-
半蒴苣苔Hemiboea subcapitata是苦苣苔科Gesneriaceae半蒴苣苔属Hemiboea多年生宿根草本[1],全草入药,味甘,性寒。具有清暑利湿、止咳、生津、解毒的功效,主治咽喉肿痛、外感暑湿、痈肿疮疖、蛇咬伤等症[2],对烧烫伤有一定的疗效[3]。环境的破坏和对野生药材资源的大量采集,造成了资源的日益匮乏,亟待进行半蒴苣苔的人工栽培以满足市场的需求,但半蒴苣苔人工繁育和栽培的研究尚处于初始阶段,成果不多。在自然状态下,半蒴苣苔通常生长在石灰岩岩缝中,籍匍匐枝行营养繁殖,增殖速度较慢。组织培养技术是苦苣苔科植物引种驯化及繁殖工作中的一种重要手段,以克服植物在迁地保育、繁衍、传播、杂交育种及工厂化生产中的障碍,达到种质资源保护和利用的目的[4]。本研究拟通过组织培养的方法,建立其组培快繁技术体系,为半蒴苣苔种苗规模化繁育提供技术支撑。
-
半蒴苣苔植株采自浙江天目山国家级自然保护区,经浙江农林大学李根有教授鉴定为半蒴苣苔。用消过毒的剪刀剪下半蒴苣苔叶片,放入滴有洗洁精的水中浸泡15 min,并用柔软的牙刷轻轻刷去表面污垢,接着用自来水冲洗1 h。而后放置在超净工作台上,用体积分数为75%的乙醇浸泡15 s,用镊子取出叶片后用无菌水冲洗3次,接着放入体积分数为0.1%升汞中消毒6 min,用无菌水冲洗3次,再用无菌滤纸吸干其表面水分。叶片切割成约1 cm × 1 cm,接入Murashige and Skoog(MS)+1.0 mg·L-16-苄基腺嘌呤(6-BA)+0.5 mg·L-1萘乙酸(NAA)初代培养基中。培养15 d后叶片切口基部直接分化出芽,待芽长至4~5 cm,具有5~6对叶片时用于后续试验。本研究中,所用的培养基均添加30.0 g·L-1的蔗糖和7.0 g·L-1的琼脂,pH 5.8。培养室光照强度为30~40 μmol·m-2·s-1,光照时间14 h·d-1,温度(25±1) ℃。
-
以MS为基本培养基,采用2因素4水平随机实验设计研究植物生长调节物质6-BA和NAA对叶片愈合组织诱导和不定芽分化的影响。6-BA设置4个水平(0.1,0.5,1.0,2.0 mg·L-1),NAA设置4个水平(0.1,0.5,1.0,1.5 mg·L-1),以上培养基均添加活性炭1.5 g·L-1。将半蒴苣苔无菌苗叶片切成约1.0 cm × 1.0 cm大小接入愈伤组织诱导培养基中进行暗培养,接种5瓶·处理-1,接种叶片6片·瓶-1,培养50 d后观测愈合组织诱导和芽分化情况,统计愈合组织诱导率[愈合组织诱导率=(出愈苗数/接种数)×100%]和不定芽分化率[不定芽分化率=(分化苗数/接种数)×100%],平均每个外植体不定芽分化数(平均每个外植体不定芽分化数=不定芽总数/产生不定芽外植体数),重复3次·处理-1。
-
以MS为基本培养基,采用2因素3水平随机实验设计研究植物生长调节物质6-BA和NAA对不定芽增殖的影响。6-BA设置3个水平(0.1,0.5,1.0 mg·L-1),NAA设置3个水平(0,0.5,1.0 mg·L-1)。将生长良好,长1.5~2.0 cm,具有2~3对叶的不定芽接入增殖培养基中进行培养,接种6瓶·处理-1,接种不定芽5个·瓶-1,培养40 d后统计不定芽增殖倍数(增殖倍数=增殖后不定芽数量/增殖前接入不定芽数量),重复3次·处理-1。
-
以MS为基本培养基,采用单因素试验设计研究生长素吲哚丁酸IBA对不定芽生根的影响,IBA设置5个水平(0.1,0.5,1.0,1.5,2.0 mg·L-1)。将长约3 cm的不定芽接入生根培养基,接种6瓶·处理-1,接种不定芽5个·瓶-1,培养30 d后统计生根率[生根率=(生根植株/接入植株×)100%],随机抽取10株测量平均生根数和平均根长,重复3次·处理-1。
取生长健壮、根系良好的组培苗进行开瓶练苗,放到全天自然光照,温度25 ℃的通风条件下练苗7~10 d。练苗结束后,取出组培苗用水清洗干净根部的培养基,移栽于泥炭和蛭石按1∶1均匀混合的栽培基质中,浇透水后在遮光度为70%的大棚中驯化,定期浇水保持苗床湿度,40 d后统计成活率。
-
数据采用均值±标准误差表示,采用PASW Statistics 18进行Duncan多重比较,百分率经反正弦平方根转换DEGREES[ASIN(SQRT(NO.))]后进行多重比较和相关分析。
-
叶片培养8~10 d开始略微出现卷曲现象,之后均未见明显的愈合组织形成,但在基部切口处可直接分化出白色的芽(图 1-a),在培养约30 d后,芽大量发生。研究发现,半蒴苣苔愈合组织诱导困难,6-BA和NAA不同质量浓度处理均未诱导出愈合组织。在半蒴苣苔叶片基部切口处可以直接分化出不定芽,不定芽分化率随着6-BA和NAA质量浓度上升呈现先升高后下降的现象。同时,在高质量浓度(2.0 mg·L-1)的6-BA处理中,叶片外植体大量褐化。在不同植物生长调节物质组合下不定芽分化率存在显著性差异(P<0.05),以MS+0.5 mg·L-1 6-BA +1.0 mg·L-1 NAA不定芽分化率最高,达到67.78%,平均每个外植体分化出不定芽3.90个。而MS+0.5 mg·L-1 6-BA +1.0 mg·L-1 NAA不定芽的诱导率虽仅为14.45%,但平均每个外植体分化出不定芽数量最多,达到6.69个(表 1)。
表 1 不同植物生长调节物质配比对半蒴苣苔叶片愈合组织和不定芽分化的影响
Table 1. Effect of plant growth regulators on callus induction and adventitious buds differentiation of Hemiboeα subcαpitαtα
