-
杨树Populus作为速生用材树种,具有广泛的用途,尤其是在制浆造纸、人造纤维和纤维板制造业中占有重要地位。木材纤维是杨树木材的主要组成部分,也是制浆及纤维制造业的主要原料,纤维性状的优劣直接决定着杨树纤维材的开发利用与发展[1]。然而,纤维形态特征及纤维含量对不同品种或无性系而言均存在着差异,即使同一树种的不同个体或同株不同部位亦有明显差异[2]。Jr FARMER等[3]利用美洲黑杨Populus deltoids无性系幼林作为试验材料,开展了木材纤维长度性状变异研究,证明了纤维性状在无性系间也呈较大差异。王明庥等[4]对杂种无性系的材性变异研究表明:纤维相关性状呈株内变异特点,且各性状间的变异具有独立性。查朝生等[5]对杨树无性系人工林的木材纤维形态特征进行了研究,表明纤维长、纤维宽以及纤维长宽比随着生长轮的增加,呈增大趋势。MANSFIELD等[6]对不同产地15个山杨Populus davidiana无性系的木材纤维性状进行研究发现:纤维性状在不同品种及林分间均呈显著变异。刘玉鑫等[7]研究表明:美洲黑杨无性系纤维性状存在遗传变异,且变异受遗传的影响大于受环境的影响。综上可知,杨树无论是品种间、林分间、无性系间或是单株的不同部位都存在变异的可能,因此,分析与评价杨树不同无性系间纤维性状差异性,不仅能够为选育适用于木材工业化生产及大规模加工利用高附加值的杨树优良新品种提供参考,而且对促进杨树人工林及杨树相关产业的可持续发展具有重要意义。鉴于此,本研究选择树干通直圆满,生长量大,且在长江流域及洞庭湖区分布广、适生性较强的7个杨树无性系为材料,对纤维素形态特征及含量差异进行了研究,综合评价了各无性系纤维性状指标,旨在为杨树无性系选择纤维材优良品系提供科学依据。
-
试验林于2009年造林,林分株行距为4 m×6 m。林内共18个杨树无性系,各无性系按完全随机区组试验排列,每个无性系10株,3次重复。试验林造林后3~4 a,每年浅耕1~2次,林下间种南瓜Cucurbita moschato;造林后2~6 a,于每年的4月下旬至5月上旬采用环状沟施肥法施尿素或复合肥(250~500 g·株−1) 1次;造林后第3年、第5年以及第7年,每年12月修枝1次,3次修枝强度(修枝高度与树高比)分别为35%、40%和40%;其他管理措施为常规管理。
选取试验林中树干圆满且通直,生长较快的杨树XL-80、XL-86、XL-83、XL-58、XL-75、ZH-17、I-69(对照)等7个无性系作为材料,每个无性系选取3株标准木测定树高及胸径,伐倒后作为生物量测定和纤维性状取样对象。在伐倒样株胸径处取一个厚5 cm的圆盘作为木材纤维形态测定试样。
-
各无性系样木伐倒后,将地上部分分成干、枝、叶,树干每2 m分为一段,分别称各部位的鲜质量,然后各部位在105 ℃下烘干并称量,最后根据样品干质量和湿质量的比例,换算单株生物量干质量[12]。单株纤维素质量的估算:单株纤维素质量=单株生物量干质量×纤维素质量分数。采集的样品经处理后,纤维素质量分数测定采用硝酸-乙醇法,木材纤维长和纤维宽采用刘超逸等[13]的测定方法。
-
运用Excel、SPSS等软件进行不同无性系间的数据统计和方差分析。各无性系间生长性状及纤维形态及含量综合评价采用加权综合得分法。
-
由表1可以看出:树体性状和木材纤维性状变异幅度较大,为2.66%~21.76%,其中生物量(21.76%)和单株纤维素(21.35%)的变异系数较大,均超过21%,树高和纤维宽的变异系数较小,为2.0%~3.2%,表明杨树各性状间变异的差异较大,可选择利用的空间广阔。
表 1 杨树无性系性状变异
Table 1. Character variation of poplar clones
性状 胸径/cm 树高/m 生物量/(kg·株−1) 纤维长/mm 纤维宽/mm 纤维长宽比 纤维素质量分数/% 单株纤维素/(kg·株−1) 平均值 31.28 25.22 301.81 1.04 0.02 52.03 57.78 175.46 标准差 3.08 0.81 65.68 0.05 0.00 1.82 2.31 37.47 变异系数/% 9.84 3.19 21.76 4.99 2.66 3.50 3.99 21.35 -
从表2可知:7个杨树无性系的纤维长为0.95~1.12 mm,纤维宽为0.019~0.021 mm,纤维长宽比为49.1~54.6。其中,无性系XL-83的纤维长最小,为0.95 mm,与其他无性系纤维长呈极显著差异(P<0.01);除无性系XL-83外,其他无性系的纤维长差异均不显著(P>0.05),且无性系XL-58、XL-86以及XL-80纤维长均达1.05 mm以上。无性系之间纤维宽差异均不显著(P>0.05)。无性系的纤维长宽比从大到小依次为I-69、XL-58、XL-86、XL-75、ZH-17、XL-80、XL-83。各无性系间的纤维长宽比存在一定差异,其中无性系XL-83与I-69、XL-58、XL-86均呈显著差异(P<0.05)。
表 2 杨树无性系纤维特征
Table 2. Fiber characteristics of poplar clones
无性系 纤维长/mm 纤维宽/mm 纤维长宽比 XL-80 1.06±0.05 Ab 0.021±0.001 a 50.93±0.91 ac XL-86 1.07±0.05 Ab 0.021±0.001 a 52.52±2.50 a XL-83 0.95±0.03 Bc 0.019±0.001 a 49.09±9.19 bc XL-58 1.12±0.10 Aa 0.021±0.000 a 53.84±3.81 a XL-75 1.02±0.03 Ab 0.020±0.001 a 51.91±2.00 ac ZH-17 1.04±0.07 Ab 0.020±0.001 a 51.81±1.80 ac I-69 1.08±0.05 Ab 0.020±0.001 a 54.62±4.70 a 说明:数值为平均值±标准差;同列不同大写字母表示同 一指标在不同无性系之间差异极显著(P<0.01);同 列不同小写字母表示同一指标在不同无性系之间差 异显著(P<0.05) -
从表3可以看出:无性系生物量间差异显著(P<0.05),生物量为194.27~401.73 kg·株−1,其中生物量最大的无性系为XL-80 (401.73 kg·株−1),最小的无性系为对照I-69 (194.27 kg·株−1)。各无性系间纤维素质量分数存在一定差异,除无性系XL-83与其他无性系的纤维素质量分数呈显著差异(P<0.05)外,其他无性系间纤维素质量分数差异不显著(P>0.05)。无性系纤维素质量分数为53.06%~59.66%,均高出造纸所需纤维素质量分数的基本要求(40%)。无性系单株纤维素为114.04~233.81 kg·株−1,其中最高的无性系为XL-80 (233.81 kg·株−1),对照I-69单株纤维素仍为最小,仅114.04 kg·株−1。无性系单株纤维素呈不同程度的差异,其中无性系XL-80与XL-86单株纤维素呈显著差异(P<0.05),与其他无性系均呈极显著差异(P<0.01);无性系I-69与供试的其他无性系均呈极显著差异(P<0.01),无性系XL-75与ZH-17差异不显著(P>0.05)。
