留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蓖麻秆显微构造和纤维形态的研究

李晓平 周定国 周绪斌 王伟 邵颐

龙丹, 吴逸卿, 周伟龙, 等. 百山祖国家公园与邻近地区常绿阔叶林群落特征比较[J]. 浙江农林大学学报, 2025, 42(1): 12−22 doi:  10.11833/j.issn.2095-0756.20240456
引用本文: 李晓平, 周定国, 周绪斌, 等. 蓖麻秆显微构造和纤维形态的研究[J]. 浙江农林大学学报, 2009, 26(2): 239-245.
LONG Dan, WU Yiqing, ZHOU Weilong, et al. Differences in community characteristics of evergreen broad-leaved forests between Baishanzu National Park and adjacent areas[J]. Journal of Zhejiang A&F University, 2025, 42(1): 12−22 doi:  10.11833/j.issn.2095-0756.20240456
Citation: LI Xiao-ping, ZHOU Ding-guo, ZHOU Xu-bin, et al. Microstructure and fiber size of the castor-oil plant[J]. Journal of Zhejiang A&F University, 2009, 26(2): 239-245.

蓖麻秆显微构造和纤维形态的研究

详细信息
    通信作者: 李晓平

Microstructure and fiber size of the castor-oil plant

More Information
    Corresponding author: LI Xiao-ping
  • 摘要: 蓖麻Ricinus communis秆是一种优质的纤维原料。为了更好地研究和利用蓖麻秆,采用扫描电子显微镜和光学显微镜研究了蓖麻秆皮部、木质部和髓部的显微结构;并利用Motic Images Plus 2.0 图像处理系统测量了蓖麻秆皮部和木质部的纤维尺寸。结果表明,蓖麻秆皮部含有纤维细胞、轴向薄壁细胞和射线细胞;木质部的结构类似于散孔材,靠近髓的部位管孔较发达,具有单列或双列的异型木射线,纤维细胞壁上可见具缘纹孔,节部纤维弯曲;髓部多为多面体的薄壁细胞,可观察到螺纹导管。皮部纤维长度最大可达26.50 mm,长宽比高达540.00,壁腔比0.56~0.83;枝丫部分的纤维最长,长宽比最大;穗部的纤维最短,长宽比和壁腔比最小。木质部纤维的平均长度为0.75~0.90 mm,宽度4.38~5.40 μm,长宽比31.78~37.54,壁腔比0.56~0.83。蓖麻秆纵向上枝丫部分的平均长度、腔宽和长宽比小于秆部,壁腔比大于或等于秆部;穗部纤维的长度、宽度和腔宽均最小,长宽比和壁腔比最大。径向上靠近木质部中部的细胞长度、细胞腔宽度和长宽比较大;最外侧细胞的宽度、壁厚和壁腔比最大。蓖麻秆是一种优质的纤维原料,可用来造纸和制造人造板等工业化利用;其不同部位的纤维形态不同,呈一定的规律变化。图9表3参10
  • 钱江源-百山祖国家公园分为钱江源和百山祖2个园区,其中百山祖园区(以下称百山祖国家公园)涵盖了中亚热带东部山地生态系统完整的垂直带谱(低海拔和中山地带均有常绿阔叶林分布),完好地保存了浙闽赣交界山地的代表性和典型性植被和生态系统。其中,百山祖国家公园内保留着大面积迄今未受人为显著干扰的甜槠Castanopsis eyrei-木荷Schima superba和青冈Quercus glauca等常绿阔叶林,这些常绿阔叶林是百山祖国家公园中最具原真性和代表性的植物群落类型之一[1]

    亚热带常绿阔叶林是世界主要森林植被类型之一,主要分布在中国,分布区域约占中国国土面积的1/4,以中亚热带的常绿阔叶林最为典型[2]。由于受到人类干扰的作用,尤其在中国经济发达的东部地区,亚热带原生常绿阔叶林绝大部分退化为次生林或被改造为人工林,老龄林或原生林几乎丧失殆尽[3]。因此,了解百山祖国家公园内的常绿阔叶林的群落结构、物种多样性和生态系统功能,并与周边区域亚热带常绿阔叶林进行对比研究,对于亚热带地区植被恢复、生物多样性保护和生态系统功能提升等均具有重要的理论指导意义。

