留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

云南松花粉储藏温度及离体萌发条件

李梅 周兰英

郑泽睿, 施拥军, 周国模, 等. 毛竹碳汇林栽植方式在成林初期对空间分布格局变化特征的影响[J]. 浙江农林大学学报, 2017, 34(3): 395-405. DOI: 10.11833/j.issn.2095-0756.2017.03.003
引用本文: 李梅, 周兰英. 云南松花粉储藏温度及离体萌发条件[J]. 浙江农林大学学报, 2017, 34(1): 63-67. DOI: 10.11833/j.issn.2095-0756.2017.01.010
ZHENG Zerui, SHI Yongjun, ZHOU Guomo, et al. Planting pattern's influence for characteristics of variation of spatial distribution pattern in the early stages of moso bamboo carbon sink stands[J]. Journal of Zhejiang A&F University, 2017, 34(3): 395-405. DOI: 10.11833/j.issn.2095-0756.2017.03.003
Citation: LI Mei, ZHOU Lanying. Storage temperature and pollen viability of Pinus yunnanensis[J]. Journal of Zhejiang A&F University, 2017, 34(1): 63-67. DOI: 10.11833/j.issn.2095-0756.2017.01.010

云南松花粉储藏温度及离体萌发条件

DOI: 10.11833/j.issn.2095-0756.2017.01.010
基金项目: 

四川省科学技术攻关项目 2011NZ0098-10

详细信息
    作者简介: 李梅, 从事园林植物与观赏园艺研究。E-mail:limei862@sina.com
    通信作者: 周兰英, 教授, 博士, 从事林木遗传育种研究。E-mail:kelin1234@sina.com
  • 中图分类号: S722.3;Q944.42

Storage temperature and pollen viability of Pinus yunnanensis

  • 摘要: 以云南松Pinus yunnanesis花粉为材料,通过设置3种储藏温度(25℃,5℃,-20℃)探讨花粉生活力随时间的变化规律;通过单因子实验和正交实验,探究不同质量浓度的蔗糖、硼酸、赤霉素、氯化钙单独或共同作用对花粉萌发的影响。结果表明:云南松花粉储藏0 d时花粉生活力为91.77%,随着储藏时间的增加3种储藏温度的花粉生活力均下降,下降速率表现为25℃ > 5℃ > -20℃,说明低温能增加花粉的耐储性。单因子萌发实验显示:蔗糖的最适质量浓度为80 g·L-1,萌发率为82.41%;赤霉素的最适质量浓度为100 mg·L-1,萌发率为66.41%;硼酸的最适质量浓度为300 mg·L-1,萌发率为18.23%;氯化钙的最适质量浓度为100 mg·L-1,萌发率为56.98%。正交实验显示:4种因素的最佳组合为120 g·L-1蔗糖+150 mg·L-1赤霉素+100 mg·L-1氯化钙+100 mg·L-1硼酸,萌发率可达89.74%。
  • 全球气候变暖已成为国际社会关注的焦点,而大量二氧化碳等温室气体排放形成的温室效应则是气候变暖的根源。森林是陆地上最大的生态系统,也是陆地生态系统的最大碳库,森林生态系统维持的碳库占全球总碳库的46.30%。森林碳汇功能具有比其他减排方式更经济和高效的的优点,《京都议定书》中明确森林碳汇是二氧化碳减排的主要替代方式[1-3]。碳汇造林不仅可以增加陆地碳汇,而且能减缓大气中二氧化碳的积累,具有重要的政治意义和科学实践意义[4]。竹林是地球陆地上重要的森林植被类型,也是特殊的生态系统单元。中国地处世界竹子分布的中心区,是世界第一大产竹国,有竹子39个属500余种,竹林面积占森林面积的3.06%[5]。竹林为异龄林,与其他林分相比,具有生长速度快、高产和用途广泛等优点,竹笋出土后在较短的时间内(40 d左右)完成高生长,1年生毛竹Phyllostachys edulis的碳储量在6个月时间内已占全年碳储量的88.80%以上,毛竹具有很强的固碳能力,是速生阶段杉木Cunninghamia lanceolata林的1.33倍、热带山地雨林的1.33倍、27年生杉木林的2.16倍[3]。新造毛竹林林分状态分为成林前和成林后2个阶段。成林后的毛竹林林分结构稳定,包括立竹密度、胸径、竹高和生物量等。许多学者利用地面调查和遥感监测等方式对成林后毛竹林分生物量、固碳能力进行了深入的研究[6-9],关于毛竹林林分结构与地形环境、经营方式的关系研究也有较多报道。有研究认为:人工栽植毛竹林成林稳定后在异质性环境中的分布更偏向泊松分布[10],而在近自然状态下毛竹林空间分布格局随年份发生动态变化[11]。还有研究发现:通过改善经营措施对于优化毛竹林径级结构、年龄结构和空间结构从而提高单位面积生产力有重要作用[12-14]。与成林后毛竹林研究相比,学者对成林前毛竹林的相关研究较少,同时一些关于新造毛竹林成林前的研究也主要聚焦在非空间结构上,陈婷等[16]研究表明:毛竹林在成林前与成林后非空间结构间差异较大。陈双林等[15]研究发现:新造毛竹林林分结构状况受到立地类型、母竹质量与初植密度和造林模式等多重影响。毛竹林不同阶段空间分布格局的研究有助于完善对该物种种群水平结构的定量描述[17],因此,对毛竹林成林前空间结构的研究变得更有意义。为此,本研究以2块不同栽植方式的毛竹碳汇林为对象,对新竹进行了连续监测,探究不同栽植方式对毛竹林自然成林过程中的空间分布格局特征的影响,为毛竹碳汇林营造与管理提供参考。

    试验区位于浙江省临安市藻溪镇严家村严家山(30°10′29.7″N,119°29′55.6″E),属中亚热带季风气候,平均海拔为550 m,年平均气温为15.8 ℃,年平均降水量为1 500.0 mm,年平均无霜期为236.0 d。地形地貌为低山丘陵,土壤为红壤,pH 4.4。森林植被中,乔木层主要有萌蘖次生杉木以及少量的青冈Cyclobalanopsis glauca等。

    2008年11月,在试验区通过母竹移栽方式新造2块毛竹碳汇林,其中一块采用匀栽方式栽植,栽植面积为15.47 hm2;另一块采用丛栽方式栽植,栽植面积为20.99 hm2。母竹选用标准:年龄为1~2年生,胸径3~6 cm,竹高3.0~3.5 m,鞭色鲜黄,鞭芽饱满,鞭根健全,竹节正常,无病虫害。匀栽方式毛竹林地栽植穴规格为1.2 m(长)×0.6 m(宽)×0.5 m(深),植竹600株·hm-2,株行距为4 m × 4 m;丛栽方式栽植穴为1.2 m(长)×0.5 m(宽)×0.5 m(深),采用品字形设计,栽植穴3个·栽植点-1,植竹675株·hm-2。在毛竹林幼林阶段,每年春季和初夏各中耕除草1次,造林后3 a内采用穴施法施用尿素300~450 kg·hm-2·a-1,除挖去退笋、败笋外,全部留笋长竹,不进行伐竹作业。在匀栽与丛栽2种不同栽植方式毛竹碳汇林中各随机布设20块20 m × 20 m固定标准地。

