-
国外学者于20世纪60年代首次发现挥发性有机化合物(VOCs)[1],之后逐步在VOCs的合成、调控及功能等方面开展研究。中国学者从20世纪80年代开始对VOCs开展研究[2–4],主要在室内空气污染、工业污染治理、VOCs释放调查分析及测定技术等方面。王泰等[5]分析了工业乡村混合区VOCs垂直分布特征,得出受环境影响,各高度VOCs释放量和组分差异明显。王峰等[6]研究了VOCs源不确定性对臭氧生成及污染防治的影响,发现VOCs源不确定性影响臭氧(O3)形成过程中NOx和VOCs 敏感区的判断。随着环境问题日益严重,VOCs成为研究热点。VOCs按来源分可以分为人为源和植物源,植物源是全球VOCs的最大来源,约占VOCs总释放的90%[3, 7-8]。国内VOCs相关综述主要在人为源VOCs方面的吸附、治理等[9-11],而对于植物遭受胁迫后,VOCs合成与释放及在植物中的作用尚缺乏相关综述。
植物VOCs主要分为萜类、苯类、苯丙类化合物和脂肪酸衍生物,它们通常是具有低分子量高蒸汽压的亲脂性液体,可以通过膜自由穿梭,在没有扩散屏障的情况下释放到环境中[12-13]。在不同环境中植物VOCs释放发生改变,高温条件下单萜、倍半萜和酚类释放减少,储存在导管中的单萜释放增加,绿叶挥发物(GLVs)释放增加[13-19],机械损伤后GLVs释放量增加[20-23]。在生物胁迫中,单萜、倍半萜释放增加[24-28]。植物释放VOCs能够帮助植物抵御恶劣环境,也可参与植物直接防御和间接防御。此外,植物VOCs参与大气化学反应,如在臭氧产生和二次气溶胶形成中发挥作用[29-31]。因此,全面了解植物VOCs释放及作用对环境治理具有重要意义。本研究综述了植物VOCs释放受不同环境因素的影响,同时对植物VOCs的合成及储存、生理生态作用进行剖析,为推进植物VOCs领域相关研究提供参考。
Roles of volatile organic compounds in plant adaptation to stress and physiological ecology
-
摘要: 挥发性有机化合物(volatile organic compounds,VOCs)是具有低分子量和高蒸气压的亲脂性液体。按来源划分,VOCs可分为人为源和植物源,而植物源是全球大气中VOCs的最大来源。植物VOCs释放受生物和非生物因素影响,它们在大气化学反应、人体健康和植物生理生态中具有重要作用。然而,对于植物VOCs释放受复合环境条件的影响及在生理生态方面的作用尚缺乏全面了解。本研究概述了植物VOCs的合成途径,重点阐述了单一及复合环境因素对VOCs种类及释放量的影响,同时归纳了VOCs在生理生态方面的作用。发现:植物VOCs合成途径已经明确,但其调控的分子机制有待进一步探究。昆虫啃食、高温、干旱、高二氧化碳浓度可降低组成型VOCs (如异戊二烯)释放,增加储存型VOCs (如蒎烯、柠檬烯)释放,同时诱导新的化合物(如绿叶挥发物, GLVs)合成并释放;复合环境对VOCs释放影响是复杂的,有待进一步探索。VOCs在植物防御食草动物或吸引食草动物天敌、介导植物间信号转导、抗氧化、抗旱和增强植物耐热性等方面发挥作用,未来将探究植物VOCs在生态系统中的更多作用。参96Abstract: Volatile organic compounds (VOCs) are lipophilic liquids with low molecular weight and high vapor pressure. According to the source, VOCs can be divided into anthropogenic sources and plant sources, and plant sources are the largest source of VOCs in the global atmosphere. VOCs release from plants is obviously affected by biological and abiotic factors, which play an important role in atmospheric chemical reactions, human health and plant physiology and ecology. However, the effects of complex environmental conditions on VOCs release from plants and their physiological and ecological roles are still not fully understood. In this paper, the synthesis pathways of VOCs in plants are summarized, the effects of single and compound environmental factors on VOCs species and release amount are emphasized, and the role of VOCs in physiology and ecology is summarized. In conclusion, the synthesis pathway of VOCs in plants has been clarified, but the molecular mechanism of VOCs regulation needs to be further explored. Insect feeding, high temperature, drought and high CO2 concentration can reduce the release of constituent VOCs (such as isoprene), increase the release of storage VOCs (such as pinene and limonene), and induce the synthesis and release of new compounds (such as GLVs). However, the effects of complex environment on VOCs release are complex and need to be further explored. VOCs play a role in plant defense against herbivores or attracting herbivores’ natural enemies, mediating interplant signal transduction, anti-oxidation, drought resistance and enhancing plant heat resistance, etc. It is predicted that more roles of plant VOCs in ecosystem will be explored in the future. [Ch, 96 ref.]
