. 中国牦牛的生态行为研究进展[J]. 家畜生态学报, 2019, 40(4): 1 − 9.

    HE Zhanxing, HUANG Meifen, LEI Bo, et al. Research progress on ecological behavior of Chinese yaks [J]. Acta Ecologiae Animalis Domastici, 2019, 40(4): 1 − 9.
    [14] 孟庆辉, 陈永杏, 白加德, 等. 放牧条件下白牦牛采食的季节性微调整及其效应[J]. 农业工程学报, 2016, 32(18): 219 − 224.

    MENG Qinghui, CHEN Yongxing, BAI Jiade, et al. Seasonal subtle alternation of yak foraging and its effect under pasturing condition [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(18): 219 − 224.
    [15] LI Chengyi, YANG Yuanwu, LI Xilai, et al. Effects of simulated climate warming and grazing on photosynthesis and respiration of permafrost meadow plant community [J]. Russian Journal of Ecology, 2020, 51(3): 224 − 232.
    [16] SKINNER R H, GOSLEE S C. Defoliation effects on pasture photosynthesis and respiration [J]. Crop Science, 2016, 56(4): 2045 − 53.
    [17] 张超, 闫瑞瑞, 梁庆伟, 等. 不同利用方式下草地土壤理化性质及碳、氮固持研究[J]. 草业学报, 2021, 30(4): 90 − 98.

    ZHANG Chao, YAN Ruirui, LIANG Qingwei, et al. Study on soil physical and chemical properties and carbon and nitrogen sequestration of grassland under different utilization modes [J]. Acta Prataculturae Sinica, 2021, 30(4): 90 − 98.
    [18] GILMULLINA A, RUMPEL C, BLAGODATSKAYA E, et al. Management of grasslands by mowing versus grazing-impacts on soil organic matter quality and microbial functioning [J/OL]. Applied Soil Ecology, 2020, 156: 103701[2022-03-10]. doi: 10.1016/j.apsoil.2020.103701.
    [19] WANG Ruzhen, WU Hui, SARDANS J, et al. Carbon storage and plant-soil linkages among soil aggregates as affected by nitrogen enrichment and mowing management in a meadow grassland [J]. Plant and Soil, 2020, 457(1/2): 407 − 420.
    [20] HEWINS D B, BROADBENT T, CARLYLE C N, et al. Extracellular enzyme activity response to defoliation and water addition in two ecosites of the mixed grass prairie [J]. Agriculture Ecosystems &Environment, 2016, 230: 79 − 86.
    [21] LIU Weilong, JIANG Yonglei, WANG Genxu, et al. Effects of N addition and clipping on above and belowground plant biomass, soil microbial community structure, and function in an alpine meadow on the Qinghai-Tibetan Plateau [J/OL]. European Journal of Soil Biology, 2021, 106: 103344[2022-03-10]. doi: 10.1016/j.ejsobi.2021.103344.
    [22] SHI Changguang, SILVA L C R, ZHANG Hongxuan, et al. Climate warming alters nitrogen dynamics and total non-structural carbohydrate accumulations of perennial herbs of distinctive functional groups during the plant senescence in autumn in an alpine meadow of the Tibetan Plateau, China [J]. Agricultural and Forest Meteorology, 2015, 200: 21 − 29.
    [23] MIPAM T D, ZHONG Linling, LIU Jianquan, et al. Productive overcompensation of alpine meadows in response to yak grazing in the eastern Qinghai-Tibet Plateau [J/OL]. Frontiers in Plant Science, 2019, 10: 925[2022-03-10]. doi: 10.3389/fpls.2019.00925.
    [24] 李晓刚, 朱志红, 周晓松, 等. 刈割、施肥和浇水对高寒草甸物种多样性、功能多样性与初级生产力关系的影响[J]. 植物生态学报, 2011, 35(11): 1136 − 1147.

    LI Xiaogang, ZHU Zhihong, ZHOU Xiaosong, et al. Effects of clipping, fertilizing and watering on the relationship between species diversity, functional diversity and primary productivity in alpine meadow of China [J]. Chinese Journal of Plant Ecology, 2011, 35(11): 1136 − 1147.
    [25] YAN Yingjie, QUAN Quan, MENG Cheng, et al. Varying soil respiration under long-term warming and clipping due to shifting carbon allocation toward below-ground[J/OL]. Agricultural and Forest Meteorology, 2021, 304: 108408[2022-03-10]. doi: 10.1016/j.agrformet.2021.108408.
    [26] BLAIR G, LEFROY R, LISLE L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems [J]. Australian Journal of Agricultural Research, 1995, 46(7): 1459 − 1466.
    [27] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2005.

    BAO Shidan. Soil Agrochemical Analysis [M]. Beijing: China Agricultural Press, 2005.
    [28] FRANKENBERGER W T, JOHANSON J B. Factors affecting invertase activity in soils [J]. Plant and Soil, 1983, 74(3): 313 − 323.
    [29] 张海阔, 张宝刚, 周钟昱, 等. 亚热带天然林转变为毛竹林和茶园对土壤胞外酶活性的影响[J]. 农业环境科学学报, 2022, 41(4): 826 − 833.