序号 植物生长调节物质/(mg·L-1) 外植体总数/个 愈合诱导率/% 不定芽分化率/% 平均每个外植体不定芽数/个 6-BA NAA 1 0.1 0.1 90 0 10.00±1.93f 3.67 2 0.5 0.1 90 0 13.33±3.85ef 3.50 3 1.0 0.1 90 0 8.89±1.11fg 4.75 4 2.0 0.1 90 0 0.00±0.00h 0.00 5 0.1 0.5 90 0 16.66±3.33def 4.40 6 0.5 0.5 90 0 24.44±2.94c 4.32 7 1.0 0.5 90 0 14.45±2.22ef 6.69 8 2.0 0.5 90 0 2.22±2.22gh 3.50 9 0.1 1.0 90 0 44.44±2.94b 3.63 10 0.5 1.0 90 0 67.78±2.94a 3.90 11 1.0 1.0 90 0 23.33±1.93cd 3.86 12 2.0 1.0 90 0 1.11±1.11h 3.00 13 0.1 1.5 90 0 13.33±1.93ef 5.33 14 0.5 1.5 90 0 20.00±1.92cde 4.22 15 1.0 1.5 90 0 12.22±2.94ef 2.64 16 2.0 1.5 90 0 0.00±0.00h 0.00 -
不定芽接入增殖培养基,10 d左右腋芽开始萌发,15~20 d不定芽大量发生(图 1-b)。不定芽接入增殖培养基培养40 d后,统计不定芽增殖倍数及生长情况(表 2)。研究表明,半蒴苣苔在应试的9个处理中均有较好的增殖率,附加6-BA和NAA的处理平均增殖倍数较高,处理间不定芽增殖倍数存在显著性差异(P<0.05)。不定芽增殖率随着6-BA和NAA质量浓度上升呈现先升高后下降的现象。不定芽增殖以MS+0.5 mg·L-1 6-BA+0.5 mg·L-1 NAA增殖倍数最高,达到23.43。
表 2 植物生长调节物质配比对半蒴苣苔不定芽增殖的影响
Table 2. Effect of plant growth regulators on adventitious buds proliferation of Hemiboeα subcαpitαtα
序号 植物生长调节物质/(mg·L-1) 接种数/个 增殖倍数 不定芽生长情况 6-BA NAA 1 0.1 0 90 5.63±0.25f 生长速度慢,壮实 2 0.5 0 90 8.90±0.03e 生长速度慢,壮实 3 1.0 0 90 3.07±0.18f 生长速度慢,壮实 4 0.1 0.5 90 19.57±0.93b 生长速度快,瘦弱 5 0.5 0.5 90 23.43±1.41a 生长速度快,瘦弱 6 1.0 0.5 90 21.26±0.81ab 生长速度快,瘦弱 7 0.1 1.0 90 12.21±0.99d 生长速度较快,瘦弱 8 0.5 1.0 90 16.36±1.11c 生长速度较快,瘦弱 9 1.0 1.0 90 11.51±1.22de 生长速度较快,瘦弱 -
不定芽接入生根培养基,5~8 d不定芽基本开始生根,10~15 d不定根大量发生(图 1-d)。培养30 d后统计不定芽生根情况(表 3)。结果表明:半蒴苣苔生根容易,所有处理的生根率均超过90%,其中IBA质量浓度为1.0 mg·L-1和1.5 mg·L-1的培养基中,生根率均达到100%。30 d后观察统计,MS+1.5 mg·L-1 IBA培养基为最适培养基,再生植株平均每株具根9.23条,平均根长2.78 cm(图 1-e)。 生根植株经炼苗后移栽于温室大棚中,以泥炭和蛭石1∶1均匀混合为移栽基质,移栽30 d后,以抽生新芽生长为移栽成活的标准统计成活率,发现移栽成活率达到90%以上(图 1-f)。
表 3 不同质量浓度的IBA对半蒴苣苔生根的影响
Table 3. Effects of different concentration of IBA on rooting of Hemiboeα subcαpitαtα
IBA/(mg.L-1) 接种数/株 生根率/% 每苗平均根数/条 平均根长/cm 生长情况 0.1 100 92.35±5.67a 5.64±0.39c 1.29±0.06c 长势-般,根细短 0.5 100 93.75±6.26a 7.65±0.32b 2.33±0.15b 生长旺盛,根粗长 1.0 100 100.00±0.00a 8.69±0.53a 2.16±0.24b 生长旺盛,根粗长 1.5 100 100.00±0.00a 9.23±0.68a 2.78±0.32a 生长旺盛,根粗长 2.0 100 95.42±5.96a 7.79±0.49b 1.97±0.16b 生长旺盛,根粗短 -
苦苣苔科植物组织培养已有大量的报道[5-10]。汤正辉等[11]以半蒴苣苔叶片为外植体,在诱导芽分化的培养基MS+0.1 mg·L-1 6-BA+0.1 mg·L-1 NAA培养15 d 后,叶片切口处开始肿胀,并出现较为致密的翠绿色愈合组织,约30 d后,部分切口处出现不定芽。本研究以叶片为外植体,均未诱导出愈合组织,且外植体容易褐化,在未褐化叶片切口基部能直接分化出不定芽。较低浓质量度的6-BA(0.5~1.0 mg·L-1)和NAA(0.5~1.0 mg·L-1)对不定芽分化有利,以MS+0.5 mg·L-16-BA+1.0 mg·L-1NAA不定芽分化率最高,达到67.78%,平均每个外植体分化出不定芽3.90个。以半蒴苣苔叶片为外植体进行愈合组织的诱导仍有待进一步研究。