-
Key words:
- plant /
- VOCs /
- biosynthesis /
- biotic factors /
- abiotic factors /
- review
-
[1] WENT F W. Organic matter in the atmosphere, and its possible relation to petroleum formation [J]. Natl Acad Sci, 1960, 46: 212 − 221. [2] 孙海峰, 李震宇, 武滨, 等. 绿叶挥发物产生特征及其生态生理作用的研究进展[J]. 植物生态学报, 2013, 37(3): 268 − 275. SUN Haifeng, LI Zhenyu, WU Bin, et al. Review of recent advances on the production and eco-physiological roles of green leaf volatiles [J]. Chin J Plant Ecol, 2013, 37(3): 268 − 275. [3] 李洪远, 王芳, 熊善高, 等. 植物挥发性有机物的作用与释放影响因素研究进展[J]. 安全与环境学报, 2015, 15(2): 292 − 296. LI Hongyuan, WANG Fang, XIONG Shangao, et al. Research review on the role and influential factors of the biogenic volatile organic compounds [J]. J Saf Environ, 2015, 15(2): 292 − 296. [4] 何念鹏, 韩兴国, 潘庆民. 植物源VOCs 及其对陆地生态系统碳循环的贡献[J]. 生态学报, 2005, 25(8): 2041 − 2048. HE Nianpeng, HAN Xingguo, PAN Qingmin. Volatile organic compounds emitted from vegetation and their contribution to the terrestrial carbon cycle [J]. Chin J Ecol, 2005, 25(8): 2041 − 2048. [5] 王泰, 朱彬, 施双双, 等. 南京北郊工业乡村混合区秋季边界层VOCs垂直分布特征[J/OL]. 环境科学, 2022[2022-01-25]. doi: 10.13227/j.hjkx.202202133. WANG Tai, ZHU Bin, SHI Shuangshuang, et al. Vertical distribution characteristics of boundary layer volatile organic compounds in autumn in the mixed industrial and rural areas over the northern suburb of Nanjing [J/OL]. Environ Sci, 2022[2022-01-25]. doi: 10.13227/j.hjkx.202202133. [6] 王峰, 汪健伟, 杨宁, 等. VOCs 源强不确定性对臭氧生成及污染防治影响的模拟分析[J]. 环境科学, 2021, 42(12): 5713 − 5722. WANG Feng, WANG Jianwei, YANG Ning, et al. WRF-Chem Simulations of the impacts of uncertainty in VOCs emissions on ozone formation and control strategies [J]. Environ Sci, 2021, 42(12): 5713 − 5722. [7] LAOTHAWORNKITKUL J, TAYLOR J E, PAUL N D, et al. Biogenic volatile organic compounds in the earth system [J]. New Phytol, 2010, 183(1): 27 − 51. [8] GUENTHER A C, HEWITT N, ERICKSON D, et al. A global model of natural volatile organic compound emissions [J]. J Geophys Res, 1995, 100(D5): 8873 − 8892. [9] 李健, 杨建东, 徐国鑫, 等. 航天远洋测控作业环境VOCs污染特征及健康风险评价[J]. 航天医学与医学工程, 2019, 32(6): 484 − 489. LI Jian, YANG Jiandong, XU Guoxin, et al. Pollution characteristics and health risk assessment of VOCs in the working environment of ocean-going space tracking ship [J]. J Aerosp Med Med Eng, 2019, 32(6): 484 − 489. [10] 刘锐源, 钟美芳, 赵晓雅, 等. 2011—2019年中国工业源挥发性有机物排放特征[J]. 环境科学, 2021, 42(11): 5169 − 5179. LIU Ruiyuan, ZHONG Meifang, ZHAO Xiaoya, et al. Characteristics of industrial volatile organic compounds (VOCs) emission in China from 2011 to 2019 [J]. Environ Sci, 2021, 42(11): 5169 − 5179. [11] 戴春岭, 梁华, 王博, 等. VOCs治理技术分析及研究进展[J]. 环境科学与管理, 2022, 47(1): 84 − 88. DAI Chunling, LIANG Hua, WANG Bo, et al. Analysis and research progress of VOCs control technology [J]. Environ Sci Manage, 2022, 47(1): 84 − 88. [12] DUDAREVA N, KLEMPIEN A, MUHLEMANN J K, et al. Biosynthesis, function and metabolic engineering of plant volatile organic compounds [J]. New Phytol, 2013, 198: 16 − 32. [13] DUDAREVA N, PICHERSKY E, GERSHENZON J. Biochemistry of plant volatiles [J]. Plant Physiol, 2004, 135(4): 1893 − 1902. [14] KLEIST E, MENTEL T F, ANDRES S, et al. Irreversible impacts of heat on the emissions of monoterpenes, sesquiterpenes, phenolic BVOC and green leaf volatiles from several tree species [J]. Biogeosciences, 2012, 9(12): 5111 − 5123. [15] GUIDOLOTTI