-
目前,温室气体排放相关研究已成为国际气候变化研究的热点问题。一氧化二氮(N2O)作为大气中仅次于二氧化碳(CO2)和甲烷(CH4)的三大温室气体之一,其增温潜势为CO2的298倍、CH4的12倍[1]。森林土壤是全球N2O排放的重要来源,仅热带和亚热带森林土壤N2O排放约占全球总量的23%[2]。森林土壤氮矿化能够为N2O的产生提供充足的底物[铵态氮(NH4-N)与硝态氮(NO3-N)],它的微小变化可能会引起土壤N2O排放速率的显著改变[3-4]。森林作为陆地生态系统的主体,约占全球陆地面积的31%[5],因此,森林土壤氮矿化及其N2O释放可能成为影响全球气候变化进程的关键生态学过程。氮素作为调控森林生态系统生产力的主要营养组分,也是土壤肥力形成与维持的关键影响因子[6],受到土壤学家和森林学家的广泛关注[7]。森林土壤中仅有5%的氮以无机态的形式存在,而有机氮只有经微生物矿化后才能被植物吸收利用,氮素的硝化与反硝化在植物与微生物的生命活动过程起着关键作用[8]。因此,氮矿化作为测定森林土壤供氮能力的主要指标,不仅能够表征森林生态系统物质循环与能量流动的过程、方向及强度[9],而且对森林生态系统组成、结构与功能以及生产力维持等方面均起着重要的调控作用。森林土壤氮矿化是由森林土壤动物-土壤微生物共同驱动并将土壤有机氮转变为矿质氮的微生物生态学过程。土壤氮矿化过程受土壤物理与化学环境等非生物因素以及森林植被覆盖、森林凋落物、土壤微生物与土壤动物等生物因素共同调控。其中温度和湿度通常被认为是影响土壤氮矿化的2个重要因素[10],且各因素的作用强度因气候条件不同而存在较大差异,从而导致土壤氮矿化时空变化存在极大的不确定性;而凋落物作为重要的有机质来源,会改变土壤的微环境,为土壤微生物和动物生长发育提供必需的营养物质和栖息环境,尤其能够刺激微生物的活性,进而促进土壤氮矿化过程及其温室气体的排放。本研究从时间和空间、非生物因素、生物因素等方面探讨了近年来国内外森林土壤氮矿化的主要影响因素及调控机制,并对未来的研究方向进行展望。
Regulation mechanism of biotic and abiotic factors on the nitrogen mineralization of forest soil
-
摘要: 温室气体排放剧增引起全球变暖,已成为全球高度关注的生态环境问题。一氧化二氮(N2O)是大气中仅次于二氧化碳(CO2)和甲烷(CH4)的第三大温室气体,森林土壤氮矿化过程伴随着硝化和反硝化的发生,能够导致N2O的产生,进而引起大气N2O浓度的升高。森林土壤氮矿化是生物与非生物环境因素共同调控的复杂生态学过程,探明森林土壤氮矿化的影响因素及其调控机制,有助于丰富人们对森林土壤氮循环过程的认识,在全球变化研究中具有重要的地位与作用。本研究揭示森林土壤氮矿化的时空变化及影响因素,阐明非生物因素以及森林植被覆盖、森林凋落物、土壤微生物与土壤动物等生物因素对森林土壤氮矿化的影响特征及作用机制。目前,森林土壤氮矿化研究存在结果可比性不强;内容多集中于氮矿化单因素影响研究,缺乏多因子尤其是微生物-动物协同调控研究;缺乏不同气候类型及不同土地利用方式森林土壤氮矿化特征及影响机制研究;缺乏氮矿化对全球变化的响应研究等一系列问题。土壤氮矿化研究应该探索统一高效的测定方法,加强土壤微生物-动物-环境因子多因素耦合对森林土壤氮矿化影响机制研究,探讨不同气候类型及不同利用方式森林土壤氮矿化调控机制,重点阐明全球变化背景下森林土壤氮矿化的过程与机理。旨在为准确理解不同气候区森林土壤氮矿化的时空格局及其对全球气候变化的影响提供理论支撑。参69Abstract: Global warming, a global ecological and environmental problem, attributes to the rapidly increased emission of greenhouse gases of which N2O ranks the third in the atmosphere after CO2 and CH4. On the one hand, nitrification and denitrification often take place in the process of forest soil nitrogen mineralization where N2O is produced from soils, thus, increasing the atmospheric N2O concentration. On the other hand, forest soil nitrogen mineralization, as a complex ecological process, is regulated by the interactions of biotic and abiotic environmental factors. Therefore, the investigation of the influencing factors and the regulatory mechanism of forest soil nitrogen mineralization, is conducive to the promotion of people’s understanding of the nitrogen cycling process of forest soils, thus playing an important role in the study of global change. However, previous studies on the nitrogen mineralization of forest soils were mainly limited to the effect of single factors with the lack of comparable research results, the cooperative regulation research on multiple factors (e.g., microbial-animal interaction), the study of forest soil nitrogen mineralization characteristics and impact mechanism under different circumstances of climate and