-
油茶广义上是山茶科Theaceae山茶属Camellia中种子油脂含量较高的一类植物,是世界四大木本油料树种之一。其中,普通油茶Camellia oleifera是栽培面积最大、最重要的物种。科学经营油茶有保持水土、涵养水源、增加碳汇和调节气候等生态效益,具有重要的生态价值;同时茶油中不饱和脂肪酸高达90%以上,被誉为“油中软黄金”,具有很高的营养和经济价值[1],因此油茶产业是中国山区林农脱贫致富的重要产业。良种是油茶产业健康发展的基础和关键。提高果实产量,发掘高含油率的种质是选育油茶高产良种的重要途径之一。前人对普通油茶的选育大多以果实产量为主要育种目标,种仁含油率的分析和评估还处于起步阶段[2]。研究普通油茶种仁含油率等经济性状的遗传变异规律,可为油茶高含油率种质创制与筛选提供科学依据,对油茶高产良种选育具有重要意义[3]。
杂交育种是林木育种的有效技术之一,通过杂交创造新的变异,可有效缩短育种周期[4]。杂交育种策略在桉树Eucalyptus robusta[5]、杨树Populus spp.[6]、马尾松Pinus massniana[7]、杉木Cunninghamia lanceolata[8]和马褂木Liriodendron sino-americanum[9]等用材树种良种选育中发挥了重要作用,同时培育了大量良种。亲本的科学选配是杂交育种成功的先决条件[10],对杂交亲本进行配合力等遗传参数估算,筛选优良的亲本和亲本组合,能够有效提高杂交育种效率[11]。配合力是指亲本对子代性状的影响力,包括一般配合力和特殊配合力[12]。一般配合力反映亲本的育种利用价值并能预测后代的表现[13],特殊配合力是某一特定组合后代偏离双亲一般配合力的表型偏差[14]。高配合力亲本能够更好地遗传优势性状,在一定程度上预测杂交子代表型,缩小筛选育种材料范围,节省育种时间,提高育种效率[15]。目前,普通油茶的杂交育种工作主要局限于简单互补性状的亲本杂交,关于亲本配合力、重要性状遗传力等遗传参数的研究还处于起步阶段[16]。林萍等[17]对普通油茶杂交子代幼林生长、含油率等性状进行了亲本的配合力分析,初步筛选了一批具有育种潜力的杂交亲本与组合。但由于林木大多数性状的亲本配合力、遗传力等遗传参数会随着树龄的增长而变化。以幼龄林为研究对象对杂交育种的指导具有局限性,因此,以普通油茶杂交子代成林评估各性状的遗传参数显得非常重要。
种仁含油率是油茶高产育种的最主要指标之一。木质素、纤维素、半纤维素等在植物的生长发育过程中具有重要作用,主要表现在增强植物体的机械强度、疏导水分和营养物质的运输、阻止病原菌的侵染以及增强对各种胁迫的防御能力等[18]。MIAO等[19]研究发现:油菜Brassica napus种皮中木质素、纤维素和半纤维素质量分数与含油率呈显著负相关。王安妮等[20]研究也发现:油茶种仁含油率与木质素、纤维素质量分数亦具有显著相关性。因此,研究木质素、纤维素和半纤维素质量分数的遗传规律,对油茶高产育种具有一定的指导意义。
本研究以普通油茶全双列杂交的20个杂交组合为对象,分析了林龄为8 a的盛产期子代群体种仁含油率、木质素、纤维素和半纤维素质量分数的变异规律,探讨了各性状间的相关关系,评估了亲本在4个性状的配合力效应,解析了4个性状在油茶成林阶段的遗传力和杂种优势,为制定油茶高产杂交育种策略提供理论依据。
-
在浙江省金华市婺城区东方红林场国家油茶种质资源收集库内,选择普通油茶无性系‘长林4号’ ‘长林10号’‘长林40号’‘长林53号’‘长林95号’(表1),按照5×5全双列杂交设计创制了20个杂交组合(无自交)。于2014年春季利用杂交子代2年生幼苗营建子代测定林。控制授粉、群体的创制与子代测定林营造管理等参照林萍等[17]的方法。
表 1 亲本种仁含油率相关性状的平均值
Table 1. Mean value of oil content related traits of parent seed kernel
亲本 含油率/
(mg·g−1)木质素质
量分数/
(mg·g−1)纤维素质
量分数/
(mg·g−1)半纤维素质
量分数/
(mg·g−1)‘长林4号’ 425.32 109.06 84.73 42.65 ‘长林10号’ 402.81 105.87 75.48 49.02 ‘长林40号’ 421.91 98.70 77.87 46.87 ‘长林53号’ 412.38 109.38 77.73 40.82 ‘长林95号’ 400.05 108.78 85.14 35.31 -
于2021年秋季采集林龄为8 a的子代测定林果实样品测定相关性状。各杂交组合10株一小区,3次重复,共30株单株取样。每单株随机取30颗果实,测定种仁含油率、木质素、纤维素和半纤维素质量分数等性状平均值作为单株果实经济性状。种仁含油率测定采用姚小华等[21]和杨雨晨等[22]的方法。木质素、纤维素和半纤维素质量分数的测定采用王安妮等[20]的方法。
-
用Excel 2010整理数据。性状间采用Pearson相关性分析,家系间的表型差异进行单因素方差分析。利用固定模型估算杂交亲本的一般配合力、特殊配合力和反交效应[23−24],根据随机模型估算加性、显性、表型和遗传方差以及广义、狭义遗传力。估算参照林萍等[17]的方法。所有分析采用DPS软件[25]完成。
-
相关性分析(表2)发现:杂交群体中,普通油茶种仁中的含油率与木质素、纤维素、半纤维素质量分数呈显著(P<0.05)或者极显著负相关(P<0.01)。木质素与纤维素、半纤维素质量分数呈极显著正相关(P<0.01)。纤维素和半纤维素质量分数呈极显著负相关(P<0.01)。因此,在高产油茶良种选育中,除了含油率,木质素、纤维素和半纤维素质量分数也可作为高产种质筛选的重要判断依据。
表 2 普通油茶杂交一代群体种仁性状的相关性
Table 2. Correlation of the kernel traits of the first-filial progency of C. oleifera
性状 含油率 木质素
质量分数纤维素
质量分数半纤维素
质量分数含油率 1 木质素质量分数 −0.47** 1 纤维素质量分数 −0.11* 0.19** 1 半纤维素质量分数 −0.30** 0.22** −0.25** 1 说明:*表示显著相关(P<0.05);**表示极显著相关(P<0.01)。 -
20个家系的含油率平均值为411.84 mg·g−1,变异幅度为14.46%~53.71%;木质素、纤维素、半纤维素质量分数的平均值依次为106.36、80.19和42.93 mg·g−1,变异幅度分别为4.68%~22.02%、3.70%~13.00%和0.08%~11.89%,其中,半纤维素质量分数的变异系数最大,达38.03%。方差分析结果(表3)表明:含油率和木质素、纤维素、半纤维素质量分数在不同组合间的差异均达到极显著水平(P<0.01),表明采用不同优良性状的无性系开展杂交可为油茶育种创造出变异丰富的育种群体。
表 3 普通油茶杂交子代种仁性状方差分析
Table 3. Variance analysis of the kernel traits of the first-filial progeny of C. oleifera
性状 自由度 F 平均值/
(mg·g−1)变异
幅度/%变异
系数/%含油率 19 4.61** 411.84 14.46~53.71 13.22 木质素质量分数 19 6.54** 106.36 4.68~22.02 16.82 纤维素质量分数 19 7.06** 80.19 3.70~13.00 16.23 半纤维素质量分数 19 5.27** 42.93 0.08~11.89 38.03 说明:**表示极显著相关(P<0.01)。 多重比较结果(表4)表明:含油率最高的前2个家系为‘长林4号’ב长林40号’和‘长林4号’ב长林53号’,其含油率均值为451.58和443.71 mg·g−1,分别是含油率最小家系‘长林40号’ב长林10号’的1.18和1.16倍。‘长林4号’ב长林95号’和‘长林40号’ב长林95号’的木质素和纤维素质量分数在所有的家系中分别是最高和最低的,前者分别是后者的1.39和1.32倍。半纤维素质量分数均值最高的家系为‘长林40号’ב长林10号’,是最低家系‘长林95号’ב长林40号’的1.86倍。家系‘长林40号’ב长林10号’半纤维素质量分数排名第1位,但含油率在所有家系中最低,这与含油率和半纤维素质量分数呈显著负相关关系一致。
表 4 普通油茶杂交组合子代各种仁性状及其多重比较
Table 4. Multiple comparison results of kernel traits in first-filial progeny of C. oleifera
组合
(母本×父本)含油率/
(mg·g−1)木质素质量分数/
(mg·g−1)纤维素质量分数/
(mg·g−1)半纤维素质量分数/
(mg·g−1)‘长林4号’ב长林40号’ 451.58±44.39 a 95.08±20.05 fgh 79.89±14.75 bcdef 37.18±17.58 def ‘长林4号’ב长林53号’ 443.71±51.98 ab 109.13±15.61 bcdef 81.50±17.41 abcde 50.47±28.34 abc ‘长林53号’ב长林4号’ 443.37±30.62 ab 107.01±17.97 bcdef 76.47±13.62 cdef 43.49±20.44 bcdef ‘长林40号’ב长林95号’ 435.78±63.22 abc 89.47±13.94 h 69.54±15.58 f 42.08±19.71 bcdef ‘长林10号’ב长林4号’ 424.45±55.25 abcde 108.06±20.22 bcdef 72.66±14.60 ef 46.04±20.28 bcde ‘长林40号’ב长林4号’ 420..91±56.76 abcdef 107.72±15.00 bcdef 76.74±16.14 cdef 37.94±12.10 cdef ‘长林95号’ב长林40号’ 419.66±59.79 abcdef 111.95±24.13 abcde 85.03±13.79 abc 32.03±15.26 ef ‘长林53号’ב长林40号’ 416.62±44.69 abcdef 98.72±13.67 defgh 77.14±11.50 cdef 34.09±18.79 ef ‘长林40号’ב长林53号’ 412..07±50.31 bcdef 97.63±19.16 efgh 74.13±15.27 def 47.78±18.34 abcd ‘长林95号’ב长林53号’ 411.12±45.76 bcdef 106.66±24.80 bcdefg 78.83±13.87 bcdef 37.15±16.84 def ‘长林10号’ב长林95号’ 410.69±28.82 bcdef 109.58±4.43b cdef 70.68±6.51 ef 52.95±15.12 ab ‘长林4号’ב长林10号’ 408.77±19.15 bcdef 107.98±7.25 bcdef 86.05±5.39 ab 44.08±6.72 bcdef ‘长林95号’ב长林4号’ 403.41±80.21 cdef 101.71±13.46 cdefgh 87.75±14.86 ab 36.32±13.56 def ‘长林4号’ב长林95号’ 397.24±38.43 def 124.07±14.67 a 91.48±5.42 a 38.87±11.49 cdef ‘长林53号’ב长林10号’ 395.50±57.45 ef 111.34±37.01 abcde 83.36±13.95 abcd 40.06±16.08 bcdef ‘长林53号’ב长林95号’ 394.00±65.17 ef 120.46±24.40 ab 73.96±11.38 def 45.63±16.09 bcde ‘长林10号’ב长林53号’ 391.03±45.67 ef 113.45±20.75 abcd 79.91±13.28 bcdef 50.08±15.41 abc ‘长林95号’ב长林10号’ 388.98±48.55 ef 114.81±17.24 abc 88.96±15.89 ab 35.74±10.70 def ‘长林10号’ב长林40号’ 385.08±40.73 ef 92.39±15.12 gh 78.66±9.01 bcdef 47.02±13.68 bcde ‘长林40号’ב长林10号’ 382.87±65.80 f 99.97±20.04 cdefgh 91.08±20.64 a 59.66±20.08 a 说明:数据为平均值±标准差。