G, PALLOZZI E, GAVRICHKOVA O, et al. Emission of constitutive isoprene, induced monoterpenes, and other volatiles under high temperatures in Eucalyptus camaldulensis: a 13C labelling study [J]. Plant Cell Environ, 2019, 42(6): 1929 − 1938. [16] BAMBERGER I, RUEHR N K, SCHMITT M, et al. Isoprene emission and photosynthesis during heatwaves and drought in black locust [J]. Biogeosciences, 2017, 14(15): 3649 − 3667. [17] STAUDT M, MORIN X, CHUINE I. Contrasting direct and indirect effects of warming and drought on isoprenoid emissions from Mediterranean oaks [J]. Reg Environ Change, 2016, 17(7): 2121 − 2133. [18] FORTUNATI A, BARTA C, BRILLI F, et al. Isoprene emission is not temperature-dependent during and after severe drought-stress: a physiological and biochemical analysis [J]. Plant J, 2008, 55(4): 687 − 697. [19] TATTINI M, LORETO F, FINI A, et al. Isoprenoids and phenylpropanoids are part of the antioxidant defense orchestrated daily by drought-stressed Platanus × acerifolia plants during Mediterranean summers [J]. New Phytol, 2015, 207(3): 613 − 626. [20] FEDERICO B, TAINA M. R, RALF S, et al. Detection of plant volatiles after leaf wounding and darkening by proton transfer reaction “Time-of-Flight” mass spectrometry (PTR-TOF) [J/OL]. PLoS One, 2011, 6(5): e20419[2022-01-28]. doi: 10.1371/journal.pone.0020419. [21] 周帅, 林富平, 王玉魁, 等. 樟树幼苗机械损伤叶片对挥发性有机化合物及叶绿素荧光参数的影响[J]. 植物生态学报, 2012, 36(7): 80 − 89. ZHOU Shuai, LIN Fuping, WANG Yukui, et al. Effects of mechanical damage of leaves on volatiles organic compounds and chlorophyll fluorescence parameters in seedlings of Cinnamomum camphora [J]. Chin J Plant Ecol, 2012, 36(7): 80 − 89. [22] STAUDT M, LHOUTELLER L. Volatile organic compound emission from holm oak infested by gypsy moth larvae: evidence for distinct responses in damaged and undamaged leaves [J]. Tree Physiol, 2007, 27: 1433 − 1440. [23] LORETO F, NASCETTI P, MANNOZZI A G. Emission and content of monoterpenes in intact and wounded needles of the Mediterranean pine, Pinus pinea [J]. Funct Ecol, 2000, 14(5): 589 − 595. [24] KESSLER A, BALDWIN I T. Defensive function of herbivore-induced plant volatile emissions in nature [J]. Science, 2001, 291(16): 2141 − 2144. [25] 闫凤鸣. 植物病原-媒介昆虫互作研究进展与展望[J]. 昆虫学报, 2020, 63(2): 123 − 130. YAN Fengming. Plant pathogen-vector insect interaction: research progress and prospects [J]. Acta Entomol, 2020, 63(2): 123 − 130. [26] COPOLOVICI L, PAG A, KANNASTE A, et al. Disproportionate photosynthetic decline and inverse relationship between constitutive and induced volatile emissions upon feeding of Quercus robur leaves by large larvae of gypsy moth (Lymantria dispar) [J]. Environ Exp Bot, 2017, 138: 184 − 192. [27] JIANG Y, YE J, VEROMANN JURGENSON L L, et al. Gall- and erineum-forming Eriophyes mites alter photosynthesis and volatile emissions in an infection severity-dependent manner in broad-leaved trees Alnus glutinosa and Tilia cordata [J]. Tree Physiol, 2021, 41(7): 1122 − 1142. [28] TOOME M, RANDJARV P, COPOLOVICI L, et al. Leaf rust induced volatile organic compounds signalling in willow during the infection [J]. Planta, 2010, 232(1): 235 − 243. [29] NAGORI J, JANSSEN R H H, FRY J L, et al. Biogenic emissions and land-atmosphere interactions as drivers of the daytime evolution of secondary organic aerosol in the southeastern US [J]. Atmos Chem Phys, 