-
随着全球气候变暖问题日益突出,通过森林增汇应对气候变化问题受到各国政府和学术界的普遍关注。竹林较其他森林具有更强的固碳能力[1]。20世纪80年代,零星出现单株竹子生长过程中生物量及碳储量变化模拟分析[2]的竹林碳汇研究;20世纪90年代,转向研究竹子种群生物量[3-4],竹子碳汇的研究开始由单株碳汇拓展至竹林碳汇;进入21世纪,学者们开始对竹林生态系统碳汇量展开探索[5-7],并就管理措施如何提升竹林碳汇能力展开讨论[8-10]。近年来,国家和地区碳交易体系逐渐完善,竹林碳汇项目开发及碳交易研究成为热点[11-12],研究开始从单纯的探索竹林碳汇变化转变为依托竹林碳汇获利。随着竹林比较收益下降和退化竹林增加,竹林应对气候变化和改善农户生计的双重效应探索[13-15]成为当前竹林碳汇研究的重点,竹林增汇及可持续经营建议陆续提出。目前竹林碳汇研究的综述以传统的定性描述为主[16-17],鲜有使用定量方法进行归纳和总结;自《京都议定书》签订以来,竹林碳汇在应对气候变化中作用受到极大重视,积累了相当丰富的成果。本研究基于信息计量学的思想,借助CiteSpace软件,对Web of Science核心合集数据库中1998−2019年以竹林碳汇为主题的文献数据进行可视化、系统的回顾和总结,以展示自《京都议定书》签订以来全球竹林碳汇研究领域的总体特征和演变趋势,为开展相关研究提供参考。
-
信息计量学由文献计量学演化而来,是研究文献作者分布、机构分布、关键词信息等文献信息的重要方法[18]。随着计算机科学的进步和文献数据库兼容性的不断改进,Web of Science、中文社会科学引文索引(CSSCI)、中国知网(CNKI)等数据库借助信息计量学方法对文献作者、发文机构、关键词等信息进行检索并分析。知识图谱是信息计量学里用于展现科学知识发展进程与结构关系最为直观的形式,是总结各学科的研究态势与研究进展较为科学的方式。本研究借助知识图谱,对竹林碳汇相关研究的文献信息、知识网络进行可视化展现。鉴于CiteSpace软件在信息计量学可视化分析方面的应用,及在文献信息中潜在的知识结构、变化规律挖掘方面的特色[19],本研究选用2020年初更新的CiteSpace 5.6版本作为分析工具。
-
核心作者群指发文数量较多,影响力较大的作者群体,文献计量学中常用洛特卡定律(Lotka’s law)和普赖斯定律(Price’s law)分析核心作者群。洛特卡定律通过分析作者数量和发文数量的相关关系,揭示作者科研生产能力的频率分布特征,以反映该领域作者的科研生产能力,即发表n篇论文的作者数约为发表1篇论文的作者数的1/π2,发表1篇论文的作者数约为所有作者的60%[20],据此判断该领域核心作者群的发文水平。普赖斯定律以洛特卡定律为基础,利用大量文献统计进一步推导得出高产作者的数量[18],提供某领域核心作者的识别方法;即通过该领域最高产作者的发文数量推测核心作者的最低发文数量,以确定某作者是否为该领域的核心作者,核心作者的最低发文数量k=0.749
$ \sqrt {{n _{\max }}} $ ,其中nmax为该领域最高产的作者的发文数量,推导出某领域大约50%的论文是由核心作者所发表[21]。 -
Web of Science核心合集数据库是全球最大、覆盖学科最多的综合性学术信息资源,收录了全球最具影响力的近1万种核心学术期刊,可信度高,可以较为全面、准确的透视全球范围竹林碳汇相关研究进展情况。设置检索主题为竹林碳汇(包括bamboo forest carbon sink,bamboo forest carbon sequestration,bamboo forest carbon stock,bamboo forest carbon storage,bamboo forest carbon,bamboo carbon stock,bamboo carbon storage,bamboo carbon sink,bamboo carbon sequestration)。考虑到1997年《京都议定书》签订并提出“增加森林碳汇抵消减排”,竹林碳汇相关研究开始得以高度重视,而许多期刊2020年度文献不全面,设置搜索年限为1998−2019年。分析前逐条核对检索结果,对于信息不完整(无作者的文献、会议记录、访谈、总结、讨论、综述等)的内容予以剔除,最终得到文献1582篇,作为研究对象。
-
从图1可知:1998−2019年间,竹林碳汇研究领域发文量约75篇·a−1,2001年后发文量大幅度增加,2013年后超过100篇·a−1,且具有明显的逐年增长态势。说明《京都议定书》签订后,通过竹林增汇应对气候变化问题引起了学术界的普遍关注;相关主题经过3~5 a的酝酿,以文献的形式快速积累并逐年增多;随着进入该领域的机构和作者增多,竹林碳汇研究进一步蓬勃发展。1998−2019年间年度发文数量有所波动,但总体趋势逐年上升并有加速增长态势,目前处于快速发展期。表明竹林碳汇的研究正受到越来越多学者的广泛重视。
-
对发文作者的分析可知,“Guomo Zhou”(周国模)“Peikun Jiang”(姜培坤)“Huaqiang Du”(杜华强)在该领域的中心性地位较高;发文数量分别为56、26和23篇,远高于其他大多数学者。同时作者之间合作紧密,已形成了具有一定规模的学术团体。进一步调查发现:中心性地位较高的3位作者均来自浙江农林大学同一科研团队,全球首个竹林碳汇项目、全球竹林碳汇项目造林和经营的方法学[22]均由该团队开发和制定;标志着中国在竹林碳汇理论研究和实践方面均处于世界领先水平,以周国模为代表的一批中国学者正引领着全球竹林碳汇不断发展。
-
对竹林碳汇研究领域各个发文数量区段及对应作者数量的分析可知(表1):仅发表过1篇论文的作者数占比为54.53%,低于洛特卡定律的60%;说明在竹林碳汇领域,发文数量超过1篇的作者较其他学科的普遍水平更高;另外,发表2~6篇和26~56篇论文的作者数量与发表1篇论文的作者数量的比值,也高于洛特卡定律,而发表8~23篇的作者占比则低于洛特卡定律。表明竹林碳汇领域的作者研究较为专注且科研生产率高,尤其发文为8~23篇的作者群对该领域的贡献相比于其它学科普遍水平更高,发文潜力也更大。对该领域的杰出和高产作者作进一步分析,计算可知核心作者最低发文量k≈5.61,即判断是否为竹林碳汇领域核心作者的标准是该作者至少应当发表相关论文6篇。根据该标准,结合表1可知:目前竹林碳汇领域约有72名核心作者,共发文650篇,发文数量占比低于普莱斯定律的50%。以作者发文数量次多的26篇计算k值时,则发文数量占比接近于50%;表明竹林碳汇研究的核心作者具有较高产出率,核心作者群已基本形成。对搜索得到的排位前20的核心作者调查(表2)可知:核心作者主要为中国学者,成果主要刊登在林学、生态学等学科的国际主流期刊上,如Agricultural and Forest Meteorology、Journal of Environmental Management等。
表 1 发文数量和作者数量的对应分布
Table 1. Distribution of the number of literatures and the number of authors
发文数
量/篇作者数
量/人占全部作者
的比例/%占发文数量为1的
作者的比例/%发文数
量/篇作者数
量/人占全部作者的
比例/%占发文数量为1的
作者的比例/%1 686 54.53 11 2 0.16 0.29 2 245 19.48 35.71 12 1 0.08 0.15 3 132 10.49 19.24 13 2 0.16 0.29 4 81 6.44 11.81 14 1 0.08 0.15 5 42 3.34 6.12 16 1 0.08 0.15 6 28 2.23 4.08 19 1 0.08 0.15 7 19 1.51 2.77 20 1 0.08 0.15 8 6 0.48 0.87 23 1 0.08 0.15 9 3 0.24 0.44 26 1 0.08 0.15 10 4 0.32 0.58 56 1 0.08 0.15 合计 1 258 99.99 表 2 核心作者及论文分布
Table 2. Core authors and distribution of their studies
序号 作者姓名 国家 所属单位 主要成果分布的期刊 1 周国模 中国 浙江农林大学 Agricultural and Forest Meteorology、Journal of Environmental Management 2 姜培坤 中国 浙江农林大学 Plant and Soil、Forest Ecology and Management 3 杜华强 中国 浙江农林大学 ISPRS Journal of Photogrammetry and Remote Sensing、IEEE Transactions on
Geoscience and Remote Sensing4 李永夫 中国 浙江农林大学 Agricultural and Forest Meteorology、Plant and Soil 5 王兵 中国 中国林业科学研究院 Scandinavian Journal of Forest Research、BioResources 6 宋新章 中国 浙江农林大学 Agricultural and Forest Meteorology、Soil Biology & Biochemistry 7 宋照亮 中国 天津大学 Global Change Biology、Science of The Total Environment 8 王海龙 中国 浙江农林大学 Environmental Science and Pollution Research、Journal of Soils and Sediments 9 庄舜尧 中国 中国科学院 Forestry、Journal of Soils and Sediments 10 张小川 加拿大 阿尔伯塔大学 Plant and Soil、Ecology 11 范少辉 中国 国际竹藤中心 Catena、Journal of Cleaner Production 12 施拥军 中国 浙江农林大学 Forest Ecology and Management、International Journal of Remote Sensing 13 吴家胜 中国 浙江农林大学 Journal of Plant Nutrition and Soil Science、Soil Research 14 江洪 中国 南京大学 Forest Ecology and Management、Science of The Total Environment 15 李永春 中国 浙江农林大学 Soil Biology & Biochemistry、Plant and Soil 16 徐小军 中国 浙江农林大学 Agricultural and Forest Meteorology、Annals of Forest Science 17 官凤英 中国 国际竹藤中心 Catena、Scientific Reports 18 NATH Arun Jyoti 美国 俄亥俄州立大学 Global Ecology and Conservation 19 KOMATSU Hikaru 日本 九州大学 Agricultural and Forest Meteorology 20 HUFF Matthew D 美国 欧道明大学 Journal of Environmental Management -
