留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

6个铁线莲品种杂交F1代表型性状遗传分析

陈晓蕾 邵伟丽 厉思源 刘志高 马红玲 申亚梅 董彬 张超

王军围, 唐晓岚. 基于聚落适宜性分析的西山国家森林公园古村落空间布局[J]. 浙江农林大学学报, 2015, 32(6): 919-926. DOI: 10.11833/j.issn.2095-0756.2015.06.015
引用本文: 陈晓蕾, 邵伟丽, 厉思源, 等. 6个铁线莲品种杂交F1代表型性状遗传分析[J]. 浙江农林大学学报, 2023, 40(1): 72-80. DOI: 10.11833/j.issn.2095-0756.20220214
WANG Junwei, TANG Xiaolan. Spatial patterns of ancient villages in Xishan National Forest Park based on a settlement suitability analysis[J]. Journal of Zhejiang A&F University, 2015, 32(6): 919-926. DOI: 10.11833/j.issn.2095-0756.2015.06.015
Citation: CHEN Xiaolei, SHAO Weili, LI Siyuan, et al. Genetic analysis of phenotypic traits in F1 hybrids of 6 Clematis cultivars[J]. Journal of Zhejiang A&F University, 2023, 40(1): 72-80. DOI: 10.11833/j.issn.2095-0756.20220214

6个铁线莲品种杂交F1代表型性状遗传分析

DOI: 10.11833/j.issn.2095-0756.20220214
基金项目: 浙江省农业新品种重大专项花卉育种专项(2021C02071-6-4);浙江农林大学创新训练项目(2021KX0057);浙江省园林植物种质创新与利用重点实验室开放基金项目
详细信息
    作者简介: 陈晓蕾(ORCID: 0000-0003-2935-1608),从事铁线莲品种间杂交等研究。E-mail: 18332530987@163.com
    通信作者: 刘志高(ORCID: 0000-0002-2720-9619),副教授,博士,从事园林植物栽培与应用研究。E-mail: vzhigao@ sina.com
  • 中图分类号: S722.3

Genetic analysis of phenotypic traits in F1 hybrids of 6 Clematis cultivars

  • 摘要:   目的  分析对比铁线莲Clematis杂交亲本与杂交一代(F1)之间表型性状的差异,探究铁线莲杂交的遗传变异规律。  方法  以6个铁线莲品种为亲本,开展了4个杂交组合试验,对F1代的表型性状进行统计分析。  结果  ①F1代的花期与双亲相比出现分离,但多介于亲本之间。②F1代花色发生广泛分离,紫罗兰色的遗传力高于红紫色以及复色紫罗兰色和紫色,白色相对于红紫色为相对隐性性状;F1代的花药颜色未发生分离,黄色花药对于粉红色和红色花药为相对显性性状。③F1代的萼片宽度、叶片长度、叶片宽度表现出超亲性状,总平均值分别为中亲值的111%、114%和119%;F1代的花梗长度、花直径、萼片长宽比及叶片长宽比均小于双亲,后代总平均值分别为中亲值的85%、89%、91%和82%;F1代的萼片长度和节间距变化不明显,总平均值分别为中亲值的98%和102%。④花部5个数量性状和叶片4个数量性状之间存在显著相关性(P<0.05),其中叶片长度与叶片宽度呈极显著正相关(P<0.01),且相关系数最高为0.940,趋于连锁遗传。  结论  F1代的大部分表型性状(除花药颜色外)都发生了变异,仅有萼片长度和节间距表现出偏母性遗传的特点,萼片宽度表现为偏父性遗传,花期、花色、花药颜色、花梗长度、花直径、萼片长宽比、叶片长度、叶片宽度、叶片长宽比等9个性状未表现出明显的遗传倾向。图1表7参24
  • 林产品生长具有一定的地域特征。一些特定地区的林产品因具备某些优秀品质,更受消费者的青睐,然而普通消费者难以通过产品外观或其他物理特性区分特定产地和其他产地的产品。受经济利益的驱使,有些商家伪造产品产地或掺假蒙骗消费者,损害了消费者和原产地的利益,因此,需要一种分析技术能识别林产品的产地,鉴定产品的真伪。稳定同位素技术在溯源和掺假鉴别方面有着较好的优势,目前已应被用于农产品[1]和食品领域[2]。为推动这项技术在林产品领域中的应用,在广泛查阅国内外文献的基础上,对稳定同位素技术在林产品中的溯源和鉴别应用研究进行综述及展望。

