Density dynamics with model adjustments for stump sprouts of Hippophae rhamnoides subsp. sinensis
-
摘要: 以样地每木检尺资料为基础,依据空间差异代替时间变化法以及样地编年序列法的原理,探讨了中国沙棘Hippophae rhamniodes subsp. sinensis平茬萌蘖种群的密度动态及其调节规律。结果表明:通过萌蘖植株、分蘖和构件密度制约的出生与死亡调节,中国沙棘从个体数量、分株形态、构件生物量分配等不同层次维持种群适宜的数量和结构。①种群通过萌蘖植株的出生与死亡调节不断改变着种群密度,依次可将种群密度动态分为上升、下降和平稳等3个阶段。②种群通过分蘖的出生与死亡调节,不断改变着萌蘖植株的形态。随着种群基盖度的增大,合轴型分株的比例下降而单轴型分株的比例上升。③种群通过构件的出生与死亡调节,不断改变着构件的生物量分配。随着种群基盖度的增大,枯枝生物量分配上升而叶片生物量分配下降,克隆器官和根系的生物量分配均呈下降趋势。④研究对象的生物量分配已趋于平稳,亟待再次平茬或创造林窗恢复种群的繁殖、生长和存活能力。由此可得出结论:中国沙棘平茬后,通过克隆植株、分蘖及构件的密度制约出生与死亡调节,使种群形成与环境资源供应水平相适应的个体数量与分株形态,从而实现对生境资源的合理利用以及种群持久性的维持。图3表1参22Abstract: Stumping is one of the important methods for tending management and restoration of population stability. In order to understand the adjustment regulation of density change which could provide scientific basis for population restoration and management of stump sprout,the density dynamic of stump sprout population was studied. Based on measurement of all individuals in a population of Hippophae rhamnoides subsp. sinensis at different successional stages,model adjustments of density dynamics and stump sprouts in the Mu Us sandy lands of north central China were analyzed using a spatial series substituted for a time series and plots arranged by age. In a model with variables of individual number,ramet morphology,and biomass adjustments were made by changing sprout and surviral rates of regenerated plants,ramet number,and plant density. Results showed that (1) population density had three stages increasing,decreasing and steady in turn;(2) morphological changes of regenerated plant included an increased population base diameter a decreased ratio of complex axis and an increased ratio of single axis;(3) biomass distribution constantly changed with sprout and survival adjustments. As the population base diameter increased,the dead branch biomass ratio increased and leaf biomass ratio decreased. Meanwhile,the ratios of clonal organs and mean root all decreased. Since growth and survivability could improve with a further stump sprouting,individual number and ramet morphology could be improved by adjusting the sprout and survival rate of clonal plants and ramets to help realize a rational utilization of the resource and maintenance of the population.