留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

马尼拉草坪苗圃化学除草效果

金佩英 汤引男 徐建新

俞芹, 王倩颖, 王宁杭, 等. 4种木兰属植物花粉萌发特性[J]. 浙江农林大学学报, 2018, 35(3): 505-510. DOI: 10.11833/j.issn.2095-0756.2018.03.015
引用本文: 金佩英, 汤引男, 徐建新. 马尼拉草坪苗圃化学除草效果[J]. 浙江农林大学学报, 1997, 14(2): 174-177.
YU Qin, WANG Qianying, WANG Ninghang, et al. Pollen germination characteristics of four Magnolia species[J]. Journal of Zhejiang A&F University, 2018, 35(3): 505-510. DOI: 10.11833/j.issn.2095-0756.2018.03.015
Citation: Jin Peiying, Tang Yinnan, Xu Jianxin.. Effectiveness of Chemical Weeding in the Lawn Nursery of Zoysia matrella[J]. Journal of Zhejiang A&F University, 1997, 14(2): 174-177.

马尼拉草坪苗圃化学除草效果

详细信息
    作者简介: 金佩英, 女, 1963年生, 工程师
    通信作者: 金佩英, 女, 1963年生, 工程师
  • 中图分类号: S688. 4

Effectiveness of Chemical Weeding in the Lawn Nursery of Zoysia matrella

  • 摘要: 在马尼拉草坪苗圃用50%杀草丹乳油3. 24 L hm- 2加水525 kg 或23. 5%果尔乳油1. 24 L hm- 2加水525 kg 喷雾,除草率分别达97. 0%和98. 8%,节省除草成本93. 45%和93. 19%。草坪生长良好。
  • 木兰属Magnolia植物分布范围广, 多为高大乔木或灌木, 抗性强, 株型优美, 早春季节开花, 花色艳丽, 具有较高的观赏价值, 在园林绿化中应用广泛[1], 具有广阔的市场价值。目前, 杂交育种是木兰属新品种选育的主要手段之一, 大部分种间杂交均表现为亲和[2]。花粉活力的高低直接影响杂交育种工作的成败。花粉活力的测定方法有直接授粉、离体萌发、染色法等[3]。直接授粉花粉生活力易受柱头可授性、授粉时期、花粉与柱头亲和性等因素影响[4]。根据染色原理不同, 染色法分为氯化三苯基四氮唑(TTC)、碘-碘化钾法、联苯胺法、醋酸洋红染色法等, 该方法虽简单易操作, 但所测得的花粉活力受花粉自身特性的影响较大, 如花粉壁的厚度、花粉内各种酶活性的强弱等[5], 未成熟、衰老或败育的花粉仍能染色[6]。离体培养法为花粉提供的条件与花粉在柱头内萌发的条件相似[7], 所得花粉活力与花粉在柱头上的活力最接近, 是检测花粉活力的最佳方法。近年来, 已有许多木兰属植物花粉形态、生活力及其储藏特性的相关研究, 如二乔玉兰Magnolia soulangeana[8], 天女木兰Magnolia sieboldii[9], 紫玉兰Magnolia liliflora[10], 景宁木兰Magnolia sinostellata[11]等, 研究表明不同植物适宜的培养基组分及质量浓度要求不同, 花粉离体培养中所需的萌发条件也不同。本研究在综合前人研究的基础上, 以望春玉兰Magnolia biondii, 长花玉兰Magnolia ‘Changhua’, 丹馨玉兰Magnolia ‘Danxin’, 黄山木兰Magnolia cylindrica等为试验材料, 研究不同培养基组分、培养温度及时间对花粉萌发的影响。旨在筛选出各植物材料适宜的培养基及花粉萌发最佳条件, 为木兰属植物的育种工作提供依据。

    望春玉兰、长花玉兰、丹馨玉兰、黄山木兰等4种木兰属植物均来自于浙江农林大学苗圃地, 将所采集花药置于硫酸纸上, 自然干燥24~36 h, 待花药开裂后收集花粉, 并放置于硅胶中干燥, -80 ℃条件下储藏备用。

