留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物与非生物因素对森林土壤氮矿化的调控机制

左倩倩 王邵军

左倩倩, 王邵军. 生物与非生物因素对森林土壤氮矿化的调控机制[J]. 浙江农林大学学报, 2021, 38(3): 613-623. doi: 10.11833/j.issn.2095-0756.20200482
引用本文: 左倩倩, 王邵军. 生物与非生物因素对森林土壤氮矿化的调控机制[J]. 浙江农林大学学报, 2021, 38(3): 613-623. doi: 10.11833/j.issn.2095-0756.20200482
ZUO Qianqian, WANG Shaojun. Regulation mechanism of biotic and abiotic factors on the nitrogen mineralization of forest soil[J]. Journal of Zhejiang A&F University, 2021, 38(3): 613-623. doi: 10.11833/j.issn.2095-0756.20200482
Citation: ZUO Qianqian, WANG Shaojun. Regulation mechanism of biotic and abiotic factors on the nitrogen mineralization of forest soil[J]. Journal of Zhejiang A&F University, 2021, 38(3): 613-623. doi: 10.11833/j.issn.2095-0756.20200482

生物与非生物因素对森林土壤氮矿化的调控机制

doi: 10.11833/j.issn.2095-0756.20200482
基金项目: 国家自然科学基金资助项目(32060281,31660191);国家林业局“948”项目(2015-4-39);云南省全球变化生态学研究生导师团队建设项目;云南省教育厅科学研究基金资助项目(自然科学类)(11070641)
详细信息
    作者简介: 左倩倩(ORCID: 0000-0001-7686-6749),从事土壤生态学研究。E-mail: qianqianzuo2009@126.com
    通信作者: 王邵军(ORCID: 0000-0001-5975-7938),教授,博士,从事土壤动物和土壤生态学研究。E-mail: shaojunwang2009@163.com
  • 中图分类号: S714

Regulation mechanism of biotic and abiotic factors on the nitrogen mineralization of forest soil

  • 摘要: 温室气体排放剧增引起全球变暖,已成为全球高度关注的生态环境问题。一氧化二氮(N2O)是大气中仅次于二氧化碳(CO2)和甲烷(CH4)的第三大温室气体,森林土壤氮矿化过程伴随着硝化和反硝化的发生,能够导致N2O的产生,进而引起大气N2O浓度的升高。森林土壤氮矿化是生物与非生物环境因素共同调控的复杂生态学过程,探明森林土壤氮矿化的影响因素及其调控机制,有助于丰富人们对森林土壤氮循环过程的认识,在全球变化研究中具有重要的地位与作用。本研究揭示森林土壤氮矿化的时空变化及影响因素,阐明非生物因素以及森林植被覆盖、森林凋落物、土壤微生物与土壤动物等生物因素对森林土壤氮矿化的影响特征及作用机制。目前,森林土壤氮矿化研究存在结果可比性不强;内容多集中于氮矿化单因素影响研究,缺乏多因子尤其是微生物-动物协同调控研究;缺乏不同气候类型及不同土地利用方式森林土壤氮矿化特征及影响机制研究;缺乏氮矿化对全球变化的响应研究等一系列问题。土壤氮矿化研究应该探索统一高效的测定方法,加强土壤微生物-动物-环境因子多因素耦合对森林土壤氮矿化影响机制研究,探讨不同气候类型及不同利用方式森林土壤氮矿化调控机制,重点阐明全球变化背景下森林土壤氮矿化的过程与机理。旨在为准确理解不同气候区森林土壤氮矿化的时空格局及其对全球气候变化的影响提供理论支撑。参69
  • [1] ZOU Yina, NING Daliang, HUANG Yong, et al. Functional structures of soil microbial community relate to contrasting N2O emission patterns from a highly acidified forest [J]. Sci Total Environ, 2020, 725: 1 − 9.
    [2] WANG Yongsheng, CHENG Shulan, FANG Huajun, et al. Simulated nitrogen deposition reduces CH4 uptake and increases N2O emission from a subtropical plantation forest soil in southern China [J]. PLoS One, 2014, 9(4): 1 − 10.
    [3] BUTTERBACH-BAHL K, BAGG E M, DANNENMANN M, et al. Nitrous oxide emissions from soils: how well do we understand the processes and their controls? [J]. Philos Trans R Soc London B Biol Sci, 2013, 368(1627): 1 − 13.
    [4] HU Xiaokang, LIU Lingli, ZHU Biao, et al. Asynchronous responses of soil carbon dioxide, nitrous oxide emissions and net nitrogen mineralization to enhanced fine root input [J]. Soil Biol Biochem, 2016, 92: 67 − 78.
    [5] KONG Yuhua, MA Nyukling, YANG Xitian, et al. Examining CO2 and N2O pollution and reduction from forestry application of pure and mixture forest [J]. Environ Pollut, 2020, 265: 1 − 8.
    [6] 刘顺, 罗达, 刘千里, 等. 川西亚高山不同森林生态系统碳氮储量及其分配格局[J]. 生态学报, 2017, 37(4): 1074 − 1083.

    LIU Shun, LUO Da, LIU Qianli, et al. Carbon and nitrogen storage and distribution in different forest ecosystems in the subalpine of western Sichuan [J]. Acta Ecol Sin, 2017, 37(4): 1074 − 1083.
    [7] ZHOU Z H, WANG C K. Reviews and syntheses: soil resources and climate jointly drive variations in microbial biomass carbon and nitrogen in China’s forest ecosystems [J]. Biogeosciences, 2015, 12(22): 6751 − 6760.
    [8] KONG Weibo, YAO Yufei, ZHAO Zhongna, et al. Effects of vegetation and slope aspect on soil nitrogen mineralization during the growing season in sloping lands of the Loess Plateau [J]. Catena, 2019, 172: 753 − 763.
    [9] YANG Rong, DU Zeyu, KONG Junqia, et al. Patterns of soil nitrogen mineralization under a land-use change from desert to farmland [J]. Eur J Soil Sci, 2020, 71: 60 − 68.
    [10] GUNTINAS M E, LEIROS M C, TRANSAR-CEPEDA C, et al. Effects of moisture and temperature on net soil nitrogen mineralization: a laboratory study [J]. Eur J Soil Biol, 2012, 48(1): 73 − 80.
    [11] YAO Yufei, ZHAO Zhongna, WEI Xiaorong, et al. Effects of shrub species on soil nitrogen mineralization in the desert-loess transition zone [J]. Catena, 2019, 173: 330 − 338.
    [12] FARLEY R A, FITTER A H. Temporal and spatial variation in soil resources in a deciduous woodland [J]. J Appl Ecol, 1999, 87(4): 688 − 696.
    [13] 肖好燕, 刘宝, 余再鹏, 等. 亚热带不同林分土壤有效氮库及氮转化速率的季节动态[J]. 应用生态学报, 2017, 28(3): 20 − 25.

    XIAO Haoyan, LIU Bao, YU Zaipeng, et al. Seasonal dynamics of soil mineral nitrogen pools and nitrogen mineralization rate in different forests in subtropical China [J]. Chin J Appl Ecol, 2017, 28(3): 20 − 25.
    [14] 李明锐, 沙丽清. 西双版纳不同土地利用方式下土壤氮矿化作用研究[J]. 应用生态学报, 2005, 16(1): 54 − 58.