2019, 19(2): 701 − 729. [30] LI S, HARLEY P C, NIINEMETS U. Ozone-induced foliar damage and release of stress volatiles is highly dependent on stomatal openness and priming by low-level ozone exposure in Phaseolus vulgaris [J]. Plant Cell Environ, 2017, 40(9): 1984 − 2003. [31] KANAGENDRAN A, PAZOUKI L, NIINEMETS U. Differential regulation of volatile emission from Eucalyptus globulus leaves upon single and combined ozone and wounding treatments through recovery and relationships with ozone uptake [J]. Environ Exp Bot, 2018, 145: 21 − 38. [32] MCGARVEY D J, CROTEAU R. Terpenoid metabolism [J]. Plant Cell, 1995, 7(7): 1015 − 1026. [33] THOLL D. Biosynthesis and biological functions of terpenoids in plants [J]. Adv Biochem Eng/Biotechnol, 2015, 148: 63 − 106. [34] VRANOVÁ E, COMAN D, GRUISSEM W. Network analysis of the MVA and MEP pathways for isoprenoid synthesis [J]. Annu Rev Plant Biol, 2013, 64(1): 665 − 700. [35] DUDAREVA N, ANDERSSON S, ORLOVA I, et al. The nonmevalonate pathway supports both monoterpene and sesquiterpene formation in snapdragon flowers [J]. Proc Natl Acad Sci, 2005, 102(3): 933 − 938. [36] MAEDA H, DUDAREVA N. The shikimate pathway and aromatic amino acid biosynthesis in plants [J]. Annu Rev Plant Biol, 2012, 63: 73 − 105. [37] GHIRARDO A, KOCH K, TAIPALE R, et al. Determination of de novo and pool emissions of terpenes from four common boreal/alpine trees by 13CO2 labelling and PTR-MS analysis [J]. Plant Cell Environ, 2010, 33(5): 781 − 792. [38] LIAVONCHANKA A, FEUSSNER I. Lipoxygenases: occurrence, functions and catalysis [J]. J Plant Physiol, 2006, 163(3): 348 − 357. [39] UL HASSAN M N, ZAINAL Z, ISMAIL I. Green leaf volatiles: biosynthesis, biological functions and their applications in biotechnology [J]. Plant Biotechnol J, 2015, 13(6): 727 − 739. [40] ZULAK K G, BOHLMANN J. Terpenoid biosynthesis and specialized vascular cells of conifer defense [J]. J Integrative Plant Biol, 2010, 52(1): 86 − 97. [41] KROKENE P, NAGY N E, SOLHEIM H. Methyl jasmonate and oxalic acid treatment of Norway spruce: anatomically based defense responses and increased resistance against fungal infection [J]. Tree Physiol, 2008, 28(1): 29 − 35. [42] LANGE B M, TURNER G W. Terpenoid biosynthesis in trichomes-current status and future opportunities [J]. Plant Biotechnol J, 2013, 11(1): 2 − 22. [43] ORMEÑO E, GOLDSTEIN A, NIINEMETS Ü. Extracting and trapping biogenic volatile organic compounds stored in plant species [J]. Trends Anal Chem, 2011, 30(7): 978 − 989. [44] ABBAS F, KE Y, YU R, et al. Volatile terpenoids: multiple functions, biosynthesis, modulation and manipulation by genetic engineering [J]. Planta, 2017, 246(5): 803 − 816. [45] QUAN W, DING G. Root tip structure and volatile organic compound responses to drought stress in Masson pine (Pinus massoniana Lamb. ) [J/OL]. Acta Physiol Plant, 2017, 39: 258[2022-01-28]. doi: 10.1007/s11738-017-2558-7. [46] LORETO F, SCHNITZLER J P. Abiotic stresses and induced BVOCs [J]. Trends Plant Sci, 2010, 15(3): 154 − 166. [47] CROTEAU R B, DAVIS E M, RINGER K L, et al. (−)-Menthol biosynthesis and molecular genetics [J]. Naturwissenschaften, 2005, 92(12): 562 − 577. [48] NYKÄNEN H, KORICHEVA J. Damage-induced changes in woody plants and their effects on insect herbivore performance: a meta-analysis [J]. Oikos, 2004, 104: 247 − 268. [49] STAUDT M, JACKSON