植物组织培养中,一定质量浓度的生长素利于诱导外植体脱分化和促进愈合组织生长,生长素质量浓度过低或过高,均不利于外植体的脱分化和再分化[12]。较低的生长素/细胞分裂素比率有利于不定芽增殖,但过高水平的细胞分裂素促进不定芽的诱导和增殖,往往形成大量细密的无效的不定芽;而较高的生长素/细胞分裂素比率有利于不定芽壮苗和生根[13-14],细胞分裂素可以促进丛生芽的增殖[15]。半蒴苣苔不定芽增殖过程中单一使用细胞分裂素,不定芽增殖倍数普遍较低,在与低质量浓度的NAA(0.5 mg·L-1)配合使用时,随着6-BA质量浓度的增加,增殖倍数也随之增加,而与较高质量浓度的NAA(1.0 mg·L-1),不定芽增殖倍数随6-BA的质量浓度的升高而降低。因此,在半蒴苣苔不定芽增殖中,6-BA与NAA存在交互作用。
现阶段,半蒴苣苔野生资源日益枯竭,必须依靠人工栽培种植,而人工栽培主要靠异地引种。本研究成功地建立了半蒴苣苔组织培养与植株再生技术体系,为半蒴苣苔种苗生产提供了技术保障,对半蒴苣苔种质资源的保护和离体保存具有重要意义。
Plantlet regeneration of Hemiboea subcapitata with subculturing
-
摘要: 为了建立半蒴苣苔Hemiboea subcapitata的组培快繁技术体系,保护和开发利用半蒴苣苔这一民间植物药资源,以MS(Murashige and Skoog)为基本培养基,研究植物生长调节物质6-苄基腺嘌呤(6-BA)和萘乙酸(NAA)组合对叶片愈合组织诱导、不定芽分化,增殖和壮苗生根的影响,筛选出适合半蒴苣苔快繁的最适培养基。结果表明:叶片诱导愈合组织困难,但在叶片基部或切口处可直接诱导分化出不定芽,且随着6-BA 和NAA质量浓度的升高,芽的分化率先上升后降低,以MS+0.5 mg·L-1 6-BA+1.0 mg·L-1 NAA+1.5 g·L-1活性炭(AC)分化率最高,达到67.8%;但平均每外植体诱导芽数以MS+1.0 mg·L-1 6-BA +0.5 mg·L-1 NAA +1.5 g·L-1 AC最多,达到6.69个;不定芽增殖以MS+0.5 mg·L-1 6-BA+0.5 mg·L-1 NAA处理增殖倍数最高,达到23.43;在添加不同质量浓度吲哚丁酸(IBA)的培养基中生根率均超过90%。Abstract: For protection and exploitation of the medicinal plant Hemiboea subcapitata,a rapid propagation system was established through tissue culture for large-scale seedling. Murashige and Skoog (MS) media with different combinations of plant growth regulator[6-benzylaminopurine (6-BA),α-naphthalene acetic acid (NAA) and indole-3-butyric acid (IBA)] ratios was used to optimize the tissue culture of H. subcapitata, including callus induction, shoot proliferation, and rooting. Results showed that callus induction was difficult, but adventitious shoots could be differentiated directly from leaf explants subcultured in different combinations of growth regulators. The best medium for adventitious bud differentiation was MS + 0.5 mg·L-1 6-BA + 1.0 mg·L-1 NAA + 1.5 g·L-1 AC with the bud induction frequency of 67.78%, the average number for each leaf explant was 3.90 buds, and the highest was 6.69 buds. The best medium for subculture proliferation was MS + 0.5 mg·L-1 6-BA + 0.5 mg·L-1 NAA with a proliferation of 23.43 times. For all treatments and with different concentrations of IBA, the rooting ratio was more than 90%. This tissue culture technique and rapid propagation system of H. subcapitata could be used for large-scale seedling propagation in a short time and for technical guidance in large-scale production.