    1.2.1   单因子试验

    采用离体培养法。蔗糖质量浓度梯度为0, 50, 100, 150, 200 g·L-1; 硼酸质量浓度梯度为0, 50, 100, 200, 300 mg·L-1; PEG-4000质量浓度梯度为0, 150, 200, 250, 300 g·L-1

    1.2.2   正交试验

    在单因子试验的基础上, 选取对试验材料影响较大的培养基组分及质量浓度, 进行L9(33)正交试验(表 1), 以得到最佳培养基组分。

    表  1  4种木兰属植物花粉正交试验的萌发率
    Table  1.  Pollen germination rate of four Magnolia species in orthogonal design experiment
    编号 P蔗糖/(g·L-1) P硼酸/ (mg·L-1) PPEG-4000/(g·L-1) 花粉萌发率/%
    望春玉兰 长花玉兰 丹馨玉兰 黄山木兰
    1 0 50 150 61.16 ± 4.05 abc 29.55 ± 3.89 bcd 12.24 ± 0.93 de 29.20 ± 4.73 c
    2 0 100 200 58.34 ± 1.69 abc 20.74 ± 0.52 cd 11.95 ± 1.92 e 30.43 ± 2.14 c
    3 0 200 250 54.95 ± 4.84 bc 18.78 ± 2.55 d 19.26 ± 2.83 bcd 18.36 ± 1.19 c
    4 50 50 200 69.23 ± 5.48 a 35.85 ± 6.55 bc 21.09 ± 1.80 bc 50.02 ± 2.75 b
    5 50 100 250 58.68 ± 1.38 abc 31.79 ± 3.63 bcd 16.50 ± 2.45 cde 69.54 ± 5.06 a
    6 50 200 150 65.37 ± 0.62 abc 29.43 ± 4.89 bcd 18.12 ± 0.75 cde 64.64 ± 5.92 ab
    7 100 50 250 68.50 ± 8.40 ab 37.66 ± 6.81 ab 25.58 ± 3.46 ab 56.37 ± 4.11 ab
    8 100 100 150 52.86 ± 2.35 c 34.73 ± 6.68 bcd 29.79 ± 0.99 a 51.76 ± 9.96 b
    9 100 200 200 65.86 ± 0.83 abc 51.47 ± 4.27 a 28.56 ± 2.80 a 50.85 ± 2.09 b
    R(望春玉兰) 6.28 9.67 4.68
    R(长花玉兰) 18.27 1.13 6.61
    R(丹馨玉兰) 13.50 2.57 0.09
    R(黄山木兰) 35.40 5.96 4.77
    说明:同列数据后不同小写字母表示差异显著(P < 0.05)
    下载: 导出CSV 
    | 显示表格
    1.2.3   最佳培养条件的确定

    利用最佳培养基, 把4种试验材料分别置于15, 20, 25, 30, 35 ℃下进行离体培养, 培养12 h后, 根据实验结果, 确定最适萌发温度。在最适温度条件下, 分别培养3, 6, 9, 12, 15 h, 确定最佳培养条件。

    采用离体培养法, 在双凹载玻片内滴入培养液, 将充分混匀后的花粉均匀点入培养液中, 将载玻片置于铺有湿润滤纸的培养皿内, 25 ℃, 8 400 lx人工气候培养箱中培养12 h。在显微镜下观察统计, 花粉管长度等于或超过花粉粒直径的花粉即视为已萌发。重复3次·处理-1,观察视野3个·重复-1, 所统计的花粉粒不少于50粒·视野-1。花粉萌发率=(萌发的花粉粒数/视野中花粉粒总数)×100%。

    使用Excel 2010对数据进行统计, 利用SPSS 22.0对原始数据进行反正弦转换并进行单因素方差分析(Duncan’s), 各处理间差异显著性水平为0.05。