land-use, and the research on the response of nitrogen mineralization to global climate change. Aimed to provide theoretical support for better understanding the spatiotemporal patterns of forest soil nitrogen mineralization in different climatic areas and their effects on global climate change, this study has conducted an examination of the spatiotemporal variations and the influencing factors of forest soil nitrogen mineralization, and provided an explanation of the characteristics and mechanism of the effect of abiotic (e.g., soil physicochemical environments) and biotic factors (e.g., forest vegetation cover, forest litter, and soil microorganisms and fauna) on forest soil nitrogen mineralization. It is advised that researches on soil nitrogen mineralization should, with unified and efficient methods, be focused on the influencing mechanism of the multi-factor coupling of soil microorganisms-fauna-environmental factors on forest soil nitrogen mineralization, the regulation mechanism of soil nitrogen mineralization under different climate and land-use circumstances, as well as the processes and mechanisms of forest soil nitrogen mineralization under the background of global change. [Ch, 69 ref.]
-
[1] ZOU Yina, NING Daliang, HUANG Yong, et al. Functional structures of soil microbial community relate to contrasting N2O emission patterns from a highly acidified forest [J]. Sci Total Environ, 2020, 725: 1 − 9. [2] WANG Yongsheng, CHENG Shulan, FANG Huajun, et al. Simulated nitrogen deposition reduces CH4 uptake and increases N2O emission from a subtropical plantation forest soil in southern China [J]. PLoS One, 2014, 9(4): 1 − 10. [3] BUTTERBACH-BAHL K, BAGG E M, DANNENMANN M, et al. Nitrous oxide emissions from soils: how well do we understand the processes and their controls? [J]. Philos Trans R Soc London B Biol Sci, 2013, 368(1627): 1 − 13. [4] HU Xiaokang, LIU Lingli, ZHU Biao, et al. Asynchronous responses of soil carbon dioxide, nitrous oxide emissions and net nitrogen mineralization to enhanced fine root input [J]. Soil Biol Biochem, 2016, 92: 67 − 78. [5] KONG Yuhua, MA Nyukling, YANG Xitian, et al. Examining CO2 and N2O pollution and reduction from forestry application of pure and mixture forest [J]. Environ Pollut, 2020, 265: 1 − 8. [6] 刘顺, 罗达, 刘千里, 等. 川西亚高山不同森林生态系统碳氮储量及其分配格局[J]. 生态学报, 2017, 37(4): 1074 − 1083. LIU Shun, LUO Da, LIU Qianli, et al. Carbon and nitrogen storage and distribution in different forest ecosystems in the subalpine of western Sichuan [J]. Acta Ecol Sin, 2017, 37(4): 1074 − 1083. [7] ZHOU Z H, WANG C K. Reviews and syntheses: soil resources and climate jointly drive variations in microbial biomass carbon and nitrogen in China’s forest ecosystems [J]. Biogeosciences, 2015, 12(22): 6751 − 6760. [8] KONG Weibo, YAO Yufei, ZHAO