    ZHANG Haikuo, ZHANG Baogang, ZHOU Zhongyu. Effects of converting natural forests to moso bamboo and tea plantations on soil extracellular enzyme activity in subtropical China [J]. Journal of Agro-Environment Science, 2022, 41(4): 826 − 833.
    [30] 吴金水, 林启美, 黄巧云, 等. 土壤微生物生物量测定方法及其应用[M]. 北京: 气象出版社, 2011.

    WU Jinshui, LIN Qimei, HUANG Qiaoyun, et al. Soil Microbial Biomass Measurement Method and its Application[M]. Beijing: China Meteorological Press, 2011.
    [31] SUN Geng, ZHUBARKER X, CHEN Dongming, et al. Responses of root exudation and nutrient cycling to grazing intensities and recovery practices in an alpine meadow: an implication for pasture management [J]. Plant and Soil, 2017, 416(1/2): 515 − 525.
    [32] RUI Yichao, WANG Yanfen, CHEN Chengrong, et al. Warming and grazing increase mineralization of organic P in an alpine meadow ecosystem of Qinghai-Tibet Plateau, China [J]. Plant and Soil, 2012, 357(1/2): 73 − 87.
    [33] 焦婷, 常根柱, 周学辉, 等. 高寒草甸草场不同载畜量下土壤酶与土壤肥力的关系研究[J]. 草业学报, 2009, 18(6): 98 − 104.

    JIAO Ting, CHANG Genzhu, ZHOU Xuehui, et al. Study on relationship between soil enzyme and soil fertility of alpine meadow in different carrying capacities [J]. Acta Prataculturae Sinica, 2009, 18(6): 98 − 104.
    [34] XIAO Xiang, ZHANG Tao, ANGERER J P, et al. Grazing seasons and stocking rates affects the relationship between herbage traits of alpine meadow and grazing behaviors of Tibetan Sheep in the Qinghai-Tibetan Plateau[J/OL]. Animals, 2020, 10(3): 488[2022-03-10]. doi: 10.3390/ani10030488.
    [35] ROLINSKI S, MÜLLER C, HEINKE J, et al. Modeling vegetation and carbon dynamics of managed grasslands at the global scale with LPJmL 3.6 [J]. Geoscientific Model Development, 2018, 11(1): 429 − 451.
    [36] ORGILL S E, CONDON J R, CONYERS M K, et al. Removing grazing pressure from a native pasture decreases soil organic carbon in Southern New South Wales, Australia [J]. Land Degradation &Development, 2016, 29(2): 274 − 283.
    [37] ZITER C, MACDOUGALL A S. Nutrients and defoliation increase soil carbon inputs in grassland [J]. Ecology, 2013, 94(1): 106 − 116.
    [38] LI Jianye, ZHANG Qichun, LI Yong, et al. Effects of long-term mowing on the fractions and chemical composition of soil organic matter in a semiarid grassland [J]. Biogeosciences, 2017, 14(10): 2685 − 2696.
    [39] JIAN Siyang, LI Jianwei, CHEN Ji, et al. Soil extracellular enzyme activities, soil carbon and nitrogen storage under nitrogen fertilization: a meta-analysis [J]. Soil Biology and Biochemistry, 2016, 101: 32 − 43.
    [40] 吴芳芳, 郑有飞, 吴荣军, 等. 太阳辐射减弱麦田根际土壤酶与有效微量元素的相关性分析[J]. 生态环境学报, 2012, 21(4): 595 − 600.