    2009-2013年,每年对试验固定标准地内的新竹进行定位监测。用NTS-352全站仪(测距精度:3 mm+2×10-6 mm;测角精度2 s)测定每株新竹的基部三维坐标(X, Y, H)和竹高h,其中XY是平面直角坐标,H是海拔高度,h是竹子基部到竹梢顶部的垂直高度,并利用围尺测量新竹的胸径。

    1.3.1   聚集指数

    聚集指数是最近邻单株距离的平均值与随机分布下的期望平均距离之比,经Donnelly优化[18],公式为:

    $$R=\frac{\frac{1}{N}\sum\limits_{i=1}^{N}{{{r}_{i}}}}{\frac{1}{2}\sqrt{\frac{F}{N}}+\frac{0.0514F}{N}+\frac{0.041F}{{{N}^{\frac{3}{2}}}}}。$$ (1)

    式(1)中:R为聚集指数;ri为第i株毛竹到最近邻竹的距离(m);N为固定标准地内毛竹株数(株);F为固定标准地面积(m2);P为固定标准地周长(m)。

    1.3.2   Ripley’s Kd)函数

    考虑边缘影响校正后的Ripley’s Kd)函数公式为:

    $$\hat{K}\left( d \right)=A\sum\limits_{i=1}^{N}{\sum\limits_{j=1}^{N}{\frac{{{w}_{ij}}\left( d \right)}{{{N}^{2}}}\left( i\ne j \right)。}}$$ (2)

    式(2)中:N为固定标准地毛竹株数(株);d为距离尺度;wij为以毛竹i为圆心;d为半径的圆在样地中的周长部分与圆周长之比的倒数,dij为毛竹ij之间的距离(m),且dijdA为固定标准地面积(m2[19]

    BESAG等[20]提出用$\hat{L}\left( d \right)$取代$\hat{K}\left( d \right)$,并对$\hat{K}\left( d \right)$作开平方的线性变换,以保持方差稳定。在随机分布的假设下,期望值接近于0[21]。$\hat{L}\left( d \right)$公式为:

    $$\hat{L}\left( d \right)=\sqrt{\frac{R\left( d \right)}{\pi }}-d。$$ (3)

    本研究中通过比较$\hat{L}\left( d \right)$与d的关系来分析毛竹林空间分布格局类型。$\hat{L}\left( d \right)<0$,表示呈均匀分布$\hat{L}\left( d \right)=0$,表示呈随机分布;$\hat{L}\left( d \right)>0$,表示呈聚集分布。

    然后对固定标准地内毛竹实际观测分布$\hat{L}\left( d \right)$曲线用蒙特-卡洛检验法进行显著性检验。在某个距离尺度d范围内,比较固定标准地毛竹实际观测分布$\hat{L}\left( d \right)$曲线与蒙特-卡洛检验法得出的置信区间所绘制的上下2条包迹线来判别毛竹林立竹空间分布格局。实际观测分布$\hat{L}\left( d \right)$曲线位于包迹线上测,竹林呈聚集分布;实际观测分布$\hat{L}\left( d \right)$曲线位于包迹线下测,竹林呈均匀分布;实际观测分布$\hat{L}\left( d \right)$曲线位于2条包迹线中间,竹林呈随机分布[19]。本研究蒙特-卡洛检验法模拟次数为200次,最大距离尺度为固定标准地最短边长的一半,即10 m[21]

    1.3.3   $\hat{L}\left( d \right)$曲线图选择

    以匀栽毛竹林2013年份新竹为例,所选择标准地个数为16个(表 1),而16个标准地的新竹$\hat{L}\left( d \right)$曲线图均有所差异,故需建立标准选取该年份16张新竹$\hat{L}\left( d \right)$曲线图中最具代表性的一张作为结果图,用以说明2013年新竹在各距离尺度下的空间分布格局。选取标准如下:① 利用Ripley’s Kd)函数计算所得图统计该年份新竹在6个距离尺度(1,2,4,6,8,10 m)上呈聚集分布的图的张数,并计算所得张数占曲线图总张数(所选标准地个数)的比例,得到比值。② 根据统计学经验,若比值大于0.5,说明新竹在该尺度下呈聚集分布的标准地个数超过所选标准地个数(16个)的一半,表示新竹在该尺度上呈聚集分布;若比值小于0.5,表示新竹呈随机分布或均匀分布。由于本研究对象在所有尺度上均未显示有均匀分布趋势,故当比值小于0.5时,新竹在该尺度呈随机分布。③ 在所有$\hat{L}\left( d \right)$曲线图中选择符合各距离尺度下分布格局的图作为2013年新竹$\hat{L}\left( d \right)$曲线图。

    使用ForStat 2.1软件、Matlab软件和SPSS 20.0进行试验数据计算。

    由于母竹的栽植方式会对研究带来一定的干扰,所以匀栽与丛栽2种栽植方式标准地毛竹株数均不包含母竹株数。从表 1可以看出:不同栽植方式的毛竹林中相同年份的新竹、活立竹株数和聚集指数都有所差异;相同栽植方式的毛竹林新竹、活立竹的聚集指数随着时间的推移发生动态的变化。

    表 1  不同栽植方式的毛竹林不同年份新竹和活立竹聚集指数与株数
    Table 1  Different planting patterns and different years of new bamboo's and live bamboo's aggregation index and tree number in moso
    年份 栽植方式 标准地个数/个 新竹株数/株 新竹聚集指数 活立竹株数/株 活立竹聚集指数
    2009 匀栽 8 5±3aAB 0.18 ± 0.16 aA 5 ± 3 aA 0.18 ± 0.16 aA
    丛栽 6 4±3aA 0.49 ± 0.07 bAB 4±3aA 0.49 ± 0.07 bAB
    2010 匀栽 16 10 ± 5 aAC 0.35 ± 0.12 aA 13 ± 7 aB 0.35 ± 0.16 aB
    丛栽 17 25 ± 15 bBC 0.46 ± 0.15 bAB 28 ± 16 bB 0.47 ± 0.13 bA
    2011 匀栽 16 13 ± 7 aCD 0.50 ± 0.22 aB 24 ± 13 aC 0.40 ± 0.14 aB
    丛栽 18 13 ± 11 aD 0.38 ± 0.19 aA 30 ± 25 bBC 0.45 ± 0.14 aA
    2012 匀栽 18 10 ± 6 aAC 0.65 ± 0.18 aC 33 ± 18 aC 0.42 ± 0.13 aBC
    丛栽 20 20 ± 14 bBD 0.52 ± 0.15 bB 59 ± 32 bC 0.49 ± 0.18 aA
    2013 匀栽 16 17 ± 11 aD 0.63 ± 0.21 aBC 50 ± 28 aD 0.52 ± 0.11 aC
    丛栽 20 31 ±14 bC 0.76 ± 0.15 bC 89 ± 45 bD 0.60 ± 0.19 aB
    说明:同列不同小写字母仅表示相同年份不同栽植方式间差异显著,同列不同大写字母表示相同栽植方式不同年份间差异显著 (P < 0.05)。新竹株数、新竹聚集指数、活立竹株数、活立竹聚集指数为平均值±标准差。
    下载: 导出CSV 
    | 显示表格
    2.1.1   新竹聚集指数