表 3 杨树无性系生物量及木材纤维素差异
Table 3. Differences in biomass and wood cellulose content of poplar clones
无性系 生物量/
(kg·株−1)纤维素质量
分数/%单株纤维素/
(kg·株−1)XL-80 401.73±12.09 Aa 58.22±0.40 a 233.81±5.43 Aa XL-86 335.98±10.90 Bb 59.66±0.23 a 200.58±7.18 Ab XL-83 329.23±9.34 Cc 53.06±0.41 b 174.82±3.64 Bb XL-58 320.14±1.62 Dd 58.55±0.50 a 187.60±2.55 Bc XL-75 268.67±1.96 Ef 59.17±0.94 a 159.05±3.58 BCe ZH-17 270.31±0.96 Ee 59.66±0.53 a 161.38±0.78 BCe I-69 194.27±3.76 Fg 58.66±0.10 a 114.04±2.01 Df 说明:数值为平均值±标准差;同列不同大写字母表示同 一指标在不同无性系之间差异极显著(P<0.01);同 列不同小写字母表示同一指标在不同无性系之间差 异显著(P<0.05) -
木材纤维性状与生长性状间的相关分析结果(表4)表明:生长性状树高、胸径、生物量以及单株纤维素之间呈极显著正相关(P<0.01)。纤维长与纤维宽、纤维长宽比以及纤维素质量分数呈显著正相关(P<0.05),纤维长宽比与纤维素质量分数呈显著正相关(P<0.05)。木材纤维性状与生长性状之间相关性各异,纤维宽与树高、胸径、生物量呈正相关但不显著(P>0.05),纤维长、纤维长宽比及纤维素质量分数分别与胸径、树高及生物量均呈负相关,且均不显著(P>0.05),表现出独立遗传特性。
表 4 无性系生长性状与木材纤维性状的相关性
Table 4. Correlation between clonal growth traits and wood fiber traits
项目 胸径 树高 生物量 纤维长 纤维宽 纤维长宽比 纤维素质量分数 单株纤维素 胸径 1 树高 0.926** 1 生物量 0.995** 0.903** 1 纤维长 −0.146 −0.178 −0.111 1 纤维宽 0.520 0.366 0.556 0.734* 1 纤维长宽比 −0.598 −0.534 −0.572 0.863* 0.293 1 纤维素质量分数 −0.258 −0.210 −0.237 0.716* 0.467 0.682* 1 单株纤维素 0.972** 0.887* 0.981** 0.032 0.667* −0.448 −0.043 1 说明:*表示相关显著(P<0.05);**表示相关极显著(P<0.01) -
纤维材培育的最终目标是尽可能多地提供优质的纤维。因林木的生长量与木材产量呈正相关,木材的纤维形态又直接关系到林木纤维的产量和质量,因此,纤维材的产量以及纤维形态和含量是评价和选择该材种优劣的重要依据。本研究通过主成分分析(表5)得出:决定第1主成分的主要是生物量、纤维素质量分数和单株纤维素;决定第2主成分的主要是纤维长和纤维宽,前2个主成分已经能够解释原有各性状的大部分信息,故可以选择前2个主成分进行综合评分。根据所选主成分的贡献率对主成分得分进行加权平均,求得主成分综合得分(表6)。由表6可以看出:供试7个无性系综合得分由大到小依次为XL-80、XL-58、XL-86、ZH-17、XL-83、XL-75、I-69,该综合得分排序与各无性系的生物量、纤维长、纤维宽、纤维长宽比及纤维素质量分数排序具有一定的一致性。通过综合评比,入选的前5个杨树无性系综合了各性状的优良水平,也突出了联合选择在纤维材良种选育中的重要性。
表 5 主要性状的特征向量
Table 5. Feature vectors of main characters
性状 主成分 1 2 生物量 0.875 −0.028 纤维长 −0.018 0.435 纤维宽 −0.201 0.365 纤维素质量分数 0.236 0.099 单株纤维素 0.935 0.035 表 6 各无性系综合评价得分
Table 6. Comprehensive evaluation score of each clone
无性系 第1主成分得分 第2主成分得分 综合得分 排序 XL-80 2.489 2.547 2.510 1 XL-86 0.952 0.982 0.963 3 XL-83 −0.944 −0.907 −0.931 5 XL-58 1.252 1.110 1.202 2 XL-75 −1.204 −1.117 −1.173 6 ZH-17 −0.522 −0.438 −0.493 4 I-69 −2.024 −2.177 −2.078 7 -
木材纤维占阔叶树木材总体积的50%以上,木材纤维的形态指标直接影响着木材的硬度、强度以及制浆造纸性能,与木材物理力学性能以木材的开发利用息息相关[14-15]。曾广植[16]研究得出:纤维长与纸张强度呈线性正相关;张平冬等[17]认为:纤维长宽比越大,越能增加纤维之间交织次数,提升结合能力,从而增强纸张的强固性和割裂性[7];汪殿蓓等[18]研究表明:纤维长宽比大于56是优良的造纸原料。本研究杨树无性系的纤维长以及纤维长宽比最小分别为0.95 mm和49.09,均达到或超出国际木材解剖学中所规定的中级长度纤维(0.91~1.60 mm)以及长宽比不低于35~45的标准[4],其中纤维长与刘玉鑫等[7]、查朝生等[5]的测定结果相当,但纤维长宽比均高于以上测定结果,且主成分综合得分排名中,前5个无性系的纤维长宽比均在58.2以上。进一步表明本研究杨树无性系的纤维性状均较优,其中主成分分析评价得分较高的前5个无性系更适合用于纸浆或纤维用材。