    WU Fangfang, ZHENG Youfei, WU Rongjun, et al. Correlative research on rhizosphere soil enzyme activities and available trace elements under reduced solar irradiance [J]. Ecology and Environmental Sciences, 2012, 21(4): 595 − 600.
    [41] SUN Jian, LIU Biying, YOU Yong, et al. Solar radiation regulates the leaf nitrogen and phosphorus stoichiometry across alpine meadows of the Tibetan Plateau [J]. Agricultural and Forest Meteorology, 2019, 271: 92 − 101.
    [42] D’ALÒ F, ODRIOZOLA I, BALDRIAN P, et al. Microbial activity in alpine soils under climate change[J/OL]. Science of the Total Environment, 2021, 783: 147012[2022-03-10]. doi: 10.1016/j.scitotenv.2021.147012.
    [43] ZHANG Zhilong, NIU Kechang, LIU Xudong, et al. Linking flowering and reproductive allocation in response to nitrogen addition in an alpine meadow [J]. Journal of Plant Ecology, 2013, 7(3): 231 − 239.
    [44] ZHU Yuanjun, DELGADO-BAQUERIZO M, SHAN Dan, et al. Grazing impacts on ecosystem functions exceed those from mowing [J]. Plant and Soil, 2021, 464(1/2): 579 − 591.
  • [1] 朱洪盛, 赵炯昌, 池金洺, 王子涵, 王丽平, 王正泽, 于洋.  晋西黄土区典型造林整地措施对土壤水分动态的影响 . 浙江农林大学学报, 2024, 41(5): 996-1004. doi: 10.11833/j.issn.2095-0756.20240114
    [2] 黄靖涵, 毕华兴, 赵丹阳, 王宁, 刘泽晖, 张荣.  晋西黄土区典型人工林土壤水分的垂直分布特征 . 浙江农林大学学报, 2024, 41(2): 387-395. doi: 10.11833/j.issn.2095-0756.20230228
    [3] 刘攀, 陆梅, 李聪, 吕晶花, 杨志东, 赵旭燕, 陈志明.  纳帕海典型草甸群落土壤有机碳储量及碳组分变化特征 . 浙江农林大学学报, 2023, 40(2): 274-284. doi: 10.11833/j.issn.2095-0756.20220377
    [4] 谢林峰, 凌晓晓, 黄圣妍, 高浩展, 吴家森, 陈俊辉, 黄坚钦, 秦华.  临安区山核桃林地土壤水解酶活性空间分布特征及土壤肥力评价 . 浙江农林大学学报, 2022, 39(3): 625-634. doi: 10.11833/j.issn.2095-0756.20210417
    [5] 但小倩, 陈招兄, 程谊, 蔡祖聪, 张金波.  红壤氮转化对土壤水分变化的响应 . 浙江农林大学学报, 2021, 38(5): 896-905. doi: 10.11833/j.issn.2095-0756.20200624
    [6] 匡媛媛, 范弢.  滇东南喀斯特小生境土壤水分差异性及其影响因素 . 浙江农林大学学报, 2020, 37(3): 531-539. doi: 10.11833/j.issn.2095-0756.20190383
    [7] 黄俊威, 孙永磊, 周金星, 刘玉国, 万龙.  白枪杆生长特性及光合特性对不同土壤水分的响应 . 浙江农林大学学报, 2019, 36(6): 1254-1260. doi: 10.11833/j.issn.2095-0756.2019.06.025
    [8] 朱柱, 杨海龙, 黄乾, 赵嘉玮.  青海高寒黄土区典型水源涵养林健康评价 . 浙江农林大学学报, 2019, 36(6): 1166-1173. doi: 10.11833/j.issn.2095-0756.2019.06.014
    [9] 王鑫朝, 韩一林, 李美, 王小东, 汪俊宇, 马元丹, 宝音陶格涛, 高岩, 张汝民.  放牧对冷蒿根际土壤微生物量碳、氮和土壤呼吸的影响 . 浙江农林大学学报, 2017, 34(5): 798-807. doi: 10.11833/j.issn.2095-0756.2017.05.005
    [10] 臧晓琳, 张洪芹, 王鑫朝, 马元丹, 宝音陶格涛, 高岩, 张汝民.  放牧对冷蒿根际土壤微生物数量和群落功能多样性的影响 . 浙江农林大学学报, 2017, 34(1): 86-95. doi: 10.11833/j.issn.2095-0756.2017.01.013
    [11] 张洪芹, 臧晓琳, 蔡宙霏, 程路芸, 马元丹, 宝音陶格涛, 张汝民, 高岩.  放牧对冷蒿根际微生物区系及土壤酶活性的影响 . 浙江农林大学学报, 2017, 34(4): 679-686. doi: 10.11833/j.issn.2095-0756.2017.04.014
    [12] 惠淑荣, 王娇, 张倩, 魏忠平, 刘阳.  辽西北沙地不同土地利用方式对土壤水分的影响 . 浙江农林大学学报, 2010, 27(4): 579-584. doi: 10.11833/j.issn.2095-0756.2010.04.017
    [13] 杨静, 王华田, 宋承东, 张培法, 王迎, 谭秀梅, 董玉峰.  土壤水分连续变化过程对盆栽红叶石楠苗期蒸腾特性的影响 . 浙江农林大学学报, 2008, 25(5): 670-674.
    [14] 李安定, 喻理飞, 韦小丽.  喀斯特区土壤水分动态模拟及实地造林的研究 . 浙江农林大学学报, 2008, 25(2): 211-215.
    [15] 李昆, 李巧, 陈又清, 周兴银, 陈彦林, 赵培先.  放牧对明油子-扭黄茅灌草丛生物多样性的影响 . 浙江农林大学学报, 2007, 24(6): 769-774.
    [16] 李艳梅, 王克勤, 刘芝芹, 王建英.  云南干热河谷微地形改造对土壤水分动态的影响 . 浙江农林大学学报, 2005, 22(3): 259-265.
    [17] 邓恒芳, 王克勤.  土壤水分对石榴光合速率的影响 . 浙江农林大学学报, 2005, 22(3): 277-281.
    [18] 姜培坤, 俞益武, 张立钦, 许小婉.  雷竹林地土壤酶活性研究 . 浙江农林大学学报, 2000, 17(2): 132-136.
    [19] 刘力, 周建钟, 余世袁, 单谷.  高节竹笋加工废料的纤维素酶水解及饲料开发 . 浙江农林大学学报, 1997, 14(3): 262-266.
    [20] 吴祖映, 储家森, 唐明荣, 柴世民, 童祝平.  土壤水分状况对池杉形态结构及生长状况的影响 . 浙江农林大学学报, 1996, 13(3): 364-366.
  • 期刊类型引用(5)