B, EL AOUNI H, et al. Volatile organic compound emissions induced by the aphid Myzus persicae differ among resistant and susceptible peach cultivars and a wild relative [J]. Tree Physiol, 2010, 30(10): 1320 − 1334. [50] CASTORINA G, GRASSI F, CONSONNI G, et al. Characterization of the biogenic volatile organic compounds (BVOCs) and analysis of the PR1 molecular marker in Vitis vinifera L. inoculated with the Nematode Xiphinema index [J/OL]. Int J Mol Sci, 2020, 21(12): 4485[2022-1-28]. doi: 10.3390/ijms21124485. [51] WENDA PIESIK A. Volatile organic compound emissions by winter wheat plants (Triticum aestivum L. ) under Fusarium spp. Infestation and various abiotic conditions [J]. Polish J Environ Stud, 2011, 20(5): 1335 − 1342. [52] EFFAH E, HOLOPAINEN J K, MCCORMICK A C. Potential roles of volatile organic compounds in plant competition [J]. Perspect Plant Ecol Evol Syst, 2019, 38: 58 − 63. [53] 谭晓玲, 闫甲, 苗进, 等. 小麦间作豌豆和挥发物释放结合不同器械施药对麦田害虫和天敌的影响[J]. 中国生物防治学报, 2021, 37(5): 904 − 913. TAN Xiaoling, YAN Jia, MIAO Jin, et al. Effects of wheat-pea intercropping with volatile release combined with different device applications on wheat pests and natural enemies in wheat field [J]. Chin J Biol Control, 2021, 37(5): 904 − 913. [54] HIMANEN S J, BLANDE J D, KLEMOLA T, et al. Birch (Betula spp. ) leaves adsorb and release volatiles specific to neighbouring plants-a mechanism for associational herbivore resistance? [J]. New Phytol, 2010, 1863: 722 − 732. [55] PICHERSKY E, NOEL J P, DUDAREVA N, et al. Biosynthesis of plant volatiles: nature’s diversity and ingenuity [J]. Science, 2006, 311(5762): 808 − 811. [56] BALDWIN I T, HALITSCHKE R, PASCHOLD A, et al. Volatile signaling in plant-plant interactions: “Talking Trees” in the genomics era [J]. Science, 2006, 311(5762): 812 − 815. [57] KARL T, CURTIS A J, ROSENSTIEL T N, et al. Transient releases of acetaldehyde from tree leaves products of a pyruvate overflow mechanism? [J]. Plant Cell Environ, 2002, 25: 1121 − 1131. [58] GUENTHER A B, MONSON R K, FALL R. Isoprene and monoterpene emission rate variability’ observations with Eucalyptus and emission rate algorithm development [J]. J Geophys Res, 1991, 96(D6): 10799 − 10808. [59] HU Zenghui, LI Tianjiao, ZHENG Jian, et al. Ca2+ signal contributing to the synthesis and emission of monoterpenes regulated by light intensity in Lilium ‘Siberia’ [J]. Plant Physiol Biochem, 2015, 91: 1 − 9. [60] MAES K, DEBERGH P C. Volatiles emitted from in vitro grown tomato shoots during abiotic and biotic stress [J]. Plant Cell Tissue Organ Culture, 2003, 75: 73 − 78. [61] SUN Z, HÜVE K, VISLAP V, et al. Elevated [CO2] magnifies isoprene emissions under heat and improves thermal resistance in hybrid aspen [J]. J Exp Bot, 2013, 64(18): 5509 − 5523. [62] 赖金美, 潘若琪, 刘燕飞, 等. 大气二氧化碳浓度增加对木本植物BVOCs释放的影响[J]. 生态学杂志, 2020, 39(3): 865 − 871. LAI Jinmei, PAN Ruoqi, LIU Yanfei, et al. Effects of elevated atmospheric CO2 concentration on biogenic volatile organic compound emission from woody plants [J]. Chin J Ecol, 2020, 39(3): 865 − 871. [63] HEYWORTH C J, IASON G R, TEMPERTON V, et al. The effect of elevated CO2 concentration and nutrient supply on carbon-based plant secondary metabolites in Pinus sylvestris L. [J]. Oecologia, 1998, 115(3): 344 − 350. [64] HUANG J B, HARTMANN H, HELLEN H, et al. New perspectives on CO2, temperature, and