    目前,针对亚热带常绿阔叶林的相关研究主要集中在中国东部亚热带地区,在局域尺度上探讨亚热带常绿阔叶林的群落特征和生境特点[4]、物种多样性和物种共存机制[5]、演替动态与干扰和气候的关系[67]以及群落结构和更新[89]等方面。张田田等[10]、宋永昌等[11]还在区域尺度上比较了中国亚热带不同区域分布的常绿阔叶林物种组成及群落特征,但尚未包括百山祖国家公园内中山地带和低海拔地带分布的大面积常绿阔叶林。目前,针对百山祖国家公园常绿阔叶林的研究主要以公园内的5和25 hm2常绿阔叶林固定样地为研究平台,在局域尺度上对常绿阔叶林的物种组成、群落特征和群落动态等方面进行了研究[1213]。因此,为进一步了解百山祖国家公园的常绿阔叶林的特点及与邻近其他地区常绿阔叶林群落特征差异,本研究选择分布于百山祖国家公园内的五岭坑和凤阳山,邻近地区的古田山、九龙山和乌岩岭等自然保护区内以及非自然保护区内的常绿阔叶林为研究对象,设置森林固定监测样地,结合样地内物种组成数据,比较α多样性指数、β多样性指数和生物量等的差异,对于理解亚热带常绿阔叶林的特征以及探讨百山祖常绿阔叶林原生性、完整性和代表性具有重要意义。此外,通过比较百山祖国家公园与临近地区常绿阔叶林的群落结构和物种组成差异,对于理解常绿阔叶林的群落特征、演替动态、植被恢复等均具有理论指导意义。

    钱江源-百山祖国家公园地处浙江省西南部,面积约754 km2。本研究选取百山祖园区作为研究区域,包含龙泉片区和庆元片区,是中亚热带常绿阔叶林生态系统的典型代表[14]。在百山祖国家公园庆元片区五岭坑(WLK)低海拔区域,分布有大面积以甜槠和木荷为优势种的常绿阔叶林,在龙泉片区凤阳山(FYS)的中海拔地带分布有大面积以木荷、褐叶青冈Cyclobalanopsis stewardiana和甜槠为优势种的常绿阔叶林。

    为与临近区域分布的常绿阔叶林进行比较研究,选择浙江省内其他3个国家级自然保护区,分别为古田山国家级自然保护区(GTS)[15]、九龙山国家级自然保护区(JLS)[16]、乌岩岭国家级自然保护区(WYL)[17]以及非自然保护区(FZR)内的常绿阔叶林(表1)。以上研究区域的气候类型均属于中亚热带季风气候。

    表 1  样地基本信息
    Table 1  Basic information of sample plots
    研究区域 样地名称 纬度(N) 经度(E) 样地数量/个 海拔/m 优势种
    百山祖国家公园龙泉片区 凤阳山(FYS) 27.912º 119.184º 14 1051~1651 木荷、褐叶青冈、甜槠
    百山祖国家公园庆元片区 五岭坑(WLK) 27.540º 119.064º 12 651~851 甜槠、木荷、米槠
    古田山国家级自然保护区 古田山(GTS) 29.255º 118.130º 2 658~708 甜槠、木荷
    九龙山国家级自然保护区 九龙山(JLS) 28.398º 118.841º 4 625~747 木荷、红楠
    乌岩岭国家级自然保护区 乌岩岭(WYL) 27.713º 119.655º 6 960~1073 甜槠、木荷
    非自然保护区 非自保护区(FZR) 27.560º 119.713º 12 381~871 甜槠、木荷、米槠
      说明:木荷Schima superba,褐叶青冈Cyclobalanopsis stewardiana,甜槠Castanopsis eyrei,米槠Castanopsis carlesii,红楠Machilus thunbergia
    下载: 导出CSV 
    | 显示表格