Zhongna, et al. Effects of vegetation and slope aspect on soil nitrogen mineralization during the growing season in sloping lands of the Loess Plateau [J]. Catena, 2019, 172: 753 − 763. [9] YANG Rong, DU Zeyu, KONG Junqia, et al. Patterns of soil nitrogen mineralization under a land-use change from desert to farmland [J]. Eur J Soil Sci, 2020, 71: 60 − 68. [10] GUNTINAS M E, LEIROS M C, TRANSAR-CEPEDA C, et al. Effects of moisture and temperature on net soil nitrogen mineralization: a laboratory study [J]. Eur J Soil Biol, 2012, 48(1): 73 − 80. [11] YAO Yufei, ZHAO Zhongna, WEI Xiaorong, et al. Effects of shrub species on soil nitrogen mineralization in the desert-loess transition zone [J]. Catena, 2019, 173: 330 − 338. [12] FARLEY R A, FITTER A H. Temporal and spatial variation in soil resources in a deciduous woodland [J]. J Appl Ecol, 1999, 87(4): 688 − 696. [13] 肖好燕, 刘宝, 余再鹏, 等. 亚热带不同林分土壤有效氮库及氮转化速率的季节动态[J]. 应用生态学报, 2017, 28(3): 20 − 25. XIAO Haoyan, LIU Bao, YU Zaipeng, et al. Seasonal dynamics of soil mineral nitrogen pools and nitrogen mineralization rate in different forests in subtropical China [J]. Chin J Appl Ecol, 2017, 28(3): 20 − 25. [14] 李明锐, 沙丽清. 西双版纳不同土地利用方式下土壤氮矿化作用研究[J]. 应用生态学报, 2005, 16(1): 54 − 58. LI Mingrui, SHA Liqing. Soil nitrogen mineralization under different land use patterns in Xishuangbanna [J]. Chin J Appl Ecol, 2005, 16(1): 54 − 58. [15] RISCH A C, ZIMMERMANN S, OCHOA-HUESO R, et al. Soil net nitrogen mineralisation across global grasslands [J]. Nat Commun, 2019, 10(1): 4981 − 4990. [16] YE Chen, CHENG Xiaoli, LIU Wenzhi, et al. Revegetation impacts soil nitrogen dynamics in the water level fluctuation zone of the Three Gorges Reservoir, China [J]. Sci Total Environ, 2015, 517: 76 − 85. [17] 曾凯, 刘琳, 蔡义民, 等. 地下生态系统中氮素的循环及影响因素[J]. 草业科学, 2017, 34(3): 502 − 514. ZENG Kai, LIU Lin, CAI Yimin, et al. The nitrogen cycle and factors affecting it in the belowground ecosystem [J]. Pratacultural Sci, 2017, 34(3): 502 − 514. [18] WANG Ruzhen, DORODNIKOV M, YANG Shan, et al. Responses of enzymatic activities within soil aggregates to 9-year nitrogen and water addition in a semi-arid grassland [J]. Soil Biol Biochem, 2015, 81: 159 − 167. [19] 殷睿, 徐振锋, 吴福忠, 等. 川西亚高山不同海拔森林土壤活性氮库及净氮矿化的季节动态[J]. 应用生态学报, 2013, 24(12): 3347 − 3353. YIN Rui, XU Zhenfeng, WU Fuzhong, et al. Seasonal dynamics of soil labile nitrogen pools and net nitrogen mineralization in subalpine forests along an elevational gradient in western Sichuan, China [J]. Chin J Appl Ecol, 2013, 24(12): 3347 − 3353. [20] ZHOU Wangming, CHEN Hua, ZHOU Li, et al. Effect of freezing-thawing on nitrogen mineralization in vegetation soils of four landscape zones of Changbai Mountain [J]. Ann For Sci, 2011, 68(5): 943 − 951. [21] HART S, PERRY D A. Transferring soils from high to low elevation forests [J]. Global Change Biol, 1999, 5(1): 23 − 32. [22] BONITO G M, COLEMAN D C, HAINES B L, et al. Can nitrogen budgets explain differences in soil nitrogen mineralization rates of forest stands along an elevation gradient? [J]. For Ecol Manage, 2003, 176(1/3): 563 − 574. [23] 刘明龙, 牛赟, 敬文茂. 