light effects on BVOC emissions using online measurements by PTR-MS and cavity ring down spectroscopy [J]. Environ Sci Technol, 2018, 52(23): 13811 − 13823. [65] LORETO F, FISCHBACH R J, SCHNITZLER J P, et al. Monoterpene emission and monoterpene synthase activities in the Mediterranean evergreen oak Quercus ilex L. grown at elevated CO2 concentrations [J]. Global Change Biol, 2001, 7(6): 709 − 717. [66] GOUINGUENE S P, TURLINGS T C. The effects of abiotic factors on induced volatile emissions in corn plants [J]. Plant Physiol, 2002, 129(3): 1296 − 1307. [67] BOURTSOUKIDIS E, KAWALETZ H, RADACKI D, et al. Impact of flooding and drought conditions on the emission of volatile organic compounds of Quercus robur and Prunus serotina [J]. Trees-Struct Funct, 2014, 28(1): 193 − 204. [68] PARVEEN S, HARUN UR RASHID M, INAFUKU M, et al. Molecular regulatory mechanism of isoprene emission under short-term drought stress in the tropical tree Ficus septica [J]. Tree Physiol, 2019, 39(3): 440 − 453. [69] BERTIN N, STAUDT M. Effect of water stress on monoterpene emissions from young potted holm oak (Quercus ilex L.) trees [J]. Oecologia, 1996, 107: 456 − 462. [70] MITHÖFER A, WANNER G, BOLAND W. Effects of feeding spodoptera littoralis on Lima Bean leaves continuous mechanical wounding resembling insect feeding is sufficient to elicit herbivory-related volatile emission [J]. Plant Physiol, 2005, 137(3): 1160 − 1168. [71] KIM L, GALBALLY I E, PORTER N, et al. BVOC emissions from mechanical wounding of leaves and branches of Eucalyptus sideroxylon (red ironbark) [J]. J Atmos Chem, 2012, 68(3): 265 − 279. [72] ASAI T, MATSUKAWA T, KAJIYAMA S. Metabolic changes in Citrus leaf volatiles in response to environmental stress [J]. J Biosci Bioeng, 2016, 121(2): 235 − 241. [73] VUORINEN T, NERG A M, SYRJÄLÄ L, et al. Epirrita autumnata induced VOC emission of silver birch differ from emission induced by leaf fungal pathogen [J]. Arthropod Plant Interactions, 2007, 1: 159 − 165. [74] CARDOZA Y J, TEAL P E A, TUMLINSON J H. Effect of peanut plant fungal infection on oviposition preference by spodoptera exigua and on host-searching behavior byCotesia marginiventris [J]. Environ Entomol, 2003, 32(5): 970 − 976. [75] ROSTÁS M, TON J, MAUCH-MANI B, et al. Fungal infection reduces herbivore-induced plant volatiles of maize but does not affect naïve parasitoids [J]. J Chem Ecol, 2006, 32: 1897 − 1909. [76] HUANG J, FORKELOVÁ L, UNSICKER S B, et al. Isotope labeling reveals contribution of newly fixed carbon to carbon storage and monoterpenes production under water deficit and carbon limitation [J]. Environ Exp Bot, 2019, 162: 333 − 344. [77] PIESIK D, PANKA D, DELANEY K J, et al. Cereal crop volatile organic compound induction after mechanical injury, beetle herbivory (Oulema spp. ), or fungal infection (Fusarium spp. ) [J]. J Plant Physiol, 2011, 168(9): 878 − 886. [78] SALERNO G, FRATI F, MARINO G, et al. Effects of water stress on emission of volatile organic compounds by Vicia faba, and consequences for attraction of the egg parasitoid Trissolcus basalis [J]. J Pest Sci, 2017, 90(2): 635 − 647. [79] COPOLOVICI L, KANNASTE A, REMMEL T, et al. Volatile organic compound emissions from Alnus glutinosa under interacting drought and herbivory stresses [J]. Environ Exp Bot, 2014, 100: 55 − 63. [80] TOWNSEND B J, POOLE A T, BLAKE C, et