    1. 邱远金,张际昭,赵亚琴,阿依别克·热合木都拉,樊丛照,王果平,朱军. 基于Illumina Novaseq高通量测序技术分析番红花不同生长期根际土壤中放线菌群落结构与多样性研究. 时珍国医国药. 2024(13): 3039-3046 . 百度学术
    2. 邱远金,赵亚琴,张际昭,樊丛照,阿依别克·热合木都拉,王果平,朱军. 基于高通量测序研究番红花不同生长期根际土壤中真菌群落结构及多样性. 中国现代中药. 2023(03): 574-581 . 百度学术
    3. 董丽丽,余青华. 解淀粉芽孢杆菌产酶特性及其抑制禾谷镰刀菌性能研究. 安徽农业科学. 2023(14): 11-14 . 百度学术
    4. 李军,高广春,李白,朱志明. 西红花球茎腐烂病发生及综合防控对策. 植物保护. 2023(06): 10-15+39 . 百度学术
    5. 吴皆宁,桂思琦,曹佳佳,杜雪,李俊博,李秀娟,开国银,周伟. 西红花茎腐病致病真菌的分离与鉴定. 浙江农林大学学报. 2022(05): 1080-1086 . 本站查看

    其他类型引用(0)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20220281

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2023/2/265

图(3) / 表(4)
计量
  • 文章访问数:  623
  • HTML全文浏览量:  104
  • PDF下载量:  75
  • 被引次数: 5
出版历程
  • 收稿日期:  2022-04-09
  • 修回日期:  2022-12-16
  • 录用日期:  2022-12-20
  • 网络出版日期:  2023-04-03
  • 刊出日期:  2023-04-20

模拟家畜不同采食强度下高寒草甸土壤水解酶活性的变化特征

doi: 10.11833/j.issn.2095-0756.20220281
    基金项目:  国家自然科学基金面上资助项目(41877085,41573070);浙江农林大学科研发展基金(2018FR005,2018FR006,2021LFR035)
    作者简介:

    张振(ORCID: 0000-0002-2796-7524),从事土壤碳与全球气候变化研究。E-mail: zhangzhen@stu.zafu.edu.cn

    通信作者: 陈有超(ORCID: 0000-0002-1366-3941),副教授,博士,从事土壤碳氮循环研究。E-mail: chenyouchao@zafu.edu.cn
  • 中图分类号: S812.2

摘要:   目的  探究家畜采食对高寒草甸土壤酶活性的影响,为揭示人为干扰下高寒草甸的退化机制提供依据。  方法  用刈割留茬模拟家畜轻度采食(LD)和重度采食(HD)行为,以未放牧的草地为对照(ck),测定土壤碳、氮、磷获取的酶活性以及土壤理化性质变化特征。  结果  总体上,土壤碳获取酶土壤蔗糖酶、β-葡萄糖苷酶和土壤氮获取酶脲酶的活性在不同采食强度下不存在显著差异,但呈现明显的时间变异; LD处理可显著提高纤维素二糖水解酶活性(P<0.05),而HD处理能降低纤维素二糖水解酶活性;LD处理也会提高氮获取酶亮氨酸氨基肽酶、N-乙酰-β-D-氨基葡萄糖苷酶以及磷获取酸性磷酸酶的活性;家畜的采食行为可能通过改变土壤养分来影响土壤酶活性;高寒草甸土壤酶活性的时间变异受控于土壤温度和土壤养分的变化。  结论  轻度采食行为可能会提高土壤水解酶活性,有助于维持土壤质量。图3表4参44

English Abstract

杜雪, 李秀娟, 桂思琦, 等. 西红花真菌性病害与生防菌鉴定研究进展[J]. 浙江农林大学学报, 2021, 38(6): 1279-1288. DOI: 10.11833/j.issn.2095-0756.20200809
引用本文: 张振, 梁海彬, 陈有超, 等. 模拟家畜不同采食强度下高寒草甸土壤水解酶活性的变化特征[J]. 浙江农林大学学报, 2023, 40(2): 265-273. DOI: 10.11833/j.issn.2095-0756.20220281
DU Xue, LI Xiujuan, GUI Siqi, et al. Research progress of fungal diseases in Crocus sativus and identification of biocontrol bacteria[J]. Journal of Zhejiang A&F University, 2021, 38(6): 1279-1288. DOI: 10.11833/j.issn.2095-0756.20200809
Citation: ZHANG Zhen, LIANG Haibin, CHEN Youchao, et al. Responses of soil enzyme activities to different defoliation intensities in alpine meadow[J]. Journal of Zhejiang A&F University, 2023, 40(2): 265-273. DOI: 10.11833/j.issn.2095-0756.20220281
  • 青藏高原生态系统脆弱,对全球气候变化非常敏感,高寒草甸是青藏高原极具代表性的生态系统和主要牧场[1]。放牧是高寒草甸的主要利用方式[2],但过度放牧已对高寒草甸生态系统产生较大影响,致使草地退化严重[3]。由于人类活动已影响到高寒草甸生态系统的可持续性,因此,探索放牧利用方式对高寒草甸的影响机制,成为迫切需要解决的问题[3]

    土壤酶是由植物根、微生物分泌和动植物残体分解释放的活性物质[4],能够调控和反映土壤微生物和植物对养分的需求[57]。土壤酶主要分为氧化还原酶、水解酶、转移酶、裂合酶、连接酶和异构酶共6类[4],其中土壤水解酶参与土壤养分的水解,在土壤微生物和植物养分供应上发挥着重要的作用[4, 8]。相较于土壤理化指标,土壤水解酶活性对外界环境的变化更为敏感,能较早地预警生态系统的改变[5]。土壤水解酶活性和土壤功能紧密相关[9],能够反映环境胁迫下土壤功能的退化程度[1011]