对发文机构的分析可知:“Zhejiang A&F University”(浙江农林大学)在竹林碳汇领域处于最为突出的位置,“Nanjing Forestry University”(南京林业大学)“Beijing Forestry University”(北京林业大学)“International Centre for Bamboo and Rattan”(国际竹藤中心)“Chinese Academy of Forestry”(中国林业科学研究院)等机构在竹林碳汇领域研究方面也具有较大贡献。从机构发文数量来看,位列前5的机构总发文量均超过25篇,其中浙江农林大学发文量(148篇)远多于其他机构,对发文总量的贡献达9.36%,即在竹林碳汇研究的国际论文中,每发表10篇论文约有1篇来自浙江农林大学。其他机构如南京林业大学(39篇)、北京林业大学(37篇)、国际竹藤中心(36篇)、中国林业科学研究院(26篇)等也较为“高产”。可见高校和国际竹藤中心等专业研究机构是竹林碳汇研究领域的主要发文机构。
另外,几乎所有边缘机构都与浙江农林大学、南京林业大学、北京林业大学、国际竹藤中心、中国林业科学研究院等核心机构具有联结。这表明浙江农林大学、南京林业大学、北京林业大学、国际竹藤中心、中国林业科学研究院等机构的竹林碳汇研究对该领域产生了深远影响。排名前五的机构贡献了总发文量的18.09%,说明这些核心机构在竹林碳汇研究方面影响力巨大,主导了竹林碳汇领域主要研究方向。从发文机构的地域分布来看,中国、美国、日本等许多国家和地区均有机构展开该领域的研究,但是发文量排名前五的机构均在中国境内,空间集聚性明显。随着竹林碳汇研究的深入,发文机构的空间分布也在不断拓展,越来越多的国家和地区开始关注竹林碳汇相关问题,如日本东京大学、美国佛罗里达国际大学、韩国仁荷大学、澳大利亚科廷科技大学等机构在该领域的发文数量正逐渐增加;表明竹林碳汇研究领域的学术影响力在不断增强,随着气候变化问题日益严重,通过竹林碳汇应对气候变化问题正受到世界各国越来越多学者的关注。
-
对关键词的分析可知:“Bamboo”(竹子)、“Carbon storage”(碳储量)、“Biomass”(生物量)是中心性最高的关键词,分别出现了647、552和514 次;“Moso bamboo”(毛竹)(305次)、“Emission reduction”(减排)(235次)、“Land use change”(地类使用变化)(212次)、“Temperature”(温度)(186次)等词出现的频次也较高。综合来看,高频关键词涵盖了“竹子生长”“竹林碳汇”“减排效应”等基本问题,展示了竹林碳汇研究的主要内容。
在CiteSpace输出的结果中,按照对数似然率提取的10个标签词分别为竹子、碳汇、生物量,毛竹、生态系统、温度、地类使用变化、二氧化碳(CO2)、影响因素、额外性;表达了自《京都议定书》签订以来学者们对竹林减排效应的关注程度。《京都议定书》签订之初仅规定了发达国家的减排责任,之后1998年召开的缔约方大会,提出了发展中国家可以通过清洁发展机制(CDM项目)减少排放以获取外汇收入,并将林业碳汇项目也纳入其中,随后林业碳汇相关研究开始受到广泛关注。竹子生长周期短,母竹种植到成林一般只需要6~8 a即可进行批量采伐并循环经营,因此其固碳效应引起了学者的重视。
最初的研究主要关注竹子自身生物量,并且大多以毛竹Phyllostachys edulis作为研究对象;之后的研究由单株拓展至竹林,林下层的生物量也受到关注,并细分为“地上生物量”“地下生物量”等。2005年《京都议定书》正式生效,欧盟成立了碳交易市场,竹林碳汇项目层面的研究也开始受到广泛关注。总体而言,竹林的碳汇量、竹子的碳减排效果、不同经营模式对碳减排的影响、不同地类竹林碳汇变化情况、竹林减排与其他森林减排的比较研究等是学界关注的重点。
近几年,相关研究被拓展至竹产品层面,竹产品的替代减排效应也开始受到关注;在当前竹林比较收益下降、退化加剧、弃营竹林增多等背景下,学者开始探讨竹林经营的影响因素、竹林增汇和增收的双重效应等。不同时期减排的国际形势及竹林面临的问题有所不同,相关研究热点也随之变化。
-
对文献的具体研究内容进行归纳和梳理,可以发现现有文献的主要观点包括5个方面。
①竹林有着较高的碳储量。竹林植被层中,毛竹林植被层碳储量最高,为137.9 t·hm−2[4],龙头竹Fargesia dracocephala为60.5 t·hm−2[7],桂竹P. bambusoides为49.8 t·hm−2[23];竹林生态系统中,慈竹Neosinocalamus affinis林生态系统碳储量最大,为135.95 t·hm−2,苦竹Pleioblastus amarus为135.81 t·hm−2、龙竹Dendrocalamus giganteus为10.46 t·hm−2[24]。全球竹林碳储量巨大,有研究表明[13]:全球竹林碳储量约为1.81 Pg,占全球森林碳储量的0.50%,其中,中国竹林碳储量在中国森林生态系统碳总量中占比超过10%。学者们预测,未来50 a,竹林碳储量还将持续增长[7,25]。可见,竹林及其生态系统在区域和国家碳平衡中发挥重要作用,并具有较大的提升潜力。
②竹林固碳能力明显高于其他树林。相比于其他树种,竹子生长更快速,固碳能力更强[26]。对竹子与其他树种固碳能力的比较发现[13]:若以60 a为生长周期,毛竹固碳能力分别是杉木Cunninghamia lanceolata和桉树Eucalyptus spp.的1.22倍和1.26倍,毛竹林碳汇量(8.13 Mg·hm−2·a−1)是杉木(3.35 Mg·hm−2·a−1)的2.43倍[23];测定毛竹、台湾红柏树Chamaecyparis formosensis和日本雪松Cryptomeria japonica的固碳能力可知,三者碳汇量分别为8.13、2.83和4.44 Mg·hm−2·a−1,毛竹固碳能力明显更强[27]。对竹林和其他树林生态系统碳储量的对比研究发现[28],毛竹林生态系统碳储量为104.83 t·hm−2,高于杉木(95.66 t·hm−2)和马尾松Pinus massoniana(96.49 t·hm−2),固碳量(9.64 Mg·hm−2·a−1)分别是杉木和马尾松的1.69和1.63倍。不难发现,竹子具有更强的固碳能力,是碳汇林经营的优选树种。
③经营方式对竹林固碳能力影响显著。已有研究表明[17]:对竹林进行集约经营有利于提高竹林固碳能力,集约经营的毛竹林植被层固碳量为12.75 Mg·hm−2·a−1,是粗放经营(8.14 Mg·hm−2·a−1)的1.56倍。但是长期的集约经营也可能带来土壤退化、养分流失等问题,加剧竹林退化,因此越来越多的学者开始倡导适度经营。有研究表明[28]:适度经营模式下竹林中土壤碳储量约为59.94 Mg·hm−2·a−1,分别为集约经营和粗放经营的2.36倍和1.86倍,适度经营明显提高了竹林土壤固碳水平。同时对竹林结构进行改善,适度间伐[9],优化竹林经营管理策略[29]等也对提高竹林碳汇量具有积极影响。因此,竹林的科学经营是提高其固碳水平的必要举措。
④竹制品具有较大的替代减排潜力。竹制品碳储水平高,使用竹制品不仅可以减缓竹子的碳排放,还可以对非竹类产品产生替代减排效应[30]。对竹板材和木板材碳储水平的研究发现[31]:竹板材碳储水平更高,从全生命周期的视角来看,1 kg竹板材和木板材所封存的碳分别为0.68 kg和0.19 kg,前者明显高于后者。同时竹材的使用生态成本(0.52欧元·m−3)明显低于木材(2.11欧元·m−3)和钢材(10.86欧元·m−3)[32]。就性能而言,建筑中使用竹材比同质量的木材和混凝土强度和刚性更大[33],认为竹材具有较强的可替代性。可见,竹制品替代减排价值巨大。需要指出的是,竹制品替代减排效应的研究偏少,且主要就技术视角展开相关讨论,实际应用时还需考虑竹制品成本收益和消费者偏好等因素,相关研究值得进一步深入和拓展。
⑤竹林具备增加森林碳汇和增加农户收益的双重功效。随着竹子价格的下降和劳动力成本的增加,退化竹林、弃营竹林越来越多,传统的竹林经营效率下降,竞争优势逐渐消减。与之相反,碳汇竹林生态效益凸显[34],提高竹林综合产出水平潜力较大;同时碳汇竹林经营时减少扰动的技术要求,对增加竹林生态系统的综合固碳水平有利[35],对节约劳动成本也具有积极影响。有研究对竹林经营中碳汇收益进行了模拟分析[14,36],结果表明:考虑竹林碳汇收益能有效提高竹林的收益水平,可以弥补传统竹林比较优势下降而引起的收益损失;即竹林在应对气候变化和提升农户收益方面均具有积极效应[13]。这些研究在探讨竹林增汇功效的同时,也为研究如何应对传统竹林低效率的升级改造提供了参考。值得一提的是,尽管该方面的研究无论对于应对全球气候变化还是解决当前竹产业持续发展问题均尤为重要,但相关研究主要为理论探讨,未来可以结合碳汇项目发展等课题展开深入探讨,为解决现实问题提供切实可行的方案。
对竹林碳汇计量和监测的研究则认为:竹林碳汇计量范围应该包括乔木层生物量、灌木层生物量和地下层生物量[37];计算竹林碳汇量时可运用竹类植物生长模型或生物量变化模型[38],也可借助遥感等现代化技术对竹林碳汇变化进行估计[39],还可以使用全生命周期方法(LCA)对竹子从种植-采伐-加工-竹制品使用寿命结束的全过程或部分过程的碳变化进行估计[31]。
-
为探索不同时期竹林碳汇研究相关热点的变化情况,利用CiteSpace软件的突发检测功能对各期段的突发关键词进行归纳分析。由图2可知:自1998年以来,竹林碳汇领域突现了许多高频关键词,排名前15的突现高频关键词的突发变迁,与全球气候变化相关协议签订后,气候问题得到各国政府重视、森林碳汇在减排中的贡献凸显的时代背景息息相关,同时也体现了传统竹林经营比较收益下降背景下,学者们对通过竹林碳汇解决竹林持续经营问题的重视程度。