性状间遗传变异差异较大,要开展多性状选择就需要探明各性状间相互关系。而杨树作为速生树种,其生长性状在进行良种选择时是必须考虑的指标,材性性状无论是作为结构材还是纤维用材都是综合评价的关键因子,因此,生长性状、材性性状以及生长性状与材性性状间的相关性是杨树遗传改良的重要依据。黄家华[19]以鹅掌楸Liriodendron chinenese等14个种源作为研究材料,发现生长性状与纤维宽及纤维长宽比均呈负相关;覃敏[20]评价了6年生米老排Mytilaria laosensis子代测定林,发现除纤维宽外,生长性状与木材性状的改良具有相对独立性;黄寿先[21]选取12个杉木Cunninghamia lanceolata无性系对制浆造纸性能的变异及其与生长、材性的相关性进行了研究,得出胸径、树高与管胞长度、宽度、管胞长宽比等呈不显著到显著的遗传负相关;李开隆等[22]通过对山杨材性与生长性状的相关性分析得出:纤维长、纤维宽及纤维长宽比均与树高、胸径等生长性状相关不显著。以上研究表明:纤维性状与生长性状呈一定的相关性,但相关性均不显著,说明纤维性状与生长性状间具有一定的独立性,在进行林木选育时可实现生长与材性同步选择。本研究分析了供试杨树无性系的生长性状与纤维性状间的相关性,发现纤维宽与树高、胸径及生物量呈正相关,但不显著,纤维长、纤维长宽比及纤维素质量分数分别与胸径、树高及生物量呈负相关性,且均不显著。该结论与以上研究结论[19-22]具有一定的相似性。杨树生长性状与纤维性状间存在着负相关或相关性不显著,说明这2个性状在遗传机制中是相互独立的,可开展杨树生长性状与纤维性状的联合改良。
多性状综合评价选择法能够在相关性复杂的多性状之间权衡取舍,使目标性状得到进一步改良,同时又能够保留其他优良性状。本研究利用主成分分析加权综合得分法对杨树无性系进行综合评价,初步筛选出XL-80、XL-58、XL-86、ZH-17、XL-83等5个优良无性系,无性系XL-58的纤维长度最长,高出群体均值7.25%;无性系XL-80的生物量最大,高出群体均值33.11%;无性系XL-86和ZH-17的纤维素含量最高,高出群体均值3.32%;无性系XL-83各性状虽没有最突出的,但各性状在供试无性系评比中排序都是靠前的,也均达到了优良纤维材的整体水平[23-24]。综上所述,评价筛选的5个优良纤维材无性系综合了各性状的优良特性,既考虑到了生长性状又兼顾了纤维性状对林木选优的影响,能够最大程度地实现物尽其用,达到杨树无性系资源利用的最大化,同时也为杨树多目标育种提供了更丰富的遗传资源与选育途径。
-
本研究表明:7个杨树无性系生物量、木材纤维长及单株纤维素差异显著,纤维素质量分数存在一定的差异,各性状变异幅度较大,这些为杨树资源的良种选育及性状改良提供了遗传基础与参考依据;主成分分析表明:生物量、纤维素质量分数和单株纤维素代表了杨树无性系各性状的综合水平,是杨树纤维材评选的主导因子。综合评价选出木材纤维性状综合表现较优的5个无性系(XL-80、XL-58、XL-86、ZH-17、XL-83),这些无性系除生长性状表现优良外,木材纤维各项指标均达到了造纸所需原料的中优水平。
Analysis and evaluation of growth and wood fiber characters of seven poplar clones in southern China
-
摘要:
目的 分析杨树Populus无性系间纤维性状差异及与生长性状的相关性,为杨树无性系优质材定向培育与选择利用提供基础信息和指导。 方法 选择树干通直,生长量大的7个杨树无性系XL-80、XL-86、XL-83、XL-58、XL-75、ZH-17、I-69(对照)为材料,对纤维长、纤维宽、纤维长宽比及纤维素质量分数、单株纤维素等性状进行了研究,利用主成分综合得分法评价了各无性系纤维性状指标。 结果 7个杨树无性系木材纤维长为0.95~1.12 mm,均达到了国际木材解剖学会规定的中级纤维长(0.91~1.60 mm)的标准;纤维长宽比为49.09~54.62,超出造纸所需纤维长宽比(30)的63.67%~82.00%;纤维素质量分数为53.06%~59.66%,均超出造纸纤维素质量分数的基本要求(40%)。纤维宽与树高、胸径及生物量呈正相关但不显著(P>0.05),纤维长、纤维长宽比及纤维素质量分数分别与胸径、树高及生物量均呈负相关,且均不显著(P>0.05)。通过主成分综合得分法评选出5个杨树优良无性系,分别为XL-80、XL-58、XL-86、ZH-17、XL-83。 结论 筛选的5个优良无性系综合了各性状的优良特性,能够最大程度地实现物尽其用,达到杨树无性系资源利用的最大化,同时也为杨树多目标育种提供了丰富的遗传资源。表6参24 Abstract:Objective With an investigation of differences among wood fiber related traits and their correlation with growth traits among tested poplar (Populus) clones, this paper provides basic information and guidance for the targeted cultivation and selection as well as the utilization of high-quality poplar clones. Method Seven poplar clones, including XL-80, XL-86, XL-83, XL-58, XL-75, ZH-17 and I-69 (ck) with straight trunk and large growth were chosen before the principal component comprehensive score method was employed to evaluate the fiber traits of each clone with indexes including fiber length, fiber width, fiber length-width ratio, cellulose mass fraction and cellulose content per plant. Result The wood fiber length range of the seven poplar clones was 0.95−1.12 mm, all meeting the standard of intermediate fiber length 0.91−1.60 mm stipulated by the International Society of Wood Anatomy. The length to width ratio of fiber varied from 49.09 to 54.62, which is 63.67%−82.00% of the length to width ratio (30) required for paper making. The cellulose mass fraction varied