-
Key words:
- botany /
- Hemiboea subcapitata /
- leaf explants /
- rapid propagation /
- tissue culture /
- plantlet regeneration
-
刺槐Robinia pseudoacacia原产于北美洲的亚热带和温带地区,适应性强、繁殖容易,被广泛引种[1],已被全球入侵物种数据库定为入侵种[2]。20世纪60年代以后,刺槐被作为黄土高原丘陵沟壑区人工林建设的主要造林树种,成为该地区造林面积最大的树种[1]。刺槐作为一种外来种,生长快、耗水强,在许多立地条件差的地方多形成低产林[3]。晋西黄土区处于干旱半干旱地区,侵蚀强烈,生态环境脆弱[4],研究黄土区刺槐人工林林下多样性具有重要的实际意义。人工林群落物种多样性主要由林下植被反映,而且林下植被的生长发育,填补了地表空白[5],对森林的生长繁殖以及森林结构的塑造有重要的影响[6]。从已有的研究中可知,刺槐林下阴坡物种多样性大于阳坡[7];在相同林龄及立地条件下,刺槐林下林分密度越大,林下植被多样性越低[8]。总之,坡度、坡向、密度、林龄等都会对刺槐林下物种多样性产生一定的影响。因此,对于黄土丘陵区引种刺槐这种外来树种进行水土保持造林,会塑造成怎样的生物群落,能否促进生态系统向稳定、环境良好方向永续恢复,还需要进一步的跟踪和长期定位观测研究。本研究通过对晋西黄土区蔡家川流域长期固定观测样地刺槐人工林林下植被的分析,对比当地主要林地类型油松Pinus tabulaeformis人工林和天然次生林林下植被,揭示刺槐人工林林下结构特征、α多样性、β多样性及相似度等特征,以及与油松人工林和天然次生林存在的差异性,进一步揭示刺槐人工林形成的生物群落对当地水土保持和生态恢复的作用,旨在为晋西黄土区蔡家川流域刺槐人工林植被恢复提供基础数据,并为刺槐人工水土保持林管理提供借鉴。
1. 研究方法
1.1 样地设置与调查
研究区位于晋西黄土区蔡家川流域,地理坐标为36°14′27″~36°18′23″N,110°39′45″~110°47′45″E,海拔为900~1 513 m,属于黄河的三级支流,呈东西走向,流域面积为39.33 km2[9]。该区属暖温带半干旱大陆性气候,年平均气温为10.0 ℃,年平均降水量为470.0~600.0 mm。该区土壤为褐土,黄土母质,土壤普遍呈碱性[9]。自1990年退耕还林还草以来,蔡家川流域植被覆盖率显著增加,其中人工林以刺槐、油松、侧柏Platycladus orientalis为主,天然次生林以山杨Populus davidiana,白桦Betula platyphylla和辽东栎Quercus liaotungensis为主[10]。
选择蔡家川流域刺槐人工林作为研究对象,以当地另外2种主要林地类型油松人工林和天然次生林作为对照林地。研究样地的选择坚持代表性原则,能够代表区域内同种林型的整体情况。故根据研究内容和实地踏查情况,在研究区内共布设了15个20 m × 20 m的样地,其中包括9个刺槐人工林样地,3个油松人工林样地和3个天然次生林样地,林龄都在20 a左右,每个样地内设置3个5 m × 5 m的灌木样方,3个1 m × 1 m的草本样方。样地基本信息如表 1所示。
表 1 样地基本信息Table 1. Basic situation of sample plots样地 海拔/m 坡度/(°) 坡向 郁闭度/6 C1 1 132 22 阳坡 69 C2 1 154 20 阴坡 61 C3 1 114 13 半阴坡 68 C4 1 119 16 阴坡 63 C5 1 210 18 阴坡 64 C6 1 215 12 半阴坡 58 C7 1 238 18 阳坡 61 C8 1 289 32 半阴坡 59 C9 1 338 11 阳坡 60 Y1 1 158 15 阳坡 61 Y2 1 112 16 阳坡 10 Y3 1 358 20 阴坡 13 N1 1 109 11 半阳坡 12 N2 1 131 10 阴坡 68 N3 1 152 11 阳坡 10 说明:C,Y,N分别表示刺槐人工林、油松人工林、天然次生林 1.2 数据处理
根据样地调查数据,分析群落结构特征及多样性,其中重要值采用IV=[(相对密度+相对显著度+相对频度)/3]×100来计算。采用丰富度指数(S),Shannon-Wiener指数(H′),Simpson指数(D),Pielou均匀度指数(E)来测定植物群落的α多样性;采用Whittaker指数(βW),Cody指数(βC),Routledge指数(βR)测定植物群落的β多样性;采用Jaccard指数(q)测定植物群落的相似性,根据Jaccard相似性原理,0.00≤q<0.25表示极不相似,0.25≤q<0.50表示中等不相似,0.50≤q<0.75表示中等相似,0.75≤q≤1.00表示极相似[11]。
2. 结果与分析
2.1 群落结构特征
重要值是群落中物种生态适应能力和物种在群落中所处地位的综合指标,其大小是确定优势种和建群种的重要依据[12]。由表 2可见:所有刺槐样地中共包含植物种类37种,其中灌木8种,草本29种。灌木层中黄刺梅Rosa xanthina出现频率为100%,平均重要值为53.11%;杠柳Periploca sepium出现频率为22.22%,平均重要值为9.78%;紫丁香Syringa oblata出现频率为33.33%,平均重要值为9.11%。草本层中蒙古蒿Artemisia monogolica出现频率为22.22%,平均重要值为14.11%;冰草出现频率为55.56%,平均重要值为10.22%;铁杆蒿Artemisia vestita出现频率为66.67%,平均重要值为5.22%。这一结果表明,蔡家川流域刺槐人工林下灌木层中黄刺梅为优势种,杠柳和紫丁香为次优种;草本层中蒙古蒿和冰草Agropyron cristatum为优势种,铁杆蒿Artemisia vestita为次优种。由此可知,刺槐林下灌木层以蔷薇科Rosaceae为主,草本层以菊科Compositae和禾本科Gramineae为主。高艳鹏等[13]指出晋西黄土丘陵沟壑区刺槐人工林下草本优势种主要为禾本科、菊科植物,与本研究所得结论一致。