    2.1.1   蔗糖对花粉萌发的影响

    试验结果表明:不同质量浓度蔗糖对4种木兰属植物花粉萌发率影响显著(图 1A)。随着蔗糖质量浓度的增加, 4种花粉萌发率均呈先增加后减小的变化趋势。不同植物最大萌发率及最适蔗糖质量浓度有所不同, 望春玉兰花粉适宜的蔗糖质量浓度为50和100 g·L-1, 花粉萌发率分别为62.56%和68.87%, 显著高于其他质量浓度处理下的萌发率(P<0.05);当蔗糖质量浓度超过100 g·L-1时, 望春玉兰花粉萌发率下降, 但蔗糖溶液中花粉萌发率均高于对照。长花玉兰在100 g·L-1的蔗糖溶液中, 萌发率达最大, 为18.02%, 显著高于其他质量浓度处理(P<0.05);蔗糖质量浓度为200 g·L-1时, 花粉萌发率最低, 为9.90%, 比对照低1.92%。在各质量浓度蔗糖培养基上, 丹馨玉兰花粉萌发率均低于10%, 蔗糖质量浓度为0~100 g·L-1时, 花粉萌发率差异不显著(P>0.05);而高质量浓度蔗糖溶液对丹馨玉兰花粉萌发起抑制作用, 150和200 g·L-1蔗糖质量浓度下, 花粉萌发率显著低于对照, 分别降低了3.47%和4.42%。黄山木兰花粉适宜的蔗糖质量浓度为50~100 g·L-1, 在此范围内花粉萌发率显著高于对照(P<0.05), 在200 g·L-1蔗糖溶液中, 黄山木兰花粉萌发率最低, 为2.46%, 低于对照22.95%。

    图  1  不同因素对4种木兰属植物花粉萌发率的影响
    Figure  1.  Effects of different factors on pollen germination rate of four Magnolia species
    2.1.2   硼酸对花粉萌发的影响

    硼酸对4种木兰属植物花粉萌发均有显著作用(图 1B)。其中, 望春玉兰花粉在200 mg·L-1硼酸的培养液中萌发率高达79.63%, 显著高于其他质量浓度下花粉的萌发率(P<0.05), 且比对照萌发率高46.89%, 高质量浓度的硼酸培养液中花粉萌发率与对照无显著差异(P>0.05)。在0~200 mg·L-1硼酸范围内, 长花玉兰花粉萌发率均随质量浓度的增加而上升, 其最适质量浓度为200 mg·L-1, 萌发率为25.57%, 显著高于对照; 在300 mg·L-1硼酸条件下, 萌发率开始下降。丹馨玉兰花粉在各质量浓度硼酸条件下萌发率差异均不显著(P>0.05), 当硼酸质量浓度为50和100 mg·L-1时, 花粉萌发率达最大, 分别为13.22%和14.93%, 对照萌发率最低, 为7.27%。黄山花粉萌发率随着硼酸质量浓度增大而增加, 在100 mg·L-1时, 其花粉萌发率达最大, 为47.09%, 显著高于200 mg·L-1下的萌发率(28.47%), 与其他质量浓度培养液中的花粉萌发率差异不显著(P>0.05)。

    2.1.3   PEG-4000对花粉萌发的影响

    随着PEG-4000质量浓度的增加, 4种木兰属植物花粉萌发率均呈先增加后减小的变化趋势(图 1C)。PEG-4000的质量浓度为200和250 g·L-1时, 望春玉兰花粉萌发率达最大, 分别为53.92%和51.21%, 显著高于其他质量浓度处理(P<0.05)。长花玉兰花粉萌发的最适PEG-4000质量浓度为150 g·L-1, 之后随着PEG-4000质量浓度的增加, 花粉萌发率降低; 当质量浓度为300 g·L-1时, 花粉萌发率仅为2.41%, 显著低于对照萌发率(13.60%)。可见高质量浓度的PEG-4000抑制长花玉兰花粉萌发。丹馨玉兰花粉在PEG-4000质量浓度为150~250 g·L-1时, 萌发率差异不显著(P>0.05), 显著高于其他处理(P<0.05);质量浓度为200 g·L-1时萌发率最大, 为17.29%;300 g·L-1 PEG-4000抑制花粉萌发, 萌发率仅为2.41%, 且低于对照(4.39%)。在150g·L-1PEG-4000培养液中黄山木兰花粉萌发率达最大(42.39%), 显著高于其他质量浓度下花粉萌发率, 随着质量浓度增大, 萌发率呈逐渐递减趋势。