    表 1可知:匀栽栽植方式毛竹林2009年至2013年的新竹聚集指数总体呈上升趋势,聚集指数均小于1,呈聚集分布。2009年新竹聚集指数最低为0.18,2012年聚集指数最高为0.65;新竹数也总体呈上升趋势,2012年略有下降,2013年新竹数达到最大值为17株。2009年与2010年,新竹聚集指数与株数差异不显著(P > 0.05),说明造林后前2 a新竹分布格局差异不大,新竹发育速度较为缓慢;而2010-2012年,聚集指数随着造林年限增加而增加,年份间聚集指数差异显著(P < 0.05),表明造林后第2年开始地下竹鞭逐渐扩展,新竹出笋位置离母竹渐远。2009-2012年,从新竹株数来看,年份间差异并不明显,直到2013年,新竹数才有显著(P < 0.05)提高。研究发现:当新竹株数增加时,聚集指数也相应增大,新竹聚集指数与新竹株数符合幂函数关系式(图 1),新竹株数(x)为自变量,林分新竹聚集指数为因变量(y),函数关系式为y=0.041 6x0.999 2, R2=0.761 6。

    图 1  匀栽与丛栽毛竹林新竹聚集指数和新竹株数的关系
    Figure 1  Relation of aggregation index and number of new bamboo in uniform planting and group-planting moso bamboo forest

    丛栽栽植方式毛竹林中,2009-2011年,聚集指数逐年下降,2011-2013年逐年上升,2011年新竹聚集指数最低为0.38,2013年新竹聚集指数最高为0.76。这5 a中的新竹聚集指数均小于1,呈聚集分布。2009年与2010年,丛栽新竹聚集指数年份间差异性与匀栽竹林相同,造林后前2 a,聚集指数差异不显著。2011-2013年聚集指数具有显著性差异(P < 0.05),表明该阶段毛竹林正处于快速发育阶段。2009-2013年,年份间新竹株数差异显著(P < 0.05),2009年新竹株最少为4株,2010年新竹突然呈爆发式增长,达到25株,2011年新竹突然减少至13株,然后逐步增加,2013年新竹数最多为31株,表明丛栽毛竹林造林后5 a为毛竹林快速发育阶段。同时,丛栽新竹聚集指数与新竹株数符合二次函数关系式(图 1),新竹株数为自变量(x),新竹聚集指数为因变量(y),函数关系式为y=0.001 1-0.028 4x+0.588 1, R2=0.828 8。

    表 1可见:2009年2种栽植方式新竹株数差异不显著,而2010年与2009年新竹数差异明显,表明通过母竹移栽方式进行毛竹造林后第1年,栽植方式不会影响新竹出土数量,可能的原因是新造竹林第1年母竹主要以扩展地下竹鞭为主,竹鞭尚未有出笋能力。造林后第2年开始(2010-2013年),相同年份匀栽与丛栽新竹聚集指数差异显著(P < 0.05)(除2012年),丛栽新竹株数显著(P < 0.05)高于匀栽(除2012年)。表明栽植方式对新竹的发育与分布格局的影响逐渐增大。

    2.1.2   活立竹聚集指数

    匀栽新造毛竹碳汇林造林第2年后,各年份间活立竹聚集指数差异不显著,聚集指数随着造林年限的增加呈缓慢上升趋势。2009-2013年,各年份间活立竹株数差异性显著(P < 0.05)。截至2013年,虽然每年活立竹株数都在增加,但是毛竹林空间分布格局仍然呈聚集分布,表明活立竹分布位置主要以靠近母竹为主,毛竹林还未成林,仍然处于发育阶段。活立竹聚集指数变动范围为0.18~0.52,林分活立竹株数的波动范围为5~50株。匀栽毛竹林聚集指数与活立竹株数关系见图 2图 2中,活立竹株数为自变量(x),林分活竹聚集指数为因变量(y),拟合方程为y=0.103 7x0.419 3, R2=0.937 9。

    图 2  匀栽与丛栽毛竹林聚集指数与活立竹株数的关系
    Figure 2  Relation of aggregation index and number of stand live bamboo in uniform planting and groupplanting moso bamboo forest

    丛栽栽植方式毛竹林中,2009-2011年活立竹聚集指数逐年下降,2011年聚集指数最低为0.45,随后聚集指数逐年递增,2013年聚集指数最大为0.60,该毛竹林分布格局仍呈聚集分布。丛栽毛竹林活立竹株数与聚集指数年份间差异均不显著,与匀栽竹林相同。可见,毛竹造林后5 a内,丛栽竹林也处于成林初期阶段。活立竹聚集指数变动范围为0.45~0.60,活立竹株数变动范围为4~89株。由图 2可见:活立竹聚集指数(y)和株数(x)的函数关系式满足y=0.000 04x2-0.002 7x+0.501,R2=0.985 6。

    2009-2013年5 a造林年限中,对比2种栽植方式新造毛竹林可以发现,造林后前2 a,丛栽活立竹聚集指数显著(P < 0.05)高于匀栽,第3年(2011年)开始无显著差异。而在活立竹株数方面,除2009年外,丛栽竹林均显著(P < 0.05)高于匀栽。从林业生产角度出发,相同年份下丛栽聚集指数与活立竹株数均高于匀栽,因此,丛栽栽植方式要优于匀栽栽植方式,并且能够缩短成林所需时间。到目前为止,对比成熟毛竹林分[22],2种栽植方式下的新造毛竹碳汇林仍然处于成林初期阶段。

    根据1.3.3小节介绍,由图 3中可见:2013年匀栽毛竹林新竹在4 m尺度下呈聚集分布,在1,2,6,8,10 m尺度下呈随机分布,图 4E为按照1.3.3小节标准选择的2013年匀栽毛竹林新竹$\hat{L}\left( d \right)$曲线图,符合新竹在4 m尺度下呈聚集分布,在1,2,6,8,10 m尺度下呈随机分布。以此类推,通过图 3图 5图 6图 7所示新竹与活立竹在匀栽与丛栽毛竹林各距离尺度下的分布格局,得到匀栽与丛栽毛竹林各年份新竹、活立竹空间分布格局结果图(图 4图 8)。

    图 3  匀栽毛竹林新竹各距离尺度聚集标准地所占比例
    Figure 3  Proportion of aggregated sample plots of new bamboo in all distance dimension in uniform planting moso bamboo forest
    图 4  匀栽与丛栽毛竹林各年份新竹空间分布格局
    Figure 4  Different years of stand new bamboo's spatial pattern in uniform planting moso bamboo forest and group-planting moso bamboo forest
    图 5  匀栽毛竹林活立竹各距离尺度聚集标准地所占比例
    Figure 5  Proportion of aggregated sample plots of live bamboo in all distance dimension in uniform planting moso bamboo forest
    图 6  丛栽毛竹林新竹各距离尺度聚集标准地所占比例
    Figure 6  Proportion of aggregated sample plots of new bamboo in all distance dimension in group-planting moso bamboo forest
    图 7  丛栽毛竹林活立竹各距离尺度聚集标准地所占比例
    Figure 7  Proportion of aggregated sample plots of live bamboo in all distance dimension in group-planting moso bamboo forest
    图 8  匀栽与丛栽毛竹林各年份活立竹空间分布格局
    Figure 8  Different years of stand live bamboo's spatial pattern in uniform planting moso bamboo forest and group-planting moso bamboo forest
    2.2.1   新竹Ripley’s Kd)函数