祁连山东段哈溪林区不同海拔对青海云杉林下土壤氮分布特征的影响[J]. 防护林科技, 2015, 145(10): 31 − 34. LIU Minglong, NIU Yun, JING Wenmao. Influence of different aititudes on the soil nitrogen distribution characteristics of understory Picea crassifolia in the eastern section of Qilian Mountains [J]. Prot For Sci Technol, 2015, 145(10): 31 − 34. [24] POWERS R F. Nitrogen mineralization along an altitudinal gradient: interactions of soil temperature, moisture, and substrate quality [J]. For Ecol Manage, 1990, 30(1/4): 19 − 29. [25] 王博, 周志勇, 张欢, 等. 针阔混交林中兴安落叶松比例对土壤化学性质和酶化学计量比的影响[J]. 浙江农林大学学报, 2020, 37(4): 611 − 622. WANG Bo, ZHOU Zhiyong, ZHANG Huan, et al. Effect of Larix gmelinii proportion on soil chemical properties and enzymatic [J]. J Zhejiang A&F Univ, 2020, 37(4): 611 − 622. [26] WEI Xiaorong, REICH P B, HOBBIE S E, et al. Disentangling species and functional group richness effects on soil N cycling in a grassland ecosystem [J]. Glob Change Biol, 2017, 23: 4717 − 4727. [27] YIN Huajun, CHEN Zhi, LIU Qing. Effects of experimental warming on soil N transformations of two coniferous species, Eastern Tibetan Plateau, China [J]. Soil Biol Biochem, 2012, 50: 77 − 84. [28] PETERROHN W T, MELILLO J M, STEUDLER P A, et al. Responses of trace gas fiuxes and N availability to experimentally elevated soil temperatures [J]. Ecol Appl, 1994, 4: 617 − 625. [29] HEUMANN S, BOTTCHER J. Temperature functions of the rate coefficients of net N mineralization in sandy arable soils. Part I. derivation from laboratory incubations [J]. J Plant Nutr Soil Sci, 2004, 167(4): 381 − 389. [30] 唐海龙, 王景燕, 黄帅, 等. 华西雨屏区常绿阔叶林土壤氮矿化对温度和湿度变化的响应[J]. 甘肃农业大学学报, 2019, 54(2): 124 − 131. TANG Hailong, WANG Jingyan, HUANG Shuai, et al. Responses of soil nitrogen mineralization of evergreen broad-leaved forest in rainy area of western China to moisture and temperature [J]. J Gansu Agric Univ, 2019, 54(2): 124 − 131. [31] LANG Man, CAI Zucong, MARY B, et al. Lang-use type and temperature affect gross nitrogen transformation rates in Chinese and Canadian soils [J]. Plant Soil, 2010, 334(1/2): 377 − 389. [32] 吴静, 陈书涛, 胡正华, 等. 不同温度下的土壤微生物呼吸及其与水溶性有机碳和转化酶的关系[J]. 