    家畜采食是对高寒草甸影响面积最广、最主要的放牧行为[1214]。现阶段,对家畜采食行为的研究集中在其对牧草品质、土壤有机碳储量、土壤养分、地上地下生物量的影响[1516]等方面,并且研究对象主要在低海拔地区[1718]。关于采食行为对土壤水解酶活性的影响存在较大争议[18],产生争议的原因可能是草地生态系统的不同,也可能是采食时间和采食强度上的不同。例如,在内蒙古草地生态系统中,家畜秋季采食对碳获取水解酶活性无显著影响[19];加拿大平原草原生态系统中,家畜在草地生长季采食会降低碳获取β-葡萄糖苷酶、纤维素酶活性,提高磷获取酸性磷酸酶活性[20];在高寒草甸生态系统生长季初期,家畜轻度采食会提高亮氨酸氨基肽酶、N-乙酰-β-D-氨基葡萄糖苷酶活性,但重度采食会降低N-乙酰-β-D-氨基葡萄糖苷酶活性[21]。但关于不同采食强度对高寒草甸土壤水解酶活性的系统性研究极为缺乏。

    本研究以青藏高原东缘高寒草甸为研究对象,通过刈割留茬模拟家畜不同采食强度,研究3 a禁牧牧场夏季家畜采食行为对土壤水解酶活性的影响。研究的土壤水解酶包括:碳获取水解酶(蔗糖酶、β-葡萄糖苷酶、β-木糖苷酶、纤维二糖水解酶),氮获取水解酶(脲酶、亮氨酸氨基肽酶、N-乙酰-β-D-氨基葡萄糖苷酶)和酸性磷酸酶。通过分析生长季家畜不同采食强度下高寒草甸土壤水解酶活性和土壤理化性质的变化规律,阐明在家畜不同采食强度下土壤水解酶活性变化的主要控制因子,为指导高寒草甸合理有效利用提供理论依据。

    • 研究区位于四川省阿坝藏族羌族自治州红原县若尔盖草原(32°58′08″N,102°37′08″E,海拔为3 500 m)。该草原处于青藏高原东缘,属于高寒温带湿润-半湿润季风气候,多年平均气温<1.0 ℃,最冷1月平均气温为−10.3 ℃,最热7月平均气温为10.9 ℃,年均降水量为690.0 mm,80%的降水发生在生长期(5—8月),年际波动较大[22]。草地类型为高寒草甸,土壤为高山草甸土。植被优势种是小嵩草Kobresia pygmaea、垂穗披碱草Elymus nutans和矮嵩草Kobresia humilis[23]

    • 高寒草甸生长季通常为每年5月初至9月底,当地夏季牧场放牧一般开始于7月,结束于9月。本研究选取禁牧3 a,生长状况良好且牲畜适口性高的草甸作为试验样地,开展不同采食强度的模拟试验。参照李晓刚等[24]和YAN等[25]的方法,本研究共设3个处理:未放牧(ck,不刈割),轻度采食(LD,刈割留茬3 cm),重度采食(HD,刈割留茬1 cm)。用剪刀刈割LD和HD小区的所有植被。因本试验不考虑地上凋落物分解的影响,在试验开展前将样地中未分解的凋落叶移出样地,刈割后的植物残体也移出样地。每个样地面积为2 m×2 m,间距1 m,每个处理重复4次,共12个样地。完全随机区组设计。模拟采食试验于2020年7月1日开始,之后每月1日刈割,到9月1日结束。土壤样品采集时间为每月刈割后的第7天,共采土样3次。在各样地随机选取5个土壤采样点,在0~10 cm土层,用土钻取土,混合得到1个样品,即每个处理每次采集土壤样品取得3个处理4次重复。去除样品中肉眼可见的植物残体,过2 mm筛后,将土样分为2份,一份置于−20 ℃保存用于测定土壤水解酶活性,另一份风干后用于测定土壤基本理化性质。

    • 使用手持式土水仪(AZS-100,北京澳作生态仪器有限公司)测定采样时表层0~5 cm土壤含水量(SWC)和土壤温度(Ts)。用1 mol·L−1盐酸去除土壤样品中的无机碳[26],再用碳氮元素分析仪(vario MACRO cube)测定有机碳。土壤铵态氮(NH4 +-N)和硝态氮(NO3 -N)均采用2 mol·L−1 盐酸浸提,采用靛酚蓝可见分光光度法测定铵态氮,采用氨基磺酸紫外分光光度法测定硝态氮,采用氯仿熏蒸法测土壤微生物量碳(MBC)和土壤微生物量氮(MBN)[27]。将土壤鲜样m(水)∶m(土)=5∶1以超纯水浸提,用TOC分析仪(Multi N/C 3100)测定土壤溶解性有机碳(DOC)和水溶性氮(WSN)。电极法测定土壤pH [m(水)∶m(土)=2.5∶1.0,pH酸度计]。