    具有相同质子数,不同中子数的同一元素的不同核素互为同位素。其中不具有放射性的同位素称为稳定同位素,其来源有2种:一部分是由放射性同位素衰变之后的稳定产物,例如206Pb和87Sr等;另一部分是自然界本身存在的天然稳定同位素,例如12C和13C,18O和16O等。

    利用稳定同位素可以鉴别不同种类的产品以及追溯产地来源的原理:①自然界中的植物因其固碳方式不同,可分为C3植物(如小麦Triticum aestivum,水稻Oryza sativa,大豆Glycine max,棉花Gossypium spp.等),C4植物(如玉米Zea mays,甘蔗Saccharum officinarum,高粱Sorghum bicolor,苋菜Amaranthus tricolor等)和CAM植物(如仙人球Echinopsis tubiflora,芦荟Aloe vera,龙舌兰Agave americana以及景天Sedum erythrostictum等),不同种类的植物碳同位素比值(δ13C)分布不同,其中C4植物为-14‰~-10‰,CAM植物为-30‰~-10‰,C3植物为-35‰~-22‰[3]。②同一种生物体因受气候、环境和生物代谢的影响,导致同位素在生物体内产生分馏,使得不同地区的生物体体内的碳、氢、氧、氮等同位素的丰度不同[4]

    由于稳定同位素在自然界中的含量很低,很难用绝对值来表达同位素的差异,同时人们更加关心的是同位素组成的微小变化,因此国际上常用同位素比值δ表示。公式为:

    $ \delta = ({R_{样品}}/{R_{标准}} - 1) \times 1\;000{\rm{‰ }}。 $

    (1)

    式(1)中:R样品为所测样品中的重同位素与轻同位素丰度之比,即:13C/12C,D/H,18O/16O和15N/14N。R标准为国际标准样中,δ13C以维也纳-PeeDee箭石标准(V-PDB)为基准,δ18O和δD以平均海洋水(SMOW)为基准,δ15N以大气中的氮气(N2-atm)为基准。通过同位素质谱仪(IRMS)可以精确地测定同位素比值。

    某些林产品出自不同的产地会存在品质和性能上的差异。另外,随着人们生活水平的提高,道地性产品得到推崇,消费市场对某些产品的原产地有所要求。普通消费者很难通过外观判别特定产地和普通产地的商品,容易买到冒牌产地的产品[5]。建立林产品的溯源体系既能够保护原产地的利益,也能够确保产品质量,保护消费者的利益。目前,稳定同位素技术已用于经济林产品,如水果、林产饮料、木本油料等的产地溯源。

    猕猴桃有很强的地域特征,马奕颜等[6]采集了陕西省(周至县、眉县),四川省和湖南省的中华猕猴桃Actinidia chinensis样品,检测其δ13C,δD和δ15N以及维生素C、维生素E和总糖。结果发现:单个元素的判别率较低,其中δD和δ15N对产地的判别略优于δ13C,而δ13C,δD和δ15N三者结合,对3个省总体的判别率也仅为57.8%,对周至县、眉县亚地区的判别率为80%。利用线性判别-主成分分析(LDA-PCA),δ13C,δD和δ15N结合维生素C、维生素E和总糖含量,3个省的总体判别率提高至88.9%,对亚地区的判别率提升至93.3%。

    LONGOBARDI等[7]采集了阿普利亚地区(40°47′N,17°06′E)和艾米利亚罗马涅(44°35′N,11°13′E)的樱桃Cerasus pseudocerasus样品,艾米利亚罗马涅地区的δ13C,δ18O和δD的平均值分别为-26.5‰,33.2‰和-38.5‰;阿普利亚地区的δ13C,δ18O和δD的平均值分别为-26.4‰,35.4‰和-30.7‰。从艾米利亚罗马涅到阿普利亚,δ13C,δ18O和δD都有不同程度的增加,由于北方(艾米利亚罗马涅)到南方(阿普利亚)气候、环境改变导致同位素分馏。利用δ13C,δ18O和δD三者的线性判别分析,对2个地区的判别率为94.9%;此外,通过电子鼻检测技术,采用3个不同的分析模型(VES1,VES2和VES3),得到最高的判别率只有89.7%。这说明稳定同位素技术相比于其他检测手段在溯源领域确实有着较好的优势。