[Ch,3 fig. 1 tab. 22 ref.]
-
类胡萝卜素是广泛分布于自然界的一类色素,迄今已发现了近800种[1],主要存在于植物的叶、花、果实和根等器官中,在吸引昆虫、鸟类传播花粉和种子中发挥作用[2]。类胡萝卜素可作为多种生物活性物质的前体,经过氧合酶或非酶裂解作用可以形成阿朴类胡萝卜素[3],后者及其衍生物可生成β-紫罗兰酮(β-ionone)等香气物质及脱落酸(abscisic acid,ABA)等植物生长调节剂[4]。作为类胡萝卜素裂解氧合酶(carotenoid cleavage oxygenases,CCO)中的重要成员,类胡萝卜素裂解双加氧酶1(carotenoid cleavage dixoygenase 1,CCD1)在不同的植物中所裂解的底物、作用位点不尽相同。研究发现[5],CCD1在C9~C10(C9′~C10′)位时剪切番茄红素、胡萝卜素、玉米黄质或脱辅基类胡萝卜素等,形成β-紫罗兰酮,β-环柠檬醛(β-cyclocitral),香叶基丙酮(geranylacetone)和假紫罗兰酮(pseudoionone)等芳香类物质;在番茄红素C5~C6(C5′~C6′)位裂解时则形成6-甲基-5-庚烯-2-酮[6],认为CCD1对基于类胡萝卜素代谢途径的香气物质合成发挥着重要作用。桂花Osmanthus fragrans在中国栽培历史悠久,集绿化、美化和香化为一体,花香和花色是其重要观赏性状。类胡萝卜素裂解双加氧酶1(OfCCD1)[7]降解桂花中的着色物质——α-胡萝卜素和β-胡萝卜素[8],合成主要香气物质α-紫罗酮和β-紫罗酮[9]。基因启动子控制着基因在特定的组织[10]、特定的发育阶段[11]以及一定的环境条件下表达[12];分离相关基因启动子,分析其序列及其作用元件,并研究其功能,可明确该基因的调控因子及其作用机制。本研究利用染色体步移技术克隆了OfCCD1启动子,通过启动子序列分析、载体构建和瞬时表达分析,初步明确了其功能,为揭示OfCCD1基因调控花色花香代谢机制奠定基础。
1. 材料与方法
1.1 植物材料
供试材料为6~8年生地栽丹桂品种‘堰虹桂’‘Yanhong Gui’,栽植于浙江农林大学桂花资源圃。
1.2 主要试剂
Taq聚合酶、限制酶(DraⅠ,EcoRⅤ,PvuⅡ,StuⅠ),质粒载体PMD18-T,大肠埃希菌Escherichia coli DH5α,胶回收试剂盒,DNA片段纯化试剂盒和无缝连接试剂盒均购自Takara公司(大连)。
1.3 方法
1.3.1 DNA提取
参照十六烷基三甲基溴化铵法(CTAB)提取‘堰虹桂’基因组DNA[13]。
1.3.2 引物设计与合成
根据‘堰虹桂’转录组数据库中的CCD1序列(GenBank登录号MG138152)[14]和BALDERMANN等发表的OfCCD1(GenBank登录号AB526197.1)序列[9],用Primer Primer 5.0设计下游特异性引物1(GSP1),特异性引物2(GSP2)和特异性引物4(GSP4);利用上述2段序列的重复序列设计特异性引物3(GSP3);利用接头引物1(AP1)与GSP1,接头引物2(AP2)与GSP2经2轮聚合酶链式反应(PCR)获得的启动子片段设计特异性引物5(GSP5)。利用pBI121质粒上的β-葡萄糖苷酸酶(β-Glucosidase,GUS)基因序列设计上游引物GUS-F和下游引物GUS-R。引物及接头均由上海生工合成(表 1)。