    LI Mingrui, SHA Liqing. Soil nitrogen mineralization under different land use patterns in Xishuangbanna [J]. Chin J Appl Ecol, 2005, 16(1): 54 − 58.
    [15] RISCH A C, ZIMMERMANN S, OCHOA-HUESO R, et al. Soil net nitrogen mineralisation across global grasslands [J]. Nat Commun, 2019, 10(1): 4981 − 4990.
    [16] YE Chen, CHENG Xiaoli, LIU Wenzhi, et al. Revegetation impacts soil nitrogen dynamics in the water level fluctuation zone of the Three Gorges Reservoir, China [J]. Sci Total Environ, 2015, 517: 76 − 85.
    [17] 曾凯, 刘琳, 蔡义民, 等. 地下生态系统中氮素的循环及影响因素[J]. 草业科学, 2017, 34(3): 502 − 514.

    ZENG Kai, LIU Lin, CAI Yimin, et al. The nitrogen cycle and factors affecting it in the belowground ecosystem [J]. Pratacultural Sci, 2017, 34(3): 502 − 514.
    [18] WANG Ruzhen, DORODNIKOV M, YANG Shan, et al. Responses of enzymatic activities within soil aggregates to 9-year nitrogen and water addition in a semi-arid grassland [J]. Soil Biol Biochem, 2015, 81: 159 − 167.
    [19] 殷睿, 徐振锋, 吴福忠, 等. 川西亚高山不同海拔森林土壤活性氮库及净氮矿化的季节动态[J]. 应用生态学报, 2013, 24(12): 3347 − 3353.

    YIN Rui, XU Zhenfeng, WU Fuzhong, et al. Seasonal dynamics of soil labile nitrogen pools and net nitrogen mineralization in subalpine forests along an elevational gradient in western Sichuan, China [J]. Chin J Appl Ecol, 2013, 24(12): 3347 − 3353.
    [20] ZHOU Wangming, CHEN Hua, ZHOU Li, et al. Effect of freezing-thawing on nitrogen mineralization in vegetation soils of four landscape zones of Changbai Mountain [J]. Ann For Sci, 2011, 68(5): 943 − 951.
    [21] HART S, PERRY D A. Transferring soils from high to low elevation forests [J]. Global Change Biol, 1999, 5(1): 23 − 32.
    [22] BONITO G M, COLEMAN D C, HAINES B L, et al. Can nitrogen budgets explain differences in soil nitrogen mineralization rates of forest stands along an elevation gradient? [J]. For Ecol Manage, 2003, 176(1/3): 563 − 574.
    [23] 刘明龙, 牛赟, 敬文茂. 祁连山东段哈溪林区不同海拔对青海云杉林下土壤氮分布特征的影响[J]. 防护林科技, 2015, 145(10): 31 − 34.

    LIU Minglong, NIU Yun, JING Wenmao. Influence of different aititudes on the soil nitrogen distribution characteristics of understory Picea crassifolia in the eastern section of Qilian Mountains [J]. Prot For Sci Technol, 2015, 145(10): 31 − 34.
    [24] POWERS R F. Nitrogen mineralization along an altitudinal gradient: interactions of soil temperature, moisture, and substrate quality [J]. For Ecol Manage, 1990, 30(1/4): 19 − 29.
    [25] 王博, 周志勇, 张欢, 等. 针阔混交林中兴安落叶松比例对土壤化学性质和酶化学计量比的影响[J]. 浙江农林大学学报, 2020, 37(4): 611 − 622.

    WANG Bo, ZHOU Zhiyong, ZHANG Huan, et al. Effect of Larix gmelinii proportion on soil chemical properties and enzymatic [J]. J Zhejiang A&F Univ, 2020, 37(4): 611 − 622.
    [26] WEI Xiaorong, REICH P B, HOBBIE S E, et al. Disentangling species and functional group richness effects on soil N cycling in a grassland ecosystem [J]. Glob Change Biol, 2017, 23: 4717 − 4727.
    [27] YIN Huajun, CHEN Zhi, LIU Qing. Effects of experimental warming on soil N transformations of two coniferous species, Eastern Tibetan Plateau, China [J]. Soil Biol Biochem, 2012, 50: 77 − 84.
    [28] PETERROHN W T, MELILLO J M, STEUDLER P A, et al. Responses of trace gas fiuxes and N availability to experimentally elevated soil temperatures [J]. Ecol Appl, 1994, 4: 617 − 625.
    [29] HEUMANN S, BOTTCHER J. Temperature functions of the rate coefficients of net N mineralization in sandy arable soils. Part I. derivation from laboratory incubations [J]. J Plant Nutr Soil Sci, 2004, 167(4): 381 − 389.
    [30] 唐海龙, 王景燕, 黄帅, 等. 华西雨屏区常绿阔叶林土壤氮矿化对温度和湿度变化的响应[J]. 甘肃农业大学学报, 2019, 54(2): 124 − 131.

    TANG Hailong, WANG Jingyan, HUANG Shuai, et al. Responses of soil nitrogen mineralization of evergreen broad-leaved forest in rainy area of western China to moisture and temperature [J]. J Gansu Agric Univ, 2019, 54(2): 124 − 131.
    [31] LANG Man, CAI Zucong, MARY B, et al. Lang-use type and temperature affect gross nitrogen transformation rates in Chinese and Canadian soils [J]. Plant Soil, 2010, 334(1/2): 377 − 389.
    [32] 吴静, 陈书涛, 胡正华, 等. 不同温度下的土壤微生物呼吸及其与水溶性有机碳和转化酶的关系[J]. 环境科学, 2015, 36(4): 1497 − 1506.

    WU Jing, CHEN Shutao, HU Zhenghua, et al. Soil microbial respiration under different soil temperature conditions and its relationship to soil dissolved organic carbon and invertase [J]. Environ Sci, 2015, 36(4): 1497 − 1506.
    [33] INESON P, BENHAM D G, POSKITT J, et al. Effects of climate change on nitrogen dynamics in up land soils: a soil warming study [J]. Glob Change Biol, 1998, 4(1): 153 − 161.
    [34] LIU Yuan, YU Guirui, GAO Yang, et al. Patterns and regulating mechanisms of soil nitrogen mineralization and temperature sensitivity in Chinese terrestrial ecosystems [J]. Agric Ecosyst Environ, 2016, 215: 40 − 46.
    [35] KEMMITT S J, LAANYON C V, WAITE I S, et al. Mineralization of native soil organic matter is not regulated by the size, activity or composition of the soil microbial biomass-a new perspective [J]. Soil Biol Biochem, 2008, 40(1): 61 − 73.
    [36] 王士超, 陈竹君, 周建斌, 等. 水分对不同栽培年限日光温室土壤氮矿化的影响[J]. 干旱地区农业研究, 2019, 37(4): 124 − 131.