同列不同小写字母表示差异极显著(P<0.01)。 -
本研究中不同组合间各性状均差异极显著(P<0.01)。在此基础上,进一步采用固定模型评估杂交亲本的配合力。由表5可知:杂交亲本在纤维素和半纤维素质量分数的一般配合力、特殊配合力和反交效应值差异均达极显著水平(P<0.01)。亲本含油率的一般配合力和特殊配合力差异达极显著水平(P<0.01),反交效应值无显著差异。木质素质量分数的亲本一般配合力和反交效应值差异达极显著水(P<0.01),特殊配合力差异不显著。可见,普通油茶杂交育种中,一般配合力、特殊配合力和反交效应值对杂交群体含油率和木质素、纤维素和半纤维素质量分数等性状具有极显著影响(P<0.01)。
表 5 普通油茶全双列杂交(无自交)配合力及反交效应值的方差分析
Table 5. Variance analysis of combining ability and reciprocal cross effect in complete diallel cross of C. oleifera
变异来源 自由度 F 含油率 木质素
质量分数纤维素质
量分数半纤维素
质量分数一般配合力 4 11.18** 15.57** 3.98** 7.26** 特殊配合力 5 6.45** 0.88 7.32** 3.88** 反交效应值 10 1.31 6.08** 8.10** 5.03** 说明:**表示差异极显著(P<0.01)。 对差异极显著的各亲本一般配合力多重比较(表6)表明:‘长林4号’含油率和纤维素质量分数的一般配合力均最高,分别为1.64和0.18,这与该良种年平均产油量高的特性一致。在半纤维素质量分数中,‘长林10号’的一般配合力最高,为0.54,明显高于其他亲本,同时‘长林10号’的含油率一般配合力最低,为−1.79。‘长林95号’木质素质量分数的一般配合力排名第1位,为0.46,含油率的一般配合力为−0.56,排名倒数第2位。可见,在高含油率杂交种质创制时,除了选择含油率一般配合力高的亲本外,选择木质素、纤维素和半纤维素质量分数一般配合力较低的亲本也是可行的。
表 6 各组合母本一般配合力估计值
Table 6. Estimated general combining ability of female parent of each cross
亲本 一般配合力估计值 含油率 木质素
质量分数纤维素
质量分数半纤维素
质量分数‘长林4号’ 1.64 0.16 0.18 −0.15 ‘长林10号’ −1.79 0.11 0.16 0.54 ‘长林40号’ 0.50 −0.97 −0.16 −0.09 ‘长林53号’ 0.21 0.23 −0.27 0.09 ‘长林95号’ −0.56 0.46 0.08 −0.38 说明:表中数据均为平均值。 不同杂交组合含油率的特殊配合力为−2.23~1.66,根据含油率的特殊配合力效应选出前5个亲本组合为‘长林40号’ב长林95号’(‘长林95号’ב长林40号’)、‘长林4号’ב长林53号’(‘长林53号×长林4号’)、‘长林10号’ב长林95号’(‘长林95号’ב长林10号’)、‘长林4号’ב长林10号’(‘长林10号’ב长林4号’)和‘长林4号’ב长林40号’(‘长林40号’ב长林4号’)(表7)。由于木质素、纤维素、半纤维素质量分数与含油率呈负相关,因此在以含油率为育种目标时,宜选择特殊配合力较低的组合。各杂交组合木质素含量的特殊配合力为−0.22~0.31,由于组合间差异不显著(表5),因此该特殊配合力效应只作为筛选优良组合的参考,不具有决定性。根据纤维素和半纤维素质量分数的特殊配合力,筛选出纤维素质量分数特殊配合力较低的组合有‘长林4号’ב长林10号’(‘长林10号’ב长林4号’)、‘长林10号’ב长林95号’(‘长林95号’ב长林10号’)、‘长林4号’ב长林40号’(‘长林40号’ב长林4号’)、‘长林40号’ב长林95号’(‘长林95号’ב长林40号’)和‘长林53号’ב长林95号’(‘长林95号’ב长林53号’)。筛选出半纤维素质量分数特殊配合力较低的组合有‘长林40号’ב长林95号’(‘长林95号’ב长林40号’)、‘长林4号’ב长林40号’(‘长林40号’ב长林4号’)、‘长林40号’ב长林53号’(‘长林53号’ב长林40号’)、‘长林4号’ב长林10号’(‘长林10号’ב长林4号’)、‘长林10号’ב长林53号’(‘长林53号’ב长林10号’)。
表 7 普通油茶亲本组合的特殊配合力及反交效应值
Table 7. Values of specific combining ability and reciprocal cross effect for different combinations of C. oleifera
序号 组合
(母本×父本)含油率 木质素质量分数 纤维素质量分数 半纤维素质量分数 特殊配合力 反交效应值 特殊配合力 反交效应值 特殊配合力 反交效应值 特殊配合力 反交效应值 1 ‘长林4号’ב长林53号’ 1.31 0.02 −0.22 0.11 −0.03 0.25 0.47 0.35 ‘长林53号’ב长林4号’ 2 ‘长林4号’ב长林95号’ −2.23 −0.31 0.02 0.03 0.68 0.19 −0.01 0.13 ‘长林95号’ב长林4号’ 3 ‘长林53号’ב长林95号’ −0.57 −0.86 0.03 0.69 −0.18 −0.24 0.14 0.42 ‘长林95号’ב长林53号’ 4 ‘长林4号’ב长林40号’ 0.30 1.53 0.31 −0.63 −0.22 0.16 −0.29 −0.04 ‘长林40号’ב长林4号’ 5 ‘长林40号’ב长林53号’ −0.46 −0.23 −0.08 −0.05 −0.03 −0.15 −0.19 0.68 ‘长林53号’ב长林40号’ 6 ‘长林40号’ב长林95号’ 1.66 0.81 −0.06 −1.12 −0.21 −0.77 −0.11 0.50 ‘长林95号’ב长林40号’ 7 ‘长林4号’ב长林10号’ 0.62 −0.78 −0.11 0.27 −0.43 0.67 −0.17 −0.10 ‘长林10号’ב长林4号’ 8 ‘长林10号’ב长林53号’ −0.28 −0.22 0.27 0.11 0.25 −0.17 −0.41 0.50 ‘长林53号’ב长林10号’ 9 ‘长林10号’ב长林95号’ 1.15 1.08 0.01 −0.26 −0.28 −0.91 −0.02 0.86 ‘长林95号’ב长林10号’ 10 ‘长林10号’ב长林40号’ −1.50 0.11 −0.16 −0.38 0.46 −0.62 0.60 −0.63 ‘长林40号’ב长林10号’ 依据反交效应。可判断一对杂交亲本中哪个做母本更易获得性状优良的杂交子代。通常,反交效应值为正时,正交组合能够更容易获得较高水平表型的子代,反交效应值为负时,采用反交组合将更易创制较高水平表型的子代。对依据特殊配合力筛选出的5个亲本组合,进一步根据反交效应确定高含油率的杂交组合为‘长林40号’ב长林95号’、‘长林4号’ב长林53号’、‘长林10号’ב长林95号’、‘长林10号’ב长林4号’和‘长林4号’ב长林40号’。低纤维素特殊配合力的杂交组合为‘长林10号’ב长林4号’、‘长林10号’ב长林95号’、‘长林40号’ב长林4号’、‘长林40号’ב长林95号’和‘长林53号’ב长林95号’。低半纤维素的杂交组合有‘长林53号’ב长林10号’、‘长林4号’ב长林40号’、‘长林53号’ב长林40号’、‘长林4号’ב长林10号’和‘长林95号’ב长林40号’。综合子代含油率、纤维素、半纤维素质量分数的配合力分析结果,筛选出‘长林40号’ב长林95号’和‘长林4号’ב长林53号’,这2个组合含油率的特殊配合力较高,含油率在20个家系中的排名分别为第4位和第5位,在纤维素质量分数排名为第20位和第8位;在半纤维素质量分数排名为第11位和第3位。推测这2个组合在普通油茶高含油率育种中具有重要的育种潜力和价值。
-
在本研究群体中,含油率和纤维素和半纤维素质量分数的显性方差均大于加性方差(表8)。其中,含油率的加性方差和显性方差分别为1.38、2.39,显性方差是加性方差的1.73倍;纤维素质量分数的遗传方差主要为显性方差,加性方差为0;半纤维素质量分数的显性方差略大于加性方差,是加性方差的1.24倍。可见这3个性状均以非加性遗传效应控制为主,加性效应次之,尤其是纤维素质量分数主要由显性遗传效应控制。木质素质量分数的加性方差为0.58,显性方差为0,这一性状主要由加性效应控制,这与木质素质量分数的特殊配合力方差差异不显著是一致的。含油率和木质素、纤维素和半纤维素质量分数的广义遗传力为7.86%~14.03%,狭义遗传力为0~14.03%,遗传力均较低,说明这些数量性状受到较强的环境效应影响。
表 8 普通油茶种仁性状的主要遗传参数
Table 8. Major genetic parameters for kernel traits of C. oleifera
遗传参数 加性
方差显性
方差遗传
方差表型
方差广义遗
传力/%狭义遗
传力/%含油率 1.38 2.39 3.74 30.00 12.55 4.60 木质素质量分数 0.58 0.00 0.58 4.17 14.03 14.03 纤维素质量分数 0.00 0.20 0.20 2.05 9.52 0.00 半纤维素质量分数 0.11 0.14 0.25 3.16 7.86 3.51 -