具体来看,随着时间推移,“生物量”“碳储量”“CO2”“气候”“温室气体排放”“优化”“管理实践”等突发关键词不断涌现。受日益加剧的气候变暖问题影响,各国政府开始积极探索减排策略及优化方案,关键词热点变化与国际控排形势变化出现趋同效应。关键词变迁一方面体现了在控排监测技术不断完善背景下,竹林碳汇研究的不断拓展和深化;另一方面也体现了对劳动力成本上升、竹林经营比较收益下降、竹林退化/弃营等问题的密切关注,并试图通过经营碳汇竹林为解决该类问题提出优化策略。研究热点最初集中于对该领域基本问题探索,之后逐渐转为现实思考与应用,通过竹林碳汇及减排解决竹林持续经营问题的理论思考,研究焦点也由论证竹林的固碳水平逐渐转为提出更优的竹林减排方案及竹林增收策略。
-
本研究以Web of Science核心合集数据库收录的竹林碳汇研究文献为对象,借助CiteSpace软件对该领域的文献信息进行综合分析,以展现该领域主要发展历程、知识体系及研究热点的演变特征。研究结果表明:①竹林碳汇发文量不断增多,年均文献量有明显的上升趋势。自《京都议定书》签订以来的20余a里,竹林碳汇发文量约75篇·a−1,2013年发文量超过100篇·a−1,发文数量有明显的加速增长趋势。②竹林碳汇的发文作者间合作紧密,核心发文机构具有地域集聚性。核心作者有较高的科学生产力和学术影响力,已形成核心作者群;核心发文机构的中心性地位较高,对该领域具有较大影响,主要位于中国境内,地域集聚特征明显。③现有文献集中于研究竹林碳储量、竹林固碳能力、经营方式、竹制品碳储量、竹林增汇和增收效应等方面。文献中的主要观点包括竹林有着较高的碳储量、竹林固碳能力明显高于其他树林、经营方式对竹林固碳能力具有显著影响、竹制品具有较大的替代减排潜力、竹林具备增加森林碳汇和增加农户收益的双重功效等。④竹林碳汇领域突发关键词的演变与国际气候政策变化、竹林经营中面临的困境联系较为紧密。许多高频关键词都体现或代表了国际社会气候政策变化的阶段性特征,随着竹林退化问题加剧、弃营竹林增加,通过竹林碳汇解决竹林可持续经营问题越来越受关注。
-
自《京都议定书》签订以来,竹林碳汇研究得到较高重视并迅速发展,一批以中国学者为主的科研人员建立并完善了竹林碳汇相关研究的学术体系,为全球竹林碳汇研究奠定了重要基础。总的来说,竹林碳汇经过20余a发展,相关研究已经得到不断拓展和深化,竹子固碳能力、减排效应、替代减排等领域取得了丰厚的研究成果。这些重要成果为往后相应领域的进一步研究提供了丰富资料。但是相关研究也存在一些不足,主要体现为:①核心作者群及核心发文机构均过于集中,研究的参与群体相对单薄。现有研究中主要的核心作者和核心发文机构均在中国,研究的主要参与群体为中国学者,空间集聚度较高,对长远发展不利,应吸引世界各地更多机构和学者积极参与。②内容过于集中于理论,与现实结合偏弱。现有研究大量是从理论视角、借助实验数据分析计算竹林碳储量和竹林固碳能力,如何将这些成果运用于应对气候变化以及解决现实中竹林退化、竹林增收等问题仍需要深化;对于竹制品的替代减排效应也大多停留于技术视角,缺乏现实应用方面的研究。③主要成果在促进减排和增收方面的实际贡献较低。目前对于减排和增收相结合的分析主要通过情景模拟分析等进行,其结论仅停留于理论参考层面,要实现实际应用还需考虑现实情景的多面性和复杂性,但相关研究较少。
鉴于上述不足,结合竹林碳汇研究发展趋势,提出以下建议:①加强学术合作与交流,扩大竹林碳汇领域的影响力。以核心作者群为基础,发挥团队效应,增加作者之间、机构之间、学科之间的合作和交流,尤其应该加强国际学术交流与合作,以吸引更多学者参与相关研究,拓宽竹林碳汇研究视野,丰富研究范式,进一步促进该领域的发展演进。②强化现实问题的对策类研究,提升竹林碳汇理论的现实应用价值。应使用竹林碳汇相关理论,研究制定解决现实问题的优化策略,例如对退化、弃营竹林进行碳汇林改造升级以促进竹林持续经营,展开竹制品消费偏好调查,从市场层面引导实现替代减排效应,以发挥竹林碳汇理论的实践价值。③着重挖掘竹林碳汇应对气候变化及提高林农收益方面的潜力,充分发挥竹林减排和增收的双重效应。在进一步探索竹林碳汇的多重减排效应,如竹林的增汇效应、竹产品的替代减排效应等基础上,基于国内外碳市场交易实践,积极开展竹林碳汇项目开发、交易获利等方面的深入探索,为传统低效率竹林的碳汇林转型改造升级提供从经营至创收整套的经营策略,达到森林增汇和农户增收的双重目标。
A review and prospect of global bamboo forest carbon sink research based on CiteSpace
-
摘要: 随着全球气候变暖问题日益严重,竹林碳汇研究已经逐渐演化为碳汇相关研究领域的重要分支之一。本研究借助CiteSpace软件,对自《京都议定书》签订以来,Web of Science核心合集数据库中研究竹林碳汇的文献进行了回顾和梳理,结果表明:①竹林碳汇研究处于快速发展期,该领域正受到越来越多学者的密切关注;②发文作者之间合作紧密,核心作者发文能力较强,并且已经基本形成核心作者群,核心发文机构地域集聚性明显,对该领域贡献巨大;③现有研究主要集中于探讨竹林碳储量、竹林固碳能力、经营模式、竹制品碳储量、竹林增汇和增收效应等方面,主要观点包括竹林有着较高的碳储量、竹林固碳能力明显高于其他树林、经营模式对竹林固碳能力具有显著影响、竹制品具有较大的替代减排潜力、竹林具备增加森林碳汇和增加农户收益的双重功效等;④关键词的变迁与通过竹林碳汇应对全球气候变化,以及促进竹林可持续经营密切关联。未来应该扩大竹林碳汇领域的影响力,加强现实问题的对策类研究,以挖掘竹林碳汇减排和增收的双重效应。图2表2参39Abstract: As climate warming further worsens, the studies of bamboo forest carbon sink have gradually evolved into one of the important branches of carbon sink research field. With the employment of CiteSpace software, a literature review was conducted of researches on bamboo forest carbon sink included in the Web of Science Core Collection for analysis and prospects into the future. The results showed that a) with close attention drawn from more and more researchers, bamboo forest carbon sink research is embracing a rapid development; b) with the close cooperation among authors, substantial progress has been achieved in this field with a collection of research papers published, forming a strong core author group while the core institutions have shown obvious geographical agglomeration with great contributions made to this field; c) the existing studies mainly focus on the discussion of bamboo forest carbon storage, bamboo forest carbon sequestration capacity, management methods, bamboo products carbon storage, and the effects of bamboo forests on the promotion of carbon storage and farmers’ income and it has been concluded that bamboo forests have a high level of carbon storage, the carbon sequestration capacity of bamboo forests is significantly higher than that of other forests, management methods have a significant impact on on the promotion of the carbon sequestration capacity of bamboo forest, bamboo products have great potential for substitution and emission reduction and bamboo forests have the double effect on the promotion of carbon sink and farmers’ income; d) the change of research keywords is a reflection of the efforts to cope with the global climate change and promote the sustainable management of bamboo forests by improving the carbon sequestration capacity. In the future, it is necessary to enhance the influence of bamboo forest carbon sinks and encourage countermeasure researches on practical issues to give full play to the double effect of bamboo forest carbon sinks on the reduction of emissions and the promotion of farmers’ income. [Ch, 2 fig. 2 tab. 39 ref.]