    WANG Shichao, CHEN Zhujun, ZHOU Jianbin, et al. Effects of moisture on nitrogen mineralization in soils under solar greenhouses in different cultivation years [J]. Agric Res Arid Areas, 2019, 37(4): 124 − 131.
    [37] GAO Zhaoqin, BAI Junhong, CHEN Di, et al. Effect of soil moisture on nitrogen mineralization in a typical 10-year floodplain wetland [J]. Adv Mater Res, 2014, 955−959: 1216 − 1219.
    [38] BOUSKILL N J, WOOD T E, RICHARD B, et al. Belowground response to drought in a tropical forest soil (Ⅰ) changes in microbial functional potential and metabolism [J]. Front Microbiol, 2016, 7(333): 1 − 11.
    [39] GIESE M, GAO Yingzhi, LIN Shan, et al. Nitrogen availability in a grazed semi-aridgrassland is dominated by seasonal rainfall [J]. Plant Soil, 2011, 340: 157 − 167.
    [40] CREGGER M, MCDOWELL N G, PANGLE R E, et al. The impact of precipitation change on nitrogen cycling in a semi-arid ecosystem [J]. Funct Ecol, 2014, 28(6): 1534 − 1544.
    [41] VERESOGLOU S D, SEN R, MAMOLOS A P, et al. Plant species identity and arbuscular mycorrhizal status modulate potential nitrification rates in nitrogen-limited grassland soils [J]. J Ecol, 2011, 99(6): 1339 − 1349.
    [42] CHENG Yi, WANG Jing, MARY B, et al. Soil pH has contrasting effects on gross and net nitrogen mineralization in adjacent forest and grassland soils in central Alberta, Canada [J]. Soil Biol Biochem, 2013, 57(3): 848 − 857.
    [43] 肖瑞晗, 满秀玲, 丁令智. 大兴安岭北部天然针叶林土壤氮矿化特征[J]. 生态学报, 2019, 39(8): 2762 − 2771.

    XIAO Ruihan, MAN Xiuling, DING Lingzhi. Soil nitrogen mineralization characteristics of the natural coniferous forest in Northern Daxing’an Mountains, Northeast China [J]. Acta Ecol Sin, 2019, 39(8): 2762 − 2771.
    [44] 李一凡, 王玉杰, 王彬, 等. 西南酸雨区重庆缙云山常绿阔叶林土壤氮矿化特征[J]. 林业科学, 2019, 55(6): 1 − 12.

    LI Yifan, WANG Yujie, WANG Bin, et al. Soil nitrogen mineralization characteristics of evergreen broad-leaved forest in Jinyun Mountain in Chongqing in the acid rain zone, southwest China [J]. Sci Silv Sin, 2019, 55(6): 1 − 12.
    [45] 刘欣, 黄运湘, 袁红, 等. 植被类型与坡位对喀斯特土壤氮转化速率的影响[J]. 生态学报, 2016, 36(9): 2578 − 2587.

    LIU Xin, HUANG Yunxiang, YUAN Hong, et al. Effects of vegetation type and slope position on soil nitrogen transformation rate in karst regions [J]. Acta Ecol Sin, 2016, 36(9): 2578 − 2587.
    [46] 葛晓改, 曾立雄, 肖文发, 等. 三峡库区森林凋落叶化学计量学性状变化及与分解速率的关系[J]. 生态学报, 2015, 35(3): 779 − 787.

    GE Xiaogai, ZENG Lixiong, XIAO Wenfa, et al. Dynamic of leaf litter stoichiometric traits dynamic and its relations with decomposition rates under three forest types in Three Gorges Reservoir Area [J]. Acta Ecol Sin, 2015, 35(3): 779 − 787.
    [47] 邵兴芳. 长期有机培肥模式下黑土团聚体碳氮积累及矿化特征[D]. 武汉: 武汉理工大学, 2014.

    SHAO Xingfang. Carbon and Nitrogen Accumulation and Mineralization in Aggregates under Long-tern Manure Fertilization Pratices on Black Soil[D]. Wuhan: Wuhan University of Technology, 2014.
    [48] 李菊梅, 王朝辉, 李生秀. 有机质、全氮和可矿化氮在反映土壤供氮能力方面的意义[J]. 土壤学报, 2003, 40(2): 232 − 238.

    LI Jumei, WANG Zhaohui, LI Shengxiu. Significance of soil organic matter, total N and mineralizable nitrogen in reflecting soil N supplying capacity [J]. Acta Pedol Sin, 2003, 40(2): 232 − 238.
    [49] GULERYUZ G, TITREK E, ARSLAN H. Nitrogen mineralization in the ruderal subalpine communities in Mount Uludağ, Turkey [J]. Eur J Soil Biol, 2008, 44: 408 − 418.
    [50] 王红, 王邵军, 李霁航, 等. 森林土壤呼吸及主要调控因素研究进展[J]. 西北林学院学报, 2017, 32(1): 92 − 97.

    WANG Hong, WANG Shaojun, LI Jihang, et al. Characteristics and the influencing factors of forest soil respiration: a review [J]. J Northwest For Univ, 2017, 32(1): 92 − 97.
    [51] STE-MARIE C, HOULE D. Forest floor gross and net nitrogen mineralization in three forest types in Quebec, Canada [J]. Soil Biol Biochem, 2006, 38(8): 2135 − 2143.
    [52] MILLIGAN G, BOOTH K E, COX E S, et al. Change to ecosystem properties through changing the dominant species: impact of Pteridium aquilinum-control and heathland restoration treatments on selected soil properties [J]. J Environ Manage, 2018, 207: 1 − 9.
    [53] 潘萍, 赵芳, 欧阳勋志, 等. 马尾松林2种林下植被土壤碳氮特征及其与凋落物质量的关系[J]. 生态学报, 2018, 38(11): 3988 − 3997.

    PAN Ping, ZHAO Fang, OUYANG Xunzhi, et al. Characteristics of soil carbon and nitrogen and relationship with litter quality under different understory vegetation in Pinus massoniana plantations [J]. Acta Ecol Sin, 2018, 38(11): 3988 − 3997.
    [54] 章宪, 范跃新, 罗茜, 等. 凋落物和根系处理对杉木人工林土壤氮素的影响[J]. 亚热带资源与学报, 2014, 9(2): 39 − 44.

    ZHANG Xian, FAN Yuexin, LUO Qian, et al. Effects of litter and root treatments on soil nitrogen content of Chinese fir plantation [J]. J Subtrop Resour Environ, 2014, 9(2): 39 − 44.
    [55] LACLAU J P, RANGER J, MORAES G J L, et al. Biogeochemical cycles of nutrients in tropical Eucalyptus plantations: main features shown by intensive monitoring in Congo and Brazil [J]. For Ecol Manage, 2010, 259(9): 1771 − 1785.
    [56] 吴鹏, 崔迎春, 赵文君, 等. 改变凋落物输入对喀斯特森林主要演替群落土壤呼吸的影响[J]. 北京林业大学学报, 2015, 37(9): 17 − 27.

    WU Peng, CUI Yingchun, ZHAO Wenjun, et al. Effects of litter exclusion and addition on soil respiration of major forest communities at two successional stages in Maolan karst forest of southwestern China [J]. J Beijing For Univ, 2015, 37(9): 17 − 27.
    [57] KUZYAKOV Y, CHENG W. Photosynthesis controls of CO2 efflux from maize rhizosphere [J]. Plant Soil, 2004, 263: 85 − 99.
    [58] 刘聪, 李守中, 王从容, 等. 凋落物添加对亚热带水土流失区人工林土壤氮矿化的影响[J]. 福建师范大学学报(自然科学版), 2018, 34(4): 103 − 110.