在本研究中,含油率与木质素、纤维素和半纤维质量分数在油茶群体中具有显著负相关关系。MIAO等[19]研究发现:油菜籽含油率与木质素和纤维素质量分数也存在显著负相关,且相关性系数与油茶相当;与半纤维素质量分数的相关性系数略低。WANG等[26]研究表明:油菜籽中的纤维组分包括木质素、纤维素和半纤维素,对含油率有负面影响。推测可能是纤维素和半纤维素的合成减少了进入种子油生物合成途径中的光合同化物,从而导致含油率降低[27−28]。SCHILBERT等[29]研究发现:BnaPAL4基因在这个过程中起重要作用。可见,木质素、纤维素、半纤维素质量分数等3个性状作为间接参考指标,衡量油茶种仁含油率是可行的。当油脂测定不便或样本材料较少时,可通过测定饼粕中木质素、纤维素和半纤维素质量分数间接评估油茶中的含油率。
-
目前,油茶产业上用的无性系良种多来源于选择育种,但通过选择育种来培育高产优质新品种的潜力逐渐减小。正确选择亲本是普通油茶杂交育种成功的基础和关键,开展杂交亲本一般配合力和特殊配合力的估算,能够更高效地提高育种效率。本研究发现:普通油茶杂交亲本在油脂性状上的一般配合力、特殊配合力和反交效应都差异极显著,表明亲本评估对以含油率为育种目标的普通油茶杂交非常关键。
本研究中,5个亲本在含油率以及木质素、纤维素和半纤维素质量分数等4个性状中的一般配合力有较大差异。同一亲本的一般配合力在不同的性状间存在明显差异,同一性状在不同亲本的一般配合力间也存在显著差异。如‘长林4号’在含油率的一般配合力最高,在半纤维素质量分数的一般配合力是倒数第2位。亲本在半纤维素质量分数的一般配合力范围较大,最高的‘长林10号’一般配合力为0.54,最低的‘长林95号’一般配合力为−0.38,这与桤木Alnus cremastogyne种间杂交亲本种实性状(种子长度、宽度、千粒重)的配合力情况相同[30]。同样地,各组合在4个油脂相关性状上的特殊配合力值也存在显著差异。
-
一般配合力和特殊配合力的相对重要性一直是林木杂交育种中亲本的评估重点[17]。研究表明:一般配合力和特殊配合力的相对重要性受测试材料、性状、地点和树龄等的影响[15]。牛慧敏等[31]研究发现:对于杉木幼林的干形性状,一般配合力测定比特殊配合力测定更重要。吴兵等[32]研究发现:桉树种间杂交子代的生长性状受加性与非加性效应的共同作用,但是以加性效应为主,所以应更关注双亲的一般配合力。林萍等[15]针对油茶5×5全双列杂交子代幼林生长性状的研究表明:一般配合力比特殊配合力更重要;对(不完全双列杂交)设计的油茶子代林分析发现:林龄不同其生长性状的一般配合力和特殊配合力方差分量也不相同,1年生子代林的一般配合力方差分量高于特殊配合力,而2年生子代林一般配合力方差分量均明显低于特殊配合力[16]。柴静瑜等[33]对进入盛产期的油茶巢式杂交子代群体进行遗传分析显示:组合间含油率和脂肪酸质量分数的差异主要来源于双亲的特殊配合力,评估双亲的特殊配合力远比亲本的一般配合力更重要。赵颖等[14]评估了马尾松纸浆材主要经济性状,发现特殊配合力相对重要性大于一般配合力。在本研究中,油茶杂交子代成林的含油率和纤维素质量分数的显性方差显著大于加性方差,这2个性状亲本的特殊配合力比一般配合力更重要。半纤维素质量分数的显性方差与加性方差相当,说明半纤维素质量分数亲本的一般配合力和特殊配合力同等重要。因此,在以含油率为育种目标的油茶杂交中,优先选择特殊配合力较高的亲本组合,同时兼顾亲本的一般配合力。
-
因受测试材料、性状、地点和树龄等因素的不同,遗传力也有差别。吴兵等[32]研究发现:桉树幼林各生长性状遗传力均在0.57以上。黄逢龙等[34]发现:杨树无性系的各树冠性状遗传力都较低,均小于0.50。在马尾松巢式交配子代生长性状遗传分析发现:胸径、树高和单株材的广义遗传力为0.48~0.69,受中度遗传控制[7],这与红松Pinus koraiensis[35]的研究结果一致。林萍等[17]研究发现:普通油茶杂交子代林幼龄时期种仁含油率、脂肪酸成分及其质量分数等经济性状受环境影响较大,遗传控制力度较弱。柴静瑜等[33]研究发现:盛产期后油茶油脂性状的遗传力显著升高,尤其是硬脂酸、油酸、亚油酸等决定油脂品质的脂肪酸质量分数。可见,子代幼林的遗传力评估仅可作为油茶杂交育种策略制定的参考,重点应关注成林的遗传力参数。
-
本研究发现:普通油茶含油率和木质素、纤维素、半纤维素质量分数4个性状在组合间存在显著差异,且含油率与木质素、纤维素、半纤维素质量分数间存在显著负相关;4个性状的亲本一般配合力、特殊配合力和反交效应值差异显著。含油率和纤维素质量分数的遗传方差以显性效应为主,半纤维素质量分数的加性方差与显性方差相当,而木质素质量分数的遗传方差则以加性效应为主;4个性状的遗传力均较低,受环境影响较大。在此基础上,筛选出可用于高含油率种质创制的优良亲本‘长林4号’和‘长林40号’,优良杂交组合‘长林40号’ב长林95号’和‘长林4号’ב长林53号’。
Genetic analysis of kernel oil content and related traits in complete diallel progenies of Camellia oleifera
-
摘要:
目的 研究普通油茶Camellia oleifera杂交子代种仁油脂相关性状的遗传变异规律,为杂交育种中的亲本选配提供依据。 方法 以普通油茶5个优良无性系为亲本进行5×5全双列杂交(无自交),测定20个杂交子代家系的种仁含油率和木质素、纤维素和半纤维素质量分数,分析性状间的相关性,明确亲本的一般配合力和杂交组合的特殊配合力,解析各性状的遗传变异规律。 结果 20个家系的种仁含油率为252.30~537.08 mg·g−1,木质素质量分数为49.64~222.20 mg·g−1,纤维素质量分数为42.11~130.43 mg·g−1,半纤维素质量分数为3.72~111.96 mg·g−1。种仁含油率以及木质素、纤维素和半纤维素质量分数在20个家系间均存在极显著差异(P<0.01),且4个性状间存在极显著的相关性(P<0.01),含油率与木质素质量分数相关性系数最高,为−0.47。除木质素质量分数的特殊配合力和含油率的反交效应外,亲本在4个性状中的一般配合力、特殊配合力和反交效应均差异极显著(P<0.01)。种仁含油率和半纤维素质量分数受加性效应和显性效应共同控制,且显性方差大于加性方差;木质素质量分数主要受加性效应控制,纤维素质量分数则主要受显性效应控制。4个性状的广义遗传力为7.86%~14.03%,狭义遗传力为0~14.03%,均受到较强的环境效应影响。 结论 根据配合力分析结果,筛选出2个普通油茶优良亲本‘长林4号’和‘长林40号’,2个优良组合‘长林40号’ב长林95号’和‘长林4号’ב长林53号’。表8参35 Abstract:Objective The objective is to study the genetic variation patterns of oil-related traits in complete diallel progenies of Camellia oleifera, and to provide basis for parental selection in cross breeding. Method 5×5 complete diallel hybridization (no self-crossbreeding) was carried out with 5 excellent clones of C. oleifera as parents, and the oil content, lignin, cellulose and hemicellulose contents of 20 hybrid families were determined. The correlation among traits was analyzed, the general combining ability of parents and the specific combining ability of hybrid combinations were determined, and the genetic variation rules among traits were analyzed. Result The kernel oil content of 20 families ranged from 252.30 to 537.08 mg·g−1, the lignin content was from 49.64 to 222.20 mg·g−1, the cellulose content was from 42.11 to 130.43 mg·g−1, and the hemicellulose content was from 3.72 to 111.96 mg·g−1. There were significant differences in oil, lignin, cellulose and hemicellulose contents of kernels among 20 families (P<0.01), and there were significant correlations (P<0.01) among the 4 traits. The correlation coefficient between oil content and lignin content was the highest (−0.47). Except for the specific combining ability of lignin content and reciprocal cross effect of oil content, the general combining ability, specific combining ability and reciprocal cross effect of the parents were significantly different (P<0.01) in the 4 traits. Oil and hemicellulose contents of kernels were jointly controlled by additive and dominant effect, and dominant variance was greater than additive variance. The lignin content was mainly affected by additive effect and the cellulose content was mainly controlled by dominant effect. The broad-sense heritability of the 4 traits ranged from 7.86% to 14.03%, and the narrow-sense heritability was 0 to 14.03%, all of which were strongly influenced by environmental factors. Conclusion Based on the analysis of combining ability, 2 excellent parents ‘Changlin No. 4’ and ‘Changlin No. 40’, as well as 2 excellent combinations ‘Changlin No. 40’× ‘Changlin No. 95’ and ‘Changlin No. 4’בChanglin No. 53’ are selected. [Ch, 8 tab. 35 ref.] -