    2012—2022年,在5个研究区域共设置50个大小为30 m×30 m的常绿阔叶林样地进行调查,每个研究地点所选样地信息见表1。参照美国热带森林研究中心(Center for Tropical Forest Science, CTFS)的方法[18],将每个样地划分成36个5 m×5 m小样方,调查样地内所有胸径(DBH)≥1 cm的木本植物个体,记录物种名、胸径、树高、分枝、空间坐标及生活状态等信息。同时测定样地内生境条件,包括海拔、坡度、坡向、郁闭度和土壤类型等。

    根据《中国植物志》(https://www.iplant.cn/foc)和《浙江植物志(新编)》[19]将调查到的物种分为乔木、灌木和小灌木。根据植物的生活型和DBH值将样地中调查到的所有个体划分为成树和幼树,其中乔木物种DBH>10 cm为成树,DBH≤10 cm为幼树;灌木物种DBH>5 cm为成树,DBH≤5 cm为幼树;小灌木物种DBH>2 cm为成树,DBH≤2 cm为幼树[20]

    分别计算了样地内所有木本植物、成树和幼树的α多样性指数,包括物种丰富度指数、Shannon-Wiener多样性指数、Simpson生态优势度指数[21]以及Chao多样性指数[22]。使用vegan包中的“diversity”和“estimate”等函数计算α多样性指数。

    基于胸径的异速生长方程计算样地内所有木本植物物种(DBH≥1 cm)的生物量,每个个体通过累计其主干、枝、叶以及根的生物量获得个体总生物量。生物量(含地上和地下生物量)具体计算公式参考OUYANG等[23]在中国亚热带森林中构建的生物量与个体胸径间的异速生长方程。

    为了确定不同样地的优势种和植被类型,计算样地内不同物种的重要值,依据重要值大小确定群落优势种和植被类型[24]

    利用方差分析(ANOVA)和最小显著差异法(LSD),分析不同样地之间的所有木本植物、成树和幼树的α多样性指数以及生物量是否具有显著差异。为了比较不同样地之间的物种组成差异,基于样地间的Bray-Curtis相异度指数的主坐标分析(PCoA),将样地内木本植物数据进行降维处理,使用vegan包中的“adonis”函数进行了999次置换方差分析(PERMANOVA),检验不同分组之间的物种组成是否存在显著差异。

    在50个样地中共调查到23021株木本植物,隶属于57科128属304种。其中,常绿阔叶树种占比最高,共172种,隶属于32科60属;落叶阔叶树种共123种,隶属于40科75属;针叶树种占比最少,共3科7属9种。在百山祖国家公园中共调查到10 935株个体,隶属于52科108属241种,优势种为木荷与甜槠,其中成树多度占比34%,幼树多度占比66%。古田山自然保护区样地中优势种为甜槠和木荷,其中,成树多度占比23%,幼树多度占比77%。九龙山自然保护区样地中优势种为木荷和红楠,其中成树多度占比26%,幼树多度占比74%。乌岩岭自然保护区样地优势种为甜槠和木荷,其中成树多度占比24%,幼树多度占比76%。非自然保护区样地优势种为甜槠、木荷和米槠,成树多度占比32%,幼树多度占比68%。

    当考虑所有木本植物时,4种α多样性指数差异呈现相同趋势(图1)。百山祖国家公园五岭坑所有木本植物的物种丰富度指数、Shannon指数和Simpson指数都显著高于凤阳山(P<0.05),Chao指数无显著差异,但五岭坑与九龙山和乌岩岭所有木本植物的物种α多样性均无显著差异,凤阳山与古田山所有木本植物的物种α多样性均无显著差异。非自然保护区所有树种的物种α多样性显著低于百山祖国家公园、九龙山和乌岩岭(P<0.05),与古田山无显著差异。

    图 1  不同研究区域常绿阔叶林所有木本植物物种α多样性
    Figure 1  Differences in species α richness of all woody plants in different plots