-
Key words:
- bamboo forest carbon sink /
- visual analysis /
- research focuses /
- CiteSpace /
- review
-
绿色植物通过光合作用固定二氧化碳(CO2)并转变成有机物质的过程被称为植物碳汇[1−2],是降低大气中CO2浓度最主要的途径。但受到植物呼吸消耗、微生物分解和环境条件变化的影响,绝大部分被固定的碳都无法长期稳定存在[1]。植硅体(phytolith)是植物在生长过程中,通过根系吸收的无定型硅酸[Si(OH)4]经维管束输送后在植物细胞内腔或细胞间隙中形成的硅包碳化合物,几乎存在于所有植物体中,在竹亚科Bambusoideae植物中植硅体尤其丰富[3−4]。植硅体碳是在植硅体形成过程中被封存于植硅体内的有机碳[5],随植物体死亡分解进入土壤后,可以稳定存在数千年甚至上万年之久[6−7],成为陆地土壤长期碳封存的重要机制之一。这种长期的生物地球化学碳封存形式被认为在减少大气CO2,缓解温室效应方面具有很大的潜力[8]。
毛竹Phyllostachys edulis已被证明是一种植硅体碳汇能力很强的植物[6−8],在中国广泛分布。在毛竹的经营管理过程中一直有施用氮肥的习惯,氮肥的施用直接促进毛竹的光合作用,进而提高单位面积毛竹笋材产量。研究表明:在毛竹的生长过程中除了氮素以外,对硅也有很强的富集能力[9−10],而毛竹体内硅、植硅体及植硅体碳的质量分数具有极显著的相关关系[11]。氮施用后虽然增强了毛竹光合能力[12],但对硅的吸收利用以及毛竹植硅体碳汇能力的影响还需进一步探索。
本研究以毛竹为研究对象,开展氮、硅二因素三水平栽培试验,采集毛竹不同器官,并测定不同器官硅、植硅体和植硅体碳质量分数,以明确不同器官对外源氮、硅添加的响应,揭示外源氮、硅添加对毛竹植硅体碳汇的影响机理,为提升中国竹林生态系统植硅体碳汇能力提供参考。
1. 试验设计与方法
1.1 试验设计
本研究设计为氮、硅二因素三水平盆栽试验。具体设计见表1。
表 1 试验设计及氮、硅用量Table 1 Experimental design and N, Si application rate处理 尿素/
(mg·kg−1)硅酸钠/
(mg·kg−1)处理 尿素/
(mg·kg−1)硅酸钠/
(mg·kg−1)处理 尿素/
(mg·kg−1)硅酸钠/
(mg·kg−1)N0Si0 0 0 N1Si0 250 0 N2Si0 500 0 N0Si1 0 75 N1Si1 250 75 N2Si1 500 75 N0Si2 0 150 N1Si2 250 150 N2Si2 500 150 说明:氮和硅用量按照生产上常规施肥量,即尿素750和225 kg·hm−2,有效土层深度30 cm,容重1.01 g·cm−3计算。 试验盆栽栽培于福州市晋安区新店镇福建省林业科学研究院苗圃(26°09′05″N,119°17′03″E,海拔为103.8 m)。试验栽培容器长、宽、高分别为30、20、30 cm,距容器底部2 cm侧面设直径为0.5 cm的小孔,保证排水通气。栽培用土壤来源于福州市闽侯县三叠井森林公园自然分布毛竹林。挖取土壤前清除地表植被和凋落物,挖取0~30 cm土层土壤,挑除石子、动植物残体后于干燥通风处晾干,过2 mm筛后备用。土壤容重为1.01 g·cm−3,土壤有机质为20.3 g·kg−1,土壤pH为5.51,土壤碱解氮、有效磷、速效钾、有效硅质量分数分别为245.00、2.93、116.60、54.10 mg·kg−1。
试验用毛竹苗来源于四川峨眉廷富育苗有限公司培育的毛竹1年生袋装实生幼苗,种源为广西桂林。栽培时竹苗呈丛状分生,4~5株·丛−1,蔸部具完整根鞭,苗高30 cm左右,生长健壮,无病虫害。栽培之前将每片竹叶剪去60%,以降低蒸腾速率,增加成活率。
每盆置风干土10.0 kg,浅栽生长均匀的幼苗4株,浇透水,至容器侧面小孔有水溢出,再取10.0 kg风干土均匀铺盖于湿土之上,保湿保水防结块,置于通风防雨透光玻璃温室中培养。栽培期间17:00浇水1次,浇水量为当地前10 a平均日降雨量。
1.2 样品采集
竹苗生长的过程中定时定量浇水,分别收集不同处理凋落物,及时烘干储存。毛竹苗生长2 a后,采用全株采集法采集每盆毛竹样品,清洗干净后分不同器官烘干储存备用。
1.3 样品分析
不同处理和不同器官毛竹样品在分析测定前进行粉碎(<0.5 mm)。样品植硅体的提取采用微波消解法,之后用0.800 0 mol · L−1重铬酸钾溶液对植硅体进行检验,确保植硅体表面有机物质完全被去除,提取后的植硅体于65 ℃烘箱中烘干48 h,称量[13]。植硅体碳采用碱溶分光光度法测定[14],在样品测定的同时加入植物标准样(GBW07602)对测定的准确性进行检验。每个样品重复3次。样品总硅采用偏硼酸锂熔融-比色法测定[15],样品碳和氮采用碳氮元素分析仪测定。
1.4 数据处理与统计
使用SPSS 18.0进行数据统计分析,Duncan新复极差法测验不同处理的差异显著性,Origin 8.5作图。植硅体质量分数(g·kg−1)=植硅体质量(g)/样品干质量(kg),植硅体碳质量分数(g·kg−1) =植硅体碳质量(g)/样品干质量(kg)。
2. 结果与分析
2.1 毛竹不同器官硅、植硅体、植硅体碳、碳和氮质量分数
由表2可知:在毛竹不同器官及凋落物中,硅、植硅体和植硅体碳质量分数从高到低依次均为凋落物、叶、枝、篼、秆,变化范围分别为2.2~78.4、1.9~151.9和0.78~3.93 g·kg−1。与硅、植硅体和植硅体碳不同,碳质量分数在毛竹不同器官及凋落物中从高到低依次为秆、叶、篼、枝、凋落物,变化范围为372.0~466.0 g·kg−1。不同器官及凋落物氮质量分数则表现为毛竹叶中最高,为18.8 g·kg−1,凋落物最低,为4.4 g·kg−1。差异显著性分析结果表明:凋落物中硅和植硅体质量分数均显著高于其他器官(P<0.05),且植硅体质量分数在枝、秆和篼之间均具有显著差异(P<0.05),而硅质量分数在枝、秆和篼之间不具有显著差异。与植硅体相似,植硅体碳在枝、秆和篼之间具有显著差异(P<0.05),但植硅体碳质量分数在凋落物和叶之间不具有显著差异。碳质量分数除了在叶和篼之间不具有显著差异外,在其他器官及凋落物之间均具有显著差异(P<0.05)。氮质量分数在不同器官之间均具有显著差异(P<0.05),但在凋落物中没有表现出显著低于枝的现象。
表 2 毛竹不同器官和凋落物硅、植硅体、植硅体碳、碳和氮质量分数Table 2 Content of Si, phytolith, PhytOC, C and N in different organs and litterfall of Ph. edulis样品 硅/(g·kg−1) 植硅体/(g·kg−1) 植硅体碳/(g·kg−1) 碳/(g·kg−1) 氮/(g·kg−1) 叶 26.8±2.8 b 42.3±3.8 b 3.78±0.17 a 452±4 b 18.8±0.9 a 枝 6.7±0.3 c 22.1±1.0 c 2.84±0.19 b 439±1 c 5.8±0.3 d 秆 2.2±0.1 c 1.9±0.1 e 0.78±0.10 d 466±1 a 7.7±0.6 c 篼 5.2±0.4 c 11.7±0.8 d 1.55±0.13 c 448±2 b 11.8±0.3 b 凋落物 78.4±2.8 a 151.9±3.4 a 3.93±0.15 a 372±4 d 4.4±0.2 d 说明:数据为平均值±标准误。不同小写字母表示不同器官间差异显著 (P<0.05)。 2.2 不同处理硅、植硅体、植硅体碳、碳和氮质量分数
由表3可知:毛竹叶、枝、秆、篼硅质量分数均表现为N0Si2处理最高,分别为42.2、8.4、2.9和6.6 g·kg−1,处理N2Si0最低,分别为18.4、5.6、1.8和3.5 g·kg−1。差异显著性分析结果表明: N0Si2和N0Si1处理叶硅质量分数显著高于除N0Si0处理以外的所有处理(P<0.05),而枝、秆和篼硅质量分数在不同处理之间均无显著差异。与叶、枝、秆、篼不同,凋落物硅质量分数表现为N2Si2处理最高,为91.8 g·kg−1,在N0Si0处理中最低,仅为60.9 g·kg−1。差异显著性分析结果表明: N2Si2处理中硅质量分数显著高于N0Si1和N0Si0处理(P<0.05),凋落物硅质量分数在其他处理间均不具有显著差异。
表 3 各处理毛竹不同器官和凋落物硅质量分数Table 3 Contents of Si in different organs and litterfall of Ph. edulis under different treatments处理 各处理毛竹不同部位硅质量分数/(g·kg−1) 叶 枝 秆 篼 凋落物 N0Si0 33.1±4.7 ab 6.1±3.0 a 2.3±1.0 a 3.7±0.7 a 60.9±5.3 c N0Si1 36.5±2.8 a 6.8±0.4 a 2.3±0.4 a 5.7±1.6 a 74.1±2.2 bc N0Si2 42.2±2.1 a 8.4±0.3 a 2.9±0.2 a 6.6±0.3 a 78.9±7.0 ab N1Si0 20.0±2.5 c 5.9±2.8 a 2.0±0.5 a 3.5±0.8 a 77.0±2.1 ab N1Si1 24.3±2.4 bc 6.2±0.5 a 2.1±0.5 a 5.4±0.2 a 77.2±2.9 ab N1Si2 24.4±1.2 bc 8.0±1.1 a 2.5±0.6 a 6.3±0.1 a 79.2±1.7 ab N2Si0 18.4±3.8 c 5.6±1.5 a 1.8±0.2 a 3.5±0.7 a 80.3±0.3 ab N2Si1 20.3±1.5 c 5.9±0.2 a 1.9±0.4 a 5.6±2.2 a 86.1±1.7 ab N2Si2 21.9±1.9 c 7.5±0.9 a 2.4±0.2 a 6.3±0.8 a 91.8±9.3 a 说明:数据为平均值±标准误。不同小写字母表示不同处理间差异显著(P<0.05)。 由表4可知:随着硅添加量的增加,大部分处理植硅体质量分数呈增加的趋势。具体来看,不同处理毛竹叶植硅体质量分数为30.3~59.5 g·kg−1,其中N0Si2处理叶植硅体质量分数最高,N2Si0处理最低。N2Si2处理枝植硅体质量分数最高,为26.6 g·kg−1, N1Si0处理最低,仅为18.6 g·kg−1。不同处理秆和篼植硅体质量分数变化规律较为一致,均表现为N2Si2处理最高,分别为2.2和14.9 g·kg−1, N0Si0处理最低,分别为1.6和9.1 g·kg−1。N0Si2处理凋落物植硅体质量分数最高,为169.5 g·kg−1,比N1Si0处理高24.3%。差异显著性分析结果表明:仅叶中植硅体质量分数在N0Si0、N0Si1、N0Si2处理与其他处理间具有显著差异(P<0.05)。