Key words:
- Camellia oleifera /
- complete diallel cross /
- oil-related traits /
- genetic analysis
-
抚育间伐是常用的森林管理措施[1],因伐除林冠相对密集的部分树木,增加了太阳辐射,改变了森林小气候和土壤微生境,必然影响森林生态系统的养分和生物地球化学循环过程,以及该循环过程的核心环节——土壤微生物活动和酶活性。目前,土壤胞外酶研究更多关注于碳、氮和磷循环相关的降解酶,如碳酶[β-葡糖苷酶(BG)、纤维二糖水解酶(CBH)、β-木糖苷酶(BX)],氮酶[β-1,4-N-乙酰氨基葡萄糖苷酶(NAG)、亮氨酸氨基肽酶(LAP)]和磷酶[酸性或碱性磷酸酶(AcP)],其活性可作为微生物资源分配的代理指标[2]。在养分循环期间酶活性的相对丰度变化可反映微生物群落的代谢水平。SINSABAUGH等[3]最先通过整合分析发现:在全球尺度上碳、氮和磷循环相关酶计量比接近1∶1∶1,表明土壤酶化学计量比呈稳态性。但也有研究发现:土壤酶化学计量比呈非稳态性[4−6],说明微生物可能受到能量或关键营养物质(即碳、氮和磷)的限制[7]。
间伐措施对土壤胞外酶活性和酶化学计量的影响仍不确定。如土壤酶活性在森林间伐后会增加[8]、减少[9]或保持不变[10]。大多数研究主要围绕不同间伐强度对酶活性的影响[11]。间伐措施的影响效果还会随森林恢复过程而发生改变。如QIU等[12]对塞罕坝林场内华北落叶松Larix principis-rupprechtii人工林进行间伐恢复9 a后的结果显示:间伐措施显著增加了土壤BG、NAG+LAP和AcP活性。而LULL等[13]对地中海栎Quercus ilex林间伐后5个月至7 a内,氮和磷循环酶的活性并未发生显著改变。间伐处理和林下移除可在短时间内减少微生物对土壤资源的竞争,进而改变酶的活性[14]。但随树木生长速度和土壤养分含量的变化,微生物资源利用策略也发生改变,可能造成微生物受到不同养分的限制[15]。
目前,关于间伐处理对土壤胞外酶活性的研究大多侧重于间伐强度和人工林生态系统的研究,而对天然林生态系统间伐后不同恢复阶段土壤酶活性的研究较少。鉴于此,本研究采用空间代替时间的方法,探讨北亚热带秦岭松栎混交林在抚育间伐后不同恢复时间内林地表层土壤酶活性、酶化学计量比的变化规律,为制定森林可持续经营方案及合理的生态恢复措施提供理论依据。
1. 研究地区与研究方法
1.1 研究区概况
研究区位于陕西省安康市宁东林业局新矿林场(33°20′~33°26′N,108°32′~108°34′E),地处秦岭山脉,海拔为1 400.0~1 800.0 m。该区属于北亚热带与温带过渡区,年均气温为8.5 ℃,年平均降水量为908.0 mm,土壤为山地棕壤。研究区域为20世纪70年代末采伐后天然更新形成的次生针阔混交林[16],采取的是低强度间伐和林冠下补植等保护经营作业法。林内主要以油松Pinus tabuliformis、锐齿槲栎Quercus aliena var. acutiserrata、华山松Pinus armandii为主要建群种,伴生有漆树Toxicodendron vernicifluum、小叶女贞Ligustrum quihoui、青榨槭Acer davidii等树种。林下植被以卫矛Euonymus alatus、木姜子Litsea pungens、披针叶薹草Carex lanceolata、龙牙草Agrimonia pilosa、茜草Rubia cordifolia为主。
2021年10月,根据研究区内实际间伐处理、林木生长和分布状况,选择立地条件基本一致的林分,设置3种间伐处理,即未间伐(ck)、间伐恢复5 a (5 a,2018年间伐)和间伐恢复13 a (13 a,2010年间伐)。每个间伐处理设置4块面积为20 m×30 m的样地,共计12块样地。为防止样地之间相互干扰,样方之间的间隔不小于100 m。进行间伐处理后林下物种数量增加,更新了枫杨Pterocarya stenoptera、栗Castanea mollissima、桤木Alnus cremastogyne、灯台树Cornus controversa和胡桃楸Juglans mandshurica等树种。其中各样地内物种丰富度和Shannon-Wiener指数参照刘思泽等[17]的方法计算。样地调查基本概况见表1。
表 1 试验样地基本概况Table 1 Basic survey of test plots间伐后恢
复时间/a海拔/
m株数密度/
(株·hm−2)胸径/
cm郁闭度 物种
丰富度Shannon-Wiener
指数凋落物量/
(t·hm−2·a−1)林内主要树种 ck 1 585.00±61.85 1 420±88 14.60±0.49 0.7 25 2.48 7.01±0.37 油松、锐齿槲栎、华山松、毛樱桃、垂柳、
木姜子、三桠乌药5 1 457.32±13.14 1 208±355 13.80±0.84 0.5 32 2.78 5.69±0.26 锐齿槲栎、栗、油松、白桦、垂柳、
榆树、桤木13 1 757.57±20.17 1 254±207 13.80±1.19 0.6 29 2.68 6.55±0.29 毛樱桃、油松、锐齿槲栎、漆树、水蜡树、
木姜子、灯台树说明:毛樱桃Prunus tomentosa,垂柳Salix babylonica,三桠乌药Lindera obtusiloba,白桦Betula platyphylla,榆树Ulmus pumila,水蜡树Ligustrum obtusifolium。 1.2 采样设计
2023年7月,根据S型取样方法,在ck、5 a、13 a间伐样地内,用直径为3.6 cm的土钻采集0~10 cm的表层土样,为避免样品受到污染,将土壤混合储存于灭菌自封袋中,再用便携冷藏箱带回实验室。在室内充分混匀后过2 mm筛。一份新鲜土样于4 ℃冰箱保存,用于有效氮、土壤酶活性和土壤微生物生物量的测定;另一份土壤样品自然风干,用于其他土壤理化性质的测定。
1.3 测定指标及方法
1.3.1 土壤理化性质测定
土壤含水率采用105 ℃烘干法;土壤pH采用电位法(土水体积质量比为1.0∶2.5);土壤总氮采用元素分析仪测定;土壤有机碳采用重铬酸钾氧化-外加热法;土壤有效氮指铵态氮和硝态氮的总和,分别采用2 mol·L−1氯化钾浸提-靛酚蓝比色法、氯化钾提取-双波长紫外分光光度法测定;土壤总磷采用硫酸-高氯酸-钼锑抗比色法[18]。微生物生物量碳、氮采用氯仿熏蒸法,使用岛津总有机碳分析仪测定。
1.3.2 土壤胞外酶活性及酶计量的测定与计算
参照SAIYA-CORK等[19]的方法,测定与碳、氮、磷循环密切相关的酶活性,各种土壤酶的名称、简称及底物见表2。其中,水解酶(BG、BX、CBH、NAG、LAP、AcP)活性采用微孔板荧光法,用多功能酶标仪在365 nm波长处激发,450 nm波长处荧光测定;氧化酶(POX、PER)活性采用DOPA-紫外分光光度法,用多功能酶标仪在450 nm波长处测定。
表 2 土壤胞外酶的简称及所用底物Table 2 Soil enzyme along with their enzyme abbreviation and substrate of soil enzyme酶名称 简称 底物 β-葡糖苷酶β-glucosidase BG 4-MUB-β-D-glucoside β-木糖苷酶β-xalosidase BX 4-MUB-β-D-xylopyranoside 纤维二糖水解酶Cellobiohydrolase CBH 4-MUB-β-D-cellobioside β-N-乙酰氨基葡萄糖苷酶β-N-acetylglucosaminidase NAG 4-MUB-N-acetyl-β-D-glucosaminde 亮氨酸氨基肽酶Leucine aminopeptidase LAP L-leucine-7-amido-4 methylcounarin 酸性磷酸酶Acid phosphatase AcP 4-MUB-phosphatase 酚氧化物酶Phenol oxidase POX L-dihydroxyphenylalanine(L-DOPA) 过氧化物酶Peroxidase PER L-dihydroxyphenylalanine(L-DOPA) and H2O2 说明:MUB为甲基伞形酮酰Methylumbelliferyl。 通过计算碳、氮和磷酶活性的比值研究土壤胞外酶化学计量[20],同时,采用酶计量的载体分析,即用矢量长度(VL)及矢量角(VA)分析间伐处理对微生物能量和营养的相对限制状况[21],计算公式如下。
$$ {E}_\text{C/N}\text{}\text=\text{}\text{ln}{H}_{\mathrm{B}\mathrm{G}}\text{/ln}\text{(}{H}_{\text{NAG}}\text+{H}_{\text{LAP}}\text{)}\text{;}\text{}\text{}\text{} $$ (1) $$ {E}_\text{C/P}\text{}\text=\text{}\text{ln}{H}_{\text{BG}}\text{/ln}{H}_{{\mathrm{Ac}}\mathrm{P}};\text{}\text{}\text{}\text{}\text{}$$ (2) $$ {E}_\text{N/P}\text{= ln}\text{(}{H}_{\text{NAG}}\text+{H}_{\text{LAP}}\text{)}\text{/ln}{H}_{{\mathrm{Ac}}\mathrm{P}}; $$ (3) $$ {V}_{\text{L}}\text=\text{SQRT}\text{[}\text{(}{E}_\text{C/N}\text{)}^2\text+\text{(}{E}_\text{C/P}\text{)}^2\text{]}\text{;} $$ (4) $$ {V}_{\text{A}}\text=\text{Degrees}\text{[}\text{ATAN2}\text{(}{E}_\text{C/P}\text{,}\text{}{E}_\text{C/N}\text{)}\text{]}\text{。}$$ (5) 式(1)~(5)中:$ {E}_\text{C/N} $、$ {E}_\text{C/P} $、$ {E}_\text{N/P} $分别为土壤碳获取酶/氮获取酶比值、土壤碳获取酶/磷获取酶比值、土壤氮获取酶/磷获取酶比值;$ {H}_{\mathrm{B}\mathrm{G}}\mathrm{、}{H}_{\text{NAG}}\mathrm{、}{H}_{\text{LAP}}\mathrm{、}{H}_{{\mathrm{Ac}}\mathrm{P}} $分别为BG、NAG、LAP、AcP的酶活性;SQRT为平方根函数,Degrees为角度转换函数,ATAN2为反正切函数。VL越大,表明碳限制越严重。VA以45°为分界线,>45°为磷限制,<45°为氮限制。偏离程度越大,限制程度越强。