    当考虑样地内成树的物种多样性时(图2),百山祖国家公园内五岭坑成树的Shannon指数显著高于凤阳山样地(P<0.05),而物种丰富度,Simpson指数和Chao指数无显著差异。五岭坑与古田山和乌岩岭样地成树的物种α多样性无显著差异。凤阳山成树的物种丰富度和Shannon指数显著低于乌岩岭(P<0.05),与古田山和九龙山无显著差异。非自然保护区成树的物种α多样性显著低于百山祖国家公园和乌岩岭(P<0.05),Simpson指数显著低于古田山和九龙山(P<0.05)。

    图 2  不同研究区域常绿阔叶林木本植物成树物种α多样性
    Figure 2  Differences in species α richness of mature trees in different plots

    当考虑样地内幼树的物种多样性时(图3),百山祖国家公园五岭坑幼树的物种丰富度指数,Shannon指数和Simpson指数都显著高于凤阳山样地(P<0.05),Chao指数无显著差异,但五岭坑与九龙山和乌岩岭幼树α多样性无显著差异。凤阳山,古田山和非自然保护区幼树的物种丰富度,Shannon指数和Simpson指数无显著差异。非自然保护区幼树的物种丰富度,Shannon指数和Chao指数显著低于五岭坑、九龙山和乌岩岭(P<0.05)。

    图 3  不同研究区域常绿阔叶林木本植物幼树物种α多样性
    Figure 3  Differences in species α richness of saplings in different plots

    对于所有木本植物的物种组成,百山祖国家公园中凤阳山和五岭坑样地的物种组成存在显著差异(PERMANOVA检验:F=8.138,P=0.001),凤阳山的物种组成与古田山、九龙山和乌岩岭的更为相似,而五岭坑的物种组成与非自然保护区的物种组成更为相似(图4A表2)。对于成树,凤阳山与乌岩岭的物种组成更相似,具有最低的Bray-Curtis指数值,凤阳山与五岭坑(F=7.261,P=0.001),九龙山以及非自然保护区(F=4.823,P=0.001)的物种组成存在显著差异(图4B表2),而五岭坑、九龙山以及非自然保护区的物种组成更相似。凤阳山与乌岩岭的幼树物种组成相似,且五岭坑幼树物种与非自然保护区幼树物种组成更相似,具有最低的Bray-Curtis指数值(图4C表2)。

    图 4  不同研究区域常绿阔叶林木本植物物种组成的差异
    Figure 4  Differences in species composition of woody plants among different plots
    表 2  不同研究区域之间常绿阔叶林木本植物的Bray-Curtis值以及物种组成显著差异(PERMANOVA)的检验
    Table 2  Bray-Curtis values of woody plants among different plots and the test of significant differences in species composition (PERMANOVA)
    研究对象 项目 Bray-Curtis 平方和 R2 F P
    所有木本植物 FYS/WLK 0.706 1.867 0.253 8.138 ≤0.001
    FYS/WYL 0.467 0.729 0.149 3.153 0.002
    FYS/FZR 0.648 1.436 0.182 5.347 ≤0.001
    WLK/WYL 0.637 1.366 0.328 7.807 ≤0.001
    WLK/FZR 0.582 1.433 0.220 6.204 ≤0.001
    成树 FYS/WLK 0.771 1.904 0.232 7.261 ≤0.001
    FYS/WYL 0.628 0.778 0.142 2.977 0.003
    FYS/FZR 0.711 1.387 0.167 4.823 ≤0.001
    WLK/WYL 0.646 1.285 0.272 5.986 ≤0.001
    WLK/FZR 0.631 1.458 0.205 5.689 ≤0.001
    幼树 FYS/WLK 0.685 1.656 0.218 6.700 ≤0.001
    FYS/WYL 0.443 0.708 0.137 2.869 0.002
    FYS/FZR 0.655 1.399 0.166 4.786 ≤0.001
    WLK/WYL 0.653 1.321 0.295 6.683 ≤0.001
    WLK/FZR 0.575 1.165 0.169 4.469 ≤0.001
      说明:本表仅包含具有显著差异的结果。FYS. 凤阳山;WLK. 五岭坑;GTS. 古田山;JLS. 九龙山;WYL.乌岩岭;FZR. 非自然保护区。
    下载: 导出CSV 
    | 显示表格