    胡桂仙等[8]研究了浙江、福建、云南、贵州和江苏等地区杨梅Myrica rubra的稳定同位素和多元素的特征,采用LDA-PCA方法对不同地区的杨梅进行判别,其中浙江省杨梅的准确判别率为99.6%,福建省为90.3%,云南、贵州、江苏省样品归为一类,其准确判别率为98.4%。陈历水等[9]研究了黑加仑Ribes nigrum果实的碳氮同位素,发现两者联合对黑加仑产地溯源的准确率达86.9%。

    橄榄Canarium album油有着极佳的天然保健、美容功效以及理想的烹调用途,其物理特性和化学成分因不同的品种和地理环境而有所不同。CAMIN等[10]利用δ13C,δ18O,δD以及镁、钾、钙、钒、锰、锌、铅、锶、铯、镧、铈、钐、铕及铀这14种元素对橄榄油的产地进行线性判别,准确率达95.0%。PORTARENA等[11]测定了意大利沿海岸7个产地的38个初榨橄榄油样品,由于都是沿海地区,气候环境条件相似,7个产地δ13C和δ18O变化范围较小,分别为-30.2‰~-27.5‰和21.7‰~26.5‰,发现单独用δ13C和δ18O很难判别不同的产地,采用与拉曼光谱相结合,线性判别分析7个产地初榨橄榄油样品的准确判别率为82.0%,对于其中5个产地的判别率为100%。FRANCESCA等[12]连续追踪了3 a意大利9个产地初榨橄榄油的δ13C和δ18O值,由此建立的地理模型能够清晰地判别意大利北方、中南部的第勒尼安、中央亚得里亚海、西西里岛和撒丁岛初榨橄榄油。

    MAGGI等[13]研究了来自希腊、伊朗、意大利、西班牙藏红花Crocus sativus香料中的16种特征参数(着色程度、藏红花苦甙、藏红花醛等)以及碳氢氮同位素比值,发现若只通过16种特征参数对4个产地的判别率为60.7%,而结合δ13C,δD和δ15N值,采用后交叉验证得到100%的判别率。

    西洋参Panax quinquefolius是一种地域性的药材,制成的西洋参片同样具有地域特征。TIAN等[14]首先测定了中国山东、北京、吉林,加拿大,美国的西洋参δ13C,δD,δ18O和δ15N,分别为-28.52‰~22.19‰,-43.41‰~90.6‰,18.3‰~30.5‰以及-2.46‰~3.97‰。由于δD,δ18O和δ15N与地域的相关性较大,因此利用δD,δ18O和δ15N建立模型,对4个产地的判别率为88%。此外,西洋参制成药片前后δD,δ18O和δ15N没有变化,表明上述模型同样适用于判别西洋参药片的产地。利用该模型对药店购买的10盒西洋参药片进行产地判别,成功地区分了来自美国的7盒产品和来自中国北京的3盒产品。

    李国琛[15]采集了辽宁、吉林、黑龙江、陕西、湖北、湖南和广西7个产地的五味子Schisandra chinensis样品,发现δ13C和δ15N是追溯五味子产地的良好指标,同时进一步发现五味子中的δ15N与相应地区土壤样品中的δ15N和氮含量呈正相关性。

    在追溯产品的体系时,首先要保证收集样品的产地准确无误。通过测定样品的δ13C,δD,δ18O和δ15N,或者其中的几种同位素比值,采用线性判别方法对数据进行判别分析。如果采用单个同位素指标判别,则需达显著差异(P<0.05)时才能判别。有时,还需结合其他的分析检测,将产品的同位素比值测定结果与其他有效成分(如维生素C,维生素E和总糖)的指标结合,同时用线性判别方法,以提高产地的判别率。