1.4 数据分析
使用SPSS 25.0对不同间伐恢复时间下的土壤理化性质、胞外酶活性、酶化学计量比、酶矢量长度和角度的差异进行单因素方差分析(one-way ANOVA)和最小显著性差异法(LSD)(P<0.05);利用Sperman检验分析与土壤酶活性和酶矢量变化显著相关的土壤因子,利用Origin 2021绘图。以酶活性及其矢量作为物种因子,土壤理化性质作为环境因子,利用Canoco 5.0进行冗余分析。通过方差膨胀因子(VIF)判断解释变量之间的线性关系,剔除共线性较强(VIF>5)的变量,对剩余的pH、有效氮、有机碳和全磷共4个变量进行研究。
2. 结果与分析
2.1 间伐恢复对土壤理化性质的影响
从表3可见:间伐恢复对土壤pH、有效氮、全磷、碳氮比、氮磷比、有机碳、微生物量碳、微生物量氮和微生物量碳氮比均有显著影响(P<0.05)。恢复5 a的土壤pH显著高于ck (P<0.05)。恢复13 a的土壤全磷、微生物量碳和微生物量氮均显著高于ck (P<0.05),分别是ck的1.28、1.19和1.15倍。土壤有效氮、碳氮比和氮磷比均显著低于ck (P<0.05)。恢复5 a的土壤有机碳显著降低了25.93% (P<0.05),但恢复13 a的土壤有机碳质量分数逐渐恢复至未间伐前水平。间伐恢复对土壤含水率和全氮无显著影响。
表 3 不同间伐恢复时间下土壤理化特性状况Table 3 Soil physical and chemical properties under different thinning treatments间伐后恢复时间/a pH 含水率/% 有效氮/(mg·kg−1) 全氮/(g·kg−1) 全磷/(g·kg−1) 碳氮比 ck 5.48±0.10 b 37.28±4.01 a 21.34±1.96 a 4.58±0.86 a 0.60±0.08 b 10.02±1.16 a 5 5.98±0.13 a 35.10±6.81 a 17.19±0.48 ab 3.28±0.68 a 0.52±0.10 b 9.34±1.41 ab 13 5.76±0.17 ab 40.37±1.67 a 16.56±0.58 b 3.93±0.44 a 0.77±0.07 a 8.55±1.32 b 间伐后恢复时间/a 氮磷比 有机碳/(g·kg−1) 微生物量碳/(g·kg−1) 微生物量氮/(g·kg−1) 微生物量碳氮比 ck 7.49±0.71 a 35.94±3.84 a 1.14±0.04 b 0.20±0.01 b 5.97±0.37 ab 5 6.45±0.95 ab 26.62±2.79 b 1.14±0.09 b 0.22±0.01 ab 5.09±0.13 b 13 5.04±0.34 b 33.33±2.27 ab 1.36±0.02 a 0.23±0.01 a 6.11±0.33 a 说明:数据均为平均值±标准误。不同小写字母表示不同处理间差异显著 (P<0.05)。 2.2 间伐恢复对土壤酶活性及胞外酶计量比的影响
从图1可见:间伐恢复对不同土壤酶活性的影响并不一致。恢复13 a时土壤BX、AcP和NAG+LAP活性显著下降(P<0.05),较ck分别降低了25.39%、22.92%和46.25%,同时土壤BG活性还显著提高(P<0.05),是ck的1.34倍(P<0.05)。土壤氧化酶(POX、PER)和CBH活性变化趋势与前4种酶不同,在恢复5 a时活性最低,在恢复13 a时活性最高。
通过矢量分析发现:VA>45°,且EN/P<1、EC/N>1 (图2A),表明研究区土壤微生物生长代谢主要受碳和磷共同限制。森林土壤EC/P和EN/P显著偏离1,且随间伐后时间的持续而逐渐恢复或显著增大(P<0.05,图2B)。VA和VL在3个间伐恢复间均有明显差异(图2C~D)。与ck相比,间伐恢复5 a的VA显著降低了4.42%,13 a的VL是ck的1.13倍(P<0.05)。表明间伐措施在恢复初期能够缓解土壤微生物受磷限制的状况,而后随恢复时间的持续,微生物受碳限制程度显著增加(P<0.05)。
2.3 土壤酶整体变化和土壤理化性质的相关性分析及冗余分析
相关性分析(表4)表明:水解酶活性与有效氮、有机碳和微生物量碳氮比均呈正相关关系。其中土壤碳获取酶(BG、CBH)与土壤全磷、有机碳、微生物量碳呈显著(P<0.05)或极显著(P<0.01)正相关,BX活性与土壤有效氮、微生物量碳氮比呈显著正相关(P<0.05)。土壤氮获取酶(NAG+LAP)和磷获取酶(AcP)均与土壤有效氮呈极显著正相关(P<0.01)。酚氧化物酶(PER)除与pH呈显著负相关外(P<0.05),还与有机碳、微生物量碳氮比呈极显著正相关(P<0.01)。VA仅与pH呈极显著负相关(P<0.01)。VL与全磷和微生物量碳呈显著正相关外(P<0.05),还与氮磷比呈极显著负相关(P<0.01)。
表 4 土壤酶变化与土壤理化性质的相关性分析Table 4 Correlation analysis between soil enzyme changes and soil physical and chemical properties指标 pH IN TP SOC MBC MBC/MBN N/P POX −0.54 −0.29 −0.04 −0.07 0.26 0.30 −0.04 PER −0.65* 0.19 0.32 0.45* 0.22 0.52** 0.21 BG 0.28 0.35 0.73** 0.55** 0.63** 0.38 −0.25 BX −0.53 0.54** −0.01 0.27 0.10 0.45* 0.56 CBH −0.01 0.24 0.46* 0.43* 0.53** 0.65** 0.17 AcP −0.72* 0.57** −0.38 0.06 −0.13 0.22 0.85** NAG+LAP 0.17 0.66** −0.08 0.14 −0.01 0.00 0.60 VA −0.95** 0.01 −0.30 −0.06 −0.04 0.35 0.43 VL 0.45 −0.28 0.70** 0.31 0.48* 0.15 −0.63* 说明:IN为土壤有效氮,TP为土壤全磷,SOC为土壤有机碳,MBC为微生物量碳,MBN为微生物量氮,N/P为氮磷比。POX为酚氧化物酶,PER为过氧化物酶,BG为β-葡糖苷酶,BX为β-木糖苷酶,CBH为纤维二糖水解酶,AcP为酸性磷酸酶,NAG+LAP为氮获取酶(β-N-乙酰氨基葡萄糖苷酶和亮氨酸氨基肽酶总和),VA为酶矢量角度,VL为酶矢量长度。*表示显著相关(P<0.05),**表示极显著相关(P<0.01)。 冗余分析(图3)表明:剔除存在共线性关系的变量后,pH、有效氮、有机碳和全磷共解释了酶活性和酶矢量变异的73.71%。其中pH和有机碳是对土壤酶整体变化解释度最高的因子,分别解释了变量的48.80%和13.10%,且pH与酶指标变化显著相关(P<0.05)。
3. 讨论
3.1 间伐恢复年限对土壤理化性质及微生物生物量的影响
间伐改变了秦岭松栎混交林表层土壤pH和养分质量分数,但在不同恢复阶段规律不一致。在本研究中,间伐导致pH提高,尤其是间伐恢复5 a后,这与许多学者的研究结果一致。如对云杉Picea crassifolia[22]林和火炬松Pinus taeda[23]林研究表明:间伐减少了针叶凋落物作为有机酸主要输入组分的产生,从而显著提高土壤表层pH。本研究中针叶树种的胸高断面积占比在间伐后有所降低,这在一定程度上能缓解土壤酸化。同时,间伐后土壤含水率、全氮、全磷和有机碳质量分数均呈先减少后逐步恢复的趋势。这可能是因为间伐短期内树冠层郁闭度减小,导致土壤蒸发增强的同时,也促进林下植被的快速生长,加快了土壤水分的消耗[24]。凋落物作为土壤最主要的有机碳源,通过微生物转化为腐殖质的同时也改变了土壤pH,影响凋落物的分解,改变土壤养分水平[25]。相较于ck,间伐恢复5、13 a后,凋落物量分别恢复至81.16%和93.41%,间伐恢复13 a的土壤全氮、全磷和有机碳质量分数有所提高,表明随时间的持续,林分结构及相关生态过程在一定程度上得到恢复。此外,本研究中微生物量碳、氮和土壤有效氮在间伐恢复13 a后的变化趋势不一致,可能因为间伐后林地内出现了栗、桤木和水蜡树等阳性植物,以及毛樱桃、白桦和漆树等阔叶树种,林地内相对多度增加,根系密度和根系分泌物增多,有利于土壤微生物生物量的积累[26]。而林下喜光物种的快速生长[27],对土壤游离态氮的需求增大,导致土壤有效氮质量分数有所降低。这与周璇等[28]对8年生柳杉Cryptomeria japonica人工林进行间伐后的研究结果一致。
3.2 间伐恢复年限对土壤酶活性的影响
在本研究中,间伐恢复年限导致土壤BX、AcP和NAG+LAP活性显著降低,但对其他土壤酶活性影响趋势不同,如POX、PER、BG和CBH通常在间伐恢复5 a时活性最低,在13 a时恢复到间伐前水平或高于未间伐处理(如BG)。这与其他研究结果相似,但并不完全一致[29−30]。这种结果可能是由于不同的林分环境以及微生物利用资源多寡的差异,导致土壤酶活性对同一干扰方式的不同改变[31]。随着间伐恢复时间的持续,易分解有机物质减少而难降解的碳相对较多[32],POX、PER和BG、CBH作为土壤中主要的木质素降解酶和纤维素降解酶,其活性得到显著提高,以增强微生物利用顽固性有机碳的能力。这与MEISAM等[33]的研究结果一致。而以分解几丁质和蛋白质、半纤维素等易分解物质为主的NAG+LAP、BX活性的显著降低也映证了SINSABAUGH等[34]的资源分配理论。
土壤胞外酶与土壤养分输入和微生物量等密切相关[35]。通过相关分析发现:BG和CBH活性与微生物量碳、全磷显著正相关,表明土壤微生物数量的变化与碳循环土壤酶活性的变化关系最为密切,而全磷则是磷素限制环境中影响微生物生长的主要因素[7, 16]。有效氮质量分数的减少虽然在一定程度上能促使氮获取酶的产生,但同样也会降低土壤微生物的活性和限制酶促反应底物供应,从而减少部分酶的释放[36],这与孙鹏跃等[37]的研究结果一致。冗余分析发现:土壤pH也是影响土壤酶活性的主要因素,并与部分酶变化表现出负相关关系,这与多数研究结果是一致的[3]。有研究表明:大多数土壤酶在特定的pH范围(最适值在4.0~5.5)内表现出最大的活性和稳定性,当pH超过这个范围时,酶活性会降低[38]。
3.3 间伐恢复年限对酶化学计量比和微生物养分限制的影响