表 2 刺槐样地内主要物种的重要值Table 2. Importance values of the main species in sample plots of Robinia pseudoacacia plantation层次 物种名 C1 C2 C3 C4 C5 C6 C7 C8 C9 灌木层 紫丁香Syringa oblata - - 33 29 - - - 20 - 胡枝子Lespedeza bicolor - - - l4 l8 - - - - 黄刺梅Rosa xanthina 86 80 l9 29 55 l7 90 40 62 灰栒子Cotoneaster acutjfolius - - - - - - - - - 妙棘Hippophae rhamnoides - - 5 l4 - - - - - 山檀叶悬钩子Rubus crataegifolius - 7 ll 20 - - 9 - 9 酸枣Ziziphus jujuba var. spinosa 14 10 - - 27 - - - - 杠柳FeripZoca sepium - - - 14 - 74 - - - 草本层 猪毛嵩Artemisia scoparia - 12 6 - - - - - - 碱菀Tripolium vulgare - 7 2 - - - - - - 莎草Cyperus rotundus 3 9 - - - - - - - 针茅Stipa capillata 5 7 - 2 - - - - - 甘草Glycyrrhiza uralensis - 1 - - 7 - - - - 苦荬菜Ixeris denticulata - 3 1 - - 6 - 10 - 紫花地丁Viola philippica - 1 - - 2 10 - - - 委陵菜Potentilla chinensis - 3 - 11 7 10 - 7 - 油嵩Artemisia ordosica - 4 - - - - - - - 蒙古嵩Artemisia mongolica - - 43 - - - 84 - - 乳浆大戟Euphorbia esula - 1 1 7 - 9 - 9 - 早熟禾Poa annua - - 32 - - - - - - 野豌豆 Sesbania cannabina - 6 1 1 2 - - 1 - 铁杆嵩Artemisia vestita - - - 16 11 3 1 15 1 艾嵩Artemisia vulgaris - - - 3 4 - - 1 3 白头翁Pulsatilla chinensis - - - 11 2 5 - 12 7 黄花龙牙Patrinia scabiosaefolia - 1 - 3 7 1 3 5 1 冰草Agropyron cristatum - - - 1 2 2 - 2 85 蒲公英Taraxacum mongolicum - 3 - 5 2 5 - 7 - 祁州漏芦Rhaponticum uniflorum - - - 6 - 2 - 4 - 茵陈嵩Artemisia capillaris 1 11 - - 4 1 - - - 长芒草Stipa bungeana 5 13 - 3 2 2 - 11 - 柴胡Bupleurum chinense - - - 7 2 - - 2 - 白羊草Bothriochloa ischaemum - - - 6 5 - - 8 - 矮臺草Carex supina - - - - 5 - - - - 风毛菊Saussurea japonica - 1 - - 5 - - - - 芦苇Phragmites australis - - - - 4 - - - - 狭叶青嵩Artemisia dacunculus - - - - 5 - - - - 茜草Rubia cordifolia 7 9 3 7 4 11 1 1 1 说明:“-”表示该样地内没有该种植物或者IV<1 2.2 群落α多样性分析
物种多样性是指群落中的物种数目、个体数及个体分配均匀度的综合。从图 1可以看出:D值灌木层和草本层的起伏波动比较大,没有明显的规律;H′值在所有样地中灌木层小于草本层;E值有2/3的样地灌木层小于草本层。相比灌木层,草本层多样性指数更高,多样性指数的最大值均出现在草本层,而且从平均值看,草本层的D值(0.73),H′值(1.67)和E值(0.77)均大于灌木层的D值(0.50),H′值(0.86)和E值(0.33)。总之,草本层α多样性大于灌木层的α多样性。卢宝明等[14]在研究北京山地植物群落的物种多样性中也得出,灌木层的α多样性指数明显小于草本层的α多样性指数。
结合对照组油松人工林和天然次生林的数据,分析3种林型之间的D值,H′值和E值,从而研究刺槐人工林与其他林型之间α物种多样性的差异(图 2和图 3)。图 2分别描述了3种林型灌木层的D值,H′值和E值,在灌木层,刺槐人工林的3个指数的均值、最小值都小于其他2种林型;从3个指数分布范围可以看出:灌木层的α多样性表现为刺槐人工林<油松人工林<天然次生林。