from 53.06% to 59.66%, exceeding the basic requirement (40%) of paper making cellulose content. Fiber width was positively correlated with height, diameter at breast height (DBH) and biomass but not significantly (P> 0.05). Fiber length, fiber length-width ratio and cellulose mass fraction were negatively correlated with DBH, tree height and growth, respectively, but not significantly (P>0.05). Five clones with good traits were selected by principal component comprehensive score method, namely XL-80, XL-58, XL-86, ZH-17, and XL-83. Conclusion The five selected fiber clones have integrated the excellent characteristics of each character, which could maximize the utilization of poplar clones and provide more abundant genetic resources for poplar multi-objective breeding. [Ch, 6 tab. 24 ref.] -
Key words:
- southern China /
- poplar /
- wood fiber /
- clone /
- comprehensive evaluation
-
氮是植物生长必需的营养元素之一。大气氮沉降属于酸沉降的一种[1],是指陆地生态系统产生的含氮化合物排放到大气中,经过一系列复杂的化学反应后再次降落回陆地生态系统的过程[2]。20世纪50年代之后,随着工业全球化的推进,化石燃料的燃烧以及人口急速膨胀,大气中的活性氮也随之不断升高[3-4],并不断趋于全球化[5]。在长期氮沉降的环境下,进入陆地生态系统的活性氮已经远远超出了陆地生态系统本身的氮需求[6]。中国氮沉降现象日渐严重[7],已成为氮沉降世界三大高降区之一[8],中国农业和工业集约化地区的氮沉降问题尤其严峻[8-9],并且有不断增长的趋势[10]。在此背景下,氮沉降对森林土壤呼吸的影响已经成为近年来生态学关注的热点。土壤中磷元素的缺失是制约植物生产力的主要因素之一[11]。由于中国长江以南的大片亚热带丘陵山地以酸性土壤为主,土壤中原本含量较少的活性磷受强烈的吸附固定作用难以移动,从而导致了土壤能被植物体直接吸收的有效磷含量更低,呈现严重缺磷状态[12]。土壤中磷元素的缺乏,限制了植物体的生长发育从而抑制了土壤呼吸作用。并且最近几年大气氮沉降所带来的负面效应不断加剧[13],使土壤受到低磷胁迫的形势变得更加严峻[14]。森林土壤与精耕细作的田间土壤相比,所受到的低磷胁迫形式及程度显得更加复杂[14]。南方林地的土壤一般为红壤[15],土壤中有效磷含量较低一直是限制南方林地生产力的重要因素之一[16]。近年来,由于二氧化碳(CO2)、甲烷(CH4)、含氮化合物(NxO)等温室气体的排放,大气中的CO2相比工业革命之前上升了近1倍[17-18],其中全球土壤中的碳排放量达6.8×1013 kg·a−1[19]。土壤是陆地生态系统的主要碳库,其中植物土壤呼吸所产生的CO2是组成陆地生态系统碳循环过程的重要部分[20-22]。杉木Cunninghamia lanceolata是中国南方常绿针叶速生树种,为中国南方造林面积最大的用材树种之一[23],栽培历史长达1 000多年[24-25]。庞丽等[15]模拟了氮沉降环境下土壤氮磷比的变化,但模拟氮沉降情况下杉木林土壤呼吸对低磷胁迫的响应还鲜有报道。本研究通过模拟氮沉降试验,分析了杉木林在不同土壤磷水平环境下土壤碳排放的动态机制,为分析处于氮沉降不断增加和磷胁迫日趋严峻环境下的南方人工林的科学经营提供相关依据。
1. 研究地区与研究方法
1.1 研究区概况
研究区处于浙江省杭州市临安区高坎村(30°21′N,119°67′E),该区属中亚热带季风气候区,气候较为温和,四季分明,雨量充沛,年平均降水量为1 632.6 mm,年平均气温为16.4 ℃,全年日照时数1 847.3 h,年均无霜期约230 d[26]。土壤为黄壤,地形地貌为低山丘陵,森林覆盖率76.5%。
1.2 样地设置与试验设计
2018年12月,选择10年生杉木幼龄林。在样地内选取生长情况相似且高度约3 m的杉木,并以此为中心设立1个3 m×3 m的独立小样方。为了避免试验干扰,每个独立小样方之间设置不小于3 m的缓冲带,本研究共设置27个独立小样方。参照国际上氮沉降模拟方法,依据中国亚热带地区的实际氮沉降量及未来增加趋势[27-30],以当地氮沉降率30.5 kg·hm−2·a−1为基础[26],设置2个处理梯度:低氮(N30:30 kg·hm−2·a−1)和高氮(N60:60 kg·hm−2·a−1)。参考国内外相关研究[29-30],磷添加设置了2个处理梯度:低磷(P20:20 mg·kg−1)和高磷(P40:40 mg·kg−1)。另外,再设置4个氮磷复合处理[低氮高磷(N30+P40)、低氮低磷(N30+P20)、高氮高磷(N60+P40)、高氮低磷(N60+P20)]及对照(ck)。各处理重复3次。
土壤的速效磷水平将磷酸二氢钾(KH2PO4)均匀地洒在样方内,进行30 cm的翻耕,使土壤上层速效磷含量达P20和P40的2个供磷水平,此后不再对杉木林添加磷。同时,根据氮处理水平,从2019年1月开始,每月模拟氮沉降喷施1次。具体方法为:每月月初的晴天,将每个样方所需喷施的一定量的硝酸铵(NH4NO3)溶解在4 L自来水中,在杉木的树冠上方用背式喷雾器均匀喷洒[1]。对照喷洒同量的自来水,以减少处理间因外加自来水不同而造成的影响。
1.3 土壤呼吸速率、土壤温度和土壤湿度的测定
为了测定样地内的土壤呼吸速率,2018年12月,在每个样方内安装直径20 cm,高12 cm的PVC连接环,安装时使其露出地表5 cm。本研究采用动态封闭气室法,使用LI-8100(LI-COR Inc.)土壤碳通量自动测量系统,观测杉木林土壤呼吸速率。2019年1−10月,每月中旬选取1个连续3 d晴朗并且最接近当月天气状况的日子,测定杉木林的土壤呼吸速率,测量结果代表测定当月杉木林土壤呼吸速率的平均值,用来分析氮磷添加下杉木林土壤呼吸的季节性变化特征。研究表明:植物土壤呼吸速率在10:00左右最接近当天的平均值[30-31]。因此,本研究用10:00测量的值代表杉木林土壤呼吸速率的日平均值[32],测定时间段为当天的10:00前后。