本研究中所有处理的土壤酶矢量角度均>45°,符合亚热带地区森林土壤微生物更受磷素限制的理论[39]。同时参与土壤碳、氮和磷循环相关酶计量比偏离了表层土壤中接近1∶1∶1的平均水平[3],也在一定程度上反映了秦岭区域松栎混交林间伐恢复过程中微生物受碳和磷的共同限制,这与薛悦等[40]对安康市火池塘林区撂荒地恢复过程的研究结果相一致。与未间伐样地相比,间伐后恢复5 a时显著降低的酶矢量角度表征了微生物受到的磷限制减弱,随时间进程减弱效应逐渐消失,林内物种丰富度的提高和凋落物量的增加,促使土壤微生物分泌更多碳获取酶(如BG)来降解有机质,释放磷以供给微生物活动,以缓解磷限制,这些过程都会导致微生物碳限制的进一步增加。相关性分析结果中,酶矢量长度与微生物量碳呈显著正相关,证实了微生物需要更多的碳源来满足代谢活动所耗的能量,这与CUI等[41]的研究结果相似。
4. 结论
间伐改变了松栎混交林区域内的年凋落物总量及针叶与阔叶的凋落量比例,同时改变了林内物种丰富度和林分郁闭度,从而影响了土壤基本理化性质。抚育间伐在一定程度上能够缓解土壤微生物受磷限制的状况,但随恢复时间持续,林内凋落物量逐渐增加使土壤微生物受碳限制更为严重。
-
表 1 亲本种仁含油率相关性状的平均值
Table 1. Mean value of oil content related traits of parent seed kernel
亲本 含油率/
(mg·g−1)木质素质
量分数/
(mg·g−1)纤维素质
量分数/
(mg·g−1)半纤维素质
量分数/
(mg·g−1)‘长林4号’ 425.32 109.06 84.73 42.65 ‘长林10号’ 402.81 105.87 75.48 49.02 ‘长林40号’ 421.91 98.70 77.87 46.87 ‘长林53号’ 412.38 109.38 77.73 40.82 ‘长林95号’ 400.05 108.78 85.14 35.31 表 2 普通油茶杂交一代群体种仁性状的相关性
Table 2. Correlation of the kernel traits of the first-filial progency of C. oleifera
性状 含油率 木质素
质量分数纤维素
质量分数半纤维素
质量分数含油率 1 木质素质量分数 −0.47** 1 纤维素质量分数 −0.11* 0.19** 1 半纤维素质量分数 −0.30** 0.22** −0.25** 1 说明:*表示显著相关(P<0.05);**表示极显著相关(P<0.01)。 表 3 普通油茶杂交子代种仁性状方差分析
Table 3. Variance analysis of the kernel traits of the first-filial progeny of C. oleifera
性状 自由度 F 平均值/
(mg·g−1)变异
幅度/%变异
系数/%含油率 19 4.61** 411.84 14.46~53.71 13.22 木质素质量分数 19 6.54** 106.36 4.68~22.02 16.82 纤维素质量分数 19 7.06** 80.19 3.70~13.00 16.23 半纤维素质量分数 19 5.27** 42.93 0.08~11.89 38.03 说明:**表示极显著相关(P<0.01)。 表 4 普通油茶杂交组合子代各种仁性状及其多重比较
Table 4. Multiple comparison results of kernel traits in first-filial progeny of C. oleifera
组合
(母本×父本)含油率/
(mg·g−1)木质素质量分数/
(mg·g−1)纤维素质量分数/
(mg·g−1)半纤维素质量分数/
(mg·g−1)‘长林4号’ב长林40号’ 451.58±44.39 a 95.08±20.05 fgh 79.89±14.75 bcdef 37.18±17.58 def ‘长林4号’ב长林53号’ 443.71±51.98 ab 109.13±15.61 bcdef 81.50±17.41 abcde 50.47±28.34 abc ‘长林53号’ב长林4号’ 443.37±30.62 ab 107.01±17.97 bcdef 76.47±13.62 cdef 43.49±20.44 bcdef ‘长林40号’ב长林95号’ 435.78±63.22 abc 89.47±13.94 h 69.54±15.58 f 42.08±19.71 bcdef ‘长林10号’ב长林4号’ 424.45±55.25 abcde 108.06±20.22 bcdef 72.66±14.60 ef 46.04±20.28 bcde ‘长林40号’ב长林4号’ 420..91±56.76 abcdef 107.72±15.00 bcdef 76.74±16.14 cdef 37.94±12.10 cdef ‘长林95号’ב长林40号’ 419.66±59.79 abcdef 111.95±24.13 abcde 85.03±13.79 abc 32.03±15.26 ef ‘长林53号’ב长林40号’ 416.62±44.69 abcdef 98.72±13.67 defgh 77.14±11.50 cdef 34.09±18.79 ef ‘长林40号’ב长林53号’ 412..07±50.31 bcdef 97.63±19.16 efgh 74.13±15.27 def 47.78±18.34 abcd ‘长林95号’ב长林53号’ 411.12±45.76 bcdef 106.66±24.80 bcdefg 78.83±13.87 bcdef 37.15±16.84 def ‘长林10号’ב长林95号’ 410.69±28.82 bcdef 109.58±4.43b cdef 70.68±6.51 ef 52.95±15.12 ab ‘长林4号’ב长林10号’ 408.77±19.15 bcdef 107.98±7.25 bcdef 86.05±5.39 ab 44.08±6.72 bcdef ‘长林95号’ב长林4号’ 403.41±80.21 cdef 101.71±13.46 cdefgh 87.75±14.86 ab 36.32±13.56 def ‘长林4号’ב长林95号’ 397.24±38.43 def 124.07±14.67 a 91.48±5.42 a 38.87±11.49 cdef ‘长林53号’ב长林10号’ 395.50±57.45 ef 111.34±37.01 abcde 83.36±13.95 abcd 40.06±16.08 bcdef ‘长林53号’ב长林95号’ 394.00±65.17 ef 120.46±24.40 ab 73.96±11.38 def 45.63±16.09 bcde ‘长林10号’ב长林53号’ 391.03±45.67 ef 113.45±20.75 abcd 79.91±13.28 bcdef 50.08±15.41 abc ‘长林95号’ב长林10号’ 388.98±48.55 ef 114.81±17.24 abc 88.96±15.89 ab 35.74±10.70 def ‘长林10号’ב长林40号’ 385.08±40.73 ef 92.39±15.12 gh 78.66±9.01 bcdef 47.02±13.68 bcde ‘长林40号’ב长林10号’ 382.87±65.80 f 99.97±20.04 cdefgh 91.08±20.64 a 59.66±20.08 a 说明:数据为平均值±标准差。同列不同小写字母表示差异极显著(P<0.01)。 表 5 普通油茶全双列杂交(无自交)配合力及反交效应值的方差分析
Table 5. Variance analysis of combining ability and reciprocal cross effect in complete diallel cross of C. oleifera
变异来源 自由度 F 含油率 木质素
质量分数纤维素质
量分数半纤维素
质量分数一般配合力 4 11.18** 15.57** 3.98** 7.26** 特殊配合力 5 6.45** 0.88 7.32** 3.88** 反交效应值 10 1.31 6.08** 8.10** 5.03** 说明:**表示差异极显著(P<0.01)。 表 6 各组合母本一般配合力估计值
Table 6. Estimated general combining ability of female parent of each cross
亲本 一般配合力估计值 含油率 木质素
质量分数纤维素
质量分数半纤维素
质量分数‘长林4号’ 1.64 0.16 0.18 −0.15 ‘长林10号’ −1.79 0.11 0.16 0.54 ‘长林40号’ 0.50 −0.97 −0.16 −0.09 ‘长林53号’ 0.21 0.23 −0.27 0.09 ‘长林95号’ −0.56 0.46 0.08 −0.38 说明:表中数据均为平均值。 表 7 普通油茶亲本组合的特殊配合力及反交效应值
Table 7. Values of specific combining ability and reciprocal cross effect for different combinations of C. oleifera
序号 组合
(母本×父本)含油率 木质素质量分数 纤维素质量分数 半纤维素质量分数 特殊配合力 反交效应值 特殊配合力 反交效应值 特殊配合力 反交效应值 特殊配合力 反交效应值 1 ‘长林4号’ב长林53号’ 1.31 0.02 −0.22 0.11 −0.03 0.25 0.47 0.35 ‘长林53号’ב长林4号’ 2 ‘长林4号’ב长林95号’ −2.23 −0.31 0.02 0.03 0.68 0.19 −0.01 0.13 ‘长林95号’ב长林4号’ 3 ‘长林53号’ב长林95号’ −0.57 −0.86 0.03 0.69 −0.18 −0.24 0.14 0.42 ‘长林95号’ב长林53号’ 4 ‘长林4号’ב长林40号’ 0.30 1.53 0.31 −0.63 −0.22 0.16 −0.29 −0.04 ‘长林40号’ב长林4号’ 5 ‘长林40号’ב长林53号’ −0.46 −0.23 −0.08 −0.05 −0.03 −0.15 −0.19 0.68 ‘长林53号’ב长林40号’ 6 ‘长林40号’ב长林95号’ 1.66 0.81 −0.06 −1.12 −0.21 −0.77 −0.11 0.50 ‘长林95号’ב长林40号’ 7 ‘长林4号’ב长林10号’ 0.62 −0.78 −0.11 0.27 −0.43 0.67 −0.17 −0.10 ‘长林10号’ב长林4号’ 8 ‘长林10号’ב长林53号’ −0.28 −0.22 0.27 0.11 0.25 −0.17 −0.41 0.50 ‘长林53号’ב长林10号’ 9 ‘长林10号’ב长林95号’ 1.15 1.08 0.01 −0.26 −0.28 −0.91 −0.02 0.86 ‘长林95号’ב长林10号’ 10 ‘长林10号’ב长林40号’ −1.50 0.11 −0.16 −0.38 0.46 −0.62 0.60 −0.63 ‘长林40号’ב长林10号’ 表 8 普通油茶种仁性状的主要遗传参数