表 4 各处理毛竹不同器官和凋落物植硅体质量分数Table 4 Contents of phytolith in different organs and litterfall of Ph. edulis under different treatments处理 各处理毛竹不同部位植硅体质量分数/(g·kg−1) 叶 枝 秆 篼 凋落物 N0Si0 51.8±7.8 a 19.8±3.3 a 1.6±0.1 a 9.1±2.8 a 156.6±23.0 a N0Si1 59.2±2.3 a 20.6±4.0 a 1.9±0.4 a 9.5±0.2 a 160.8±10.4 a N0Si2 59.5±2.8 a 24.2±4.3 a 2.0±0.2 a 14.0±4.7 a 169.5±3.8 a N1Si0 35.4±1.2 b 18.6±2.4 a 1.8±0.1 a 10.1±2.8 a 136.4±19.5 a N1Si1 35.7±0.9 b 20.8±2.2 a 1.9±0.5 a 12.3±0.8 a 154.6±9.9 a N1Si2 37.8±0.9 b 26.2±3.3 a 2.1±0.5 a 14.7±0.2 a 155.3±6.4 a N2Si0 30.3±0.2 b 20.7±2.5 a 1.9±0.1 a 10.1±2.2 a 144.3±15.6 a N2Si1 34.4±3.0 b 21.1±1.9 a 2.0±0.3 a 11.0±1.7 a 144.7±0.7 a N2Si2 36.3±1.9 b 26.6±5.1 a 2.2±0.2 a 14.9±1.7 a 144.7±28.7 a 说明:数据为平均值±标准误。不同小写字母表示不同处理间差异显著(P<0.05)。 由表5可知:毛竹不同器官植硅体碳质量分数在不同处理之间差异较小。总体来看,随着硅添加量的增加,不同器官及凋落物植硅体碳质量分数均具有上升趋势。不同处理叶、枝、秆、篼及凋落物植硅体碳质量分数分别为3.15~4.68、2.10~3.47、0.30~1.18、1.09~2.15和3.21~4.63 g·kg−1,均表现为N2Si2处理最高, N0Si0处理最低,表明氮和硅的添加能够促进植硅体碳质量分数增加。差异显著性分析结果表明:仅秆植硅体碳质量分数在N0Si1和N0Si0与N2Si2处理间具有显著差异(P<0.05)。
表 5 各处理毛竹不同器官和凋落物植硅体碳质量分数Table 5 Contents of PhytOC in different organs and litterfall of Ph. edulis under different treatments处理 各处理毛竹不同部位植硅体碳质量分数/(g·kg−1) 叶 枝 秆 篼 凋落物 N0Si0 3.15±0.24 a 2.10±0.56 a 0.30±0.04 c 1.09±0.22 a 3.21±0.81 a N0Si1 3.20±1.05 a 2.25±0.66 a 0.39±0.10 bc 1.11±0.07 a 3.83±0.92 a N0Si2 3.82±0.55 a 3.12±0.63 a 0.61±0.40 abc 1.54±0.50 a 4.14±2.25 a N1Si0 3.59±0.67 a 2.28±0.59 a 0.70±0.33 abc 1.13±0.47 a 3.52±0.67 a N1Si1 4.01±0.12 a 3.10±0.54 a 0.91±0.13 abc 1.77±0.51 a 3.73±1.05 a N1Si2 4.31±0.98 a 3.38±0.46 a 1.06±0.14 ab 1.79±0.32 a 4.46±0.20 a N2Si0 3.63±1.17 a 2.45±1.28 a 0.86±0.19 abc 1.58±0.18 a 3.81±0.51 a N2Si1 4.05±0.20 a 3.39±0.28 a 1.00±0.27 abc 1.84±0.62 a 4.01±0.17 a N2Si2 4.68±0.41 a 3.47±0.98 a 1.18±0.05 a 2.15±0.33 a 4.63±1.60 a 说明:数据为平均值±标准误。不同小写字母表示不同处理间差异显著(P<0.05)。 由表6可知:与植硅体碳质量分数相似,毛竹不同器官碳质量分数在不同处理间差异均较小并具有随着氮添加量增加不断增加,随着硅添加量的增加不断降低的趋势。不同处理叶、枝、秆、篼碳质量分数分别为436~478、436~441、462~471和441~456 g·kg−1,可知叶碳质量分数在不同处理之间差异最大。不同处理凋落物碳质量分数随氮和硅添加量的增加均不断增加,为348~387 g·kg−1。差异显著性分析结果表明: N2Si1处理叶碳质量分数显著高于其他处理,N0Si2处理枝碳质量分数显著低于N1Si0处理, N1Si0处理和N2Si0处理秆碳质量分数显著高于除N2Si1处理以外的其他处理, N2Si2处理凋落物碳质量分数显著高于N0Si0处理(P<0.05)。
表 6 各处理毛竹不同器官和凋落物碳质量分数Table 6 Contents of C in different organs and litterfall of Ph. edulis under different treatments处理 各处理毛竹不同部位碳质量分数/(g·kg−1) 叶 枝 秆 篼 凋落物 N0Si0 440±2 b 440±3 ab 463±2 b 443±5 b 348±17 b N0Si1 439±2 b 437±3 ab 463±2 b 442±3 b 372±6 ab N0Si2 436±3 b 435±2 b 462±2 b 441±4 b 376±5 ab N1Si0 453±2 b 442±2 a 471±0 a 452±3 ab 365±11 ab N1Si1 453±2 b 439±1 ab 466±2 b 450±5 ab 368±14 ab N1Si2 453±3 b 438±3 ab 465±1 b 449±4 ab 369±3 ab N2Si0 454±4 b 441±1 ab 471±2 a 456±1 a 381±16 ab N2Si1 478±21 a 441±1 ab 467±0 ab 451±4 ab 384±2 ab N2Si2 459±4 ab 439±2 ab 465±1 b 449±2 ab 387±11 a 说明:数据为平均值±标准误。不同小写字母表示不同处理间差异显著(P<0.05)。 由表7可知:毛竹不同器官氮质量分数在不同处理之间差异均较大,叶、枝、秆、篼和凋落物氮质量分数最低的处理分别为N0Si1、N0Si2、N0Si1、N0Si0和N0Si1处理,其氮质量分数分别为14.5、4.3、5.0、10.0和3.4 g·kg−1;最高的处理分别为N2Si1、N2Si0、N1Si2、N2Si0和N2Si0处理,比最低值分别增加54.5%、79.1%、90.0%、29.0%和50.0%。差异显著性分析结果表明:叶、枝、秆、篼和凋落物氮质量分数在不同处理间变化规律均不明显,氮质量分数在部分处理间存在显著差异(P<0.05)。
表 7 各处理毛竹不同器官和凋落物氮质量分数Table 7 Contents of N in different organs and litterfall of Ph. edulis under different treatments处理 各处理毛竹不同部位氮质量分数/(g·kg−1) 叶 枝 秆 篼 凋落物 N0Si0 16.9±0.8 cde 5.4±0.9 bcd 6.5±1.0 abc 10.0±0.2 b 3.4±0.1 c N0Si1 14.5±0.9 e 4.6±0.1 cd 5.0±0.3 c 10.7±0.3 b 3.6±0.1 bc N0Si2 15.7±0.9 de 4.3±0.1 d 5.6±0.2 bc 10.8±0.1 b 3.4±0.1 c N1Si0 19.1±1.0 bc 6.3±0.6 abc 8.7±1.6 ab 12.3±0.2 ab 4.4±0.2 ab N1Si1 20.8±0.8 ab 6.1±0.2 abcd 8.6±0.6 abc 12.4±0.8 ab 4.8±0.3 a N1Si2 18.4±1.0 bcd 5.4±0.3 bcd 9.5±0.1 a 12.1±0.3 ab 4.8±0.3 a N2Si0 20.9±1.1 ab 7.7±0.7 a 9.3±2.2 a 12.9±1.1 a 5.1±0.4 a N2Si1 22.4±0.4 a 6.7±1.0 ab 7.7±0.8 abc 12.3±0.4 ab 5.1±0.6 a N2Si2 20.2±0.6 ab 5.8±0.5 abcd 8.4±1.3 abc 12.6±0.2 a 4.7±0.1 a 说明:数据为平均值±标准误。不同小写字母表示不同处理间差异显著(P<0.05)。 2.3 毛竹硅、植硅体、植硅体碳、碳和氮质量分数之间的相关关系
相关性分析结果(表8)表明:毛竹硅与植硅体、植硅体与植硅体碳以及硅与植硅体碳质量分数之间均存在极显著正相关关系(P<0.01),硅与氮质量分数之间存在极显著二次相关关系(P<0.01),植硅体碳与碳质量分数之间存在极显著负相关关系(P<0.01)。