    图 4 A~E分别是匀栽栽植方式2009-2013年新竹空间分布格局图。匀栽的新造毛竹碳汇林2009年的新竹在0~2.2 m的尺度下,呈聚集分布,在2.2 m尺度以上呈随机分布;2010年新竹在0~3.3 m的尺度下呈聚集分布,在3.3 m尺度以上呈随机分布;2011年新竹在5.4 m尺度以上呈随机分布。新竹的繁殖离不开母竹竹鞭的扩展,新竹出笋位置离母竹较近,因此新竹小尺度呈聚集分布,大尺度呈随机分布表明造林前几年新竹分布格局受到了母竹栽植方式的影响。随着造林年限的增加,新竹呈随机分布的距离尺度逐渐变远,表明母竹竹鞭的长度逐渐增加,新竹出土位置离母竹渐远。2012-2013年,新竹逐渐在各距离尺度上呈随机分布表明毛竹林地下鞭根系统逐渐完善。图 4A~E中的波谷尖峰所在距离表明新竹在该尺度下存在团状分布,波谷增多说明新竹的团状分布个数增多,表明竹林地下鞭根出现交错现象,致使部分不同种源新竹在一定尺度下呈现团状聚集分布。图 4F~J分别是丛栽栽植方式2009-2013年新竹空间分布格局图,丛栽栽植方式2009年新竹在距离尺度大于4.4 m以上呈随机分布也受到了母竹栽植方式的影响。但2010与2012年新竹整体分布格局主要呈聚集分布,在0~3.0 m距离尺度上新竹聚集趋势明显,但在距离尺度大于5.0 m以上,聚集趋势开始减弱。2013年新竹聚集趋势进一步降低,以随机分布为主要分布格局。

    2.2.2   活立竹Ripley’s Kd)函数

    匀栽毛竹林2009年活立竹在0~2.2 m的尺度下呈聚集分布,在2.2 m尺度以上呈随机分布(图 8A)。2010年林分活立竹从距离尺度4.0 m以下的聚集分布过渡到距离尺度4.0 m以上的随机分布,在距离尺度为6.0 m处有一个波谷尖峰(图 8B)。2011年在距离尺度为1.0, 3.5, 6.0 m处有波谷尖峰,表明活立竹在该尺度下存在团状分布(图 8C)。2012年活立竹在距离尺度4.0 m以上聚集趋势减弱,在距离尺度为9.0 m处有1个波谷尖峰(图 8D),至2013年该波谷尖峰变得明显(图 8E)。丛栽毛竹林2010年活立竹在尺度距离6.0 m处有明显波谷尖峰(图 8G),2011年活立竹在6.0, 9.4 m距离尺度下有明显尖峰(图 8H),2012年活立竹在9.0 m距离尺度下团状分布现象更加明显(图 8I),至2013年活立竹在固定尺度上的尖峰逐渐消失,$\hat{L}\left( d \right)$估计值曲线波动变小趋于稳定,说明新造毛竹碳汇林地下鞭根系统逐渐完善(图 8J)。图 8C~E发现匀栽方式的毛竹林在9.0 m距离尺度下的尖峰没有丛栽方式那么明显,出现该现象的时间比丛栽方式迟1 a。随着造林年限的增加,不管是匀栽、丛栽栽植方式下的毛竹林,活立竹在固定尺度下的团状分布会逐渐消失,在0~2.0 m尺度下聚集趋势明显,在2.0~10.0 m尺度下聚集趋势开始减弱。

    本研究在新造毛竹碳汇林设置固定标准地,并对标准地中新竹坐标等连续监测,利用聚集指数和Ripley’s Kd)函数2种方法对2009-2013年不同栽植方式下新造毛竹碳汇林成林初期空间分布格局进行研究,得出以下结论:① 5 a造林年限间,匀栽与丛栽毛竹林均呈聚集分布。② 新造毛竹碳汇林成林初期,新竹分布格局受母竹栽植方式影响明显。③ 不同栽植方式下的毛竹碳汇林,活立竹株数与聚集指数之间存在显著相关性。匀栽毛竹林活立竹株数(x)与聚集指数(y)拟合方程为y=0.103 7x0.419 3, R2=0.937 9。丛栽毛竹林活立竹株数(x)与聚集指数(y)符合二次方程:y=0.000 04x2-0.002 7x+0.501, R2=0.985 6。④ 新造毛竹碳汇林在成林过程中存在不同距离尺度下的团状聚集分布。⑤ 栽植方式对新竹与活立竹株数和分布格局影响明显。

    本研究发现2009-2010年间,匀栽栽植方式下新竹存在小尺度聚集(0~3 m),大尺度(6~10 m)随机分布。范辉华[23]研究认为:新造竹林造林当年竹鞭扩展范围为1.934 m。因此,新竹在6~10 m距离尺度上呈随机分布是受到了母竹栽植方式的影响。丛栽栽植方式下2009-2010年新竹株数增加,而聚集指数2009-2010年下降,表明新竹的分布格局也同样受到了母竹栽植方式的影响。

    造林后4 a(2009-2012年),匀栽与丛栽竹林内新竹与活立竹随着造林年限增加相继在距离尺度为1.5, 6.1, 9.0 m处出现团状聚集分布。这种现象与毛竹该物种通过地下鞭繁殖有着密切的关系,新造毛竹林造林3 a地下竹鞭最大生长长度可达6.18 m[24],正因地下鞭根系统的扩展,部分新竹出笋位置离母竹越来越远,致使毛竹团状分布的距离尺度随着造林年限的增加而增大。造林年限的增加(2012-2013年)小尺度团状分布(d=1.5 m)因为地下竹鞭的完善而消失,竹林分布格局趋于稳定。同时还发现,毛竹林各距离尺度下的团状聚集分布在一定程度上可以反映地下竹鞭的生长蔓延情况,为研究毛竹林地下竹鞭的生长蔓延状况提供了一种新的思路。

    本研究利用聚集指数对试验数据计算发现,栽植方式对新竹、活立竹株数与聚集指数影响显著。毛竹造林后第1年,匀栽与丛栽竹林在新竹株数上无显著差异,可能的原因是母竹移栽时只保留了30~50 cm的地下鞭,造林第1年母竹主要以竹鞭发育为主,造成第1年新竹出土数量较少。从第2年开始,丛栽竹林新竹与活立竹株数便显著高于匀栽竹林,新竹的聚集指数也显著高于匀栽竹林。不仅如此,利用Ripley’s Kd)函数对试验数据的研究发现,匀栽竹林在距离尺度9.0 m出现明显波谷尖峰较丛栽方式竹林晚1 a,截至2013年,丛栽竹林新竹与活立竹的$\hat{L}\left( d \right)$曲线较之匀栽竹林更为平滑,表明丛栽竹林内各距离尺度下团状分布逐渐减少,林分分布格局相对于匀栽竹林更为稳定。从林业生产角度出发,丛栽栽植方式相对于匀栽方式更利于新竹数量上的扩展,对新造竹林的发育起到了积极的作用,加快了毛竹林成林进程,缩短了成林时间。造成这些现象的原因可能是:匀栽栽植方式母竹行距要小于丛栽栽植方式。丛栽方式母竹3株呈品字形为1个栽植点,虽然3株母竹会产生竞争,但是毛竹为单轴散生型竹种,合理改变栽植时母竹竹鞭和鞭芽的方向,使得3株母竹竹鞭在3个不同方向上生长,而且栽植点行距较远,在造林初期该方法能使母竹更好地利用周围的空间和土壤养分。