Table 8. Major genetic parameters for kernel traits of C. oleifera
遗传参数 加性
方差显性
方差遗传
方差表型
方差广义遗
传力/%狭义遗
传力/%含油率 1.38 2.39 3.74 30.00 12.55 4.60 木质素质量分数 0.58 0.00 0.58 4.17 14.03 14.03 纤维素质量分数 0.00 0.20 0.20 2.05 9.52 0.00 半纤维素质量分数 0.11 0.14 0.25 3.16 7.86 3.51 -
[1] 谭晓风. 油茶分子育种研究进展[J]. 中南林业科技大学学报, 2023, 43(1): 1 − 24. TAN Xiaofeng. Advances in the molecular breeding of Camellia oleifera [J]. Journal of Central South University of Forestry & Technology, 2023, 43(1): 1 − 24. [2] 张恒, 袁汕, 傅志强, 等. 广宁红花油茶优树综合评价及指标筛选[J]. 浙江农林大学学报, 2023, 40(2): 374 − 381. ZHANG Heng, YUAN Shan, FU Zhiqiang, et al. Comprehensive evaluation and index screening of excellent plants of Camellia semiserrata [J]. Journal of Zhejiang A&F University, 2023, 40(2): 374 − 381. [3] 李佳妮, 吴美珍, 李煜, 等. 浙江红花油茶实生群体性状变异及综合评价[J]. 森林与环境学报, 2024, 44(3): 274 − 282. LI Jiani, WU Meizhen, LI Yu, et al. Comprehensive analysis of the phenotypic variation among seedling populations of Camellia chekiangoleosa [J]. Journal of Forest and Environment, 2024, 44(3): 274 − 282. [4] XIE Hui, ZHU Wei, TENG Fengkui, et al. Thinking and practice of high quality japonica hybrid rice breeding [J]. Hybrid Rice, 2023, 38(4): 44 − 47. [5] WANG Chubiao, LAN Jun, WANG Jianzhong, et al. Population structure and genetic diversity in Eucalyptus pellita based on SNP markers [J/OL]. Frontiers in Plant Science, 2023, 14 : 1278427[2023-12-05]. doi: 10.3389/fpls.2023.1278427. [6] YING Liu, ZHAN Jianghan, MENG Xusu, et al. Transcriptomic profile analysis of Populus talassica×Populus euphratica response and tolerance under salt stress conditions [J/OL]. Genes, 2022, 13 (6): 1032[2023-12-05]. doi: 10.3390/genes13061032. [7] 刘青华, 金国庆, 王晖, 等. 马尾松巢式交配子代产脂力、生长和木材密度遗传分析[J]. 林业科学研究, 2014, 27 (6): 715 − 720. LIU Qinghua, JIN Guoqing, WANG Hui, et al. Genetic analysis of resin-producing capability, growth and wood basic density on progeny of nested mating design of Pinus massoniana [J]. Forest Research, 27 (6): 715 − 720. [8] 叶代全. 杉木第4代育种候选群体的12年生全同胞子代测定表现与选择[J]. 南京林业大学学报(自然科学版), 2022, 46(6): 240 − 50. YE Daiquan. Performances and selections on a 12-year-old full-sib progeny testing from one of the candidate population for the 4th generation Chinese fir breeding [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2022, 46(6): 240 − 50. [9] 方扬辉. 亚美马褂木优良无性系选择及遗传参数估计[J]. 福建热作科技, 2022, 47(3): 29 − 34. FANG Yanghui. Selection and genetic parameter estimation of superior clones of L. sino-americanum [J]. Fujian Science & Technology of Tropical Crops, 2022, 47(3): 29 − 34. [10] JONES G, LIZINIEWICV M, ADAMOPOULOS S, et al. Genetic parameters of stem and wood traits in full-sib silver birch families [J/OL]. Forests, 2021, 12 (2): 159[2023-12-05]. doi: 10.3390/f12020159. [11] QUAMRUZZAMAN A, SALIM M M R, AKHTER L, et al. Heterosis, combining ability and gene action for yield in bottle gourd [J]. American Journal of Plant Sciences, 2020, 11(5): 642 − 562. [12] 王家燚, 陈焕伟, 张蕊, 等. 木荷全同胞家系生长与分枝性状的遗传变异及效应分析[J]. 浙江农林大学学报, 2023, 40(4): 738 − 746 WANG Jiayi, CHEN Huanwei, ZHANG Rui, et al. Genetic variation and effect of growth and branching traits in full-sib families of Schima superba [J]. Journal of Zhejiang A&F University, 2023, 40(4): 738 − 746. [13] 晏姝, 韦如萍, 王润辉, 等. 南洋楹半同胞家系苗期变异及选择[J]. 浙江农林大学学报, 2024, 41(2): 306 − 313. YAN Shu, WEI Ruping, WANG Runhui, et al. Variation and selection of half-sib families of Falcataria falcata during seedling stage [J]. Journal of Zhejiang A&F University, 2024, 41(2): 306 − 313. [14] 赵颖, 周志春, 金国庆. 马尾松苗木生长和根系性状的GCA/SCA及磷素环境影响[J]. 林业科学, 2009, 45(6): 27 − 33. ZHAO Ying, ZHOU Zhichun, JIN Guoqing, et al. GCA/SCA of seedling growth and root parameters in Pinus massoniana and the phosphorus environment influence [J]. Scientia Silvae Sinicae, 2009, 45(6): 27 − 33. [15] 林萍, 姚小华, 滕建华, 等. 油茶5×5全双列杂交子代幼林生长性状的配合力分析[J]. 中南林业科技大学学报, 2016, 36(5): 26 − 32. LIN Ping, YAO Xiaohua, TENG Jianhua, et al. Analysis of genetic effects of growth traits of Camellia oleifera F1 descendants in complete diallel cross design Ⅲ [J]. Journal of Central South University of Forestry & Technology, 2016, 36(5): 26 − 32. [16] 林萍, 姚小华, 滕建华, 等. 油茶杂交子代幼林生长性状的遗传分析[J]. 经济林研究, 2016, 34(1): 6 − 11. LIN Ping, YAO Xiaohua, TENG Jianhua, et al. Genetic analysis of growth characteristics of young hybrid progeny forest in Camellia oleifera [J]. Non-wood Forest Research, 2016, 34(1): 6 − 11. [17] 林萍, 王开良, 姚小华, 等. 普通油茶杂交子代幼林经济性状的遗传分析[J]. 中南林业科技大学学报, 2017, 37(12): 31 − 38. LIN Ping, WANG Kailiang, YAO Xiaohua, et al. Genetic analysis of the economic traits of Camellia oleifera F1 descendant in half-diallelcross design [J]. Journal of Central South University of Forestry & Technology, 2017, 37(12): 31 − 38. [18] 涂白连, 伍艳芳, 刘新亮, 等. 