    在单因子试验的基础上, 进行L9(33)正交试验, 寻找最佳培养基组合。试验结果表明(表 1):4种木兰属植物花粉萌发对液体培养基组分的质量浓度存在差异, 这可能因不同基因型花粉自身的萌发特性而异。望春玉兰在50 g·L-1蔗糖+50 mg·L-1硼酸+200 g·L-1PEG-4000培养基下萌发率高于其他培养基, 高达69.23%, 极差分析表明各因素对其花粉萌发率的影响依次为:硼酸>蔗糖>PEG-4000。长花玉兰在100 g·L-1蔗糖+200 mg·L-1硼酸+200 g·L-1 PEG-4000培养基下萌发率最高, 为51.47%, 极差分析显示对其花粉萌发率的影响因素依次为:蔗糖>PEG-4000>硼酸。丹馨玉兰在100 g·L-1蔗糖+100 mg·L-1硼酸+150 g·L-1 PEG-4000培养基下萌发率最高, 为29.79%, 极差分析显示对其花粉萌发率的影响因素依次为:蔗糖>硼酸>PEG-4000。黄山木兰在50 g·L-1蔗糖+100 mg·L-1硼酸+250 g·L-1 PEG-4000培养基下萌发率最高, 为69.54%, 极差分析表明各因素对其花粉萌发率的影响依次为蔗糖>硼酸>PEG-4000。

    2.3.1   最适培养温度

    不同温度对望春玉兰、长花玉兰、丹馨玉兰及黄山木兰花粉萌发率均有一定的影响(图 3A)。15~25 ℃内, 随着温度的升高, 萌发率随之增加, 25 ℃时各植物花粉萌发率显著高于其他温度处理萌发率(P<0.05), 依次为75.85%, 31.85%, 18.94%, 61.14%;在25~35 ℃内, 随着温度的上升, 萌发率受到抑制, 即温度过高或过低均不适合4种花粉萌发。由此可见:虽然4种不同遗传背景的花粉萌发率有较大差异, 但其最适萌发温度相同。

    图  2  不同培养条件下4种木兰属植物花粉萌发率的变化
    Figure  2.  Changes of different culture conditions on pollen germination rate of four Magnolia species
    2.3.2   最适培养时间

    由试验结果可知(图 3B):培养3 h时, 4种木兰属植物花粉均已萌发, 6~9 h萌发率迅速上升, 12~15 h萌发率趋于稳定。其中培养9 h时, 望春玉兰和黄山木兰花粉萌发率达到最大, 分别为71.19%和59.82%, 而长花玉兰和丹馨玉兰花粉萌发率在培养12 h时达到最大, 分别为44.50%, 23.43%。4种植物花粉虽最适培养时间有所不同, 但其萌发趋势几乎一致。

    蔗糖和硼酸是组成花粉离体培养基的基本成分, 蔗糖为花粉代谢、跨膜运输等过程提供必要的能量, 同时也是维持花粉内环境稳定的渗透调节物质[12]。本研究结果表明, 蔗糖对4种木兰属植物花粉萌发的影响水平不同, 蔗糖在长花玉兰、丹馨玉兰及黄山木兰花粉萌发中具有主导作用, 但对望春玉兰花粉萌发率影响水平次于硼酸, 这可能与不同植物生物学特性相关。4种木兰属植物花粉萌发最适蔗糖质量浓度(50~100 g·L-1)与二乔玉兰[8], 天女木兰[9]结果相符。