    在种群发育过程中,分布格局是随着时间的推移而表现出动态变化的过程[25]。本研究采用时间尺度与空间尺度相结合的方法,设置不同栽植方式下的毛竹林地,能更好地反映竹林在成林初期空间分布格局的动态变化。竹林碳汇是森林碳汇中一个重要的组成部分,因此,毛竹的造林方式将对碳汇造林起到重要影响,为毛竹林以及碳汇林的营造和经营提供了科学的依据。同时,对毛竹林成林初期以及成林后格局的分析,对森林碳汇计量与监测以及增汇技术的提高提供科学的帮助。由于新造竹林到达成熟稳定阶段一般需要6~7 a或者更长的时间[15],笔者还将继续对现阶段以及成林稳定后的2种不同栽植方式下的毛竹林进行监测,完善更长时间尺度的在自然状态下竹林从营造到成林特征变化的研究。

  • 图  1  不同储藏温度下花粉生活力的比较

    Figure  1  Comparison of pollen viability under different storage conditions

    图  2  云南松花粉萌发过程

    Figure  2  Mination process of Pinus yunnanesis pollen

    图  3  蔗糖、氯化钙、硼酸、赤霉素对云南松花粉萌发的影响

    Figure  3  Effect of sucrose, CaCl2, H3BO3 and GA3 on in vitro pollen germinetion of Pinus yunnanesis

    表  1  均衡子集表

    Table  1.   Balanced subsets table

    储藏温度/℃ 均衡子集
    1 2 3
     25 63.377 9
      5 65.636 4
    -20 69.357 9
    下载: 导出CSV

    表  2  花粉萌发L9(34)正交实验结果

    Table  2.   Pollen germination rate in orthogonal design experiment

    处理编号 蔗糖/
    (g·L-1)
    硼酸/
    (mg·L-1)
    赤霉素/
    (mg·L-1)
    氯化钙/
    (mg·L-1)
    萌发率/%
    1 120 100 150 100 89.74 aA
    2  80 500 150 150 77.65 bB
    3  80 300 100 100 54.69 cC
    4 120 500 100  50 49.42 dD
    5 100 300 150  50 46.15 eD
    6 120 300  50 150 38.17 fE
    7 100 500  50 100 34.66 gE
    8 100 100 100 150 28.49 hF
    9  80 100  50  50 15.09 iG
    0(对照)  00   0   0   0  8.20 jH
    说明:不同大写字母表示差异极显著(P<0.01);不同小写字母表示差异显著(P<0.05)。
    下载: 导出CSV
  • [1] 黄瑞复.云南松的种群遗传与进化[J].云南大学学报(自然科学版), 1993, 15(1):50-63.

    HUANG Ruifu. The population genetics and evolution of Pinus yunnanensis[J]. J Yunnan Univ Nat Sci, 1993, 15(1):50-63.
    [2] 陈强, 常恩福, 董福美, 等.云南松天然优良林分疏伐营建母树林的研究[J].云南林业科技, 2000(3):1-8.

    CHEN Qiang, CHANG Enfu, DONG Fumei, et al. Study on establishment of seed production stand by thinning natural superior stands of Pinus yunnanensis[J]. J Yunnan For Sci Technol, 2000(3):1-8.
    [3] 张跃敏, 李根前, 李莲芳, 等.云南松生长特性及其促成培育[J].陕西林业科技, 2008(3):4-7.

    ZHANG Yuemin, LI Genqian, LI Lianfang, et al. The growth characteristics of Pinus yunnanensis and improvement measures[J]. J Shaanxi For Sci Technol, 2008(3):4-7.
    [4] 杨彩云, 杨貌仙.云南松花粉形态研究[J].云南植物研究, 1989, 11(1):71-74.

    YANG Caiyun, YANG Maoxian. Study on the pollen morphology of Pinus yunnanensis[J]. Acta Bot Yunnan, 1989, 11(1):71-74.
    [5] 范国栋, 刘嘉宝, 冯武.破壁云南松花粉成分分析及其安全性和功能评价[J].云南林业科技, 2001(1):54-57.

    FAN Guodong, LIU Jiabao, FENG Wu. Evaluation on ingredients, security and function of coat-broken Pinus yunnanensis pollen[J]. J Yunnan For Sci Technol, 2001(1):54-57.
    [6] 王红卫, 邓辉胜, 谭海明, 等.银杉花粉生命力及其变异[J].植物生态学报, 2007, 31(6):1199-1204.

    WANG Hongwei, DENG Huisheng, TAN Haiming, et al. Pollen viability and variation in Cathaya argyrophylla[J]. J Plant Ecol, 2007, 31(6):1199-1204.
    [7] 马建伟, 王军辉, 张守攻, 等.云杉花粉的贮藏及萌发研究[J].林业科学研究, 2012, 25(3):302-307.

    MA Jianwei, WANG Junhui, ZHANG Shougong, et al. Study on storage and bourgeoning of spruce pollen[J]. For Res, 2012, 25(3):302-307.
    [8] 孙蕾, 房用, 马玲, 等.黑松和赤松花粉取粉处理和干燥贮藏技术研究[J].食品科学, 2007, 28(7):189-191.

    SUN Lei, FANG Yong, MA Ling, et al. Study on production and storage technology of black pines and Japanese red pines pollens[J]. Food Sci, 2007, 28(7):189-191.
    [9] 龚明, 曹宗巽.钙和钙调素对花粉萌发和花粉管生长的调控[J].植物生理学通讯, 1995, 31(5):321-328.

    GONG Ming, CAO Zongxun. Regulation of calcium and calmodulin on pollen germination and growth of pollen tube[J]. Plant Physiol Commun, 1995, 31(5):321-328.
    [10] 张绍铃, 陈迪新, 康琅, 等.培养基组分及pH值对梨花粉萌发和花粉管生长的影响[J].西北植物学报, 2005, 25(2):225-230.

    ZHANG Shaoling, CHEN Dixin, KANG Lang, et al. Effects of medium components and pH on pollen germination and tube growth in pear (Pyrus pyrifolia)[J]. Acta Bot Boreal-Occident Sin, 2005, 25(2):225-230.
    [11] 张绍铃, 高付永, 陈迪新, 等.植物生长调节物质对丰水梨花粉萌发和花粉管生长的影响[J].西北植物学报, 2003, 23(4):586-591.