近红外光谱法测定闽楠纤维长度及木质素质量分数[J]. 东北林业大学学报, 2024, 52(7): 91 − 95. TU Bailian, WU Yanfang, LIU Xinliang, et al. Determination of fiber length and lignin content of Phobe bournei using infrared spectroscopy [J]. Journal of Northeast Forestry University, 2024, 52(7): 91 − 95. [19] MIAO Liyun, CHAO Hongbo, CHEN Li, et al. Stable and novel QTL identification and new insights into the genetic networks affecting seed fiber traits in Brassica napus [J]. Theoretical and Applied Genetics, 2019, 132(6): 1762 − 1775. [20] 王安妮, 王开良, 柴静瑜, 等. 油茶巢式交配子代油脂相关性状的遗传分析[J]. 江西农业大学学报, 2024, 46(2): 379 − 388. WANG Anni, WANG Kailiang, CHAI Jingyu, et al. Genetic analysis of oil-related traits in offspring of nested mating of Camellia oleifera [J]. Acta Agriculturae Universitatis Jiangxiensis, 2024, 46(2): 379 − 388. [21] 姚小华, 王亚萍, 王开良, 等. 地理经纬度对油茶籽中脂肪及脂肪酸组成的影响[J]. 中国油脂, 2011, 36 (4): 31 − 34. YAO Xiaohua, WANG Yaping, WANG Kailiang, et al. Effects of geographic latitude and longitude on fat and its fatty acid composition of oil-tea camellia seeds [J]. China Oils and Fats, 2011, 36 (4): 31 − 34. [22] 杨雨晨, 陈娟娟, 姚小华, 等. 50个普通油茶果实性状综合评价[J]. 中国粮油学报, 2022, 37(12): 175 − 182. YANG Yuchen, CHEN Juanjuan, YAO Xiaohua, et al. Comprehensive evaluation of fruit quality of 50 varieties of Camellia oleifera [J]. Journal of the Chinese Cereals and Oils Association, 2022, 37(12): 175 − 182. [23] HAN Yanyun, WANG Kaiyi, LIU Zhongqiang, et al. Research on hybrid crop breeding information management system based on combining ability analysis [J]. Sustainability, 2020, 12(12): 11 − 16. [24] 吴珂, 余渝, 何良荣, 等. 陆地棉品质和产量性状配合力及杂种优势分析[J]. 江苏农业科学, 2023, 51(6): 67 − 73. WU Ke, YU Yu, HE Liangrong, et al. Combining ability and heterosis analysis of quality and yield characters of upland cotton [J]. Jiangsu Agricultural Sciences, 2023, 51(6): 67 − 73. [25] 唐启义. DPS数据处理系统 [M]. 北京: 科学出版社, 2013: 108 − 110. TANG Qiyi. Data Processing System [M]. Beijing: Science Press, 2013: 108 − 110. [26] WANG Jia, JIAN Hongju, WEI Lijuan, et al. Genome-wide analysis of seed acid detergent lignin (ADL) and hull content in rapeseed (Brassica napus L.) [J/OL]. PLoS One, 2015, 10 (12): 145045[2023-12-05]. doi: 10.1371/journal.pone.0145045. [27] 赵卫国, 塔娜, 王灏, 等. 甘蓝型油菜种子硫代葡萄糖苷含量的QTL定位及候选基因分析[J]. 西北植物学报, 2024, 44(8): 1261 − 1272. ZHAO Weiguo, TA Na, WANG Hao, et al. QTL mapping and candidate gene identification of seed glucosinolate content in Brassica napus [J]. Acta Botanica Boreali-Occidentalia Sinica, 2024, 44(8): 1261 − 1272. [28] LIU Liezhao, QU Cunmin, WITTKOP B, et al. A high-density SNP map for accurate mapping of seed fibre QTL in Brassica napus L. [J/OL]. PLoS One, 2013, 8 (12): 83052[2023-12-05]. doi: 10.1371/journal.pone.0083052. [29] SCHILBERT H M, HOLZENKAMP K, VIEHÖVER P, et al. Homoeologous non-reciprocal translocation explains a major QTL for seed lignin content in oil seed rape (Brassica napus L. ) [J/OL]. Theoretical and Applied Genetics, 2023, 136 (8): 172 [2023-12-05]. doi: 10.1007/s00122-023-04407-w. [30] 徐远, 刘世杰, 杨勇智, 等. 桤木属内种间杂交亲本种实性状的配合力及竞争优势分析[J]. 四川林业科技, 2020, 41(4): 51 − 57. XU Yuan, LIU Shijie, YANG Yongzhi, et al. Analysis of parental combining ability and competitive advantage for Alnus Mill. interspecific hybridization [J]. Journal of Sichuan Forestry Science and Technology, 2020, 41(4): 51 − 57. [31] 牛慧敏, 张振, 邱勇斌, 等. 杉木高世代杂交子代生长与木材性状遗传分析[J]. 森林与环境学报, 2024, 44(2): 120 − 126. NIU Huimin, ZHANG Zhen, QIU Yongbin, et al. Genetic analysis of growth and wood character of advanced generation hybrid offspring of Chinese fir [J]. Journal of Forest and Environment, 2024, 44(2): 120 − 126. [32] 吴兵, 兰俊, 庞贞武, 等. 桉树巢式交配设计子代林早期生长性状的遗传分析[J]. 西部林业科学, 2014, 43(2): 53 − 57. WU Bing, LAN Jun, PANG Zhenwu, et al. Genetic analysis of early growth traits of Eucalyptus forest by nested mating design [J]. Journal of West China Forestry Science, 2014, 43(2): 53 − 57. [33] 柴静瑜, 王开良, 姚小华, 等. 油茶巢式交配子代果实和油脂性状的遗传分析[J]. 林业科学研究, 2023, 36(1): 1 − 10. CHAI Jingyu, WANG Kailiang, YAO Xiaohua, et al. Genetic analysis of the fruit and oil related traits on hybrid offspring of nested mating of Camellia oleifera [J]. Forest Research, 2023, 36(1): 1 − 10. [34] 黄逢龙, 焦一杰, 梁军, 等. 杨树无性系树冠性状间的相关性与遗传差异[J]. 西北林学院学报, 2010, 25(1): 61 − 65. HUANG Fenglong, JIAO Yijie, LIANG Jun , et al. Correlation and genetic difference of crown traits of poplar clones [J]. Journal of Northwest Forestry University, 2010, 25(1): 61 − 65. [35] 张金博, 杨圆圆, 徐柏松, 等. 红松半同胞家系生长性状变异及优良家系和单株的筛选[J]. 东北林业大学学报, 2024, 52(2): 9 − 12. ZHANG Jinbo, YANG Yuanyuan, XU Baisong, et al. Variation in growth traits of half-sibling families and selection of fine families and individual plants in Pinus koraiensis [J]. Journal of Northeast Forestry University, 2024, 52(2): 9 − 12. -
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20230603