    在考虑样地内所有木本植物的生物量时,百山祖国家公园内凤阳山、五岭坑,乌岩岭和非自然保护区之间的生物量无显著性差异,但均显著(P<0.05)低于古田山,高于九龙山(图5A)。凤阳山、五岭坑、古田山、乌岩岭以及非自然保护区之间成树的生物量都没有显著差异,且除乌岩岭外,均显著高于九龙山(图5B)。古田山具有最高的幼树生物量,显著(P<0.05)高于凤阳山、五岭坑、九龙山,乌岩岭和非自然保护区等其他研究区域(P<0.05),且其他样地之间的幼树生物量均无显著差异(图5C)。

    图 5  不同研究区域中木本植物的生物量差异
    Figure 5  Differences in biomass of woody plants among different plots

    中国具有世界上分布最广、类型最为丰富的亚热带森林,其结构复杂,物种丰富,提供了稳定的生态系统服务价值。本研究系统分析并比较了中国亚热带地区百山祖国家公园内常绿阔叶林与其他自然保护区和非自然保护区内常绿阔叶林的群落特征。研究发现百山祖国家公园内五岭坑所有木本植物物种α多样性显著高于凤阳山,这与田磊等[25]的研究结果一致,可能与凤阳山和五岭坑所处的海拔差异有关。海拔通过影响气温和降水等影响物种α多样性,但物种α多样性随海拔的变化关系尚缺乏统一的格局[2627]。林阳等[28]发现:在百山祖国家公园内不同海拔梯度的木本植物物种α多样性与海拔梯度呈显著负相关。随着海拔的升高,气温降低,常绿阔叶树种的生长受到限制,这可能导致高海拔凤阳山比低海拔五岭坑的物种α多样性低。进一步通过对比分析不同生长型幼树和成树物种α多样性的差异,发现五岭坑幼树的物种α多样性显著高于凤阳山,但2个样地内成树的物种α多样性没有显著差异。这说明低海拔区域幼树的物种多样性显著高于高海拔区域。与成树相比,幼树的物种α多样性可能更容易受到生物和非生物因子的影响[29]。五岭坑样地处于较低海拔范围,与高海拔的凤阳山比较,五岭坑内群落生境更加稳定,可能更有利于幼树的更新和生长[30]

    “中间膨胀效应”假说认为不同物种的分布范围相互重叠,但是由于边界限制,使得不同物种的分布范围在边界处重叠小,在中心地区重叠大[31]。在百山祖国家公园和选择的自然保护区中,处于中间海拔梯度的五岭坑样地、乌岩岭样地以及九龙山样地内,总体上物种α多样性都处于较高水平,符合这一假说,从而导致处于中间海拔样地的物种丰富度更高,多项研究也证实了这一结论[32]

    另外,非自然保护区的物种α多样性显著低于自然保护区,可能与人为干扰对物种多样性的影响有关[33]。通常自然保护区限制人为活动(如砍伐或择伐),同时也对自然保护区内的物种进行特定的保护,因而具有更高的物种α多样性。

    物种组成差异能够反映群落间的异质性,物种组成相似度越高,群落间异质性和群落生境条件的异质性越小[34]。植物群落所处的生境条件、气候因子以及区域物种库等不同均会影响群落间物种组成的差异。如海拔可以通过影响温度和水分改变群落环境,进而影响群落内物种组成[35]。本研究发现:百山祖国家公园内凤阳山和五岭坑的常绿阔叶林中所有木本植物、成树和幼树的物种组成均存在显著差异,可能与2个区域所处的海拔不同有关。随海拔变化,不同物种对温度和水分等环境因子的耐受性不同,在海拔梯度上的分布范围也会不同[36]。如五岭坑样地主要分布在低海拔区域(海拔为651~851 m),乔木层优势种主要为甜槠和木荷,样地内木本植物的叶生活型以常绿阔叶树种为主(常绿阔叶树种122种、落叶树种39种和针叶树种2种),而处于高海拔的凤阳山样地(海拔为1051~1651 m),常绿阔叶树种中的青冈类和杜鹃类以及落叶树种和针叶树种的种类比例增加(常绿阔叶树种97种、落叶树种69种和针叶树种7种)。同时,除了海拔对物种组成的影响外,纬度梯度也会对物种组成产生影响[37]。李林等[38]发现相近纬度和海拔上的物种组成更相似。本研究中凤阳山和乌岩岭所处海拔和纬度更接近,2个样地所有木本植物、成树和幼树物种组成更加相似,五岭坑与非自然保护区海拔和纬度相近,物种组成也更相似。