    LIU Cong, LI Shouzhong, WANG Congrong, et al. Effects of litter addition on soil nitrogen mineralization of soil erosion plantations in the subtropical zone [J]. J Fujian Nor Univ Nat Sci Ed, 2018, 34(4): 103 − 110.
    [59] CASSART B, BASIA A A, JONARD M, et al. Average leaf litter quality drives the decomposition of single-species, mixed-species and transplanted leaf litters for two contrasting tropical forest types in the Congo Basin (DRC) [J]. Ann For Sci, 2020, 77(2): 1 − 20.
    [60] 龚伟, 胡庭兴, 王景燕, 等. 川南天然常绿阔叶林人工更新后枯落物对土壤供氮潜力的影响[J]. 北京林业大学学报, 2006, 28(2): 64 − 72.

    GONG Wei, HU Tingxing, WANG Jingyan, et al. Impacts of litter on soil in the natural evergreen broadleaved forests after artificial regeneration in southern Sichuan [J]. J Beijing For Univ, 2006, 28(2): 64 − 72.
    [61] RONN R, VESTERGARD M, EKELUND F. Interactions between bacteria, protozoa and nematodes in soil [J]. Acta Protozool, 2012, 51(3): 223 − 235.
    [62] KHAMZINA A, LAMERS J P A, MARTIUS C. Above and belowground litter stocks and decay at a multispecies affor-estation site on arid, saline soil [J]. Nutr Cycl Agroecosys, 2016, 104: 187 − 199.
    [63] DAVID J F. The role of litter-feeding macroarthropods in decomposition processes: a reappraisal of common views [J]. Soil Biol Biochem, 2014, 76: 109 − 118.
    [64] TAMARTASH R, EHSANI S M. The effect of earthworms on plant diversity and soil properties under different land uses [J]. Acta Ecol Sin, 2020: 1 − 6.
    [65] WANG Shaojun, LI Jihang, ZHANG Zhe, et al. Feeding-strategy effect of Pheidole ants on microbial carbon and physicochemical properties in tropical forest soils [J]. Appl Soil Ecol, 2019, 133: 177 − 185.
    [66] BUCHAN D, GEBREMIKAEL M T, AMELOOT N, et al. The effect of free-living nematodes on nitrogen mineralisation in undisturbed and disturbed soil cores [J]. Soil Biol Biochem, 2013, 60: 142 − 155.
    [67] XIAO Haifeng, GRIFFTHS B, CHEN Xiaoyun, et al. Influence of bacterial-feeding nematodes on nitrification and the ammonia-oxidizing bacteria (AOB) community composition [J]. Appl Soil Ecol, 2010, 45(3): 131 − 137.
    [68] ZHANG Yushu, ZHENG Xiangzhou, REN Xiangyun, et al. Land-use type affects nitrate production and consumption pathways in subtropical acidic soils [J]. Geoderma, 2019, 337: 22 − 31.
    [69] LI Huixin, SUN Bo, ZHOU Sai, et al. Aggregate-related changes in network patterns of nematodes and ammonia oxidizers in an acidic soil [J]. Soil Biol Biochem, 2015, 88: 101 − 109.
  • [1] 王剑武, 季碧勇, 王铮屹, 朱程昊.  浙江省丽水市亚热带森林景观格局对森林碳密度的影响 . 浙江农林大学学报, 2024, 41(1): 30-40. doi: 10.11833/j.issn.2095-0756.20230205
    [2] 王诗忆, 黄奕孜, 李舟阳, 黄华宏, 林二培.  植物体细胞胚胎发生及其分子调控机制研究进展 . 浙江农林大学学报, 2022, 39(1): 223-232. doi: 10.11833/j.issn.2095-0756.20210141
    [3] 黄晓芬, 白鸥.  浙江省森林乡村空间分布特征及其影响因素 . 浙江农林大学学报, 2022, 39(4): 884-893. doi: 10.11833/j.issn.2095-0756.20210558
    [4] 何思笑, 张建国.  浙江省森林康养品牌资源空间分布特征及其影响因素 . 浙江农林大学学报, 2022, 39(1): 180-189. doi: 10.11833/j.issn.2095-0756.20210103
    [5] 徐森, 杨丽婷, 陈双林, 郭子武, 谷瑞, 章超.  竹笋适口性形成及其主要影响因素研究综述 . 浙江农林大学学报, 2021, 38(2): 403-411. doi: 10.11833/j.issn.2095-0756.20200400
    [6] 王越, 栾亚宁, 王丹, 戴伟.  油松林土壤有机碳储量变化及其影响因素 . 浙江农林大学学报, 2021, 38(5): 1023-1032. doi: 10.11833/j.issn.2095-0756.20210390
    [7] 朱丹苗, 陈俊辉, 姜培坤.  杉木人工林土壤有机碳和微生物特征及其影响因素的研究进展 . 浙江农林大学学报, 2021, 38(5): 973-984. doi: 10.11833/j.issn.2095-0756.20200598
    [8] 葛扬, 张建国.  浙江省森林特色小镇空间分布特征及影响因素分析 . 浙江农林大学学报, 2020, 37(2): 374-381. doi: 10.11833/j.issn.2095-0756.2020.02.024
    [9] 魏玮, 郭嘉莲, 万琳涛, 徐林峰, 丁明全, 周伟.  小麦粒重形成的分子调控机制研究综述 . 浙江农林大学学报, 2016, 33(2): 348-356. doi: 10.11833/j.issn.2095-0756.2016.02.022
    [10] 何珊琼, 孟赐福, 黄张婷, 姜培坤, 邬奇峰, 沈菁.  土壤植硅体碳稳定性的研究进展与展望 . 浙江农林大学学报, 2016, 33(3): 506-515. doi: 10.11833/j.issn.2095-0756.2016.03.020
    [11] 牛晓栋, 江洪, 王帆.  天目山森林生态系统大气水汽稳定同位素组成的影响因素 . 浙江农林大学学报, 2015, 32(3): 327-334. doi: 10.11833/j.issn.2095-0756.2015.03.001
    [12] 司马晓娇, 郑炳松.  植物生长素原初响应基因Aux/IAA研究进展 . 浙江农林大学学报, 2015, 32(2): 313-318. doi: 10.11833/j.issn.2095-0756.2015.02.021
    [13] 张佳佳, 傅伟军, 杜群, 张国江, 姜培坤.  浙江省森林凋落物碳密度空间分布的影响因素 . 浙江农林大学学报, 2013, 30(6): 814-820. doi: 10.11833/j.issn.2095-0756.2013.06.003
    [14] 吕琨珑, 饶良懿, 李菲菲, 李会杰, 朱梦洵, 朱振亚, 周建.  中国森林粗木质残体储量及其影响因素 . 浙江农林大学学报, 2013, 30(1): 114-122. doi: 10.11833/j.issn.2095-0756.2013.01.017
    [15] 张涛, 李永夫, 姜培坤, 周国模, 刘娟.  土地利用变化影响土壤碳库特征与土壤呼吸研究综述 . 浙江农林大学学报, 2013, 30(3): 428-437. doi: 10.11833/j.issn.2095-0756.2013.03.021
    [16] 方佳, 何勇清, 余敏芬, 郑炳松.  植物生长素响应因子基因的研究进展 . 浙江农林大学学报, 2012, 29(4): 611-616. doi: 10.11833/j.issn.2095-0756.2012.04.020
    [17] 何勇清, 方佳, 余敏芬, 方仲相, 江波, 潘寅辉, 郑炳松.  植物质膜内在水通道蛋白PIPs的分子生物学研究进展 . 浙江农林大学学报, 2012, 29(3): 446-452. doi: 10.11833/j.issn.2095-0756.2012.03.020
    [18] 张慧玲, 宋新章, 哀建国, 江洪, 余树全.  增强紫外线-B辐射对凋落物分解的影响研究综述 . 浙江农林大学学报, 2010, 27(1): 134-142. doi: 10.11833/j.issn.2095-0756.2010.01.022
    [19] 李德会, 李贤伟, 王巧, 荣丽, 杨渺, 刘朔.  林木根系呼吸影响因素及根系呼吸对全球变化的响应 . 浙江农林大学学报, 2007, 24(2): 231-238.
    [20] 石强, 廖科, 钟林生.  旅游活动对植被的影响研究综述 . 浙江农林大学学报, 2006, 23(2): 217-223.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200482