环境科学, 2015, 36(4): 1497 − 1506. WU Jing, CHEN Shutao, HU Zhenghua, et al. Soil microbial respiration under different soil temperature conditions and its relationship to soil dissolved organic carbon and invertase [J]. Environ Sci, 2015, 36(4): 1497 − 1506. [33] INESON P, BENHAM D G, POSKITT J, et al. Effects of climate change on nitrogen dynamics in up land soils: a soil warming study [J]. Glob Change Biol, 1998, 4(1): 153 − 161. [34] LIU Yuan, YU Guirui, GAO Yang, et al. Patterns and regulating mechanisms of soil nitrogen mineralization and temperature sensitivity in Chinese terrestrial ecosystems [J]. Agric Ecosyst Environ, 2016, 215: 40 − 46. [35] KEMMITT S J, LAANYON C V, WAITE I S, et al. Mineralization of native soil organic matter is not regulated by the size, activity or composition of the soil microbial biomass-a new perspective [J]. Soil Biol Biochem, 2008, 40(1): 61 − 73. [36] 王士超, 陈竹君, 周建斌, 等. 水分对不同栽培年限日光温室土壤氮矿化的影响[J]. 干旱地区农业研究, 2019, 37(4): 124 − 131. WANG Shichao, CHEN Zhujun, ZHOU Jianbin, et al. Effects of moisture on nitrogen mineralization in soils under solar greenhouses in different cultivation years [J]. Agric Res Arid Areas, 2019, 37(4): 124 − 131. [37] GAO Zhaoqin, BAI Junhong, CHEN Di, et al. Effect of soil moisture on nitrogen mineralization in a typical 10-year floodplain wetland [J]. Adv Mater Res, 2014, 955−959: 1216 − 1219. [38] BOUSKILL N J, WOOD T E, RICHARD B, et al. Belowground response to drought in a tropical forest soil (Ⅰ) changes in microbial functional potential and metabolism [J]. Front Microbiol, 2016, 7(333): 1 − 11. [39] GIESE M, GAO Yingzhi, LIN Shan, et al. Nitrogen availability in a grazed semi-aridgrassland is dominated by seasonal rainfall [J]. Plant Soil, 2011, 340: 157 − 167. [40] CREGGER M, MCDOWELL N G, PANGLE R E, et al. The impact of precipitation change on nitrogen cycling in a semi-arid ecosystem [J]. Funct Ecol, 2014, 28(6): 1534 − 1544. [41] VERESOGLOU S D, SEN R, MAMOLOS A P, et al. Plant species identity and arbuscular mycorrhizal status modulate potential nitrification rates in nitrogen-limited grassland soils [J]. J Ecol, 2011, 99(6): 1339 − 1349. [42] CHENG Yi, WANG Jing, MARY B, et al. Soil pH has contrasting effects on gross and net nitrogen mineralization in adjacent forest and grassland soils in central Alberta, Canada [J]. Soil Biol Biochem, 2013, 57(3): 848 − 857. [43] 肖瑞晗, 满秀玲, 丁令智. 大兴安岭北部天然针叶林土壤氮矿化特征[J]. 生态学报, 2019, 39(8): 2762 − 2771. XIAO Ruihan, MAN Xiuling, DING Lingzhi. Soil nitrogen mineralization characteristics of the natural coniferous forest in Northern Daxing’an Mountains, Northeast China [J]. Acta Ecol Sin, 2019, 39(8): 2762 − 2771. [44] 李一凡, 王玉杰, 王彬, 等. 西南酸雨区重庆缙云山常绿阔叶林土壤氮矿化特征[J]. 林业科学, 2019, 55(6): 1 − 12. LI Yifan, WANG Yujie, WANG Bin, et al. Soil nitrogen mineralization characteristics of evergreen broad-leaved forest in Jinyun Mountain in Chongqing in the acid rain zone, southwest China [J]. Sci Silv Sin, 2019, 55(6): 1 − 12. [45] 刘欣, 黄运湘, 袁红, 等. 植被类型与坡位对喀斯特土壤氮转化速率的影响[J]. 生态学报, 2016, 36(9): 2578 − 2587. LIU Xin, HUANG Yunxiang, YUAN Hong, et al. Effects of vegetation type and slope position on soil nitrogen transformation rate in karst regions [J]. Acta Ecol Sin, 2016, 36(9): 2578 − 2587. [46] 葛晓改, 曾立雄, 肖文发, 等. 