表 1 OfCCD1启动子克隆所用引物Table 1. Primer sequences used in the cloning of OfCCD1 promoters引物名 称序列(5'→3') GSP1 CTTCACAAACAGCCATTCCAACCAGTCTAT GSP2 TCGGGCTTTACTGCCACCACACCATTTTC GSP3 GAGGAGGAGTCTCATCAACTGGAGCAAAAT GSP4 GCATCATTTTCACAAACAGCCATTCCAAC GSP5 AGCCTCAAGTTTTGTCCTATTGCCAC AP1 GTAATACGACTCACTATAGGGC AP2 ACTATAGGGCACGCGTGGT GWA GTAATACGACTCACTATAGGGCACGCGTGGTCGACGGCCCGGGCTGGT CCD1P-L-F TGATTACGCCAAGCTAAAGGAAGAGTATTCACTTTTGGC CCD1P-L-R CCGGGGATCCTCTAGCTGTTGATCCTAATTGAACTCTCAC CCD1P-S-F TGATTACGCCAAGCTGAAGCACATGTCTCCCA CCD1P-S-R CCGGGGATCCTCTAGCTCTTGGTTCTGAATTGA GUS-F TGATTACGCCAAGCTGATCAGTTCGCCGATGCAG GUS-R CCGGGGATCCTCTAGAAGTGCGCTTGCTG 1.3.3 DNA文库的构建、扩增
① DNA文库的构建。分别用Dra Ⅰ,EcoR Ⅴ,Pvu Ⅱ,Stu Ⅰ 4种限制性内切酶对提取到的DNA进行酶切。酶切体系为基因组DNA 25.0 μL(100 mg·L-1),限制内切酶8.0 μL,10×限制酶buffer 10.0 μL,灭菌水57.0 μL,总体积100.0 μL,37 ℃过夜。取5.0 μl酶切产物用质量分数0.6%琼脂糖进行检测。按照DNA纯化试剂盒的说明书对酶切产物进行纯化后加接头。分别取4组酶切纯化的DNA各4.8 μL,染色体步移接头GWA 1.9 μL,10×连接缓冲液0.8 μL,T4 DNA连接酶0.5 μL,16.0 ℃过夜;70.0 ℃水浴5 min,加入32.0 μL去离子水。②聚合酶链式反应(PCR)扩增。取AP1,引物GSP1/GSP3,模板各1.0 μL,预混合Taq酶10.0 μL,去离子水补至20.0 μL进行第1轮PCR。扩增程序为94.0 ℃ 5 min;94.0 ℃ 25 s,72.0 ℃ 3 min,7循环;94.0 ℃ 25 s,65.0 ℃ 3 min,32循环;67.0 ℃ 7 min。取第1轮产物1.0 μL并稀释50倍作为第2轮PCR的模板。第2轮PCR体系为:AP2,GSP2/GSP4/GSP5,模板各1.0 μL,预混合Taq酶10.0 μL,去离子水补至20.0 μL。扩增程序为94.0 ℃ 5 min;94.0 ℃ 25 s,72.0 ℃ 3 min,5循环;94.0 ℃ 25 s,65.0 ℃ 3 min,20循环;67.0 ℃ 7 min。取GUS-F,GUS-R和pBI121质粒各1.0 μL,预混合Taq酶10.0 μL,去离子水补至20.0 μL进行GUS序列扩增。扩增程序为95.0 ℃ 5 min;95.0 ℃ 30 s,69.8 ℃ 30 s,72.0 ℃ 1 min,35循环;72.0 ℃ 10 min;4.0 ℃ 10 min。质量分数为1.2%的琼脂糖凝胶电泳检测。
1.3.4 PCR产物回收、连接、转化鉴定及序列测定与分析
切胶回收按照MiniBEST Agarose Gel DNA Extraction Kit Ver.4.0(TaKaRa,大连)的说明书进行。载体连接按照PMD18-T载体说明书(Takara,大连)进行,连接后的重组质粒导人大肠埃希菌DH5α感受态细胞中,在50 mg·L-1氨苄青霉素的固体LB培养基上进行蓝白斑筛选,挑取白色单菌落菌液PCR检测后将阳性克隆送公司测序。序列初步分析采用DNAMAN软件进行。启动子序列作用元件分析采用在线网站PlantCARE(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/)进行。
1.3.5 表达载体的构建及瞬时表达分析
根据获得的OfCCD1的启动子序列,利用Takara(http://www.clontech.com)无缝连接引物设计软件设计3对无缝连接引物CCD1P-S-F和CCD1P-S-R,CCD1P-L-F和CCD1P-L-R,GUS-F和GUS-R。具体操作步骤按照Takara无缝连接试剂盒的说明书进行。将重组好的表达载体利用冻融法转入农杆菌Agrobacterium tumefaciens GV3101感受态。随后将烟草Nicotiana tabacum叶片剪切成0.5 cm × 0.5 cm的叶块,在农杆菌菌液吸光度D(600)为0.6的侵染液中浸染10 min;无菌滤纸吸干叶片表面的菌液,将侵染的外植体移至于无菌水浸润的滤纸上培养24 h并进行GUS染色,37 ℃下保温16~24 h。V(乙酸):V(乙醇)=3:1的混合液脱色后取出,对染色结果进行拍照。