    硼元素在植物体内作为微量营养生长调节剂, 以花器官内含量居多, 且主要分布于柱头及子房, 硼对糖分的吸收具有促进作用, 参与果胶物质的合成, 且促进花粉管壁的形成, 从而加快花粉萌发生长[13]。本研究中, 4种木兰属植物所需最适硼酸质量浓度不同, 但在含有硼酸的培养基中花粉萌发率均高于对照, 即花粉萌发需要硼元素的参与。正交试验结果表明:望春玉兰花粉萌发所需硼酸质量浓度低于其他3种花粉, 可能由于蔗糖和PEG-4000的添加, 望春玉兰花粉对硼酸的需求量减少。长花玉兰在200 mg·L-1硼酸溶液中萌发率达最大, 与景宁木兰研究结果相同[11]; 丹馨玉兰、黄山木兰均在100 mg·L-1硼酸溶液中萌发率达最大, 与二乔玉兰、天女木兰结果一致[8-9]。由此可知:100~200 mg·L-1硼酸可促进木兰属植物花粉萌发生长。

    PEG-4000作为高分子渗透剂, 在花粉萌发过程中, 通常改变花粉内膜结构, 提高内膜通透性, 从而促进花粉粒萌发[14]。单因素试验表明:4种木兰属植物最适PEG-4000质量浓度为150~250 g·L-1, 对蜡梅Chimonanthus praecox[15]的研究发现, 低质量浓度PEG-4000对花粉离体萌发作用不显著, 而高浓度下, 花粉萌发率显著受到抑制, 本研究结果与此相一致。正交试验结果表明:PEG-4000在4种花粉萌发中均不是主导因子, 而若蜡梅花粉离体培养基内不含PEG-4000, 其花粉不萌发[15], 可能由于不同科植物花粉萌发过程中所需营养不同。PEG-4000是首次应用于木兰属植物花粉离体萌发, 对同属其他植物花粉萌发有待进一步研究。

    多数花粉萌发的最适温度为25 ℃[16], 本研究结果与此相同。也有研究发现[17]:由于植物分布区不同, 其花粉萌发对温度的响应有所差异。望春玉兰和黄山木兰花粉在培养9 h时萌发率达最大, 而长花玉兰和丹馨玉兰花粉最佳培养时间为12 h, 在各自最适培养时间下, 对花粉其进行观察, 花粉管互不交错,清晰,便于统计。