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2021/3/613

计量
  • 文章访问数:  1522
  • HTML全文浏览量:  398
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-06
  • 修回日期:  2021-01-18
  • 网络出版日期:  2021-06-09
  • 刊出日期:  2021-06-09

生物与非生物因素对森林土壤氮矿化的调控机制

doi: 10.11833/j.issn.2095-0756.20200482
    基金项目:  国家自然科学基金资助项目(32060281,31660191);国家林业局“948”项目(2015-4-39);云南省全球变化生态学研究生导师团队建设项目;云南省教育厅科学研究基金资助项目(自然科学类)(11070641)
    作者简介:

    左倩倩(ORCID: 0000-0001-7686-6749),从事土壤生态学研究。E-mail: qianqianzuo2009@126.com

    通信作者: 王邵军(ORCID: 0000-0001-5975-7938),教授,博士,从事土壤动物和土壤生态学研究。E-mail: shaojunwang2009@163.com
  • 中图分类号: S714

摘要: 温室气体排放剧增引起全球变暖,已成为全球高度关注的生态环境问题。一氧化二氮(N2O)是大气中仅次于二氧化碳(CO2)和甲烷(CH4)的第三大温室气体,森林土壤氮矿化过程伴随着硝化和反硝化的发生,能够导致N2O的产生,进而引起大气N2O浓度的升高。森林土壤氮矿化是生物与非生物环境因素共同调控的复杂生态学过程,探明森林土壤氮矿化的影响因素及其调控机制,有助于丰富人们对森林土壤氮循环过程的认识,在全球变化研究中具有重要的地位与作用。本研究揭示森林土壤氮矿化的时空变化及影响因素,阐明非生物因素以及森林植被覆盖、森林凋落物、土壤微生物与土壤动物等生物因素对森林土壤氮矿化的影响特征及作用机制。目前,森林土壤氮矿化研究存在结果可比性不强;内容多集中于氮矿化单因素影响研究,缺乏多因子尤其是微生物-动物协同调控研究;缺乏不同气候类型及不同土地利用方式森林土壤氮矿化特征及影响机制研究;缺乏氮矿化对全球变化的响应研究等一系列问题。土壤氮矿化研究应该探索统一高效的测定方法,加强土壤微生物-动物-环境因子多因素耦合对森林土壤氮矿化影响机制研究,探讨不同气候类型及不同利用方式森林土壤氮矿化调控机制,重点阐明全球变化背景下森林土壤氮矿化的过程与机理。旨在为准确理解不同气候区森林土壤氮矿化的时空格局及其对全球气候变化的影响提供理论支撑。参69

English Abstract

左倩倩, 王邵军. 生物与非生物因素对森林土壤氮矿化的调控机制[J]. 浙江农林大学学报, 2021, 38(3): 613-623. doi: 10.11833/j.issn.2095-0756.20200482
引用本文: 左倩倩, 王邵军. 生物与非生物因素对森林土壤氮矿化的调控机制[J]. 浙江农林大学学报, 2021, 38(3): 613-623. doi: 10.11833/j.issn.2095-0756.20200482
ZUO Qianqian, WANG Shaojun. Regulation mechanism of biotic and abiotic factors on the nitrogen mineralization of forest soil[J]. Journal of Zhejiang A&F University, 2021, 38(3): 613-623. doi: 10.11833/j.issn.2095-0756.20200482
Citation: ZUO Qianqian, WANG Shaojun. Regulation mechanism of biotic and abiotic factors on the nitrogen mineralization of forest soil[J]. Journal of Zhejiang A&F University, 2021, 38(3): 613-623. doi: 10.11833/j.issn.2095-0756.20200482
  • 目前,温室气体排放相关研究已成为国际气候变化研究的热点问题。一氧化二氮(N2O)作为大气中仅次于二氧化碳(CO2)和甲烷(CH4)的三大温室气体之一,其增温潜势为CO2的298倍、CH4的12倍[1]。森林土壤是全球N2O排放的重要来源,仅热带和亚热带森林土壤N2O排放约占全球总量的23%[2]。森林土壤氮矿化能够为N2O的产生提供充足的底物[铵态氮(NH4-N)与硝态氮(NO3-N)],它的微小变化可能会引起土壤N2O排放速率的显著改变[3-4]。森林作为陆地生态系统的主体,约占全球陆地面积的31%[5],因此,森林土壤氮矿化及其N2O释放可能成为影响全球气候变化进程的关键生态学过程。氮素作为调控森林生态系统生产力的主要营养组分,也是土壤肥力形成与维持的关键影响因子[6],受到土壤学家和森林学家的广泛关注[7]。森林土壤中仅有5%的氮以无机态的形式存在,而有机氮只有经微生物矿化后才能被植物吸收利用,氮素的硝化与反硝化在植物与微生物的生命活动过程起着关键作用[8]。因此,氮矿化作为测定森林土壤供氮能力的主要指标,不仅能够表征森林生态系统物质循环与能量流动的过程、方向及强度[9],而且对森林生态系统组成、结构与功能以及生产力维持等方面均起着重要的调控作用。森林土壤氮矿化是由森林土壤动物-土壤微生物共同驱动并将土壤有机氮转变为矿质氮的微生物生态学过程。土壤氮矿化过程受土壤物理与化学环境等非生物因素以及森林植被覆盖、森林凋落物、土壤微生物与土壤动物等生物因素共同调控。其中温度和湿度通常被认为是影响土壤氮矿化的2个重要因素[10],且各因素的作用强度因气候条件不同而存在较大差异,从而导致土壤氮矿化时空变化存在极大的不确定性;而凋落物作为重要的有机质来源,会改变土壤的微环境,为土壤微生物和动物生长发育提供必需的营养物质和栖息环境,尤其能够刺激微生物的活性,进而促进土壤氮矿化过程及其温室气体的排放。本研究从时间和空间、非生物因素、生物因素等方面探讨了近年来国内外森林土壤氮矿化的主要影响因素及调控机制,并对未来的研究方向进行展望。

    • 土壤氮矿化的时间变化主要指氮矿化速率随季节发生的变化。森林土壤氮矿化的时间变化总体上呈现春夏季(温湿季)高、秋冬季(干冷季)低的动态模式[11]。但森林土壤氮矿化速率峰值出现的时间存在一定的不确定性,主要与气候类型及森林类型密切相关。温带森林土壤氮矿化速率一般在5−6月活跃[12];亚热带森林土壤净氮矿化速率一般在6−8月达到峰值[13]。关于热带森林土壤氮矿化时间动态报道相对较少。西双版纳热带森林土壤氮矿化速率峰值在干季(2−5月),而雨季中期到雨季末期最低[14]。因此,土壤氮矿化时间变化模式与森林类型及其所处的气候类型密切相关。