为了减少安置土壤呼吸测定环对杉木林土壤呼吸速率的影响,土壤呼吸测定环埋好后固定永久放置,并且在每次测定前1 d,将样方内的土壤呼吸测定环内的表层植被在尽量不破坏土壤的情况下彻底去除,以减少根系损伤及土壤扰动对测量结果的影响。
在测定土壤呼吸的同时,用LI-8100所配备的TDR土壤水分速测仪土壤温度传感器和土壤水分速测仪分别测定5 cm土层深处的土壤温度和土壤含水量[33]。
1.4 数据分析
杉木林土壤呼吸速率与土壤温度的关系模型为:RS=aebT。其中,RS表示土壤呼吸速率(μmol·m−2·s−1),T表示土壤温度(℃),a、b为待定参数。杉木林土壤呼吸的温度敏感性系数(Q10)的计算公式为:Q10=e10b。其中,b为公式RS=aebT计算中得到的常量。本研究采用单因素方差分析(one-way ANOVA)和最小显著差异法(LSD)比较分析不同氮沉降和磷添加处理水平下杉木林土壤呼吸速率。利用SPSS 26.0软件分析数据,用Origin 2017软件制图。
2. 结果与分析
2.1 杉木林土壤呼吸速率变化
氮沉降、磷添加以及氮磷复合处理下杉木土壤呼吸速率都有明显的季节变化(图1),不同季节杉木林土壤呼吸作用差异显著(P<0.05),氮沉降和磷添加并没有改变杉木林土壤呼吸的季节性变化趋势。不同处理土壤呼吸均在夏季达到最高值,在冬季达到最低值。氮沉降显著促进了杉木林的土壤呼吸(P<0.05),其中在夏季促进作用最为显著(P<0.05);高氮处理对杉木林土壤呼吸的促进作用最为显著(P<0.05),在夏季与对照(ck)相比提高了1.78倍(图1A)。磷添加处理显著促进了杉木林的土壤呼吸(P<0.05),但低磷处理在春季和秋季对杉木土壤呼吸的影响不显著(P>0.05),甚至抑制了土壤呼吸作用(图1B)。磷添加处理对杉木林土壤呼吸的促进作用在夏季最为显著(P<0.05),高磷处理对杉木林土壤呼吸的促进作用最为显著(P<0.05),在夏季与对照(ck)相比提高了1.77倍(图1B)。在氮沉降下,磷添加对杉木林土壤呼吸产生了显著影响(P<0.05),其中高氮低磷处理对杉木林土壤呼吸的促进作用最为显著(P<0.05),在夏季与对照(ck)相比提高了2.12倍(图1C和图1D)。不同处理下的杉木林土壤呼吸均在冬季达到最低值,随着地表温度的上升杉木林土壤呼吸作用也不断增强,在夏季均达到最高值,随后不断降低,氮磷复合处理并没有改变杉木林土壤呼吸的季节性变化规律。
2.2 氮磷处理下杉木林土壤呼吸速率和土壤温度、湿度的Person相关分析
杉木林土壤呼吸速率与土壤温度、土壤湿度存在着显著相关关系(P<0.05)(表1),杉木林土壤呼吸速率随着土壤温度的升高而升高,但随着土壤湿度的升高而降低。各处理下杉木林土壤呼吸速率和土壤温度均呈极显著正相关(P<0.01)(表2),除低磷处理外,杉木林土壤呼吸速率和土壤湿度也存在着显著(P<0.05)或者极显著负相关(P<0.01)(表2)。
表 1 土壤呼吸速率与环境因子的相关性Table 1 Correlation between soil respiration and environmental factors环境因子 土壤呼吸速率 土壤温度 土壤湿度 土壤呼吸速率 1 土壤温度 0.834** 1 土壤湿度 −0.369** −0.449** 1 说明:双尾检验。**表示相关极显著(P<0.01) 表 2 各处理下土壤呼吸速率与环境因子的相关性Table 2 Correlation between soil respiration and environmental factors处理 土壤温度 土壤湿度 Q10 对照 0.930** −0.441* 3.318 低氮 0.964** −0.441* 3.087 高氮 0.930** −0.433* 3.318 低磷 0.751** −0.328 3.542 高磷 0.803** −0.520** 3.501 低氮低磷 0.972** −0.433* 3.626 低氮高磷 0.916** −0.433* 3.355 高氮低磷 0.908** −0.387* 3.393 高氮高磷 0.961** −0.581** 3.422 说明:双尾检验。*表示显著相关(P<0.05);**表示极显著相 关(P<0.01) 土壤呼吸速率对土壤温度变化的敏感性可以通过Q10来反映。通过土壤呼吸速率和土壤温度拟合的指数方程可以得出:对照、低氮、高氮、低磷、高磷、低氮低磷、低氮高磷、高氮低磷、高氮高磷的Q10分别为3.318、3.087、3.318、3.542、3.501、3.626、3.355、3.393、3.422(表2)。可见,单独施加氮对杉木林土壤呼吸速率的敏感性几乎没有影响,甚至在一定程度上降低了杉木林土壤呼吸的敏感性;单独施加磷增强了杉木林土壤呼吸的敏感性;在氮磷复合作用下,杉木林土壤呼吸敏感性增强,其中低氮低磷处理对杉木林土壤呼吸的敏感性影响最大。
3. 讨论
3.1 土壤温湿度和季节变化对土壤呼吸的影响
本研究发现:杉木林土壤呼吸速率均呈显著的季节性变化,氮沉降并没有改变杉木林土壤呼吸的季节性变化趋势,而季节使得土壤温湿度产生了变化,因此,土壤温湿度是影响土壤呼吸的主要因素。由于本研究区降水充沛,土壤环境相对湿润,土壤呼吸速率与土壤温度呈显著正相关,与土壤湿度呈负相关,说明过高的土壤湿度会使土壤的通透性变差,降低土壤中气体的交互,从而导致土壤呼吸作用受到抑制。模拟氮沉降处理对杉木林土壤呼吸敏感性变化的影响并不大,甚至降低了土壤呼吸敏感性,而单独磷添加以及氮磷复合处理均提高了杉木林土壤呼吸的敏感性,其中在低磷处理下,杉木林土壤呼吸的敏感度最大,可能是在模拟氮沉降处理初期对土壤有机物含量的促进作用并不显著,而在原本受到低磷胁迫的环境下施加了磷,从而提高了土壤中有机物含量,增加了土壤呼吸底物的含量以及土壤呼吸敏感性。
3.2 磷添加对杉木林土壤呼吸的影响
土壤呼吸分为2个过程:①微生物呼吸、根系呼吸和土壤中动物呼吸的生物呼吸;②含碳矿物质化学氧化作用的非生物学过程[34]。由于土壤中部分动物的呼吸作用和有机物质的化学氧化作用非常微弱,可以忽略不计[35-36],本研究便将土壤中微生物呼吸和植物根系呼吸定义为土壤呼吸的主要部分。同时,土壤呼吸也是陆地碳循环的重要组成部分,对全球气候变化和温室气体的排放都有着重大的影响。本研究表明:单一添加磷对杉木林土壤呼吸有显著影响。在低磷处理下,杉木林土壤呼吸先是稳定上升,到一定程度后呈逐渐下降的趋势。与对照相比,在低磷处理下,杉木土壤呼吸在春、秋季被抑制,可能是由于季节的更替导致地表植被以及凋落物增加,从而抑制了土壤呼吸;在高磷处理下,杉木林土壤呼吸显著提高,说明磷添加处理增加了土壤中有效磷的含量,改善了土壤所受到的低磷胁迫的影响,促进了杉木林土壤呼吸作用。这与薛美瑛等[37]发现的单独磷添加对植物土壤呼吸有促进作用的结果相似。