    生物量是衡量森林生态系统生产力的重要指标,同时也是评估森林碳汇的重要参数[39]。在森林生态系统中,气候、土壤理化性质和地形等非生物因子[40]以及群落的演替历史和物种组成等生物因子[41]都是影响生物量的重要因素。如森林生物量随年均气温和年均降水的提高而逐渐升高[42],处于演替前期的次生林相比于演替后期原生林或老龄林具有更低的生物量[43]。本研究中,百山祖国家公园内的凤阳山和五岭坑区域,虽然海拔上存在差异,但2个区域间所有木本植物、成树和幼树的生物量均无显著差异,说明环境因子虽然对2个区域的物种组成和物种多样性产生了较大的影响,但对于生物量并无显著影响。本研究中古田山所有木本植物和幼树的生物量显著高于其他样地,其他各区域间幼树的生物无显著差异。结合样地中不同生长型的树种多度发现:虽然样地中幼树的多度占比均显著高于成树,但古田山幼树多度占比最高。此外,样地内壳斗科植物个体的生物量普遍高于其他物种,可能使壳斗科植物占比高的群落生物量更高。进一步分析各样地幼树中壳斗科个体多度占比发现,古田山壳斗科幼树多度占比高于凤阳山、五岭坑、九龙山、乌岩岭和非自然保护区。因此,古田山具有更高的幼树生物量,也可能与样地内壳斗科物种个体占比较高有关。本研究结果也说明物种组成是影响生物量的主要原因之一。为更全面反映百山祖国家公园与邻近地区常绿阔叶林群落特征比较,后续研究应增加研究样地的数量和分布范围。

    百山祖国家公园内凤阳山和五岭坑常绿阔叶林群落的物种多样性和物种组成存在显著差异,但生物量并无显著差异。相比于其他区域的常绿阔叶林,五岭坑常绿阔叶林具有更高的物种多样性。同时,国家公园和自然保护区内分布的常绿阔叶林物种多样性显著高于非自然保护区。在物种组成方面,五岭坑常绿阔叶林与同纬度的非自然保护区常绿阔叶林物种组成更为相似,而凤阳山则与乌岩岭常绿阔叶林的物种组成更相似。本研究结果表明:受海拔、纬度、群落演替历史和人类干扰等的影响,百山祖国家公园内分布的低海拔和中山地带常绿阔叶林中的物种多样性、物种组成和生态系统功能等不仅在公园内存在差异,尤其在五岭坑分布的以甜槠-木荷为优势种的典型常绿阔叶林和中山地带分布的以褐叶青冈等为优势种的山地常绿阔叶林,也与亚热带其他地区常绿阔叶林存在差异,说明该公园内保存的亚热带常绿阔叶林具有一定的独特性,具有较高的保护价值。

    感谢浙江大学毛志斌、韦博良,浙江师范大学林阳,中国计量大学杨中杰,华东师范大学李时轩,温州大学刘维勇、邓文婕、刘腾腾、税章利和惠城阳等,以及赖正林和姜淦冰等人参与野外调查工作。