      土壤氮矿化的时间变化和生物与非生物环境因子变化密切相关。由于土壤氮矿化是土壤微生物参与的生态学过程,因而土壤氮矿化季节动态随土壤微生物数量及活性的变化而变化[15]。同时,土壤微生物的功能、活性及群落结构的复杂性,受温度、湿度及土壤碳氮养分等非生物环境的时间变化所调控[16]。因此,非生物因素对土壤氮矿化亦具有重要的调控作用。

      温带森林与亚热带森林区土壤氮矿化呈现夏季高、冬季低的时间变化模式。有研究表明:温度能够影响参与土壤氮矿化过程的微生物及关键酶活性[17]。而热带地区森林土壤氮矿化呈现干季高、雨季低的变化模式,可能主要受土壤水分条件的影响,由于雨季中期到末期降水较多,土壤水分处于过饱和而形成厌氧状态,导致微生物的反硝化作用加强,造成土壤氮素的损失,从而减小土壤氮矿化速率,这与WANG等[18]的研究结果一致。

      土壤冻融交替能够影响森林土壤氮矿化的时间动态。土壤的冻结和融化因季节变化而发生交替,从而形成土壤氮矿化的时间变化规律。土壤净氮矿化速率因处于生长季的不同时期而有所不同,一般非生长季较高,生长季初期达到最低,后随生长期先增大后减小[19]。非生长季土壤净氮矿化速率较高主要是由于冬季不断的冻融循环导致微生物死亡,细胞内物质流出,增加土壤中矿质氮含量,给土壤中残留的微生物提供丰富的营养物质,激发残留微生物的活性,从而提高融化阶段土壤氮矿化速率[20]

    • 土壤氮矿化的空间变化包括沿海拔梯度的变化和沿土层的垂直变化。一般来说,土壤氮矿化速率与海拔高度呈负相关。HART等[21]研究发现:低海拔森林土壤年净矿化和硝化速率约是高海拔森林土壤的2倍。但一些研究却得出与此不同的研究结果。BONITO等[22]研究发现:美国南部硬木林土壤氮矿化速率高海拔高于低海拔。刘明龙等[23]研究表明:随海拔升高微生物对土壤氮素的转化作用减弱;但随着海拔继续升高,温度下降、湿度增加,土壤氮矿化有增加的变化趋势。另有研究发现森林土壤氮矿化速率在中海拔最高,而高海拔与低海拔较低[24]。土壤氮矿化速率沿土层存在一定的垂直变化。一般来说,土壤潜在性可矿化氮量随土壤深度的增加而下降。

      氮矿化空间变化与土壤环境生物与非生物因素密切相关。海拔梯度变化与土层变化均可引起微气候及土壤理化性质的改变,从而影响土壤氮矿化速率。土壤氮矿化随海拔变化存在的不确定性,可能与所处气候区有关,不同气候区沿海拔的温度和湿度变化存在差异,影响植物生长、地上/地下凋落物输入的质与量以及土壤碳氮养分动态[25],从而导致土壤微生物的种类和活性不同,最终导致不同地区不同海拔土壤氮矿化速率的差异。

      土壤氮矿化速率沿土层深度增加呈下降的变化规律,主要是因为随着土层深度的增加,土壤透气性减弱,有机质中易降解物质量下降,微生物数量及活性随凋落物数量的减少而降低,从而导致氮矿化速率的降低。YAO等[11]研究认为:土壤生物循环过程影响土壤氮素含量,如地下根系汲取的氮营养输送至土壤表层,增加表层土壤氮素的累积,从而加快氮素的矿化。WEI等[26]研究发现:土壤矿化速率随土壤深度的加深而降低,这种变化规律与土壤湿度沿土层的变化密切相关。

    • 在众多的环境因素中,温度是影响土壤氮矿化速率最重要的非生物因素。一般来说,在一定的温度范围内土壤氮矿化量和矿化速率与温度呈显著正相关[27]。PETERROHN等[28]采用电阻线的方法,探究升温对针阔混交落叶林土壤氮矿化的影响,发现升温使森林土壤净氮矿化速率平均增长2倍。但是,温度对土壤氮矿化的影响存在不确定性。研究表明:土壤氮矿化速率在25~35 ℃时随温度升高急剧增加[29]。但有研究则发现在25 ℃时土壤氮矿化速率最大[30]。然而,也有研究发现在5~15 ℃时土壤氮矿化速率与温度相关性不显著[31]

      适当的高温有利于土壤氮矿化,这可能与一定的升温能增加土壤微生物数量、种类及活性密切相关。因此,森林土壤氮矿化受温度与微生物共同作用。在长期培养实验中发现:土壤微生物的生理反应因温度的不同而存在差异[32],这可能是由于高温和能量输入的不足导致培养中土壤微生物生物量迅速减少。INESON等[33]采用可控的升温装置,进行野外原位(insitu)升温培养,使0~10 cm土层温度升高3~5 ℃,来模拟土壤氮在全球变暖情况下的动态,结果发现:加热培养前5个月土壤氮矿化速率明显降低,但后期的升温却提高了土壤氮矿化。前期随着温度升高增加的氮矿化可能被植物对氮的吸收所抵销,而导致氮矿化的温度效应未能显示出来;而后期升温则可以提高土壤微生物和土壤胞外酶的活性,利于土壤氮矿化[34-35]

    • 水分对土壤氮矿化的影响,同样存在不确定性。王士超等[36]采用有氧室内实验的培养方法评估土壤水分(分别为田间持水量的60%、80%和100%)对氮矿化的影响,结果发现土壤水分由田间持水量的60%增加到80%再到100%的过程中,土壤氮矿化速率呈先增加后减小的趋势。GAO等[37]研究发现:土壤含水量接近持水量时,氮矿化速率达到最大。BOUSKILL等[38]研究发现:土壤氮矿化速率随土壤水分的增加而增加。

      水分对土壤氮矿化的不确定性,可能与水分对土壤微生物的影响密切相关。水分主要通过影响土壤微生物的活动而影响土壤氮矿化。在一定湿度范围内,土壤微生物矿化作用随水分的增加而加快。但当土壤水分达到一定值时,不利于需氧微生物的矿化,而利于土壤反硝化作用,这使土壤中的部分无机氮以气体形式散失,造成氮素的损失,从而表现为氮矿化速率迅速下降[18]

      有研究表明:夏季降雨较多,土壤含水量处于过饱和状态,铵态氮的硝化作用小于固化作用,导致土壤净矿化速率降低[39]。水分影响氮矿化受土壤供氮能力的限制,贫瘠土壤的氮矿化受水分的影响较小,而肥沃土壤的氮矿化受水分影响较大[40]。因此,水分对土壤氮矿化的影响受土壤水分条件及土壤养分可利用性的调控,土壤水分主要通过影响微生物生态学过程,从而影响土壤氮素的矿化。

    • 土壤pH是判断土壤硝化能力的重要指标[41]。通常来说,土壤氮矿化速率随土壤pH的升高而加快,因为pH升高,土壤可溶性养分增加,满足微生物生长必需的营养物质,加速氮的矿化。与硝态氮相比,铵态氮较易固化,而pH较高时硝态氮的固化作用会减弱。CHENG等[42]在探究土壤pH和硝化酶之间的关系时,佐证了此规律;但也有研究认为:pH与土壤氮矿化速率相关性不显著[43]或呈负相关[44]