图 3分别描述了3种林型草本层的D值,H′值和E值。从3个指数集中范围可以看出:油松林草本层α多样性<刺槐林<天然林;刺槐林D值的均值与油松林较接近,都小于天然次生林;刺槐林E值的均值低于其他2种林型;H′值的均值稍大于油松人工林,但仍小于天然次生林。即2种人工林灌木层和草本层α多样性指数都小于天然林。通过对比图 2和图 3可以看出:同种林型之间,灌木层物种多样性指数小于草本层物种多样性指数。
2.3 群落β多样性分析
利用Whittaker指数(βW),Cody指数(βC)和Routledge指数(βR)求β多样性,分别计算C1~C9与Y1,Y2,Y3,N1,N2,N3之间的β多样性指数,然后求各组的平均值,得到刺槐林与油松林、刺槐林与天然林之间的β多样性指数(表 3),从而分析刺槐人工林、油松人工林和天然次生林之间的物种多样性差异。从表 3可以得出:刺槐林与油松林之间的β多样性要小于刺槐林与天然林之间的β多样性。由此表明:刺槐林与天然林之间植被差异性要大于刺槐林与油松林之间的植被差异性。同时,分析刺槐人工林和油松人工林及天然次生林之间的β多样性得出,草本层β多样性指数>灌木层β多样性指数。
表 3 刺槐人工林与其他林型之间β多样性指数Table 3. β diversity index between Robinia pseudoacacia plantation and other communities林型 层次 βW βC βR C-Y 灌木层 1.54 1.93 7.51 草本层 3.25 6.37 28.00 C-N 灌木层 1.20 2.22 7.53 草本层 3.43 7.02 28.80 说明:C-Y表示刺槐人工林与油松人工林之间的β多样性;C-N代表刺槐人工林与天然次生林之间的β多样性 2.4 群落相似性分析
采用Jaccard相似性系数作为不同样地相似性的度量标准,分析各样地之间灌木层相似性和草本层相似性(图 4)。从图 4可以得知:在灌木层,各群落之间“中等不相似”出现概率最大,占总数的49.52%,而“极相似”概率最小,仅占总数的1.90%,所以,所调查的样地之间灌木层相似度处于中等偏低水平;在草本层,各群落之间“极不相似”占总数的66.67%,“极相似”占0.95%,所以,所调查样地之间的草本层相似度处于较低水平;同时,从图 4可以得出,灌木层相似性>草本层相似性。分别计算不同林型和不同林层之间相似性系数的平均值,得出灌木层相似性系数均值规律为:刺槐人工林与刺槐人工林之间的相似性系数>刺槐人工林与油松人工林之间的相似性系数>刺槐人工林与天然次生林之间的相似性系数;草本层也满足这一规律。
3. 结果与讨论
揭示人工林林下物种组成,不仅是评估人工林生态功能的一个重要途径,也是判断人工林生态功能恢复效果的一个必要手段[15]。在本研究中,刺槐人工林林下灌木层中黄刺梅为优势种,杠柳和紫丁香为次优种;草本层中蒙古蒿和冰草为优势种,铁杆蒿为次优种;灌木层以蔷薇科为主,草本层以菊科和禾本科为主,与其他学者结论一致[16]。在杨晓毅等[17]的研究中,封山育林自然恢复10 a以后的刺槐人工林下共有58种植物,包括12种灌木和46种草本。本研究中的刺槐人工林均位于固定样地内,受到人为干扰,林下物种共有37种,包括灌木8种,草本29种,均低于封山育林后的物种数,所以适当地对人工林进行短期的封山育林可以改善林下群落结构,提高群落稳定性,其他学者也得出短期的封山育林会对林下植被的物种多样性及植被的生长产生显著的影响[18]。
本研究得出刺槐人工林林下物种α多样性、β多样性均表现出草本层>灌木层。其他学者在相关研究中也得出森林群落植物多样性在空间上的变化顺序表现为草本层>灌木层[19],如果这一趋势一直持续,容易造成刺槐人工林“乔—灌—草”复层稳定的层片结构被打破,使得刺槐群落自我调节能力弱化[20],出现土壤干化、“小老头树”等一系列生态问题。而且本研究得出,灌木层相似性>草本层相似性,因此,当地林业管理人员应加强维护“乔—灌—草”层片结构的稳定性,调整“灌—草”结构,增强人工林生态恢复效益,提高群落稳定性。
物种多样性是一个反映一定区域内物种丰富程度和物种分布均匀度的综合指标,物种多样性的高低取决于群落中物种的个数及个体在群落中的分布状况[21]。由于人工林单一的物种组成使得多样性与天然林相比有巨大差异。本研究中,刺槐人工林林下α多样性指数与油松人工林之间的差异较小,两者都小于天然次生林,与其他学者研究结果一致[22]。同时,刺槐林与油松林之间的β多样性指数要小于刺槐林与天然林之间的β多样性指数。由此可知,刺槐林与天然林对比,林下植物种类组成存在较大差异;刺槐人工林与油松人工林林下物种组成差异较小。闫东锋等[23]得出群落多样性的高低能在一定程度上反映出群落稳定性的大小,因此,蔡家川流域刺槐人工林的稳定性仍小于天然次生林的稳定性,林业管理人员应加强刺槐人工林林下植被养护,提高其物种多样性。
在本研究中,刺槐人工林林下植被相似度处于“中等不相似”,草本层相似度处于“极不相似”水平。由于相似性水平越低,说明各样地群落间具有较大的生境差异性[24],所以蔡家川流域刺槐人工林之间生境差异较大。生境不同,林下植被生长状况不同,所以改善刺槐人工林林下生境条件是提高人工林林下植被多样性的有效手段。有研究表明:刺槐根系的化感作用能够改善土壤微生物环境[25]。刘海燕等[26]研究得出相对于油松人工林,刺槐人工林下微生物群落多样性更丰富,刺槐的种植能够明显改善微生物群落结构,改善土壤质量,从而提高林下物种多样性。因此,引种刺槐在一定程度上可以改善区域的生态环境,提高流域内植被稳定性,起到防治水土流失的作用。
-
表 1 不同植物生长调节物质配比对半蒴苣苔叶片愈合组织和不定芽分化的影响