    ZHANG Shaoling, GAO Fuyong, CHEN Dixin, et al. The effects of plant growth regulating substances on pollen germination and tube gowth in Fengshui pear (Pyrus serotina)[J]. Acta Bot Boreal-Occident Sin, 2003, 23(4):586-591.
  • [1] 李亚麒, 许玉兰, 唐军荣, 和滢埝, 王丹, 李江飞, 蔡年辉.  氮磷配施对云南松苗木生长及养分积累的影响 . 浙江农林大学学报, 2023, 40(1): 115-125. doi: 10.11833/j.issn.2095-0756.20220223
    [2] 熊晖, 陆雪佳, 杨文云, 黎思国, 高成杰, 刘方炎, 李昆.  云南松解剖特征及其对外界刺激的响应 . 浙江农林大学学报, 2018, 35(3): 483-489. doi: 10.11833/j.issn.2095-0756.2018.03.012
    [3] 俞芹, 王倩颖, 王宁杭, 王型力, 范李节, 张明如, 申亚梅.  4种木兰属植物花粉萌发特性 . 浙江农林大学学报, 2018, 35(3): 505-510. doi: 10.11833/j.issn.2095-0756.2018.03.015
    [4] 冉啟香, 邓华锋, 黄国胜, 王雪军, 陈振雄.  云南松地上生物量模型研究 . 浙江农林大学学报, 2016, 33(4): 605-611. doi: 10.11833/j.issn.2095-0756.2016.04.008
    [5] 王秋华, 徐盛基, 李世友, 瞿海斌, 万春, 文灿明, 张晓明.  云南松林飞火形成的火环境研究 . 浙江农林大学学报, 2013, 30(2): 263-268. doi: 10.11833/j.issn.2095-0756.2013.02.017
    [6] 张振, 张含国, 张磊, 朱航勇, 李雪峰.  兴安落叶松基本群体与育种群体RAPD多样性分析 . 浙江农林大学学报, 2012, 29(1): 130-136. doi: 10.11833/j.issn.2095-0756.2012.01.022
    [7] 管雨, 贾文庆, 刘会超, 张智俊.  木瓜花粉生活力测定及储藏特性 . 浙江农林大学学报, 2012, 29(5): 790-794. doi: 10.11833/j.issn.2095-0756.2012.05.024
    [8] 杨秀莲, 郝其梅.  桂花种子休眠和萌发的初步研究 . 浙江农林大学学报, 2010, 27(2): 272-276. doi: 10.11833/j.issn.2095-0756.2010.02.018
    [9] 王国霞, 曹福亮, 方炎明.  古银杏雄株花粉超微形态特征类型 . 浙江农林大学学报, 2010, 27(3): 474-477. doi: 10.11833/j.issn.2095-0756.2010.03.025
    [10] 谭晓风, 袁德义, 袁军, 廖婷.  维生素C及植物生长调节物质对油茶花粉萌发率的影响 . 浙江农林大学学报, 2010, 27(6): 941-944. doi: 10.11833/j.issn.2095-0756.2010.06.023
    [11] 高永茜, 周跃华, 田昆, 郑畹, 聂艳丽, 段辉, 张文东.  蔗渣基质对云南松种子育苗的影响 . 浙江农林大学学报, 2009, 26(4): 598-602.
    [12] 靳晓翠, 王伟, 刘玉艳.  天门冬种子萌发特性 . 浙江农林大学学报, 2007, 24(4): 428-432.
    [13] 彭建松, 柴勇, 孟广涛, 方向京, 李贵祥, 和丽萍.  云南金沙江流域云南松天然林林隙特征 . 浙江农林大学学报, 2005, 22(1): 50-55.
    [14] 李宗艳, 万晓敏, 唐岱, 王锦.  黄牡丹花粉萌发特性的研究 . 浙江农林大学学报, 2004, 21(3): 285-289.
    [15] 汪奎宏, 何奇江, 吴蓉.  早竹花粉形态与生物学特性 . 浙江农林大学学报, 2000, 17(2): 137-141.
    [16] 史晓华, 黎念林, 金玲, 朱秋桂, 徐本美.  秤锤树种子休眠与萌发的初步研究 . 浙江农林大学学报, 1999, 16(3): 228-233.
    [17] 孙鸿有, 丰炳财, 董飞岳, 严世峰, 江刘其.  香椿芽萌发有效积温与大棚栽培技术 . 浙江农林大学学报, 1998, 15(1): 6-12.
    [18] 梁月荣, 陆建良, 张友炯, 朱永兴.  茶树催发素对春茶萌发的影响 . 浙江农林大学学报, 1996, 13(4): 435-440.
    [19] 樊后保, 臧润国.  模拟酸雨对樟树种子萌发和幼苗生长的影响` . 浙江农林大学学报, 1996, 13(4): 412-417.
    [20] 张卓文, 朱昌乐, 潘建瑞, 刘建南, 叶正环.  柳杉花粉的散发规律 . 浙江农林大学学报, 1994, 11(1): 21-25.
  • 期刊类型引用(2)

    1. 傅乐乐,苏建兰,胡忠宇. 浙江省竹林碳汇测算研究. 西南林业大学学报(社会科学). 2024(01): 68-73 . 百度学术
    2. 顾琪,王平,焦月潇,曹俊杰,王舒悰,时培建,王福升,秦鹏. 6个竹种的空间点格局分析. 安徽农业大学学报. 2019(03): 432-439 . 百度学术

    其他类型引用(3)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2017.01.010

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2017/1/63

图(3) / 表(2)
计量
  • 文章访问数:  2879
  • HTML全文浏览量:  601
  • PDF下载量:  413
  • 被引次数: 5
出版历程
  • 收稿日期:  2016-01-07
  • 修回日期:  2016-03-31
  • 刊出日期:  2017-02-20

云南松花粉储藏温度及离体萌发条件

doi: 10.11833/j.issn.2095-0756.2017.01.010
    基金项目:

    四川省科学技术攻关项目 2011NZ0098-10

    作者简介:

    李梅, 从事园林植物与观赏园艺研究。E-mail:limei862@sina.com

    通信作者: 周兰英, 教授, 博士, 从事林木遗传育种研究。E-mail:kelin1234@sina.com
  • 中图分类号: S722.3;Q944.42

摘要: 以云南松Pinus yunnanesis花粉为材料,通过设置3种储藏温度(25℃,5℃,-20℃)探讨花粉生活力随时间的变化规律;通过单因子实验和正交实验,探究不同质量浓度的蔗糖、硼酸、赤霉素、氯化钙单独或共同作用对花粉萌发的影响。结果表明:云南松花粉储藏0 d时花粉生活力为91.77%,随着储藏时间的增加3种储藏温度的花粉生活力均下降,下降速率表现为25℃ > 5℃ > -20℃,说明低温能增加花粉的耐储性。单因子萌发实验显示:蔗糖的最适质量浓度为80 g·L-1,萌发率为82.41%;赤霉素的最适质量浓度为100 mg·L-1,萌发率为66.41%;硼酸的最适质量浓度为300 mg·L-1,萌发率为18.23%;氯化钙的最适质量浓度为100 mg·L-1,萌发率为56.98%。正交实验显示:4种因素的最佳组合为120 g·L-1蔗糖+150 mg·L-1赤霉素+100 mg·L-1氯化钙+100 mg·L-1硼酸,萌发率可达89.74%。