表 8 毛竹硅、植硅体、植硅体碳、碳和氮质量分数之间的相关关系Table 8 Correlation between Si and phytolith, phytolith and PhytOC, Si and PhytOC, Si and N, C and PhytOC contents of Ph. edulisx y 拟合方程 决定系数(R2) 显著性水平 植硅体 硅 y = 0.088 + 0.517x 0.958 4 P<0.001 植硅体 植硅体碳 y = 1.839 + 0.016x 0.463 2 P<0.001 硅 植硅体碳 y = 1.837 + 0.031x 0.481 8 P<0.001 硅 氮 y = 7.004 + 0.507x−0.007x2 0.493 3 P<0.001 碳 植硅体碳 y = 472.8−14.5x 0.318 3 P<0.001 2.4 植硅体、植硅体碳与碳质量分数的氮-硅交互作用
交互作用分析结果表明:对于毛竹植硅体、植硅体碳与碳质量分数来说,氮与硅之间均不存在交互作用的显著性(表9)。
表 9 植硅体、植硅体碳与碳质量分数的氮-硅交互作用Table 9 Interaction between N and Si for phytolith, PhytOC, and C contents指标 自由度 均方 F 显著性水平 $ {\eta }_{p}^{2} $ 植硅体 4 15.858 0.005 1.000 0.000 植硅体碳 4 0.069 0.030 0.998 0.001 碳 4 0.555 0.044 0.996 0.001 说明:$ {\eta }_{p}^{2} $表示植硅体和植硅体碳分别对组间变异的贡献率。 2.5 毛竹不同器官植硅体碳占总碳比
由图1可知:毛竹叶、枝、秆、篼和凋落物中植硅体碳占总碳的比例分别为5.7%~8.6%、4.8%~7.9%、0.7%~2.5%、2.5%~4.8%和9.2%~12.1%。与不同器官相比,凋落物中植硅体碳占总碳的比例平均最高,为10.5%。不同处理凋落物之间,N1Si2处理植硅体碳占总碳的比例最高,N0Si0处理最低。不同器官之间,不同处理植硅体碳占总碳的比例从高到低依次为叶、枝、篼、秆,平均分别为6.9%、6.5%、3.5%和1.7%。同一器官不同处理之间,在同一氮添加水平下随着硅添加量的增加,植硅体碳占总碳的比例不断升高。
3. 讨论
3.1 毛竹植硅体、植硅体碳的形成与硅密切相关
硅是地壳中第二大元素,其蕴藏量仅次于氧,在地球化学碳循环中起着重要的作用[16]。研究表明:植物对硅的吸收利用分为对单硅酸的跨膜吸收和沿维管束的运输2个过程,其中植物对硅的吸收能力取决于土壤溶液中单硅酸的浓度和植物根系硅转运蛋白的表达量[17]。动力学研究表明:外部单硅酸浓度的升高能够有效促进其以被动扩散或主动运输的形式被跨膜吸收[18−19]。土壤中的有效硅到达植物根部后才能开始随蒸腾流沿着维管束运输的第2个过程,并且具有边运输边形成聚合硅酸的能力[20],最终在植物组织的蒸腾末端沉积,形成稳定的无定型二氧化硅颗粒,表明植物对硅的吸收利用最终依赖于特异性硅转运蛋白和蒸腾作用。
植硅体在植物抗寒、抗逆等方面[4, 21]具有重要的作用。硅被植物吸收后主要以植硅体的形式存在于植物体内,因此植物体内植硅体质量分数取决于植物吸收利用硅的能力。本研究中毛竹不同器官之间硅与植硅体质量分数差异较大,但表现出相同的变化规律和极显著相关关系,表明毛竹不同器官对硅利用的能力不同,也表明了硅与植硅体之间存在的密切联系。这与ZUO等[22]对黍Panicum miliaceum、粟Setaria italica的研究,LI等[23]对湿地芦苇Phragmites australis的研究,PARR等[24]对竹林的研究及SONG等[25]对中国草原植被的研究结果相同,证明了植物体中植硅体质量分数明显受植物对硅富集能力的影响。
植硅体碳形成于植硅体积淀的过程中。LI等[26]在对白洋淀芦苇的研究中指出:植硅体碳质量分数与植物吸收利用CO2速率有直接的关系。SONG等[13]在中国不同森林类型植硅体碳封存估测的研究中提出:植硅体碳质量分数与硅质量分数之间存在密切的联系,并且以硅质量分数的3%作为计算植硅体碳的标准。本研究设计硅外源添加以增加毛竹对硅的吸收利用,同时设计氮外源添加提高毛竹光合作用效率及吸收利用CO2的能力,并对不同处理硅、植硅体和植硅体碳质量分数进行分析,发现硅、植硅体和植硅体碳在毛竹不同器官之间的变化规律呈现高度的一致性,并且随着外源氮和硅添加量的变化,毛竹不同器官植硅体与植硅体碳仍然表现出相似的变化规律;除此之外,植硅体与植硅体碳之间及硅与植硅体碳质量分数之间均存在极显著的正相关关系。这一结果与已有竹类植物植硅体碳相关研究结果一致[8, 13, 27],反映了竹林生态系统中硅与植硅体碳之间的内在联系,表明外源硅的添加是毛竹不同器官植硅体碳质量分数增加的主要原因,证明了硅的添加能够促进毛竹植硅体碳汇能力提升。
3.2 毛竹不同器官对外源氮添加的响应差异明显
氮是植物生长最重要的营养元素之一,对于植物光合效率的提高及养分的吸收、利用、积累具有直接的影响[12]。植物对氮的吸收过程复杂且多样,主要包括主动性和被动性吸收2个途径,与光照、温度、pH等环境因素密切相关,与硅的吸收利用相关性较小。本研究中氮-硅交互作用分析结果表明:氮与硅之间均不存在交互作用的显著性,也进一步说明毛竹对氮和硅的吸收是2个相互独立的过程。毛竹叶中碳、氮和植硅体碳质量分数均随着外源氮添加量的增加不断提高,但硅与植硅体质量分数却不断下降 ,主要是由于外源氮的添加极大地促进了叶的生长,导致净生物量在短期内快速积累,而植物对硅的吸收动力主要来源于蒸腾作用[12],在短期内并不会出现大幅变化,因此造成了净生物量积累与植硅体积累不协调的现象,也说明了虽然本研究中硅的添加促进了毛竹对硅的吸收,但氮的添加增加了有机物质的积累,对植硅体形成了稀释效应,因此表现为低氮添加处理植硅体质量分数更高的现象。
随着叶片的老化,大部分氮被转移再利用[28],凋落物氮和碳质量分数均大幅降低,但硅、植硅体和植硅体碳质量分数却并未随之下降,且随着外源氮添加量的增加,凋落物中硅和植硅体碳质量分数有所增加,植硅体质量分数却有所降低,表明尽管外源氮的添加促进了硅的吸收和有机物质的积累,但被吸收的硅并没有形成稳定的植硅体,对植硅体碳的贡献有限,也说明尽管毛竹对氮和硅的吸收利用交互作用不显著,但硅的吸收仍然与氮的添加有关。
进一步对不同处理不同器官及凋落物中植硅体碳占总碳比进行分析,可以更清晰地表明:单纯的氮添加能够促进有机物质的快速积累,但对于提高植硅体碳在总碳中的比例作用有限,而硅的添加对提高植硅体碳在总碳中的比例作用更为明显,这一点也被外源氮添加后碳和植硅体碳呈极显著负相关所证明。
3.3 氮和硅添加对植硅体稳定性的影响
植硅体的稳定性主要决定于其形态、颗粒大小、组分和结构[29−32]。有研究表明:外源硅的添加增加了土壤溶液中单硅酸的浓度,外源氮和硅的添加共同促进了毛竹对硅的吸收,进而增加植硅体在植物体内的积累[33−35],但是这种靠人为因素增加的植硅体已被证明主要是轻组植硅体[31],其稳定性、抗腐蚀能力等均远小于重组植硅体[34, 36],且氮的添加促进了毛竹对氮的吸收利用,改变了植硅体组成成分[31],因此尽管高氮处理促进了毛竹凋落物硅质量分数的增加,但植硅体质量分数仍较低。表明虽然氮的添加对毛竹吸收硅的影响不显著,但对毛竹吸收硅后形成的植硅体的稳定性有显著影响。
4. 结论
毛竹叶中氮质量分数最高,秆中碳质量分数最高,凋落物中硅、植硅体和植硅体碳质量分数均最高。外源氮添加有助于毛竹对硅的吸收和有机物质的积累,外源硅添加有助于毛竹植硅体和植硅体碳质量分数的增加以及植硅体碳占碳比例的提高。
-
表 1 发文数量和作者数量的对应分布
Table 1. Distribution of the number of literatures and the number of authors
发文数
量/篇作者数
量/人占全部作者
的比例/%占发文数量为1的
作者的比例/%发文数
量/篇作者数
量/人占全部作者的
比例/%占发文数量为1的
作者的比例/%1 686 54.53 11 2 0.16 0.29 2 245 19.48 35.71 12 1 0.08 0.15 3 132 10.49 19.24 13 2 0.16 0.29 4 81 6.44 11.81 14 1 0.08 0.15 5 42 3.34 6.12 16 1 0.08 0.15 6 28 2.23 4.08 19 1 0.08 0.15 7 19 1.51 2.77 20 1 0.08 0.15 8 6 0.48 0.87 23 1 0.08 0.15 9 3 0.24 0.44 26 1 0.08 0.15 10 4 0.32 0.58 56 1 0.08 0.15 合计 1 258 99.99 表 2 核心作者及论文分布
Table 2. Core authors and distribution of their studies
序号 作者姓名 国家 所属单位 主要成果分布的期刊 1 周国模 中国 浙江农林大学 Agricultural and Forest Meteorology、Journal of Environmental Management 2 姜培坤 中国 浙江农林大学 Plant and Soil、Forest Ecology and Management 3 杜华强 中国 浙江农林大学 ISPRS Journal of Photogrammetry and Remote Sensing、IEEE Transactions on