  • [1] 王颖, 蔡建国, 张哲琪, 刘艳伟, 王怡.  临安钱王陵公园植物群落结构及生态效益分析 . 浙江农林大学学报, 2020, 37(4): 729-736. doi: 10.11833/j.issn.2095-0756.20190464
    [2] 朱国华, 吴黎明, 颜福花, 倪荣新.  良种油茶栽培经济效益分析 . 浙江农林大学学报, 2014, 31(4): 632-638. doi: 10.11833/j.issn.2095-0756.2014.04.021
    [3] 朱强, 安黎, 邹梦辉, 田曾元, 郭予琦.  红叶李水浸液对4种草坪植物的化感作用 . 浙江农林大学学报, 2014, 31(5): 710-715. doi: 10.11833/j.issn.2095-0756.2014.05.008
    [4] 吴连海, 吴黎明, 倪荣新, 颜福花.  香榧栽培经济效益分析 . 浙江农林大学学报, 2013, 30(2): 299-303. doi: 10.11833/j.issn.2095-0756.2013.02.023
    [5] 汪淅锋, 沈月琴, 王枫, 郑旭理, 胡忠明.  毛竹碳汇造林经营模式及其效益分析 . 浙江农林大学学报, 2011, 28(6): 943-948. doi: 10.11833/j.issn.2095-0756.2011.06.018
    [6] 徐秋芳, 吴家森, 姜培坤.  板栗林不同除草方式对土壤养分及生物学性质的影响 . 浙江农林大学学报, 2010, 27(5): 659-663. doi: 10.11833/j.issn.2095-0756.2010.05.004
    [7] 施春华.  11种草甘膦助剂除草活性筛选 . 浙江农林大学学报, 2007, 24(1): 86-90.
    [8] 曾曙才, 俞元春.  苗圃土壤肥力评价及肥力系数与苗木生长的相关性 . 浙江农林大学学报, 2007, 24(2): 179-185.
    [9] 齐涛, 刘勇, 王春成, 袁功英, 李志丹.  苗圃库存销售管理系统的构建和开发 . 浙江农林大学学报, 2005, 22(2): 226-230.
    [10] 李建荣.  化学除草剂在宜林荒山造林中的应用 . 浙江农林大学学报, 2004, 21(4): 408-412.
    [11] 李建荣.  乙氧氟草醚、乙草胺和盖草能在苗圃中的应用 . 浙江农林大学学报, 2003, 20(4): 434-437.
    [12] 吴伟光, 顾蕾, 沈月琴.  森林生态效益补偿若干问题的思考 . 浙江农林大学学报, 2002, 19(3): 296-300.
    [13] 顾蕾, 姜春前.  生态旅游效益构成及特性分析 . 浙江农林大学学报, 2002, 19(3): 292-295.
    [14] 何云芳, 高立旦, 施玲玲, 郑国良, 金佩英, 高智慧.  化学除草剂在林业上的应用 . 浙江农林大学学报, 2001, 18(3): 305-309.
    [15] 白瑞栋, 金佩英, 汤引男, 方良海, 陈灿, 刘正富.  园林草坪化学除草试验 . 浙江农林大学学报, 2001, 18(1): 73-75.
    [16] 江志标, 许一心, 金正法, 邵小平, 胡小明.  杉木免耕法育苗技术 . 浙江农林大学学报, 1999, 16(3): 318-321.
    [17] 童品璋, 孟鸿飞, 朱向东, 王乐平, 楼焕泽.  白哺鸡竹早出高效栽培试验 . 浙江农林大学学报, 1998, 15(3): 324-326.
    [18] 黄水生, 刘跃俊, 苏琍英, 陈雪红.  袋栽香菇多品种搭配周年生产的研究 . 浙江农林大学学报, 1996, 13(3): 322-327.
    [19] 李启良, 许大明, 吴军寿, 吴春霞, 张卓文.  低产毛竹林改造技术及其效果 . 浙江农林大学学报, 1995, 12(1): 114-118.
    [20] 余梅林, 王志明, 刘智, 童修耀, 林芷, 吴家胜, 陈有全, 金远东, 王宝女, 丁一飞.  枫香为主的混交林营造技术研究 . 浙江农林大学学报, 1995, 12(2): 139-143.
  • 期刊类型引用(13)