English Abstract

郑泽睿, 施拥军, 周国模, 等. 毛竹碳汇林栽植方式在成林初期对空间分布格局变化特征的影响[J]. 浙江农林大学学报, 2017, 34(3): 395-405. DOI: 10.11833/j.issn.2095-0756.2017.03.003
引用本文: 李梅, 周兰英. 云南松花粉储藏温度及离体萌发条件[J]. 浙江农林大学学报, 2017, 34(1): 63-67. DOI: 10.11833/j.issn.2095-0756.2017.01.010
ZHENG Zerui, SHI Yongjun, ZHOU Guomo, et al. Planting pattern's influence for characteristics of variation of spatial distribution pattern in the early stages of moso bamboo carbon sink stands[J]. Journal of Zhejiang A&F University, 2017, 34(3): 395-405. DOI: 10.11833/j.issn.2095-0756.2017.03.003
Citation: LI Mei, ZHOU Lanying. Storage temperature and pollen viability of Pinus yunnanensis[J]. Journal of Zhejiang A&F University, 2017, 34(1): 63-67. DOI: 10.11833/j.issn.2095-0756.2017.01.010
  • 云南松Pinus yunnanesis是松科Pinaceae松属Pinus常绿针叶乔木,生长快,材质好,耐干旱瘠薄,天然更新能力强,是西南地区荒山造林先锋树种和主要的用材树种[1],具有很高的经济开发价值。然而,因遗传改良滞后,云南松优质高效人工林的发展受到严重制约。有研究[2]表明,云南松树高、通直度、结实量等性状受基因连锁或功效基因的作用较大,受环境的影响较小,有较高的遗传稳定性。同时,群体内存在许多生长、形质和材性兼优的家系、个体,尤其是生长性状的遗传变异潜力巨大,只要通过有效的良种选育就能发掘这些优良基因型[3]。花粉研究是研究遗传改良的重要内容,对于云南松花粉,除了花粉形态[4]、花粉成分[5]研究外,尚未见有关花粉生活力方面的研究报道。本研究通过对云南松花粉储藏温度及萌发条件的探究,旨在为云南松杂交育种工作的顺利开展提供技术依据。

    • 云南松花粉采自四川省会理县太平镇云南松人工林。

    • 2014年4月下旬采集成熟的云南松雄球花,置于光滑纸面上,在室内摊晾收集,花粉混合均匀后装入牛皮纸袋中带回实验室。

    • 将花粉分装在清洁干燥带瓶盖的青霉素小瓶中,标记,分别置于25 ℃,5 ℃,-20 ℃条件下储藏。储藏初期隔24 h测定3种储藏温度下花粉的生活力,后期可根据情况延长测定间隔时间,直到花粉失去生活力(花粉生活力低于50%)。

    • 采用碘-碘化钾染色法、α-萘酚-联苯胺法、次甲基蓝染色法等3种方法测定花粉生活力,筛选出能快速准确测定花粉生活力的方法。测定时,先将低温条件下的云南松花粉在常温下放置0.5 h,再用染色剂处理,重复3个·处理-1,观察清晰视野5个·重复-1,统计花粉粒数≥30粒·视野-1,统计各视野花粉生活力,并计算各处理平均生活力。花粉生活力(%)=(染色花粉数/统计花粉总数)×100%。

    • 设置培养液蔗糖质量浓度为0,50,80,100,120 g· L-1;硼酸质量浓度为0,100,300,500 mg· L-1;赤霉素质量浓度为0,50,100,150 mg· L-1;氯化钙质量浓度为0,50,100,150 mg· L-1。通过单因素实验,筛选出培养液各因素的最适质量浓度,再进行正交实验设计,筛选出培养液各因素最佳质量浓度组合。花粉采用液体培养法进行培养,先将解剖针和双凹片干燥灭菌,处理时用解剖针蘸取少量花粉散播在载有不同培养液的双凹片凹孔中,盖上盖玻片,置于25 ℃LHP-300H智能型人工气候箱中黑暗培养。3 h在显微镜下观测1次,重复3次·处理-1,观察清晰视野5个·重复-1,统计花粉粒数≥30粒·视野-1,当花粉管长度≥花粉直径时视为花粉萌发,观察至萌发率不再增加为止。统计各视野花粉生活力,并计算各处理平均生活力。花粉萌发率(%)=(花粉萌发数/统计花粉总数)×100%。

    • 所得数据用Excel,SPSS 20进行统计分析。进行方差分析时,需对原始数据进行反正弦转换。

    • a-萘酚-联苯胺法染色不明显,次甲基蓝染色法在进行染色梯度界定时无固定标准,难统一,而经碘-碘化钾染色法测定结果稳定、易辨别、最接近萌发实验结果,因此,本研究以碘-碘化钾染色法测定结果作为论述依据。测定结果(图 1)显示:随着储藏天数的增加,3种储藏温度下云南松花粉生活力均下降,但储藏温度不同,花粉生活力下降的速率不同,其中25 ℃条件下花粉生活力下降较快,5 ℃条件和-20 ℃条件下花粉生活力下降趋势都较为平缓,总的花粉生活力下降趋势表现为25 ℃>5 ℃>-20 ℃。方差分析结果表明:储藏时间和储藏温度对花粉生活力的影响达极显著水平(F储藏时间=35.482>F0.01F储藏温度=30.404>F0.01),且储藏温度的F值较储藏时间的F值大,说明储藏温度比储藏时间对花粉生活力的影响大。多重比较显示(表 1):3种储藏温度对云南松花粉生活力影响显著,均数大小表现为-20 ℃>5 ℃>25 ℃,即表明-20 ℃条件对花粉生活力的保持显著优于5 ℃条件和25 ℃条件,5 ℃条件显著优于25℃条件。

      图  1  不同储藏温度下花粉生活力的比较

      Figure 1.  Comparison of pollen viability under different storage conditions

      表 1  均衡子集表

      Table 1.  Balanced subsets table

      储藏温度/℃ 均衡子集
      1 2 3
       25 63.377 9
        5 65.636 4
      -20 69.357 9
    • 云南松花粉萌发过程见图 2。云南松花粉在培养24 h之前不萌发,培养24~72 h,萌发率急剧上升,72 h后萌发率趋于平稳,超过72 h以后新增花粉萌发数极少,可见,72 h后即可统计花粉萌发率。花粉粒萌动时萌发沟薄壁区呈透明状态并向两边突起,继而其中一端或两端伸长成为花粉管,花粉管生长后期会分支,甚至破裂。