      土壤pH主要是通过影响微生物的数量和活性来影响土壤氮素的矿化。高pH可以提高有机质的溶解性,增加含有机碳氮基团的物质,利于微生物的生长和活动,加快土壤氮矿化速率[45]。同时,土壤pH会影响酶的活性,pH过高或过低都不利于酶发挥功能,从而影响土壤硝化和反硝化作用,进而影响土壤氮矿化的过程。而土壤pH与土壤氮矿化速率之间关系的不确定性,可能是因为不同研究区的地理环境、气候、土壤等因素的差异,造成土壤pH对微生物具有不同的影响强度,最终影响pH与土壤氮矿化速率之间的关系。

    • 土壤氮矿化速率因土壤质地的不同而存在差异。壤土和黏土的氮矿化速率低于砂土,因为砂土的孔隙度较大会减弱对土壤有机质的保护。此外,与壤土和黏土相比,砂土中微生物生物量的碳氮比(C/N)较高,从而促进了微生物的矿化率[46]。邵兴芳[47]对土壤团聚体的研究发现:团聚体体积越小,越不稳定,微生物对有机质的降解过程越快,土壤氮矿化速率越高。由此可见,土壤团聚体的大小及氮素含量是影响土壤氮矿化速率的重要因素。

      土壤质地不同导致土壤水、气及热状况之间存在差异,这种差异影响好氧细菌或黏粒与营养物质的结合,进而影响土壤微生物的生命活动,最终影响土壤氮矿化。有研究表明:农田土壤氮素矿化量及矿化速率明显低于林地表层土壤[48],这主要是林地表层土壤营养物质含量高、矿化底物充足,微生物活动频繁,易于矿化作用的进行[49]。因此,土壤类型决定土壤微生物的种类与数量,进而通过影响微生物活动来影响土壤氮素的矿化。

    • 森林植被覆盖物可以回收土壤中残留的氮,为植物的生长提供充足的养分。森林植被类型不仅影响植物根系的分布和密度,而且影响土壤中其他非生物和生物因素,从而影响土壤氮矿化[50]。殷睿等[19]研究发现:川西亚高山不同海拔3种森林群落土壤氮矿化季节动态存在显著差异;STE-MARIE等[51]研究了加拿大魁北克地区糖枫树Acer saccharum、香脂冷杉Abies balsamea和黑云杉Picea mariana等3种不同森林群落类型,发现其矿物氮含量和氮矿化能力有着巨大差异。

      森林植被覆盖对土壤氮矿化的影响主要表现为不同植被类型或树种组成影响凋落物类型及植物根系的分布,并显著影响温度、湿度及碳氮养分等土壤理化性质,从而影响土层细菌或真菌的活性,进而影响土壤氮素的矿化。另外,不同植被组成对土壤氮素可利用性和氮素周转率的差异,影响植物生长及凋落物养分输入,从而对氮素的“矿化-固化”发挥作用[52]

    • 森林凋落物是包括凋落物、野生动物残骸及代谢产物等有机物质的总称,是森林生态系统中各种生物生长发育过程中新陈代谢的产物。森林凋落物分解是氮循环的关键环节[53],凋落物数量、质量和类型均对土壤氮矿化产生一定影响[54-55]

      凋落物输入数量增加能够促进土壤氮矿化。添加或去除凋落物会改变土壤温度进而影响土壤氮矿化。有研究表明:年均土壤温度从小到大依次为去除凋落物、对照、添加凋落物,凋落物主要通过隔绝土壤与外界空气间的热交换,抑制土壤降温[56]。土壤微生物的活性受土壤温度变化的显著影响,进而调控土壤氮矿化。

      凋落物质量(如C/N)能够显著影响土壤氮矿化速率。一般来说,土壤氮矿化速率随凋落物C/N的增加而减小。这主要是因为氮素一般为限制因素,在高C/N时,氮含量不能充分满足细菌的生长,经矿化出的氮极易固化;而当C/N低时,氮源充足,土壤固化作用减弱[57]。C/N对氮素固化、氮素矿化及氮矿化速率影响显著,这使得碳氮素、微生物及氮矿化过程之间流动联通。

      凋落物类型影响土壤氮矿化速率。凋落物的类型主要取决于群落类型及树种组成,因凋落物组成的理化特性、质量与数量等存在差异,进而对土壤有机质矿化及氮矿化速率产生显著影响。一般来说针叶树种凋落物输入土壤后,氮矿化速率低于阔叶树种,主要是由于不同树种叶片的结构和化学特性存在差异。针叶树种的叶片大多角质层比较发达,且富含多酚类物质、纤维素、木质素等难分解的有机组分,同时C/N相对较高,叶簇的比表面积较小,与土壤的接触面小,从而限制土壤动物及微生物的分解作用,而阔叶树种的凋落物中难分解成分比例较小,且比表面积更大,有利于微生物生命活动的进行,加速氮的矿化[45-46]

      对森林土壤而言,森林凋落物是联系地上和地下部分的枢纽,植物主要从土壤中汲取营养物质,最终又以凋落物的形式回归土壤,是土壤养分的重要来源。土壤有机物的短期变化受简单有机化合物、根际分泌物和凋落物的共同调控,同时加速有机质的矿化,即“正激发效应”[58]。一方面,因为凋落物是土壤微生物最直接的能量来源[55],所以凋落物通过影响土壤微生物数量与活性直接影响土壤氮的矿化;另一方面,凋落物会改变土壤的微环境(例如土壤结构、土壤温度及水分),为土壤微生物和动物生长发育提供营养物质和栖息地,从而间接增强土壤氮的矿化能力。

      凋落物的输入提高了氮回转率,加速了土壤中氮素的转化,使净氮矿化和植物可利用氮保持在较高水平[59]。土壤有机质氮库的大小受限于凋落物的分解速率,凋落物的质量及形态特征因群落类型和树种组成的差异而有所不同,可能限制土壤中的硝化氨化细菌及其他微生物的活性[55],进而影响净氮矿化速率。

    • 土壤微生物是氮素分解和矿化的“工程师”,在陆地生态系统氮循环中起着重要的调控作用。微生物种类是影响土壤氮素矿化的重要生物因素,不同微生物具有不同的分解作用,其中真菌在地表有机质降解作用中扮演着重要的角色,而细菌则在地下有机质的降解作用中更加重要。有研究表明:去除真菌和细菌,降解速率分别减慢约36%和25%[60]。同时土壤微生物和动物的共同作用会改变微生物群落结构和数量,从而影响氮的转化和矿化[61]

      土壤微生物可以促进凋落物的降解、调节养分循环及改善土壤理化性质,而氮的分解、矿化主要依靠土壤细菌、真菌等微生物促进土壤酶活性及氮的转运来进行氮矿化[62]。另外,土壤微生物的生物量能够影响森林土壤氮矿化的速率及动态[9]。一些研究表明:不同季节的森林土壤净氮矿化存在一定差异,但年均氮矿化速率的变化却不显著,这可能与微生物数量在森林土壤中能够保持一定的稳定性密切相关[19]。因此,微生物生物量作为反映土壤微生物数量的重要指标,能够间接表征土壤的氮矿化速率。