    1. 侯亚欣,杨赵平,刘香楠,菅佳鑫,曾思维. 同域分布5种柽柳属植物不同开花时期花粉活力研究. 西北林学院学报. 2025(01): 83-91 . 百度学术
    2. 黄展文,余海娟,李先民,李春牛,王虹妍,苏群,周主贵,黄昌艳,卢家仕. 不同培养条件及贮藏方式对喙果金花茶离体花粉萌发的影响. 分子植物育种. 2024(06): 1992-1999 . 百度学术
    3. 尹增芳,欧香,陈瑶,杨爱香,孙李勇. 望春玉兰生物学基础研究进展与展望. 南京林业大学学报(自然科学版). 2024(02): 256-262 . 百度学术
    4. 莫丽文,孟新亚,宋希强,赵莹,王亚玲. 石碌含笑贮藏花粉的萌发特性与花粉活力比较. 分子植物育种. 2024(12): 3994-4000 . 百度学术
    5. 董龙,蔡昭艳,王葫青,黄章保,邱文武,方位宽,邓彪,王小媚,苏伟强,刘业强,任惠. 不同培养基组分对“台农一号”杧花粉萌发和花粉管生长特性的影响. 中国南方果树. 2024(03): 133-139 . 百度学术
    6. 胡迎峰,夏齐平. 花粉活力不同测定方法的比较和离体培养初探——黄山玉兰. 中国农学通报. 2022(05): 43-47 . 百度学术
    7. 郭丽,朱飞雪,王存纲,黄萍,朱永兴,贾文庆. 温度与汞胁迫对大岩桐花粉萌发及花粉管生长的影响. 分子植物育种. 2022(02): 511-517 . 百度学术
    8. 龙涛,张伟伟,张卿,邢宇,曹庆芹,秦岭,房克凤. Ca~(2+)螯合剂乙二醇二乙醚二胺四乙酸对板栗花粉管发育的影响. 北京农学院学报. 2022(03): 31-37 . 百度学术
    9. 邓伟,王一菲,李泽根,路丙社,路斌. 不同培养和储藏条件对北美豆梨、我国杜梨花粉萌发的影响. 河北科技师范学院学报. 2022(04): 13-18 . 百度学术
    10. 蔡昭艳,董龙,王小媚,邱文武,张文斌,刘业强,黄章保,任惠,方位宽,苏伟强. 培养基pH值及蔗糖、硼酸、PEG-4000对百香果花粉体外萌发的影响. 分子植物育种. 2021(21): 7274-7281 . 百度学术
    11. 杨澜,彭强,彭婷,杜致辉,许红娟,陈之林. 影响多肉植物花粉活力及离体萌发率的因素研究. 种子. 2020(08): 12-16 . 百度学术
    12. 刘焕. 白玉兰花粉离体萌发影响因子的研究. 特种经济动植物. 2020(12): 23-24+27 . 百度学术
    13. 杨延红,周东升,姜倩倩,李孔栋,李慧丽,陈忠秀. 海仙花花粉离体萌发和花粉管生长的研究. 北方园艺. 2019(13): 109-113 . 百度学术

    其他类型引用(6)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/id/2495

    https://zlxb.zafu.edu.cn/article/zjnldxxb/1997/2/174

计量
  • 文章访问数:  1212
  • HTML全文浏览量:  293
  • PDF下载量:  83
  • 被引次数: 19
出版历程
  • 收稿日期:  1996-09-17
  • 刊出日期:  1997-06-20

马尼拉草坪苗圃化学除草效果

    作者简介:

    金佩英, 女, 1963年生, 工程师

    通信作者: 金佩英, 女, 1963年生, 工程师
  • 中图分类号: S688. 4

摘要: 在马尼拉草坪苗圃用50%杀草丹乳油3. 24 L hm- 2加水525 kg 或23. 5%果尔乳油1. 24 L hm- 2加水525 kg 喷雾,除草率分别达97. 0%和98. 8%,节省除草成本93. 45%和93. 19%。草坪生长良好。

English Abstract

俞芹, 王倩颖, 王宁杭, 等. 4种木兰属植物花粉萌发特性[J]. 浙江农林大学学报, 2018, 35(3): 505-510. DOI: 10.11833/j.issn.2095-0756.2018.03.015
引用本文: 金佩英, 汤引男, 徐建新. 马尼拉草坪苗圃化学除草效果[J]. 浙江农林大学学报, 1997, 14(2): 174-177.
YU Qin, WANG Qianying, WANG Ninghang, et al. Pollen germination characteristics of four Magnolia species[J]. Journal of Zhejiang A&F University, 2018, 35(3): 505-510. DOI: 10.11833/j.issn.2095-0756.2018.03.015
Citation: Jin Peiying, Tang Yinnan, Xu Jianxin.. Effectiveness of Chemical Weeding in the Lawn Nursery of Zoysia matrella[J]. Journal of Zhejiang A&F University, 1997, 14(2): 174-177.

目录

/

返回文章
返回