      图  2  云南松花粉萌发过程

      Figure 2.  Mination process of Pinus yunnanesis pollen

    • 图 3A可知:蔗糖对云南松花粉萌发存在极显著影响。花粉在清水中也能萌发,平均萌发率为9.02%,随着蔗糖质量浓度的增加,花粉萌发率呈先升高后降低的趋势,在蔗糖质量浓度为80 g· L-1时最高,为82.41%。蔗糖质量浓度超过80 g· L-1后花粉萌发率降低,可见最适蔗糖质量浓度为80 g· L-1。由图 3B可知:不同质量浓度的氯化钙对云南松花粉萌发率影响程度不同。当培养基氯化钙质量浓度为50 mg· L-1时,萌发率为13.06%;随氯化钙质量浓度的增加花粉萌发率逐渐升高,当氯化钙质量浓度升至100 mg· L-1时,萌发率达到最高,为56.98%;但随着氯化钙质量浓度继续增加,花粉萌发率下降。可见云南松花粉萌发的适宜氯化钙质量浓度是100 mg· L-1。由图 3C可知:硼酸质量浓度为300 mg· L-1时,花粉萌发率达到最大值18.23%,极显著高于对照和100 mg· L-1;而质量浓度为500 mg· L-1时,花粉萌发受到强烈抑制,萌发率仅为1.35%,极显著低于清水处理。结果表明:云南松花粉萌发的较适宜硼酸质量浓度为300 mg· L-1。由图 3D可知:当培养基赤霉素质量浓度为100 mg· L-1时,花粉萌发率达到最大值66.41%,极显著高于其他处理。蔗糖、氯化钙、硼酸、赤霉素等单因子对云南松花粉的萌发都存在极显著影响,添加后大部分萌发率比对照有显著增长,以蔗糖作用最明显。单因子实验结果显示最适浓度组合为80 g· L-1蔗糖+100 mg· L-1赤霉素+100 mg· L-1氯化钙+300 mg· L-1硼酸。

      图  3  蔗糖、氯化钙、硼酸、赤霉素对云南松花粉萌发的影响

      Figure 3.  Effect of sucrose, CaCl2, H3BO3 and GA3 on in vitro pollen germinetion of Pinus yunnanesis

    • 表 2结果表明:蔗糖、硼酸、赤霉素、氯化钙在一定质量浓度范围内共同作用能明显提高云南松花粉的萌发率。实验中各组处理对花粉萌发率的影响与对照组都存在极显著差异,其中处理1萌发率最高,达89.74%;其次为处理2,达77.65%。正交实验结果显示最优搭配为120 g· L-1蔗糖+150 mg· L-1赤霉素+100 mg· L-1氯化钙+100 mg· L-1硼酸,与单因子实验所得结果有差异,这说明各种营养因子对花粉萌发的影响是相互作用的。

      表 2  花粉萌发L9(34)正交实验结果

      Table 2.  Pollen germination rate in orthogonal design experiment

      处理编号 蔗糖/
      (g·L-1)
      硼酸/
      (mg·L-1)
      赤霉素/
      (mg·L-1)
      氯化钙/
      (mg·L-1)
      萌发率/%
      1 120 100 150 100 89.74 aA
      2  80 500 150 150 77.65 bB
      3  80 300 100 100 54.69 cC
      4 120 500 100  50 49.42 dD
      5 100 300 150  50 46.15 eD
      6 120 300  50 150 38.17 fE
      7 100 500  50 100 34.66 gE
      8 100 100 100 150 28.49 hF
      9  80 100  50  50 15.09 iG
      0(对照)  00   0   0   0  8.20 jH
      说明:不同大写字母表示差异极显著(P<0.01);不同小写字母表示差异显著(P<0.05)。
    • 研究表明:碘-碘化钾染色法能反应不同储藏温度下花粉生活力的变化趋势。染色法测定的花粉生活力略高于培养基法,这是因为染色时染色剂也能对未成熟、衰老和败育的花粉进行染色,而这类花粉不一定都具有受精能力,以致测定结果往往偏高。虽然培养基法是最能准确测定花粉生活力的方法,但是其耗时长,操作过程相对复杂,碘-碘化钾染色法能快速准确地测定云南松花粉的生活力。

      报道显示[6-8]:银杉Cathaya argyrophylla等裸子植物的鲜花粉生活力均在90%以上。本研究通过碘-碘化钾染色法测定云南松鲜花粉的生活力为91.77%,与以上裸子植物结果相一致,都具有较高的鲜花粉生活力。本研究还表明:云南松花粉具有较高的耐储藏性,在25 ℃条件下储藏463 d时云南松花粉生活力为48.21%,在5 ℃条件下储藏463 d时为60.28%,在-20 ℃条件下463 d时为72.34%。储藏时间和储藏温度对于花粉生活力都有极显著的影响,但储藏温度影响更大。这是因为低温能降低花粉呼吸强度,减少自身营养物质的消耗。

    • 蔗糖是许多植物花粉离体培养所必需的营养成分,一般认为蔗糖为花粉的萌发和花粉管的生长提供了能源和碳源,同时还能调节培养环境渗透压。蔗糖适宜质量浓度通常为100~150 g· L-1,云南松花粉萌发的最适宜蔗糖质量浓度为80 g· L-1,且总体情况是低质量浓度比高质量浓度对花粉萌发更有利。其原因可能是高质量浓度蔗糖造成花粉细胞质壁分离,使花粉粒脱水,从而影响花粉的萌发。钙离子是花粉管生长的基本因素。本研究中单因子氯化钙质量浓度对花粉萌发的影响极显著,低质量浓度时对花粉萌发率的影响不大,质量浓度增加能显著提高花粉萌发率,100 mg· L-1时萌发率达最大值56.98%。可能云南松花粉自身含有较少的钙离子,萌发时外源钙离子的适量补充可以促进其萌发。硼不仅可以增加糖的吸收、运转和代谢,形成花粉管顶端生长依赖的梯度,还可能作为一种相关因子影响关键酶活性,改变细胞壁延展性以至影响花粉的萌发、花粉管细胞壁的构建和花粉管的伸长[9]。一般认为,花粉内存在较多的钙,而缺乏硼,因硼的缺乏往往要从柱头和花柱内获得硼的补偿[10]。本研究中,云南松花粉萌发对硼需要量十分微小,在最适质量浓度300 mg· L-1时萌发率仅为18.23%,500 mg· L-1时即表现为强烈的抑制作用,可能花粉内含有较多的硼元素,能在一定程度上满足花粉萌发所需,但硼适量的补充也能提高花粉萌发率。虽然目前有关赤霉素等植物生长调节物质能促进花粉的萌发和花粉管生长的机制尚不清楚,但已有研究表明花粉自身富含生长素及赤霉素等生长调节物质,这些物质的多少对花粉自身的萌发、生长及储藏寿命均有较大的影响,对花粉管在花柱内生长完成受精及促进果实膨大也有重要的作用,因此,一定质量浓度的外源赤霉素处理能促进花粉萌发和花粉管生长[11]。在本研究中赤霉素对花粉萌发率存在极显著性影响,以100 mg· L-1最佳,萌发率可达66.41%。总体来说,云南松花粉生活力强,对培养基营养物质的需求量不高,单因子以蔗糖作用最明显,正交实验最适的液体培养基组合为120 g· L-1+150 mg· L-1赤霉素+100 mg· L-1氯化钙+100 mg· L-1硼酸。这可能是因为云南松花粉中自身含有的能量物质较多,适量补充能更好地满足萌发所需营养物质,高质量浓度的营养物质补充反而会抑制花粉的正常萌发。

      在杂交授粉实际操作中,一般采用生活力不低于新鲜花粉生活力的50%的花粉进行授粉,因此,云南松花粉在25 ℃条件下储藏1 a之内可用于授粉,低温储藏能有效延缓花粉生活力下降的速度。在授粉时可以喷施一定质量浓度的蔗糖、赤霉素,促进花粉萌发和花粉管伸长,进而提高杂交育种成效。

参考文献 (11)

目录

/

返回文章
返回