3.3 氮沉降对杉木林土壤呼吸的影响
氮沉降对土壤呼吸的影响有3类:抑制作用、促进作用和无显著影响[37-40]。本研究发现:模拟氮沉降的10个月里,与对照相比,氮沉降明显促进了杉木林土壤呼吸速率,这是因为模拟氮沉降处理增强了杉木生长以及根系的发育,从而增强了杉木的自养呼吸。这与王泽西等[41]、向元彬等[42]和MADRITCH等[43]的结果相似。这可能是在氮处理的初期,土壤中的可用性氮增加,提高了土壤中微生物的活性,从而促进了土壤呼吸作用。而周世兴等[38]、MO等[44]研究表明:氮沉降抑制了土壤呼吸作用,这可能是因为施氮处理减少了林分凋落物量和细根生物量,从而改变了土壤微环境,降低了土壤中的微生物碳氮量,抑制了微生物活性,进而抑制了土壤呼吸作用[43]。邓琦等[45]研究表明:模拟氮沉降对土壤呼吸的影响不显著,原因是在降水量较多的地区,土壤含水率较高,抑制了土壤微生物的呼吸作用,因此,氮沉降作用对土壤呼吸速率没有较大影响。本研究表明:模拟氮沉降促进了杉木林土壤呼吸作用,可能是不同植物的土壤呼吸受到了不同氮需求的影响[42]。
3.4 氮沉降下磷添加对杉木林土壤呼吸的影响
本研究中,低氮低磷和低氮高磷处理的土壤呼吸速率显著高于低氮处理,高氮低磷处理的土壤呼吸速率显著高于高氮处理,而与高氮处理相比,高氮高磷处理的土壤呼吸速率受到了抑制。与对照相比,低氮和高氮处理下添加磷后显著促进了杉木林的土壤呼吸。低氮低磷、低氮高磷和高氮低磷处理同时增加了土壤中有效氮和有效磷的含量,提高了土壤中有机质含量,增强了土壤中微生物的生命活动,从而促进了土壤呼吸作用[45]。张彦东等[46]和薛美瑛等[37]研究发现:适当提高土壤中氮磷含量可以改善土壤的理化性质,使得土壤中可以被植物体直接吸收利用的有效磷含量提升,从而增加了植物体的生物量,增强了植物的土壤呼吸作用。与高氮处理相比,高氮高磷处理抑制了土壤呼吸作用,可能是高氮高磷降低了土壤的pH,植物体向地下输送的有机质有所减少,从而降低了土壤微生物活性,使土壤呼吸受到抑制。综上所述,氮沉降对土壤呼吸的影响,受到了不同植物对氮元素的需求以及所受到氮沉降作用时间的长短影响[45]。在氮沉降初期,增强了植物的生命活动,刺激了根系呼吸,促进了土壤呼吸作用,当土壤中氮水平达到饱和后,氮沉降对土壤呼吸起到抑制作用。在受到低磷胁迫较为严重的地区,磷添加增加了土壤中有效磷含量,促进了植物的生长,使土壤有机质含量增加,从而促进了土壤呼吸作用。可见,在氮沉降初期进行磷添加对陆地生态系统有较为积极的意义。
-
表 1 杨树无性系性状变异
Table 1. Character variation of poplar clones
性状 胸径/cm 树高/m 生物量/(kg·株−1) 纤维长/mm 纤维宽/mm 纤维长宽比 纤维素质量分数/% 单株纤维素/(kg·株−1) 平均值 31.28 25.22 301.81 1.04 0.02 52.03 57.78 175.46 标准差 3.08 0.81 65.68 0.05 0.00 1.82 2.31 37.47 变异系数/% 9.84 3.19 21.76 4.99 2.66 3.50 3.99 21.35 表 2 杨树无性系纤维特征
Table 2. Fiber characteristics of poplar clones
无性系 纤维长/mm 纤维宽/mm 纤维长宽比 XL-80 1.06±0.05 Ab 0.021±0.001 a 50.93±0.91 ac XL-86 1.07±0.05 Ab 0.021±0.001 a 52.52±2.50 a XL-83 0.95±0.03 Bc 0.019±0.001 a 49.09±9.19 bc XL-58 1.12±0.10 Aa 0.021±0.000 a 53.84±3.81 a XL-75 1.02±0.03 Ab 0.020±0.001 a 51.91±2.00 ac ZH-17 1.04±0.07 Ab 0.020±0.001 a 51.81±1.80 ac I-69 1.08±0.05 Ab 0.020±0.001 a 54.62±4.70 a 说明:数值为平均值±标准差;同列不同大写字母表示同 一指标在不同无性系之间差异极显著(P<0.01);同 列不同小写字母表示同一指标在不同无性系之间差 异显著(P<0.05) 表 3 杨树无性系生物量及木材纤维素差异
Table 3. Differences in biomass and wood cellulose content of poplar clones
无性系 生物量/
(kg·株−1)纤维素质量
分数/%单株纤维素/
(kg·株−1)XL-80 401.73±12.09 Aa 58.22±0.40 a 233.81±5.43 Aa XL-86 335.98±10.90 Bb 59.66±0.23 a 200.58±7.18 Ab XL-83 329.23±9.34 Cc 53.06±0.41 b 174.82±3.64 Bb XL-58 320.14±1.62 Dd 58.55±0.50 a 187.60±2.55 Bc XL-75 268.67±1.96 Ef 59.17±0.94 a 159.05±3.58 BCe ZH-17 270.31±0.96 Ee 59.66±0.53 a 161.38±0.78 BCe I-69 194.27±3.76 Fg 58.66±0.10 a 114.04±2.01 Df 说明:数值为平均值±标准差;同列不同大写字母表示同 一指标在不同无性系之间差异极显著(P<0.01);同 列不同小写字母表示同一指标在不同无性系之间差 异显著(P<0.05) 表 4 无性系生长性状与木材纤维性状的相关性
Table 4. Correlation between clonal growth traits and wood fiber traits
项目 胸径 树高 生物量 纤维长 纤维宽 纤维长宽比 纤维素质量分数 单株纤维素 胸径 1 树高 0.926** 1 生物量 0.995** 0.903** 1 纤维长 −0.146 −0.178 −0.111 1 纤维宽 0.520 0.366 0.556 0.734* 1 纤维长宽比 −0.598 −0.534 −0.572 0.863* 0.293 1 纤维素质量分数 −0.258 −0.210 −0.237 0.716* 0.467 0.682* 1 单株纤维素 0.972** 0.887* 0.981** 0.032 0.667* −0.448 −0.043 1 说明:*表示相关显著(P<0.05);**表示相关极显著(P<0.01) 表 5 主要性状的特征向量