  • [1] 胡晓军, 田泽, 徐云杰, 管珣.  铣削参数对毛竹切削力及维管束纤维提取质量的影响 . 浙江农林大学学报, doi: 10.11833/j.issn.2095-0756.20240536
    [2] 牛思杰, 王娜, 崔百祥, 王传贵, 武恒, 张双燕.  不同竹龄和部位对毛竹纤维形态及结晶度的影响 . 浙江农林大学学报, 2023, 40(2): 446-452. doi: 10.11833/j.issn.2095-0756.20220749
    [3] 李荣荣, 贺楚君, 彭博, 王传贵.  毛竹材不同部位纤维形态及部分物理性能差异 . 浙江农林大学学报, 2021, 38(4): 854-860. doi: 10.11833/j.issn.2095-0756.20200649
    [4] 李冬林, 金雅琴, 崔梦凡, 黄琳曦, 裴文慧.  夏季遮光对连香树幼苗形态、光合作用及叶肉细胞超微结构的影响 . 浙江农林大学学报, 2020, 37(3): 496-505. doi: 10.11833/j.issn.2095-0756.20190370
    [5] 李聪聪, 潘彪, 王慧, 黄利斌.  引种美国红橡的纤维形态、微纤丝角及结晶度 . 浙江农林大学学报, 2020, 37(1): 158-164. doi: 10.11833/j.issn.2095-0756.2020.01.021
    [6] 查瑶, 饶俊, 关莹, 张利萍, 高慧.  竹叶/HDPE复合材料的制备及性能 . 浙江农林大学学报, 2020, 37(2): 343-349. doi: 10.11833/j.issn.2095-0756.2020.02.020
    [7] 尹焕焕, 刘青华, 周志春, 万雪琴, 余启新, 丰忠平.  马尾松无性系木材基本密度和纤维形态的变异及选择 . 浙江农林大学学报, 2020, 37(6): 1186-1192. doi: 10.11833/j.issn.2095-0756.20190720
    [8] 李媛媛, 张双燕, 王传贵, 方徐勤.  毛竹采伐剩余物的化学成分、纤维形态及纸浆性能 . 浙江农林大学学报, 2019, 36(2): 219-226. doi: 10.11833/j.issn.2095-0756.2019.02.002
    [9] 柴晓娟, 苏燕, 陈慧, 郭玮龙, 金水虎.  蔺草底部茎秆解剖构造与力学性能 . 浙江农林大学学报, 2016, 33(6): 1058-1066. doi: 10.11833/j.issn.2095-0756.2016.06.019
    [10] 许秀玉, 王明怀, 仲崇禄, 张华新.  不同树种木材性质及其抗台风性能 . 浙江农林大学学报, 2014, 31(5): 751-757. doi: 10.11833/j.issn.2095-0756.2014.05.014
    [11] 杨学通, 郭文静, 陈巧花, 王正.  造纸剩余物制备复合板材可行性研究 . 浙江农林大学学报, 2014, 31(6): 954-958. doi: 10.11833/j.issn.2095-0756.2014.06.019
    [12] 刘晓玲, 符韵林.  人工林观光木主要解剖特性及基本密度研究 . 浙江农林大学学报, 2013, 30(5): 769-776. doi: 10.11833/j.issn.2095-0756.2013.05.021
    [13] 李晓平, 吴章康, 张聪杰.  烟秆纤维部分物理性能在纵向上的变异特性 . 浙江农林大学学报, 2013, 30(4): 548-551. doi: 10.11833/j.issn.2095-0756.2013.04.014
    [14] 魏兆兆, 谢云, 孟辉, 关玉梅, 吴窈窈.  3种类型浙江红山茶的花粉形态学研究 . 浙江农林大学学报, 2012, 29(4): 634-638. doi: 10.11833/j.issn.2095-0756.2012.04.024
    [15] 符韵林, 莫引优, 刘一星, 乔梦吉, 陈文军.  纳米二氧化硅在涂料中的应用及其增强木材表面特性的构想 . 浙江农林大学学报, 2011, 28(4): 644-652. doi: 10.11833/j.issn.2095-0756.2011.04.020
    [16] 苏文会, 范少辉, 彭颖, 俞友明, 张大鹏.  车筒竹、箣竹和越南巨竹竹材的纤维形态与组织比量 . 浙江农林大学学报, 2011, 28(3): 386-390. doi: 10.11833/j.issn.2095-0756.2011.03.007
    [17] 李晓平, 周定国, 徐凯宏.  蓖麻秆不同部位的特性及其对蓖麻秆刨花板性能的影响 . 浙江农林大学学报, 2010, 27(3): 424-429. doi: 10.11833/j.issn.2095-0756.2010.03.017
    [18] 王曙光, 普晓兰, 丁雨龙, 万贤崇, 林树燕.  云南箭竹纤维形态变异规律 . 浙江农林大学学报, 2009, 26(4): 528-532.
    [19] 余学军, 韩红, 田荆祥, 王仁东, 周迎春.  浙江省速生杉木纤维形态及基本密度* . 浙江农林大学学报, 1997, 14(3): 220-224.
    [20] 谷澍芳.  檫树营养器官解剖构造与其生物学特性相关性的探讨 . 浙江农林大学学报, 1993, 10(1): 1-6.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/id/389