      土壤酶活性的测定采用微孔板荧光法[28]。用荧光物质4-羟基甲-7-香豆素(4-methylumbelliferone,MUB)作为β-葡萄糖苷酶、β-木糖苷酶、纤维二糖水解酶、N-乙酰-β-D-氨基葡萄糖苷酶、酸性磷酸酶活性的标准对照物,用7-氨基-4-甲基香豆素(7-amino-4-methylcoumarin,MUC,AMC)作亮氨酸氨基肽酶标酶活性准对照物,具体步骤参考张海阔等[29]。将−20 ℃的土样置于4 ℃冰箱里放置5 d,取1.5 g鲜土,放入125 mL醋酸钠溶液中(pH为5.0),置于磁力搅拌器上均匀搅拌约1 min得到土壤浆液,用8通道移液器吸取200 μL土壤浆液置于96孔微孔板上的样品组,加上对应酶的反应底物50 μL,对照组分别为醋酸、标准对照物和特定底物,将加样微孔板放置于25 ℃的培养箱,培养3 h,迅速用酶标仪(Synergy H1)在365和 450 nm激发光下测定读数。用铵态氮释放法和靛酚蓝比色法测定脲酶活性[27]。用水浴加热比色法测定蔗糖酶活性[30]

    • 采用Excel 2019进行数据整理,用R 3.6.2进行数据正态检验(SW 检验),对不正态的数据进行数据转换优化数据,进行单因素方差分析(one-way ANOVA)、双因素方差分析(two-way ANOVA)和最小显著差数法(LSD)分析,模拟采食强度和采样时间对土壤理化性质和土壤酶活性的影响,各指标均在0.05的水平下检测差异显著性。采用Pearson相关分析探索土壤水解酶和土壤理化性质的关系。用R语言中vegan数据包以土壤酶活性为响应变量,以土壤理化指标、微生物量碳和微生物量氮为环境因子进行冗余分析(RDA)。用Origin 9.0和Canoco 5.0作图。图表中的数据为平均值±标准误。

    • 双因素方差分析显示:模拟采食对土壤溶解性有机碳和硝态氮有显著影响(P<0.05),但是这种影响在不同采样时间下存在显著差异(P<0.05)(表1表2)。总体上,采食行为主要影响9月土壤的理化性质,并且会显著提高土壤溶解性有机碳和硝态氮的质量分数(P<0.05),不同采食强度对高寒草甸土壤有机碳质量分数有不同影响,LD处理显著提高土壤有机碳质量分数,而HD处理显著降低土壤有机碳质量分数(P<0.05);高寒草甸土壤温度、pH、有机碳、溶解性有机碳、铵态氮、全氮、水溶性氮和微生物量碳存在显著的时间波动,但是这些指标在不同采食强度下差异不显著,其中土壤有机碳、溶解性有机碳、硝态氮质量分数在采食强度和时间共同作用下存在显著交互效应(P<0.05)(表1表2图1)。

      表 1  不同采样时间和采食强度下的土壤理化性质

      Table 1.  Soil physical and chemical properties under different defoliation intensity and sampling time

      月份采食
      行为
      土壤含
      水量/%
      土壤温
      度/℃
      pH土壤有机碳/
      (g·kg−1)
      可溶性有机碳/
      (mg·kg−1)
      铵态氮/
      (mg·kg−1)
      硝态氮/
      (mg·kg−1)
      全氮/
      (g·kg−1)
      水溶性氮/
      (mg·kg−1)
      7ck17.98±0.98 Aa23.60±2.50 Aa5.71±0.02 Ba63.84±3.90 Ab67.78±6.35 Aa36.33±3.42 Aa10.68±0.69 Ba7.07±0.15 Aa17.66±1.11 Aa
      LD17.18±1.41 Ba23.13±2.65 Aa5.56±0.05 Ba54.57±1.34 Cc63.63±4.11 Ba35.67±2.90 ABa9.59±0.56 Ba7.02±0.26 Aa19.54±0.82 Ba
      HD19.40±1.10 Aa23.05±2.81 Aa5.72±0.04 Aa71.68±0.70 Aa75.59±1.47 Aa39.74±4.67 ABa8.93±1.42 Ca7.51±0.23 Aa15.69±1.61 Ca
      8ck19.18±0.63 Aa18.20±1.22 ABa5.81±0.03 Aa70.14±2.73 Aa53.45±6.51 Aab16.37±1.14 Ba14.54±2.60 Ba6.26±0.15 Ba32.17±3.87 Ba
      LD15.90±1.07 Ba18.13±0.89 ABa5.82±0.03 Aa71.35±2.39 Ba46.10±3.75 Cb27.37±2.23 Ba13.90±1.52 Ba6.27±0.14 Ba33.83±1.99 Aa
      HD18.35±1.28 Aa18.33±0.78 ABa5.73±0.03 Aa73.14±1.54 Aa68.53±6.35 Aa22.36±6.03 BCa10.87±1.76 Ba6.09±0.11 Ba33.82±3.66 Aa
      9ck18.20±2.24 Aa13.25±0.69 Ba5.42±0.03 Ca72.57±0.45 Ab55.81±4.70 Ab7.25±1.66 Ca24.54±2.90 Ab5.30±0.12 Cab20.93±1.20 Ba
      LD22.33±0.98 Aa13.20±0.74 Ba5.49±0.03 Ca77.64±1.01 Aa79.62±1.48 Aa10.18±2.57 Ca25.15±1.42 Aab5.54±0.11 Ca21.69±1.96 Ba
      HD20.00±0.82 Aa13.33±0.80 Ba5.47±0.05 Ba66.98±0.53 Bc75.78±2.99 Aa12.93±2.49 Ca32.93±3.06 Aa5.22±0.05 Cb25.51±1.65 Ba
        说明:不同大写字母表示同一采食强度不同时间差异显著(P<0.05);不同小写字母表示同一时间不同采食强度间差异显著(P<0.05)