    目前,市场销售产品的掺假有2种:一种是C4植物某些成分对C3植物产品的掺杂,如果汁中加入玉米糖浆、C4植物油对C3植物油的掺杂;另一种是外源的水分、乙醇等的掺杂,如苹果醋中加入人工合成的乙酸、天然来源的香精香料中添加工业用料、植物与动物源产品的掺杂等。这些掺杂行为会损害消费者的利益,甚至影响消费者健康,也使企业在不公平的竞争中受到侵害。为了稳定市场,避免消费者购买到假冒产品,打假鉴别势在必行[5]。稳定同位素技术适用于对林产品的鉴别掺假。目前大多集中在林产饮料、木本草本油料以及某些香精香料方面。

    在林产饮料方面主要是一些水果汁的掺假鉴别。MAGDAS等[16]研究发现:往纯正果汁中加入不同比例的自来水,果汁中的δ18O和δD随着自来水比例的增加而减小,自来水体积分数从9%增加到41%,δ18O和δD分别从-5.5‰和-51.4‰减小到-7.5‰和-59.7‰。δ18O所占的比例与自来水添加的百分比很接近。在往苹果汁(C3)中添加蔗糖(C4)后,发现δ13C的变化与蔗糖的含量存在着线性变化。以此对8种市售水果汁检测,结果发现:其中4种的δ18O和δD异常高,分别大于-6.5‰和-50.0‰,认为这4种添加了自来水;而这4种中的3种,其δ13C也异常的高,大于-14.6‰,认为添加了蔗糖或者玉米糖浆。

    GUYON等[17]采用高效液相质谱联用同位素比例质谱(HPLC-IRMS),分离并检测了25个真实柑橘Citrus reticulata类果汁的有机酸、葡萄糖、果糖的δ13C。将葡萄糖的δ13C值分别与有机酸、果糖的δ13C值建立散点图,发现样品呈现一定的分布区间。对30个市售的果汁样品(6个浓缩果汁、24个“纯果汁”)检测发现某些市售果汁中的有机酸葡、萄糖、果糖δ13C远大于真实果汁的δ13C,认为添加了外源性C4类的有机酸、外源性糖;利用散点图模型验证发现:有10个市售“纯果汁”其有机酸的δ13C值超出了模型中的置信区间,说明“纯果汁”并不纯。

    在国内,牛丽影等[18]利用稳定同位素技术对非浓缩果汁和浓缩果汁进行鉴别,发现非浓缩果汁中的δ18O和δD要高于浓缩果汁。李鑫等[19]采用液相色谱联用同位素比例质谱(LC-IRMS)研究发现橙汁中的多种糖组分(葡萄糖、果糖等)的δ13C能用于橙汁掺假鉴别。徐生坚等[20]发现:外源性糖浆的δ18O要比果汁中的δ18O低,且小于25.0‰,根据果汁的δ18O也能鉴别果汁掺假。除了普通的橙汁饮料掺假,水果醋类饮料也有掺假现象,此类饮料的掺假主要是添加了玉米来源的冰乙酸。钟其顶等[21]研究发现:苹果醋中乙酸的δ13C与玉米来源冰乙酸的掺入量具有线性正相关关系。利用该研究检测了20个市售苹果醋饮料的δ13C,发现其中6个δ13C明显高于正常范围,认为有玉米来源的冰乙酸添加。此外研究还扩展到石榴Punica granatum[22]、苹果Malus domestica[23]等。

    角鲨烯和角鲨烷是常用的保健品,能从橄榄油和深海鲨鱼中提炼而出。欧盟禁止从鲨鱼中提炼角鲨烯、角鲨烷,但是从鲨鱼中提炼产量高,成本低,导致很多不法厂家依然掺杂从鱼类中提炼的角鲨烯、角鲨烷。FEDERICA等[24]发现从橄榄油提炼出的角鲨烯、角鲨烷的δ13C平均值为-28.4‰±0.5‰,比从鲨鱼中提炼出的-20.5‰±0.7‰要低。角鲨烯、角鲨烷的δ13C与鲨鱼中提炼的角鲨烯、角鲨烷的掺入量呈线性正相关关系,且一旦掺入量体积分数高于10%就能鉴别。鉴于此,对4个标明橄榄油提炼市售样品检测,发现有1个样品添加了体积分数为70%的鲨鱼提炼出的角鲨烯或者角鲨烷,2个样品添加了体积分数为20%的鲨鱼提炼出的角鲨烯或者角鲨烷。郭莲仙等[25]研究发现:纯橄榄油的全油δ13C要小于掺假橄榄油,同时表明,植物油的脂肪酸组成联合植物全油、主要脂肪酸的δ13C值能综合判别植物油掺假。