2. 结果与分析
2.1 启动子克隆
以‘堰虹桂’DNA为模板,分别利用引物GSP1和GSP2,接头引物AP1和AP2进行2轮PCR,在EcoR文库扩增得到条带;经比对和拼接得到长度为511 bp的序列(图 1A)。利用引物GSP3和GSP4,接头引物AP1和AP2经过2轮PCR,在DraⅠ文库中得到约2 000 bp的条带(图 1B)。测序后,经比对和拼接得到长度为2 747 bp的条带,命名为OfCCD1P-L(图 2)。利用GSP3和GSP5经过2轮PCR后在Pvu Ⅱ文库中得到750 bp左右的条带(图 1B),经过拼接比对得到OfCCD1上游981 bp的启动子序列,命名为OfCCD1P-S(图 3)。
2.2 启动子序列分析
利用PlantCARE网站对启动子序列进行序列分析发现,OfCCD1P-L有TATA-box和CAAT-box等基本作用元件,同时有7个响应元件,响应茉莉酸甲酯、赤霉素、水杨酸、乙烯的元件,以及热激元件,鸟类成髓细胞性白血病病毒癌基因同源物(MYB)结合位点,并有4个响应脱落酸(ABA)的核心序列ACGT(表 2)。OfCCD1P-S中含有TATA-box和CAAT-box等基本作用元件,同时有3个光响应元件,1个热激响应元件以及1个ABA响应元件(表 3),并有4个ABA响应元件(ABRE)核心序列ACGT。
表 2 OfCCD1P-L中顺式作用元件Table 2. Cis-acting elements in OfCCD1P-L顺式作用元件名称 位置 序列(5′→3′) 功能 G-Box -326, -664, -2 584 CACGTA 光响应元件 GA-motif -257, -2 738 AAAGATGA 光响应元件的一部分 ATCT-motif -2 564 AATCTAATCT 参与光响应的部分保守DNA序列 Box I -429, -l 649 TTTCAAA 光响应元件 AE-box -737 AGAAACAT 光响应元件的一部分 Box 4 -733 ATTAAT 参与光响应的部分保守DNA序列 GAG-motif -300 AGAGATG 光响应元件的一部分 CAAT-box -ll5, -569 CAAT 一般元件 CAT-box -l 839 GCCACT 与分生组织相关的顺式元件 CGTCA-motif -2 580 CGTCA 茉莉酸甲酯响应元件 TGACG-motif -486 TGACG 茉莉酸甲酯响应元件 HSE -2 066 AAAAAATTTC 热激响应元件 LTR -l 4ll CCGAAA 低温响应元件 MBS -96l, -l 256 TAACTG MYB结合位点 P-box -2 002 CCTTTTG 赤霉素响应元件 Skn-l_motif -968, -l 3l0, -l 544, -2 33l GTCAT 胚乳中表达的必备元件 TATA-box -268, -356, -879, -894, -909 TATA 一般元件 TC-rich repeats -l l49, -2 5l9 ATTTTCATCA 参与防御和胁迫的元件 TCA-element -42l, -l 340 TCAGAAGAGGA 水杨酸响应元件 GCN4_motif -402 TGTGTCA 胚乳中表达的必备元件 ERE -428 ATTTCAAA 乙烯响应元件 GCN4_motif -402 TGTGTCA 胚乳中表达的必备元件 表 3 OfCCD1P-S中顺式作用元件Table 3. Cis-acting elements in OfCCD1P-S顺式作用元件名称 位置 序列(5'→3') 功能 3-AF1 binding site -911 AAGAGATATTT 光响应元件 GATA-motif -102 AAGATAAGATT 光响应元件的一部分 ACE -316 ACGTGGA 光响应元件 AAGAA-motif -443 GAAAGAA ABRE -324 ACGT 脱落酸响应元件 CAAT-box -12, -267, -530, -547, -566, -659, -723 CAAT(T) 一般元件 HSE -901 AAAAAATTTC 热激响应元件 Skn-1_motif -278, -503 GTCAT 在胚乳中表达所必须的元件 TATA-box -54, -158, -472, -623 TAATA/TATA 基本元件 TC-rich repeats -673 ATTTTCTTCA 参与防御和胁迫的元件 2.3 植物表达载体构建与瞬时表达分析