      表 2  双因素方差分析检验采食强度和采样时间对土壤理化性质的影响

      Table 2.  Two-way ANOVA of the effects of defoliation intensity and sampling time on soil physicochemical properties

      因素土壤含水量土壤温度pH土壤有机碳可溶性有机碳铵态氮硝态氮全氮水溶性氮微生物量碳微生物量氮
      采食强度 0.404 0.003 0.175 1.511 7.711** 1.345 0.385 0.171 0.406 0.830 0.188
      采样时间 3.131 24.117** 62.138** 19.465** 8.957** 38.195** 69.507** 101.126** 38.269** 9.595** 3.170
      采食强度×采样时间 2.523 0.033 1.330 12.816** 4.009* 1.648 3.232* 2.104 0.863 1.864 0.873
        说明:数值为方差分析的F值;*表示P<0.05;**表示P<0.01

      图  1  不同采样时间和采食强度下土壤微生物量碳和微生物量氮

      Figure 1.  Soil microbial C and N concentration under different defoliation intensity and sampling time

    • 表3图2可以看出:土壤水解酶活性在不同采样时间下均存在显著的时间变异(P<0.05),并且采食强度对土壤碳获取水解酶纤维二糖水解酶和氮获取水解酶亮氨酸氨基肽酶、N-乙酰-β-D-氨基葡萄糖苷酶活性有显著影响(P<0.05)。其中:LD处理会增加碳获取纤维二糖水解酶的活性(9月)(P<0.05),而HD处理会降低碳获取酶纤维二糖水解酶的活性(8月)(P<0.05);采食行为(特别是LD处理)总体上会增加土壤氮获取酶亮氨酸氨基肽酶、N-乙酰-β-D-氨基葡萄糖苷酶以及磷获取酶酸性磷酸酶的活性(P<0.05)。

      表 3  双因素方差分析检验采食强度和采样时间对土壤胞外酶活性的影响

      Table 3.  Two-way ANOVA of the effects of defoliation intensity and sampling time on soil extracellular enzyme activities

      因素蔗糖酶β-葡萄糖苷酶β-木糖苷酶纤维二糖水解酶脲酶亮氨酸氨基肽酶N-乙酰-β-D-氨基葡萄糖苷酶酸性磷酸酶
      采食强度 1.749 0.435 1.534 9.232** 1.108 12.470** 32.906** 0.324
      采样时间 94.212** 24.420** 46.811** 59.608** 9.623** 358.530** 6.536** 11.718**
      采食强度×采样时间 0.759 1.920 1.898 2.117 1.028 50.590** 8.497** 12.521**
        说明:数值为方差分析的F值;**表示P<0.01

      图  2  不同采食强度下土壤水解酶活性

      Figure 2.  Soil hydrolytic enzyme activities under different defoliation intensities

    • 表4可见:蔗糖酶活性与铵态氮、全氮、微生物量碳、土壤温度呈极显著正相关(P<0.01),与硝态氮呈极显著负相关(P<0.01)。β-葡萄糖苷酶活性与铵态氮、土壤温度呈显著正相关(P<0.05),与全氮呈极显著正相关(P<0.01),与水溶性氮呈显著负相关(P<0.05)。β-木糖苷酶活性与铵态氮、全氮、土壤温度呈极显著正相关(P<0.01),与硝态氮呈显著负相关(P<0.05)。纤维二糖水解酶活性与全氮呈极显著正相关(P<0.01),与水溶性氮呈极显著负相关(P<0.01)。亮氨酸氨基肽酶活性与全氮、土壤温度呈显著负相关(P<0.05),与pH、微生物量碳呈极显著负相关(P<0.01)。由图3中红色箭头表示土壤环境因子,黑色箭头表示土壤酶活性。可以看出:环境因子共同解释了土壤水解酶活性的66.88%,且全氮、pH、微生物量碳、硝态氮是解释度较高的4个环境因子,其中,全氮解释了土壤酶活性变异的42.3%,是土壤酶活性变化的最关键因子。整体来看,冗余分析同相关分析一致,全氮与大部分碳获取相关水解酶呈正相关。水溶性氮与所有碳、氮、磷获取相关的水解酶活性呈负相关。硝态氮与土壤碳获取水解酶活性呈负相关。微生物量碳与蔗糖酶活性呈正相关。

      表 4  土壤水解酶活性和土壤环境因子的关系

      Table 4.  Correlations between soil hydrolytic enzyme activities and the environmental factors