    • 土壤动物是影响凋落物分解及土壤氮矿化的关键因素,其数量、种类、活动及与土壤微生物的关系均会影响土壤氮矿化过程。大型土壤动物主要通过加速破碎凋落物,增大凋落物与微生物之间的接触面积,提高微生物活性,从而促进碳与氮养分矿化[63]。TAMARTASH等[64]在研究蚯蚓对土壤养分循环影响时发现蚯蚓可以提高土壤肥力,促进土壤有机质的分解及土壤氮素的矿化;WANG等[65]对蚂蚁筑巢活动的研究发现:蚂蚁显著提高了土壤氮矿化和矿质氮含量。小型土壤动物如线虫则通过取食细菌抑制其对养分的吸收,使养分经代谢活动重新回到土壤,增加土壤的养分可利用性,从而提高土壤氮的矿化效率[66]

      土壤动物主要是通过影响与氮素循环密切相关的微生物的生命活动从而对土壤氮矿化产生间接影响。一方面,土壤动物以土壤微生物为食,在捕食过程中会改变不同种类微生物间的平衡,影响微生物群落活性和结构,进而影响微生物对氮的矿化[61];另一方面,土壤动物捕食可能会刺激微生物的活性,进而促进土壤氮的矿化。土壤微生物体内C/N低于动物,加上土壤动物呼吸过程中碳素的消耗,使得土壤动物体内过多的氮素释放出来[67]。这不仅加速土壤素矿化而且为微生物的生长提供必要的营养物质。此外,土壤动物在代谢过程中会释放各种酶和养分[68],同时在迁移的过程中加快微生物的扩散,从而加速土壤氮矿化[69]

    • 不同学者采用不同方法进行森林土壤氮矿化速率及矿化量的研究,导致研究结果的可比性较低。目前,国内外学者广泛采用培养法进行森林土壤氮矿化的研究。培养法包括室内培养和野外原位培养。室内培养法通常采用好气培养法和淹水培养法,而野外原位培养法通常采用顶盖埋管培养法、埋袋培养法、树脂芯法等。室内矿化培养法可对温度及湿度进行实时调控,不仅有效避免了野外环境条件的异质性对土壤氮矿化影响,而且可以探讨不同温度与水分的培养条件下土壤氮矿化的变化特征;局限是无法准确还原野外环境的实际情况。好气培养法的土壤持水量对透气性的影响很难控制,此外培养过程中铵态氮及硝态氮含量需连续测定,操作较繁琐;淹水培养法比好气培养法具有更大的氮矿化效率,且可忽略最优持水量及水分散失问题,对培养温度也没有严格要求。野外原位培养法保证与野外温度和水分的一致性,测定结果可准确反映野外矿化的真实情况;缺点是野外较高的温度环境可能造成土壤含水量的波动,导致培养前后的含水量存在较大的差异,可能带来误差。野外原位培养法采用的顶盖埋管培养法,该法对土壤氮矿化估计较可靠而且简单易行,但聚氯乙烯(PVC)管筒内外土壤湿度的不同可能影响培养结果;埋袋培养法可排除一些干扰因子,但由于培养袋具有隔水效应,不能反映实际的田间土壤持水状况;树脂芯法在一定程度上避免了埋袋法与埋管法所产生的一些缺陷,目前应用前景较好。总之,不同培养方法会以不同方式影响森林土壤氮矿化量和矿化速率,往往会导致所测结果缺乏可比性,应积极探索适合室内与野外原位测定的统一培养方法与测定标准。特别是在精确评估全球变暖对森林土壤氮矿化过程与变化规律的条件下,统一森林土壤氮矿化培养方法是目前亟需解决的关键问题。

    • 森林土壤氮矿化的影响机制主要从生物因素和非生物因素进行解析。然而,它们对森林土壤氮矿化的影响存在差异,且这些因素对氮矿化的影响并不是单独作用的,而是存在复杂的耦合作用。例如温度和水分是影响土壤氮矿化的2个重要因素,通过建立温度和水分之间的回归方程,发现温度和水分对土壤氮矿化的影响之和小于两者耦合作用产生的影响。关于生物因素对氮矿化的影响,主要集中于土壤微生物与土壤动物对土壤氮矿化的单独贡献,往往缺乏微生物-动物对土壤氮矿化的耦合作用过程及机制研究,特别是缺乏非生物与生物因素综合作用对氮矿化的贡献研究。

      因此,森林土壤氮矿化研究应集中于多非生物因子、多生物因子及非生物-生物的综合作用研究,探讨多因素对森林土壤氮矿化影响的方向、强度、作用过程及机制,同时建立机制模型准确揭示森林土壤氮矿化的具体过程。

    • 目前,中国学者主要集中于温带与亚热带森林土壤的研究,缺乏热带森林土壤氮矿化的研究。然而,不同气候区的森林微气候(如温度与水分)、森林类型、非生物与生物环境条件均存在一定的差异,必然具有不同的土壤氮矿化速率及过程。因此,应完善和补充热带森林土壤氮矿化方面的研究,同时开展不同气候区森林土壤净氮矿化过程及影响机制的比较研究,加强碳氮矿化耦合效应及其对全球变化等方面的研究。

      应加强人为干扰对森林土壤氮矿化的影响研究。人类干扰形成了一系列森林-农田复合类型、人工林及不同恢复阶段森林等土地利用类型,改变了森林植被覆盖及土壤性质状况,进而影响土壤氮矿化速率、数量及过程。因此,应不断深化森林土壤氮矿化对土地利用方式变化的响应机制研究;加强不同恢复阶段森林土壤氮矿化的研究,奠定生态演替和退化生态系统恢复与重建的理论基础;加强人类干扰下森林土壤氮矿化的模拟模型研究,考虑易定量的主导环境因子进行土壤氮素矿化模拟,构建适合人类干扰与破坏背景下森林土壤氮矿化的数量模型,有助于理解森林退化与恢复过程中土壤氮循环的调控机制。

    • 森林土壤氮矿化作为森林氮循环的主要功能过程,调控着森林土壤氮的形态、含量、分布、迁移及动态。近年来,人类活动输入双倍氮量到全球氮循环,造成全球氮超负荷、大气氮沉降及环境污染问题。因此,氮沉降对森林土壤氮循环过程的影响研究成了一个热点科学问题,然而,由于缺乏全球氮沉降背景下土壤氮素矿化方向、速率及过程的动态特征及其与相关微生物及其他环境因子的关系研究,难以揭示土壤氮矿化对氮沉降影响的机制。

      在全球变暖背景下,森林土壤氮矿化速率将会发生显著改变,并可能与氮沉降增加形成叠加效应。目前全球增温对中国温带地区和北方森林土壤氮矿化的影响主要表现为促进作用或无显著影响;而对中国热带森林和亚热带森林土壤氮矿化的影响表现为促进作用、抑制作用或无显著影响。土壤氮矿化对全球气候变化的响应存在不确定性及不一致性,可能与所处的气候带、森林类型密切相关,且缺乏机制研究。因此,应加强全球气候变化背景下森林土壤氮素转化过程及机制研究,重点解析森林土壤氮矿化对氮沉降、温度升高等响应的方向、程度、过程及内在机制,并阐明全球变暖与氮沉降对森林土壤氮矿化影响的耦合效应。

参考文献 (69)

目录

    /

    返回文章
    返回