将克隆得到的启动子和GUS片段分别与pBI121质粒进行重组(图 4),以含GUS::GUS表达载体的菌株为阴性对照(ck1),以含pBI 121载体菌株为阳性对照(ck2),对构建的OfCCD1P-L::GUS和OfCCD1P-S::GUS表达载体进行瞬时表达分析(图 5)。从图 5可以看出,阴性对照没有着色,阳性对照着色范围和程度最好,OfCCD1P-L::GUS表达载体和OfCCD1P-S::GUS表达载体均有着色,但着色都比阳性对照要弱。
3. 讨论
桂花OfCCD1基因有2个拷贝[14]。在启动子克隆过程中,第1次步移并未得到足够长的序列。目前,已报道的OfCCD1序列有2个:ZHANG等[14]发现的CCD1序列(GenBank登录号MG138152)和BALDERMANN发表的OfCCD1序列(GenBank登录号AB526197.1)[9]。本研究利用上述2个序列的重复序列设计了引物GSP3,并在GSP3 5′上游设计了GSP4,利用已获得的部分OfCCD1启动子序列设计了引物GSP5,分别步移从而获得了OfCCD1P-S和OfCCD1P-L的启动子序列。其中OfCCD1P-L长度为2 747 bp,OfCCD1P-S长度为981 bp。原因是OfCCD1启动子区域的2个拷贝所含酶切位点不同,构建文库时OfCCD1P-L启动子区域被内切酶截断的区域短,步移得到的启动子就较长;而OfCCD1P-S启动子区域大部分被截断,所得的启动子序列就较短。类似地,已报道的CCD家族其他成员的启动子长度也有差异,如拟南芥Arabidopsis thaliana的AtCCD7[10]和AtNCED2[15],花生Arachis hypogaea的AhNCED1[16]启动子都有2 000 bp左右,而菊花Chrysanthemum morifolium的CmCCD4a-5[17]和桂花的OfCCD4[18]启动子则分别为1 094 bp和1 337 bp。上述文献中进行启动子克隆所用方法不尽相同,这也是造成获得启动子长度不一的因素。
本研究所获得的2个OfCCD1启动子所含元件种类是具有一致性的,都含有光响应元件、热激响应元件和ABA响应元件,其中较多的是光响应元件。在桂花中,OfCCD1的表达受光照影响[9],证实了OfCCD1启动子中的光响应元件的存在。同一个亚家族的其他成员,如CCD4[19]和CCD2[20]的启动子中也发现了光响应元件。这表明光响应元件在CCD家族的启动子中可能是普遍存在的。不过功能上可能有差异,因为在藏红花Crocus sativus中,CsCCD2的表达是受光抑制的[20]。
此外,克隆得到的2个启动子中含有4个ACGT序列[21]。ACGT是启动子中一个重要的顺式作用元件,该序列可以响应水杨酸(salicylic acid,SA),紫外线,ABA和茉莉酸(jasmonic acid,JA)[22]的处理。有研究表明:响应ABA至少需要2个ACGT序列,且2个ACGT之间的碱基数不同,响应的激素种类也不同。MEHROTRA等[23]的研究发现:当2个ACGT序列之间的距离是5 bp时,这段序列响应SA的处理;当距离是25 bp时,该序列响应ABA处理。在碱蓬Suaeda salsa[24]和大豆Glycine max[25]中ABA处理会使CCD1的表达量升高,因此,桂花中OfCCD1的表达极有可能响应ABA的诱导,具体的响应机制还需要进一步研究。
期刊类型引用(5)
1. 李莉,庞天虹,付建新,张超. 桂花番茄红素β-环化酶基因LCYB上游B2亚组ERF转录因子的筛选和鉴定. 浙江农林大学学报. 2025(01): 86-93 . 本站查看
2. 周俊杰,王艺光,董彬,赵宏波. 桂花OfPSY、OfPDS和OfHYB基因启动子克隆及表达特性分析. 浙江农林大学学报. 2023(01): 64-71 . 本站查看
3. 倪子鑫,武清扬,杨云,邓慧莉,周子维,赖钟雄,孙云. 茶树CsCCD基因家族全基因组鉴定及乌龙茶LED补光晾青下表达分析. 生物工程学报. 2022(01): 359-373 . 百度学术
4. 冯靖,杨灿,卢娟芳,席万鹏. 杏CCD1和CCD4启动子克隆及顺式作用元件分析. 园艺学报. 2020(05): 939-952 . 百度学术
5. 周欢欢,傅卢成,马玲,赵亚红,张汝民,高岩. 干旱胁迫及复水对‘波叶金桂’生理特性的影响. 浙江农林大学学报. 2019(04): 687-696 . 本站查看
其他类型引用(2)
-
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2011.05.005

计量
- 文章访问数: 4932
- HTML全文浏览量: 401
- PDF下载量: 1171
- 被引次数: 7