Table 1. Effect of plant growth regulators on callus induction and adventitious buds differentiation of Hemiboeα subcαpitαtα
序号 植物生长调节物质/(mg·L-1) 外植体总数/个 愈合诱导率/% 不定芽分化率/% 平均每个外植体不定芽数/个 6-BA NAA 1 0.1 0.1 90 0 10.00±1.93f 3.67 2 0.5 0.1 90 0 13.33±3.85ef 3.50 3 1.0 0.1 90 0 8.89±1.11fg 4.75 4 2.0 0.1 90 0 0.00±0.00h 0.00 5 0.1 0.5 90 0 16.66±3.33def 4.40 6 0.5 0.5 90 0 24.44±2.94c 4.32 7 1.0 0.5 90 0 14.45±2.22ef 6.69 8 2.0 0.5 90 0 2.22±2.22gh 3.50 9 0.1 1.0 90 0 44.44±2.94b 3.63 10 0.5 1.0 90 0 67.78±2.94a 3.90 11 1.0 1.0 90 0 23.33±1.93cd 3.86 12 2.0 1.0 90 0 1.11±1.11h 3.00 13 0.1 1.5 90 0 13.33±1.93ef 5.33 14 0.5 1.5 90 0 20.00±1.92cde 4.22 15 1.0 1.5 90 0 12.22±2.94ef 2.64 16 2.0 1.5 90 0 0.00±0.00h 0.00 表 2 植物生长调节物质配比对半蒴苣苔不定芽增殖的影响
Table 2. Effect of plant growth regulators on adventitious buds proliferation of Hemiboeα subcαpitαtα
序号 植物生长调节物质/(mg·L-1) 接种数/个 增殖倍数 不定芽生长情况 6-BA NAA 1 0.1 0 90 5.63±0.25f 生长速度慢,壮实 2 0.5 0 90 8.90±0.03e 生长速度慢,壮实 3 1.0 0 90 3.07±0.18f 生长速度慢,壮实 4 0.1 0.5 90 19.57±0.93b 生长速度快,瘦弱 5 0.5 0.5 90 23.43±1.41a 生长速度快,瘦弱 6 1.0 0.5 90 21.26±0.81ab 生长速度快,瘦弱 7 0.1 1.0 90 12.21±0.99d 生长速度较快,瘦弱 8 0.5 1.0 90 16.36±1.11c 生长速度较快,瘦弱 9 1.0 1.0 90 11.51±1.22de 生长速度较快,瘦弱 表 3 不同质量浓度的IBA对半蒴苣苔生根的影响
Table 3. Effects of different concentration of IBA on rooting of Hemiboeα subcαpitαtα
IBA/(mg.L-1) 接种数/株 生根率/% 每苗平均根数/条 平均根长/cm 生长情况 0.1 100 92.35±5.67a 5.64±0.39c 1.29±0.06c 长势-般,根细短 0.5 100 93.75±6.26a 7.65±0.32b 2.33±0.15b 生长旺盛,根粗长 1.0 100 100.00±0.00a 8.69±0.53a 2.16±0.24b 生长旺盛,根粗长 1.5 100 100.00±0.00a 9.23±0.68a 2.78±0.32a 生长旺盛,根粗长 2.0 100 95.42±5.96a 7.79±0.49b 1.97±0.16b 生长旺盛,根粗短 -
[1] 王文采,潘开玉,张志耕,等. 中国植物志:第69卷[M]. 北京:科学出版社,1990. [2] 国家中医药管理局《中华本草》编委会. 中华本草[M]. 上海:上海科学技术出版社,1999. [3] 李振宇. 半蒴苣苔属的研究[J]. 植物分类学报,1987,25(2):81-92. LI Zhenyu. A study of the genus Hemiboea[J]. Acta Phytotaxon Sin,1987,25(2):81-92. [4] 李振宇,王印政. 中国苦苣苔科植物[M]. 郑州:河南科学技术出版社,2004. [5] JIA Li,QUAN Xing,CHEN Weilun,et al. Tissue culture and rapid propagation of Chirita medica D. Fang ex W. T. Wang[J]. Propag Ornament Plants,2009,9(2):97-101. [6] MA Guohua,JAIME A. TEIXEIRA D S,et al. Shoot organogenesis and plant regeneration in Metabriggsia ovalifolia[J]. Plant Cell,Tissue Organ Cult,2011,105(3):355-361. [7] XU Quanle,HU Zhe,LI Chunyuan,et al. Tissue culture of Sinningia speciosa and analysis of the in vitro-generated tricussate whorled phyllotaxis (twp) variant[J]. In Vitro Cell Dev Biol Plant,2009,45:583-590. [8] CUI Jin,CHEN Jianjun,HENNY R J. Regeneration