三峡库区森林凋落叶化学计量学性状变化及与分解速率的关系[J]. 生态学报, 2015, 35(3): 779 − 787. GE Xiaogai, ZENG Lixiong, XIAO Wenfa, et al. Dynamic of leaf litter stoichiometric traits dynamic and its relations with decomposition rates under three forest types in Three Gorges Reservoir Area [J]. Acta Ecol Sin, 2015, 35(3): 779 − 787. [47] 邵兴芳. 长期有机培肥模式下黑土团聚体碳氮积累及矿化特征[D]. 武汉: 武汉理工大学, 2014. SHAO Xingfang. Carbon and Nitrogen Accumulation and Mineralization in Aggregates under Long-tern Manure Fertilization Pratices on Black Soil[D]. Wuhan: Wuhan University of Technology, 2014. [48] 李菊梅, 王朝辉, 李生秀. 有机质、全氮和可矿化氮在反映土壤供氮能力方面的意义[J]. 土壤学报, 2003, 40(2): 232 − 238. LI Jumei, WANG Zhaohui, LI Shengxiu. Significance of soil organic matter, total N and mineralizable nitrogen in reflecting soil N supplying capacity [J]. Acta Pedol Sin, 2003, 40(2): 232 − 238. [49] GULERYUZ G, TITREK E, ARSLAN H. Nitrogen mineralization in the ruderal subalpine communities in Mount Uludağ, Turkey [J]. Eur J Soil Biol, 2008, 44: 408 − 418. [50] 王红, 王邵军, 李霁航, 等. 森林土壤呼吸及主要调控因素研究进展[J]. 西北林学院学报, 2017, 32(1): 92 − 97. WANG Hong, WANG Shaojun, LI Jihang, et al. Characteristics and the influencing factors of forest soil respiration: a review [J]. J Northwest For Univ, 2017, 32(1): 92 − 97. [51] STE-MARIE C, HOULE D. Forest floor gross and net nitrogen mineralization in three forest types in Quebec, Canada [J]. Soil Biol Biochem, 2006, 38(8): 2135 − 2143. [52] MILLIGAN G, BOOTH K E, COX E S, et al. Change to ecosystem properties through changing the dominant species: impact of Pteridium aquilinum-control and heathland restoration treatments on selected soil properties [J]. J Environ Manage, 2018, 207: 1 − 9. [53] 潘萍, 赵芳, 欧阳勋志, 等. 马尾松林2种林下植被土壤碳氮特征及其与凋落物质量的关系[J]. 生态学报, 2018, 38(11): 3988 − 3997. PAN Ping, ZHAO Fang, OUYANG Xunzhi, et al. Characteristics of soil carbon and nitrogen and relationship with litter quality under different understory vegetation in Pinus massoniana plantations [J]. Acta Ecol Sin, 2018, 38(11): 3988 − 3997. [54] 章宪, 范跃新, 罗茜, 等. 凋落物和根系处理对杉木人工林土壤氮素的影响[J]. 亚热带资源与学报, 2014, 9(2): 39 − 44. ZHANG Xian, FAN Yuexin, LUO Qian, et al. Effects of litter and root treatments on soil nitrogen content of Chinese fir plantation [J]. J Subtrop Resour Environ, 2014, 9(2): 39 − 44. [55] LACLAU J P, RANGER J, MORAES G J L, et al. Biogeochemical cycles of nutrients in tropical Eucalyptus plantations: main features shown by intensive monitoring in Congo and Brazil [J]. For Ecol Manage, 2010, 259(9): 1771 − 1785. [56] 吴鹏, 崔迎春, 赵文君, 等. 改变凋落物输入对喀斯特森林主要演替群落土壤呼吸的影响[J]. 北京林业大学学报, 2015, 37(9): 17 − 27. WU Peng, CUI Yingchun, ZHAO Wenjun, et al. Effects of litter exclusion and addition on soil respiration of major forest communities at two successional stages in Maolan karst forest of southwestern China [J]. J Beijing For Univ, 2015, 37(9): 17 − 27. [57] KUZYAKOV Y, CHENG W. Photosynthesis controls of CO2 efflux from maize rhizosphere [J]. Plant Soil, 2004, 263: 85 − 99. [58] 刘聪, 李守中, 王从容, 等. 