Geoscience and Remote Sensing4 李永夫 中国 浙江农林大学 Agricultural and Forest Meteorology、Plant and Soil 5 王兵 中国 中国林业科学研究院 Scandinavian Journal of Forest Research、BioResources 6 宋新章 中国 浙江农林大学 Agricultural and Forest Meteorology、Soil Biology & Biochemistry 7 宋照亮 中国 天津大学 Global Change Biology、Science of The Total Environment 8 王海龙 中国 浙江农林大学 Environmental Science and Pollution Research、Journal of Soils and Sediments 9 庄舜尧 中国 中国科学院 Forestry、Journal of Soils and Sediments 10 张小川 加拿大 阿尔伯塔大学 Plant and Soil、Ecology 11 范少辉 中国 国际竹藤中心 Catena、Journal of Cleaner Production 12 施拥军 中国 浙江农林大学 Forest Ecology and Management、International Journal of Remote Sensing 13 吴家胜 中国 浙江农林大学 Journal of Plant Nutrition and Soil Science、Soil Research 14 江洪 中国 南京大学 Forest Ecology and Management、Science of The Total Environment 15 李永春 中国 浙江农林大学 Soil Biology & Biochemistry、Plant and Soil 16 徐小军 中国 浙江农林大学 Agricultural and Forest Meteorology、Annals of Forest Science 17 官凤英 中国 国际竹藤中心 Catena、Scientific Reports 18 NATH Arun Jyoti 美国 俄亥俄州立大学 Global Ecology and Conservation 19 KOMATSU Hikaru 日本 九州大学 Agricultural and Forest Meteorology 20 HUFF Matthew D 美国 欧道明大学 Journal of Environmental Management -
[1] 周国模, 姜培坤. 毛竹林的碳密度和碳贮量及其空间分布[J]. 林业科学, 2004, 40(6): 20 − 24. ZHOU Guomo, JIANG Peikun. Density, storage and spatial distribution of in Phyllostachys pubescens forest [J]. Sci Sliv Sin, 2004, 40(6): 20 − 24. [2] 周芳纯. 毛竹竹冠结构的研究[J]. 南京林产工业学院学报, 1982(3): 46 − 73. ZHOU Fangchun. Study on the structure of bamboo crown of Phyllostachys pubescens [J]. J Nanjing Technol Coll For Prod, 1982(3): 46 − 73. [3] 聂道平. 毛竹林结构的动态特性[J]. 林业科学, 1994, 30(3): 201 − 208. NIE Daoping. Structural dynamics of bamboo forest stand [J]. Sci Sliv Sin, 1994, 30(3): 201 − 208. [4] ISAGI Y, KAWAHARA T, KAMO K, et al. Net production and carbon cycling in a bamboo Phyllostachys pubescens stand [J]. Plant Ecol, 1997, 130(1): 123. [5] 周国模. 毛竹林生态系统中碳储量、固定及其分配与分布的研究[D]. 杭州: 浙江大学, 2006. ZHOU Guomo. Carbon Storage, Fixation and Distribution in Mao Bamboo (Phyllostachys pubescens) Stands Ecosystem[D]. Hangzhou: Zhejiang University, 2006. [6] CHEN Xiangang, ZHANG Xiaoquan, ZHANG Yiping, et al. Changes of carbon stocks in bamboo stands in China during 100 years [J]. For Ecol Manage, 2009, 258(7): 1489 − 1496. [7] NATH A J, DAS G, DAS A K. Above ground standing biomass and carbon storage in village bamboos in North East India [J]. Biomass Bioenergy, 2009, 33(9): 1188 − 1196. [8] KUEHL Y, LI Y, HENLEY G. Impacts of selective harvest on the carbon sequestration potential in Moso bamboo (Phyllostachys pubescence) plantations [J]. For Trees Livelihoods, 2013, 22(1): 1 − 18. [9] MAO Fangjie, ZHOU Guomo, LI Pingheng, et al. Optimizing selective cutting strategies for maximum carbon stocks and yield of Moso bamboo forest using BIOME-BGC model [J]. J Environ Manag, 2017, 191: 126 − 135. [10] 敖贵艳, 吴伟光, 曹先磊, 等. 基于三阶段DEA模型的碳汇竹林生产效率分析: 来自浙江安吉的实证[J]. 农林经济管理学报, 2019, 18(5): 656 − 666. AO Guiyan, WU Weiguang, CAO Xianlei, et al. Analysis on production efficiency of carbon sink bamboo forest based on three-stage DEA model: evidence from Zhejiang Anji [J]. J Agro-For Econ Manage, 2019, 18(5): 656 − 666. [11] 张小全, 李怒云, 武曙红. 中国实施清洁发展机制造林和再造林项目的可行性和潜力[J]. 林业科学, 2005, 41(5): 139 − 143. ZHANG Xiaoquan, LI Nuyun, WU Shuhong. Analysis on feasibility and potentiality of afforestation and reforestation under the clean development mechanism of the Kyoto Protocol [J]. Sci Sliv Sin, 2005, 41(5): 139 − 143. [12] NATH A J, LAL R, DAS A K. Managing woody bamboos for carbon farming and carbon trading [J]. Global Ecol Conserv, 2015, 3: 654 − 663. [13] LOBOVIKOV M, SCHOENE D, LOU Yiping. Bamboo in climate change and rural livelihoods [J]. Mitigation Adapt Strategies Glob Change, 2012, 17(3): 261 − 276. [14] WU Weiguang, LIU Qiang, ZHU Zhen, et al. Managing bamboo for carbon sequestration, bamboo stem and bamboo shoots [J]. Small-scale For, 2015, 14(2): 233 − 243. [15] DWIVEDI A K, KUMAR A, BAREDAR P, et al. Bamboo as a complementary crop to address climate change and livelihoods -insights from India [J]. For Policy Econ, 2019, 102: 66 − 74. [16] 陈茂铨, 金晓春, 吴林森, 等. 竹林碳汇功能及其影响因子研究进展[J]. 竹子研究汇刊, 2010, 29(3): 5 − 9. CHEN Maoquan, JIN Xiaochun, WU Linsen, et al. Research progress of carbon sink and its influencing factors on bamboo forest [J]. J Bamboo Res, 2010, 29(3): 5 − 9. [17] ZHOU Guomo, MENG Cifu, JIANG Peikun. Review of carbon fixation in bamboo forests in China [J]. Bot Rev, 2011, 77(3): 262 − 270. [18] 邱均平, 刘敏. 1998−2007年我国竞争情报领域论文的计量规律研究[J]. 