      土壤性质蔗糖酶β-葡萄糖苷酶β-木糖苷酶纤维二糖水解酶亮氨酸氨基肽酶
      硝态氮 −0.74** −0.32 −0.67** −0.38 0.38
      铵态氮 0.74** 0.61* 0.63** 0.55 −0.52
      全氮 0.79** 0.69** 0.83** 0.76** −0.59*
      pH 0.45 0.22 0.51 0.22 −0.72**
      水溶性氮 −0.28 −0.58* −0.37 −0.64** 0.36
      微生物量碳 0.64** 0.17 0.48 0.13 −0.80**
      土壤温度 0.83** 0.61* 0.67** 0.47 −0.60*
        说明:*表示P<0.05;**表示P<0.01

      图  3  土壤水解酶活性与环境因子的冗余分析

      Figure 3.  Redundancy analysis of soil hydrolytic enzyme activity and environmental factors

    • 放牧是草地生态系统中一种典型的人为干扰,不仅会直接改变地表植被状况,还将影响诸多生物地球化学循环过程[3133]。家畜采食是放牧行为中对草地影响面积最大、作用时间最长的放牧行为[12, 34]。目前,通常采用刈割来模拟家畜采食行为对草地生态系统的影响[16]。本研究发现:LD处理会显著增加纤维二糖水解酶、亮氨酸氨基肽酶、N-乙酰-β-D-氨基葡萄糖苷酶以及酸性磷酸酶的活性。类似的结果在以往研究中也有报道。例如,LIU等[21]研究发现:轻度采食(刈割)会增加高寒草甸土壤亮氨酸氨基肽酶和N-乙酰-β-D-氨基葡萄糖苷酶活性;HEWINS等[20]研究也表明:轻度采食(刈割)会提高加拿大天然草原土壤酸性磷酸酶的活性。家畜采食行为直接降低植物叶面积,导致光合效率的降低[35],进而造成地下根系分泌物量减少和根系的凋亡增加[3637]。但这也可能会改变植物生长策略,例如将光合产物大部分转移到根部,产生更多的根系分泌物[21],进而促进土壤微生物分泌碳、氮、磷获取酶来降解土壤有机物质以获取养分。这可能就促使家畜采食植物后土壤水解酶活性恢复到采食前(补偿效应),甚至高于采食前(过度补偿效应)[31]。本研究表明:模拟采食处理下土壤溶解性有机碳和硝态氮质量分数会显著高于对照组处理,这进一步印证了采食(刈割)后的“过度补偿效应”。然而,在本研究中HD处理显著降低了土壤纤维二糖水解酶的活性,但增加了土壤氮获取酶亮氨酸氨基肽酶的活性。LIU等[21]和HEWINS等[20]结果显示:重度采食(刈割)会降低土壤纤维二糖水解酶活性。当家畜采食超过一定的限度时,植物的地上组织被大量移除,这会导致植物根部大量凋亡[21],减少根系分泌物的产生,进而抑制土壤碳获取水解酶纤维二糖水解酶的活性[38]。土壤水解酶活性由土壤底物浓度和土壤水解酶共同决定的[5],当全氮质量分数充足时,全氮质量分数与氮获取水解酶活性没有相关性[39];而当全氮质量分数降低时,会激发土壤氮获取酶活性[5]。本研究中,全氮是影响土壤酶活性的关键因子之一,HD处理会显著降低9月份土壤全氮质量分数。可能是家畜重度采食后牧草再生长会吸收大量土壤氮素,造成全氮降低,进而促进土壤氮获取水解酶亮氨酸氨基肽酶的活性[18]。此外,由于重度采食后地表裸露程度增加,青藏高原地区的极端气候以及高紫外辐射也可能会显著降低土壤的水解酶活性[31, 4041]

      本研究发现:在同一模拟采食处理下,土壤水解酶活性存在显著的时间变异。总体上,碳获取酶蔗糖酶、β-葡萄糖苷酶、β-木糖苷酶和纤维素酶活性呈现7月最高、9月最低。土壤温度是高海拔地区控制土壤酶活性时间变化的关键因子。例如,D’ALÒ等[42]研究发现高海拔地区温度升高会显著促进土壤纤维素活性。本研究中,土壤碳获取酶总体上和土壤温度呈显著正相关。因此,高寒草甸土壤碳获取酶主要受7、8、9月气温的递减影响而表现出酶活性递减的时间性变异。而高寒草甸土壤氮获取酶的时间变异表现为随月份递增。这可能是因为7—9月高寒草甸的大部分牧草主要进行生殖生长,该过程需要消耗土壤氮素[43],引起土壤氮养分(硝态氮和全氮)降低,激发土壤氮获取酶的活性,以分解释放有机质中的氮养分[39, 44]

    • 青藏高原东缘高寒草甸夏季牧场家畜采食行为会对土壤水解酶产生显著影响,其中,轻度采食行为增加纤维素酶、亮氨酸氨基肽酶、N-乙酰-β-D氨基葡萄糖苷酶以及酸性磷酸酶的活性,而重度采食会降低纤维素酶活性、增加亮氨酸氨基肽酶活性;土壤碳获取酶、氮获取酶、磷获取酶都表现出时间性变异,其中碳获取酶的活性主要受土壤温度的影响,而氮获取酶主要受土壤全氮质量分数的影响。本研究表明:轻度采食行为可能会提高土壤水解酶活性,有助于维持高寒草甸土壤质量。

参考文献 (44)

目录

/

返回文章
返回