-
花器官的研究一直以来是植物发育学研究中的一大热点。1991年Coen等[1] 在拟南芥Arabidopsis thaliana和金鱼草Antirrhinum majus的花器官同源异型突变体的遗传学研究基础上,首先提出了“ABC”模型,随后Theiβen等[2]又陆续提出了有关植物花发育的新模型,即“ABCD”模型、“ABCDE”模型及四元体模型。目前,对于酵母MCMI-拟南芥AG-金鱼草DEFA-动物血清应激因子SRF(MADS)转录因子的研究主要集中在它们的遗传学功能[3]及其植物新陈代谢调控方面[4]。通过对拟南芥突变体的研究,证明SEPALLATA-like基因对于花粉的成熟及花粉管的形成有着重要作用[5]。SEP-like基因是编码MADS蛋白的转录因子,在双子叶植物中基因的功能表现出不同程度的冗余性和亚功能化[5],E类开花基因的同源蛋白在花器官的发育形成方面比其他A/B/C 类转录因子更重要[6-7]。SEP3属于E类的拟南芥AGL9型基因,编码蛋白在MADS box家族形成四聚体复合物过程中起着重要作用[6]。MADS蛋白在开花过程中主要通过与其他蛋白互作[8],参与了许多调控开花过程[9]。SEP3蛋白是否只是在结合其他转录因子后形成异聚复合物[10]时才发挥作用,还是在形成同源多聚体后也有生物学功能,目前尚不清楚。已有的研究证明:MADS蛋白与特异的DNA结合形成同源多聚体并行使其功能[11],但SEP3蛋白同源多聚体形成的作用机制及其与功能之间的关系,至今还没有明确的答案。本研究尝试通过体外表达纯化可溶性SEP3蛋白的途径加以分析,将不同结构域的AtSEP3基因,克隆到原核表达载体pET-15b上,诱导表达后筛选获得可溶性表达,纯化获得高质量的AtSEP3蛋白。这项工作为通过AtSEP3蛋白的结构功能解析来分析植物花形成分子机制提供了重要基础。
Arabidopsis thaliana SEPALLATA3 protein in a prokaryotic system
-
摘要: SEPALLATA3(SEP3)属于花器官建成ABCE模型中的E类基因,为了揭示SEP3蛋白是如何形成多聚体的,以及多聚体与其生物学功能之间的联系,开展了拟南芥Arabidopsis thaliana AtSEP3蛋白质体外可溶性表达实验,构建了原核表达载体,并在大肠埃希菌Escherichia coli细胞中进行重组蛋白的诱导表达。从蛋白不同的结构域、诱导时间和诱导温度等方面对蛋白的可溶性表达进行了分析。最后以pET-15b为表达载体,大肠埃希菌表达菌株E. coli ‘Rosetta’为宿主菌株,22℃诱导表达15 h,获得不同片段的AtSEP3可溶性蛋白。通过镍柱及分子层析色谱柱分离纯化,表明AtSEP3蛋白以四聚体形式存在。Abstract: The transcription factor of SEPALLATA3 (SEP3) belongs to the E class gene of the ABCE model of flower development. SEP3 has been shown to mediate complex formation and, therefore,a special attention was paid to its structure-function relationship. To determine how SEPALLATA3 protein oligomers were formed, the oligomeric status was studied by obtaining soluble protein expression in vitro. The SEP gene(AtSEP3) was constructed as a fusion protein and expressed in prokaryotic cells. After determining an optimal expression strategy, nickel chelating resin was used to purify the protein which was displayed as a tetramer in size exclusion chromatography(SEC). To get the high efficiency of soluble protein,different structural domains and expression conditions were screened,and 0.1% IPTG inducing at 22℃ for 15 h produced an optimal expression strategy. These preliminarily results provided an important basis for further study of the structure-function relationship. Overall,these results indicat that the SEP3 ‘glue’ protein in mediating multimerization is based on homomeric interactions.
-
Key words:
- botany /
- SEP3 protein /
- prokaryotic system /
- protein purification /
- polymer
-
-
[1] COEN E S,MEYEROWITZ E M. The war of the whorls:genetic interactions controlling flower development[J]. Nature,1991,353:31-37. [2] THEIβEN G. Development of floral organ identity:stories from the MADS house[J]. Curr Opin Plant Biol,2001,4(1):75-85. [3] SOLTIS D E,LEEBENS-MACK J H,SOLTIS P S. Developmental Genetics of the Flower:Advances in Botanical Research 44[M]. New York:Academic Press,2006. [4] ACKERMAN C M,YU Qingyi, KIM S,et al. B-class MADS-box genes in trioecious papaya:two paleoAP3 paralogs, CpTM6-1 and CpTM6-2,and a PI ortholog CpPI[J]. Planta,2008, 227:741-753. [5] CUI Rongfeng,HAN Jiakun, ZHAO Suzhen,et al. Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa)[J]. Plant J,2010,61(5):767-781. [6] MELZER R,VERELST W, THEIβEN G. The class E floral homeotic protein SEPALLATA3 is sufficient to loop DNA in ‘floral quartet’-like complexes in vitro[J]. Nucl Acids Res, 2009,37(1):144-157. [7] CASTILLEJO C,ROMERA-BRANCHAT M,PELAZ S. A new role of the Arabidopsis SEPALLATA3 gene revealed by its constitutive expression[J]. Plant J,2005,43(4):586-596. [8] IMMINK R G H,KAUFMANN K,ANGENENT G C. The ‘ABC’ of MADS domain protein behaviour and interactions[J]. Sem Cell & Dev Biol,2010,21(1):87-93. [9] IMMINK R GH,TONACO I AN,de FOLTER S,et al. SEPALLATA3:the ‘glue’ for MADS box transcription factor complex formation[J]. Genome Biol,2009,10(2):R24. doi:10.1186/gb-2009-10-2-r24. [10] TSAFTARIS A, PASENTSIS K, MAKRIS A,et al. The study of the E-class SEPALLATA3-like MADS-box genes in wild-type and mutant flowers of cultivated saffron crocus (Crocus sativus L.) and its putative progenitors[J]. J Plant Physiol,2011,168(14):1675-1684. [11] HUANG Hai, TUDOR M,SU T,et al. DNA binding properties of two Arabidopsis MADS domain proteins:binding consensus and dimer formation[J]. Plant Cell,1996,8:81-94. [12] ADAMCZYK B J,FERNANDEZ D E. MIKC* MADS domain heterodimers are required for pollen maturation and tube growth in Arabidopsis[J]. Plant Physiol,2009,149(4):1713-1723. [13] SMACZNIAK C, IMMINK R G H,MUIÑO J M,et al. Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development[J]. Proc Nat Acad Sci USA,2012,109(5):1560-1565. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2014.01.003