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2009/2/239

计量
  • 文章访问数:  5708
  • HTML全文浏览量:  192
  • PDF下载量:  234
  • 被引次数: 0
出版历程
  • 刊出日期:  2009-04-20

蓖麻秆显微构造和纤维形态的研究

    通信作者: 李晓平

摘要: 蓖麻Ricinus communis秆是一种优质的纤维原料。为了更好地研究和利用蓖麻秆,采用扫描电子显微镜和光学显微镜研究了蓖麻秆皮部、木质部和髓部的显微结构;并利用Motic Images Plus 2.0 图像处理系统测量了蓖麻秆皮部和木质部的纤维尺寸。结果表明,蓖麻秆皮部含有纤维细胞、轴向薄壁细胞和射线细胞;木质部的结构类似于散孔材,靠近髓的部位管孔较发达,具有单列或双列的异型木射线,纤维细胞壁上可见具缘纹孔,节部纤维弯曲;髓部多为多面体的薄壁细胞,可观察到螺纹导管。皮部纤维长度最大可达26.50 mm,长宽比高达540.00,壁腔比0.56~0.83;枝丫部分的纤维最长,长宽比最大;穗部的纤维最短,长宽比和壁腔比最小。木质部纤维的平均长度为0.75~0.90 mm,宽度4.38~5.40 μm,长宽比31.78~37.54,壁腔比0.56~0.83。蓖麻秆纵向上枝丫部分的平均长度、腔宽和长宽比小于秆部,壁腔比大于或等于秆部;穗部纤维的长度、宽度和腔宽均最小,长宽比和壁腔比最大。径向上靠近木质部中部的细胞长度、细胞腔宽度和长宽比较大;最外侧细胞的宽度、壁厚和壁腔比最大。蓖麻秆是一种优质的纤维原料,可用来造纸和制造人造板等工业化利用;其不同部位的纤维形态不同,呈一定的规律变化。图9表3参10

English Abstract

龙丹, 吴逸卿, 周伟龙, 等. 百山祖国家公园与邻近地区常绿阔叶林群落特征比较[J]. 浙江农林大学学报, 2025, 42(1): 12−22 doi:  10.11833/j.issn.2095-0756.20240456
引用本文: 李晓平, 周定国, 周绪斌, 等. 蓖麻秆显微构造和纤维形态的研究[J]. 浙江农林大学学报, 2009, 26(2): 239-245.
LONG Dan, WU Yiqing, ZHOU Weilong, et al. Differences in community characteristics of evergreen broad-leaved forests between Baishanzu National Park and adjacent areas[J]. Journal of Zhejiang A&F University, 2025, 42(1): 12−22 doi:  10.11833/j.issn.2095-0756.20240456
Citation: LI Xiao-ping, ZHOU Ding-guo, ZHOU Xu-bin, et al. Microstructure and fiber size of the castor-oil plant[J]. Journal of Zhejiang A&F University, 2009, 26(2): 239-245.

目录

/

返回文章
返回