Table 5. Feature vectors of main characters
性状 主成分 1 2 生物量 0.875 −0.028 纤维长 −0.018 0.435 纤维宽 −0.201 0.365 纤维素质量分数 0.236 0.099 单株纤维素 0.935 0.035 表 6 各无性系综合评价得分
Table 6. Comprehensive evaluation score of each clone
无性系 第1主成分得分 第2主成分得分 综合得分 排序 XL-80 2.489 2.547 2.510 1 XL-86 0.952 0.982 0.963 3 XL-83 −0.944 −0.907 −0.931 5 XL-58 1.252 1.110 1.202 2 XL-75 −1.204 −1.117 −1.173 6 ZH-17 −0.522 −0.438 −0.493 4 I-69 −2.024 −2.177 −2.078 7 -
[1] 翁文源. 杨树木材纤维长度变异及其在造纸中的应用[J]. 湖北林业科技, 2007, 36(2): 31 − 33. WENG Wenyuan. Application of timber fiber length variation and its papermaking for Populus [J]. Hubei For Sci Technol, 2007, 36(2): 31 − 33. [2] PANSHIN A J, de ZEEUW C. Textbook of Wood Technology[M]. 4 th ed. New York: McGraw-HillBook Company, 1980. [3] Jr FARMER R E, WILCOX J R. Preliminary testing of eastern cottonwood clones [J]. Theor Appl Genet, 1968, 38(5): 197 − 201. [4] 王明庥, 黄敏仁, 阮锡根, 等. 黑杨派新无性系木材性状的遗传改良[J]. 南京林业大学学报, 1989, 13(3): 9 − 16. WANG Mingxiu, HUANG Minren, RUAN Xigen, et al. Genetic improvement of wood characters of new clones in the Aigeiros section [J]. J Nanjing For Univ, 1989, 13(3): 9 − 16. [5] 查朝生, 方宇, 刘盛全, 等. 杨树无性系木材纤维形态特征及其径向变异的研究[J]. 安徽农业大学学报, 2005, 32(2): 192 − 197. ZHA Chaosheng, FANG Yu, LIU Shengquan, et al. Radial variation of fiber morphology of different poplar clones [J]. J Anhui Agric Univ, 2005, 32(2): 192 − 197. [6] MANSFIELD S D, WEINEISEN H. Wood fiber quality and kraft pulping efficiencies of trembling aspen (Populus tremuloides Michx) clones [J]. J Wood Chem Technol, 2007, 27(3/4): 135 − 151. [7] 刘玉鑫, 颜开义, 何伟, 等. 美洲黑杨无性系木材纤维性状遗传变异[J]. 南京林业大学学报(自然科学版), 2020, 44(2): 67 − 74. LIU Yuxin, YAN Kaiyi, HE Wei, et al. Genetic variation of fiber traits in Populus deltoides clones [J]. J Nanjing For Univ Nat Sci Ed, 2020, 44(2): 67 − 74. [8] 王玲. 东洞庭湖湿地土壤营养元素空间分异特征研究[D]. 长沙: 湖南师范大学, 2011. WANG Ling. Spatial Difference Characteristics of Nutrient Elements in East Dongting Lake Wetland Soil [D]. Changsha: Hunan Normal University, 2011. [9] 王宏. 东洞庭湖湿地土壤重金属的分布特征及风险评价[D]. 长沙: 湖南师范大学, 2012. WANG Hong. Spatial Distribution and Risk Assessment of Heavy Metals in Eastern Dongting Lake Wetland[D]. Changsha: Hunan Normal University, 2012. [10] 杨艳, 李永进, 唐洁, 等. 高密度初植杨树无性系间生物量及热值差异性[J]. 东北林业大学学报, 2019, 47(8): 30 − 34, 46. YANG Yan, LI Yongjin, TANG Jie, et al. Biomass and calorific value differences among high-density poplar clones with initial planting [J]. J Northeast For Univ, 2019, 47(8): 30 − 34, 46. [11] 赵丹丹. 东洞庭湖湿地土壤养分状况及其评价[D]. 长沙: 湖南师范大学, 2016. ZHAO Dandan. The Nutrient Status and Evaluations of Eastern Dongting Lake Wetland Soil[D]. Changsha: Hunan Normal University, 2016. [12] 王妍, 刘杏娥, 彭镇华, 等. I-72杨树冠特性与生物量相关性研究[J]. 安徽农业大学学报, 2008, 35(2): 164 − 168. WANG Yan, LIU Xin’e, PENG Zhenhua, et al. Correlations between crown characteristics and biomass of popular I-72 [J]. J Anhui Agric Univ, 2008, 35(2): 164 − 168. [13] 刘超逸, 刘桂丰, 方功桂, 等. 