of Aeschynanthus radicans via direct somatic embryogenesis and analysis of regenerants with flow cytometry[J]. In Vitro Cell Dev Biol Plant,2009,45:34-43. [9] TANG Zhenghui,LIN Honghui,SHI Lei,et al. Rapid in vitro multiplication of Chirita longgangensis W. T. Wang:an endemic and endangered Gesneriaceae species in China[J]. HortScience,2007,42(3):638-641. [10] TANG Zhenghui,SHI Lei,CHEN Weilun,et al. In vitro propagation of Chirita heterotricha Merr.[J]. Prop Orn Plants,2007,7(1):43-48. [11] 汤正辉,石雷,陈维伦,等. 半蒴苣苔的组织培养和快速繁殖[J]. 植物生理学通讯,2005, 41(3):333. TANG Zhenghui,SHI Lei,CHEN Weilun,et al. Tissue culture and rapid propagation of Hemiboea subcapitata[J]. Plant Physiol J,2005,41(3):333. [12] 陈桂信,谢文龙,潘东明,等. 木奈幼胚胚性愈伤组织诱导的研究[J]. 江西农业大学学报, 2006,28(1):44-49. CHEN Guixin,XIE Wenlong,PAN Dongming,et al. Induction of embryonic calli from the young embryos of Nai[J]. Acta Agric Univ Jiangxi,2006,28(1):44-49. [13] 曹昆,李霞. 木本植物组织培养不定芽诱导研究进展[J]. 江苏林业科技,2008,35(5):43-48. CAO Kun,LI Xia. Progress on induction of adventitious bud in tissue culture of woody plants[J]. J Jiangsu For Sci Technol,2008,35(5):43-48. [14] 田国栋,张荷芃,康卓慧,等. 桃叶片再生不定芽的研究[J]. 西北农林科技大学学报:自然科学版,2011,39(2):125-132. TIAN Guodong,ZHANG Hepeng,KANG Zhuohui,et al. Study on shoot regeneration from leaf explants in peach[J]. J Northwest A F Univ Nat Sci Ed,2011,39(2):125-132. [15] 陈丽静,齐欣,王玉坤,等. 北五味子快繁体系的建立[J]. 中草药,2011,42(3):575-577. CHEN Lijing,QI Xin,WANG Yukun,et al. Rapid propagation of Schisandra chinensis[J]. Chin Tradit Herb Drug, 2011,42(3):575-577. 期刊类型引用(10)
1. 宫正. 黄土高原森林林下植被物种多样性及其影响因素. 东北林业大学学报. 2025(02): 66-74 . 百度学术
2. 李福明,冯泳翰,赵怡,朱景康,魏曦,梁文俊. 蔡家川流域人工刺槐生物量模型的构建与比较. 森林与环境学报. 2024(01): 62-70 . 百度学术
3. 王思敏,张红丽,张恒硕,左启林,查同刚. 晋西黄土区典型小流域不同土层土壤容重分布特征及其影响因素. 生态学杂志. 2024(03): 609-615 . 百度学术
4. 王依瑞,王彦辉,段文标,李平平,于澎涛,甄理,李志鑫,尚会军. 黄土高原刺槐人工林郁闭度对林下植物多样性特征的影响. 应用生态学报. 2023(02): 305-314 . 百度学术
5. 张咪咪,吴洁,郝小玲,周佳佳,王永吉,张粉果. 晋南典型丘陵沟壑区不同林地类型物种多样性研究. 山西师范大学学报(自然科学版). 2022(04): 23-28 . 百度学术
6. 邬宁珊,王佳希,张岩,元慕田,张琪,高驰宇. 基于无人机可见光影像的树种和树冠信息提取——以晋西黄土区蔡家川流域为例. 浙江农业学报. 2021(08): 1505-1518 . 百度学术
7. 夏莹莹,郝丙青,江泽鹏,刘凯,毛子军. 广西油茶人工林林下植物多样性区域变化规律. 生态学报. 2020(10): 3507-3518 . 百度学术
8. 张文馨,王蕙,范小莉,囤兴建,房用,梁玉. 山东刺槐林对林下植物物种多样性及谱系多样性的影响. 生态学杂志. 2020(09): 2868-2877 . 百度学术
9. 齐建国. 锦州地区刺槐人工林经营问题探析. 辽宁林业科技. 2019(02): 55-56+67 . 百度学术
10. 闫玮明,孙冰,裴男才,王旭,李非凡,罗鑫华,邹滨. 粤北阔叶人工林和次生林植物多样性与土壤理化性质相关性研究. 生态环境学报. 2019(05): 898-907 . 百度学术
其他类型引用(12)
-
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2014.01.025