凋落物添加对亚热带水土流失区人工林土壤氮矿化的影响[J]. 福建师范大学学报(自然科学版), 2018, 34(4): 103 − 110. LIU Cong, LI Shouzhong, WANG Congrong, et al. Effects of litter addition on soil nitrogen mineralization of soil erosion plantations in the subtropical zone [J]. J Fujian Nor Univ Nat Sci Ed, 2018, 34(4): 103 − 110. [59] CASSART B, BASIA A A, JONARD M, et al. Average leaf litter quality drives the decomposition of single-species, mixed-species and transplanted leaf litters for two contrasting tropical forest types in the Congo Basin (DRC) [J]. Ann For Sci, 2020, 77(2): 1 − 20. [60] 龚伟, 胡庭兴, 王景燕, 等. 川南天然常绿阔叶林人工更新后枯落物对土壤供氮潜力的影响[J]. 北京林业大学学报, 2006, 28(2): 64 − 72. GONG Wei, HU Tingxing, WANG Jingyan, et al. Impacts of litter on soil in the natural evergreen broadleaved forests after artificial regeneration in southern Sichuan [J]. J Beijing For Univ, 2006, 28(2): 64 − 72. [61] RONN R, VESTERGARD M, EKELUND F. Interactions between bacteria, protozoa and nematodes in soil [J]. Acta Protozool, 2012, 51(3): 223 − 235. [62] KHAMZINA A, LAMERS J P A, MARTIUS C. Above and belowground litter stocks and decay at a multispecies affor-estation site on arid, saline soil [J]. Nutr Cycl Agroecosys, 2016, 104: 187 − 199. [63] DAVID J F. The role of litter-feeding macroarthropods in decomposition processes: a reappraisal of common views [J]. Soil Biol Biochem, 2014, 76: 109 − 118. [64] TAMARTASH R, EHSANI S M. The effect of earthworms on plant diversity and soil properties under different land uses [J]. Acta Ecol Sin, 2020: 1 − 6. [65] WANG Shaojun, LI Jihang, ZHANG Zhe, et al. Feeding-strategy effect of Pheidole ants on microbial carbon and physicochemical properties in tropical forest soils [J]. Appl Soil Ecol, 2019, 133: 177 − 185. [66] BUCHAN D, GEBREMIKAEL M T, AMELOOT N, et al. The effect of free-living nematodes on nitrogen mineralisation in undisturbed and disturbed soil cores [J]. Soil Biol Biochem, 2013, 60: 142 − 155. [67] XIAO Haifeng, GRIFFTHS B, CHEN Xiaoyun, et al. Influence of bacterial-feeding nematodes on nitrification and the ammonia-oxidizing bacteria (AOB) community composition [J]. Appl Soil Ecol, 2010, 45(3): 131 − 137. [68] ZHANG Yushu, ZHENG Xiangzhou, REN Xiangyun, et al. Land-use type affects nitrate production and consumption pathways in subtropical acidic soils [J]. Geoderma, 2019, 337: 22 − 31. [69] LI Huixin, SUN Bo, ZHOU Sai, et al. Aggregate-related changes in network patterns of nematodes and ammonia oxidizers in an acidic soil [J]. Soil Biol Biochem, 2015, 88: 101 − 109. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200482
计量
- 文章访问数: 1480
- HTML全文浏览量: 396
- PDF下载量: 104
- 被引次数: 0