四倍体白桦木材纤维性状比较及优良母树选择[J]. 北京林业大学学报, 2017, 39(2): 9 − 15. LIU Chaoyi, LIU Guifeng, FANG Gonggui, et al. Comparison of tetraploid Betula platyphylla wood fiber traits and selection of superior seed trees [J]. J Beijing For Univ, 2017, 39(2): 9 − 15. [14] 王莹, 郭明辉, 李明君. 适度间伐对人工林大青杨解剖特征和物理特征的影响[J]. 东北林业大学学报, 2010, 38(6): 15 − 16, 19. WANG Ying, GUO Minghui, LI Mingjun. Effects of moderate thinning on anatomical characteristics and physical characteristics of ussuri poplar [J]. J Northeast For Univ, 2010, 38(6): 15 − 16, 19. [15] 黄日明, 陈承德. 42种阔叶树材木纤维长度和宽度的研究[J]. 闽西职业技术学院学报, 2014, 16(4): 97 − 102. HUANG Riming, CHEN Chengde. The research on wood fiber length and width of 42 kinds of hardwood [J]. J Minxi Vocat Tech Coll, 2014, 16(4): 97 − 102. [16] 曾广植. 对用纸浆纤维筛分组分评价纸张综合强度影响关系的探讨[J]. 纸和造纸, 2006, 25(5): 74 − 76. ZENG Guangzhi. Study on the influence of paper composite strength on the classification of pulp fiber screen [J]. Pap Pap Making, 2006, 25(5): 74 − 76. [17] 张平冬, 吴峰, 康向阳, 等. 三倍体白杨杂种无性系的纤维性状遗传变异研究[J]. 西北林学院学报, 2014, 29(1): 78 − 83. ZHANG Pingdong, WU Feng, KANG Xiangyang, et al. Genetic variation of fiber properties of triploid hybrid clones of white poplar [J]. J Northwest For Univ, 2014, 29(1): 78 − 83. [18] 汪殿蓓, 李建华, 田春元, 等. 湖北省野生青檀纤维形态特征及差异[J]. 南京林业大学学报(自然科学版), 2018, 42(1): 169 − 174. WANG Dianbei, LI Jianhua, TIAN Chunyuan, et al. Variation in fiber morphology among wild Pteroceltis tatarinowii populations in Hubei Province [J]. J Nanjing For Univ Nat Sci Ed, 2018, 42(1): 169 − 174. [19] 黄家华. 马褂木种源生长性状与材性变异研究[D]. 南宁: 广西大学, 2014. HUANG Jiahua. Study on Variations of Growth Traits and Wood Properties in Liriodendron chinenese Provenances[D]. Nanning: Guangxi University, 2014. [20] 覃敏. 米老排优良种源/家系选择与遗传变异研究[D]. 北京: 中国林业科学研究院, 2016. QIN Min. Study on Selection and Genetic Variation of Provenances/Families of Mytilaria laosensis [D]. Beijing: Chinese Academy of Forestry, 2016. [21] 黄寿先. 杉木纸浆材优良无性系选育研究[D]. 南京: 南京林业大学, 2004. HUANG Shouxian. Selection on Supierior Clones of Chinese Fir for Pulpwood[D]. Nanjing: Nanjing Forestry University, 2004. [22] 李开隆, 杨传平, 刘桂丰. 黑龙江省杨树遗传育种研究进展[J]. 东北林业大学学报, 2003, 31(4): 45 − 48. LI Kailong, YANG Chuanping, LIU Guifeng. Research progresses of genetics and breeding of Populus in Heilongjiang Province [J]. J Northeast For Univ, 2003, 31(4): 45 − 48. [23] 高慧, 徐斌, 邵卓平. 青檀树皮的化学组成与细胞壁结构[J]. 经济林研究, 2007, 25(4): 28 − 33. GAO Hui, XU Bin, SHAO Zhuoping. Chemical compositions and structure of cell wall in Pteroceltis tatarinowii Bark [J]. Non-wood For Res, 2007, 25(4): 28 − 33. [24] 周亮. 人工林杨树正常木和应拉木材性与制浆造纸性能关系及其模型研究[D]. 合肥: 安徽农业大学, 2008. ZHOU Liang. Study on Relationships and Models Between Wood Properties and Quality of Pulp&paper of Normal Wood and Tension Wood in Poplar Plantation[D]. Hefei: Anhui Agricultural University, 2008. -
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210481