情报科学, 2009, 27(9): 1281 − 1285. QIU Junping, LIU Min. Research on the quantitive law of the article on competitive intelligence field from 1998 to 2007 in China [J]. Inf Sci, 2009, 27(9): 1281 − 1285. [19] 陈悦, 陈超美, 刘则渊, 等. CiteSpace知识图谱的方法论功能[J]. 科学学研究, 2015, 33(2): 242 − 253. CHEN Yue, CHEN Chaomei, LIU Zeyuan, et al. The methodolog function of CiteSpace mapping knowledge domains [J]. Stud Sci Sci, 2015, 33(2): 242 − 253. [20] 侯瑞芳, 李玲, 陈嘉勇, 等. 基于文献数据规律的机构知识库数据转换模型研究[J]. 图书情报工作, 2014, 58(17): 131 − 135. HOU Ruifang, LI Ling, CHEN Jiayong, et al. Exploring the regularities in bibliographic data: research on the data conversion model of institutional repository [J]. Libr Inf Serv, 2014, 58(17): 131 − 135. [21] 孙建军. 文献情报计量理论和方法[M]. 南京: 南京大学出版社, 1994. [22] 国家林业和草原局. 我国首个竹子碳汇造林方法学正式颁布实施[DB/OL]. (2012-12-03)[2020-11-25]. http://www.forestry.gov.cn/portal/main/s/72/content-573717.html. [23] YEN Tianming, LEE J S. Comparing aboveground carbon sequestration between moso bamboo (Phyllostschys heterocycla) and China fir (Cunninghamia lanceolata) forests based on the allometric model [J]. For Ecol Manage, 2011, 261(6): 995 − 1002. [24] ZHOU Yufeng, ZHOU Guomo, DU Huaqiang, et al. Biotic and abiotic influences on monthly variation in carbon fluxes in on-year and off-year Moso bamboo forest [J]. Trees, 2019, 33(1): 153 − 169. [25] LI Pingheng, ZHOU Guomo, DU Huaqiang, et al. Current and potential carbon stocks in Moso bamboo forests in China [J]. J Environ Manage, 2015, 156: 89 − 96. [26] SCURLOCK J M O, DAYTON D C, HAMES B. Bamboo: an overlooked biomass resource? [J]. Biomass Bioenerg, 2000, 19: 229 − 244. [27] JIANG Peikun, MENG Cifu, ZHOU Guomo, et al. Comparative study of carbon storage in different forest stands in subtropical China [J]. Bot Rev, 2011, 77(3): 242 − 251. [28] LI Chong, SHI Yongjun, ZHOU Guomo, et al. Effects of different management approaches on soil carbon dynamics in Moso bamboo forest ecosystems [J]. Catena, 2018, 169: 59 − 68. [29] XU Lin, SHI Yongjun, ZHOU Guomo, et al. Structural development and carbon dynamics of Moso bamboo forests in Zhejiang Province, China [J]. For Ecol Manage, 2018, 409: 479 − 488. [30] GU Lei, ZHOU Yufeng, MEI Tingting, et al. Carbon footprint analysis of bamboo scrimber flooring: implications for carbon sequestration of bamboo forests and its products[J]. Forests, 2019, 10: 51. doi: 10.3390/f10010051 [31] VOGTLÄNDER J G, van der VELDEN N M, van der LUGT P. Carbon sequestration in LCA, a proposal for a new approach based on the global carbon cycle; cases on wood and on bamboo [J]. Int J Life Cycle Assess, 2014, 19: 13 − 23. [32] VOGTLÄNDER J, van der LUGT P, BREZET H. The sustainability of bamboo products for local and Western European applications LCAs and land-use [J]. J Cleaner Prod, 2010, 18(13): 1260 − 1269. [33] JANSSEN J J A. Designing and building with bamboo INBAR technical report 20[R]. Beijing: International Network for Bamboo and Rattan (INBAR), 2000. [34] SONG Xinzhang, ZHOU Guomo, JIANG Hong, et al. Carbon sequestration by Chinese bamboo forests and their ecological benefits: assessment of potential, problems, and future challenges [J]. Environ Rev, 2011, 19: 418 − 428. [35] YIN Jiayang, GE Zhipeng, DENG Xu, et al. Abandonment lead to structural degradation and changes in carbon allocation patterns in Moso bamboo forests[J]. For Ecol Manage, 2019, 449: 117449. doi: 10.1016/j.foreco.2019.117449. [36] GU Lei, WU Weiguang, JI Wei, et al. Evaluating the performance of bamboo forests managed for carbon sequestration and other co-benefits in Suichang and Anji, China[J]. For Policy Econ, 2019, 106: 101947. doi: 10.1016/j.forpol.2019.101947. [37] EGGLESTON H S, BUENDIA L, MIWA K, et al. IPCC guidelines for national greenhouse gas inventories[R]. Geneva: IPCC, 2006 [38] LUYSSAERT S, SCHULZE E D, BÖRNER A, et al. Old-growth forests as global carbon sinks [J]. Nature, 2008, 455: 213 − 215. [39] DU Huaqiang, ZHOU Guomo, GE Hongli, et al. Satellite-based carbon stock estimation for bamboo forest with a non-linear partial least square regression technique [J]. Int J Remote Sensing, 2012, 33(6): 1917 − 1933. 期刊类型引用(2)
1. 肖箫,周阳,王树梅,郑亚雄,官凤英. 带状采伐对新生毛竹空间结构及稳定性的影响. 南京林业大学学报(自然科学版). 2023(04): 139-147 . 百度学术
2. 王铮屹,戴其林,柏宬,陈涵,库伟鹏,赵明水,余树全. 天目山皆伐毛竹林自然更新群落类型与多样性分析. 浙江农林大学学报. 2020(04): 710-719 . 本站查看
其他类型引用(3)
-
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200501