al. Antisense suppression of a (+)-cadinene synthase gene in cotton prevents the induction of this defense response gene during bacterial blight infection but not its constitutive expression [J]. Plant Physiol, 2005, 138: 516 − 528. [81] HUANG M, SÁNCHEZ MOREIRAS A M, ABEL C, et al. The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)-2-caryophyllene, is a defense against a bacterial pathogen [J]. New Phytol, 2012, 1934: 997 − 1008. [82] KESSLER A, BALDWIN I T. Plant responses to insect herbivory: the emerging molecular analysis [J]. Annu Rev Plant Biol, 2002, 53: 299 − 328. [83] PRICE P W, BOUTON C E, GROSS P S, et al. Interactions among three trophic levels: influence of plants on interactions between insect herbivores and natural enemies [J]. Annu Rev Ecol Evol Syst, 1980, 11: 41 − 65. [84] DICKE M. Volatile spide mite pheromone and hos plant kairomone, involved in space out gregariousness in the spider mite Tetranychus urticae [J]. Physiol Entomol, 1986, 11: 251 − 262. [85] SCHUMAN M C, ALLMANN S, BALDWIN I T. Plant defense phenotypes determine the consequences of volatile emission for individuals and neighbors [J/OL]. eLife, 2015, 4: e04490[2022-01-28]. doi: 10.7554/eLife.04490. [86] XIAO Y, WANG Q, ERB M, et al. Specific herbivore-induced volatiles defend plants and determine insect community composition in the field [J]. Ecol Lett, 2012, 1510: 1130 − 1139. [87] BALDWIN I T, SCHULTZ J C. Rapid changes in tree leaf chemistry induced by damage: evidence for communication between plants [J]. Science, 1983, 221(4607): 277 − 279. [88] BRUIN J, DICKE M, SABELIS M W. Plants are better protected against spider-mites after exposure to volatiles from infested conspecifics [J]. Experientia, 1992, 48: 525 − 529. [89] MEENTS A K, CHEN S P, REICHELT M, et al. Volatile DMNT systemically induces jasmonate-independent direct anti-herbivore defense in leaves of sweet potato (Ipomoea batatas) plants [J/OL]. Sci Rep, 2019, 9(1): 17431[2022-01-25]. doi: 10.1038/s41598-019-53946-0. [90] MORAES C M D, MESCHER M C, TUMLINSON J H. Caterpillar-induced nocturnal plant volatiles repel conspecific females [J]. Nature, 2001, 410: 577 − 580. [91] NINKOVIC V, MARKOVJ D, RENSING M. Plant volatiles as cues and signals in plant communication [J]. Plant Cell Environ, 2020, 44: 1030 − 1043. [92] SHARKEY T D, CHEN X, YEH S. Isoprene increases thermotolerance of fosmidomycin-fed leaves [J]. Plant Physiol, 2001, 125(4): 2001 − 2006. [93] VELIKOVA V, LORETO F. On the relationship between isoprene emission and thermotolerance in Phragmites australis leaves exposed to high temperatures and during the recovery from a heat stress [J]. Plant Cell Environ, 2005, 28: 318 − 327. [94] COPOLOVICI L O, FILELLA I, LLUSIÀ J, et al. The capacity for thermal protection of photosynthetic electron transport varies for different monoterpenes in Quercus ilex [J]. Plant Physiol, 2005, 139: 485 − 496. [95] VELIKOVA V, FARES S, LORETO F. Isoprene and nitric oxide reduce damages in leaves exposed to oxidative stress [J]. Plant Cell Environ, 2008, 3112: 1882 − 1894. [96] VICKERS C E, POSSELL M, COJOCARIU C I, et al. Isoprene synthesis protects transgenic tobacco plants from oxidative stress [J]. Plant Cell Environ, 2009, 325: 520 − 531. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20220180
计量
- 文章访问数: 1166
- HTML全文浏览量: 228
- PDF下载量: 92
- 被引次数: 0