    FEDERICA等[26]结合气相联用质谱(GC-MS)和气相联用火焰离子化检测(GC-FID)发现玫瑰Rosa rugosa精油的δ13C平均值为-27.5‰,典型的C3植物,而一般的掺假精油来源于C4植物,且5%~8%的掺入量难以通过玫瑰精油的中的δ13C平均值检测。FEDERICA发现玫瑰精油的成分乙酸香叶酯、香叶醇的δ13C值没有随C4精油的掺入量发生改变,可以用于玫瑰精油掺假鉴别。BONACCORSI[27]检测了莱姆Citrus aurantifolia精油中α-苹烯、苧烯、β-苹烯等多个组分的δ13C值,通过多组分的折线图比较了市售莱姆精油和真实莱姆精油各组分δ13C值的差异,发现市售精油中有5瓶掺假。

    SCHMIDT等[28]采用稳定同位素技术检测香草醛的掺假,发现天然香草醛的δ13C值为-16.8‰~ -21.5‰,而人工合成的香草醛的δ13C值为-24.9‰~36.2‰,因此可以用碳同位素比值检测天然香草醛的掺假。GREULE等[29]测定香草醛分子以及香草醛甲氧基上的δ13C和δD,并将2组δ13C和δD用散点图分析,建立了判别香草醛掺假的区间。

    利用稳定同位素技术鉴别时,往往选取产品中的某一种或者几种组分测定研究。此时,需要其他仪器的辅助,比如HPLC-IRMS和GC-IRMS等,将待测组分分离后检测。掺假鉴别一般研究的是δ13C同位素的比值,这主要是由于市面上的掺假大部分为C4成分对C3成分的掺假,此外也有与氢、氧、氮等同位素相结合分析。研究过程必须要有真实的样品,对其所测的数据与其他待检样品的数据比较,才能得出最终的结果。

    有机产品是指不使用人工合成物质如化学农药、化肥、植物生长调节剂、饲料添加剂等通过有机生产体系生产出来的产品,它与绿色食品和无公害食品共同组成中国的安全食品。中国政府自2002年起在全国范围内全面推进“无公害食品行动计划”,旨在实现中国食用农林产品的无公害生产,保障消费安全。对有机产品,除了需要对产地进行认证外,还要求在产品的加工、包装、运输、储存、销售过程中不受到污染,同时需要有完善的质量控制、跟踪审查体系,以及可靠的产品认证方法。稳定同位素技术以δ15N为判定指标,进行植物性有机产品与普通产品的区别。因为植物性有机产品不允许使用氮肥,只能使用有机肥料,研究发现氮肥的δ15N值接近于0,而有机肥料的δ15N值较高,施用有机肥料的植物通过同位素分馏使得有机产品的δ15N高于普通产品[30-31]

    RAPISARDA等[32]分别检测了2种橙子Citrusδ15N,发现有机橙子中果肉蛋白质和氨基酸的δ15N值都要高于普通橙子,利用这2个参数对有机橙子的鉴别率能达90.63%。CAMIN等[33]检测了橙子、草莓Fragaria × ananassa,柑橘的δ13C,δ2H,δ18O,δ15N和δ34S以及其他的物理化学参数(pH、葡萄糖、果糖等),发现根据δ15N值、抗坏血酸和固体可溶物能够有效鉴别有机产品,但是δ15N容易受到水果种类、年份、种植地区的影响。冯海强等[34]发现与施尿素的茶树Camellia sinensis相比,施有机肥的茶树其茶叶的δ15N明显要高,因为有机肥为粪便,其本身的δ15N就高,表明根据δ15N判别有机茶叶具有可行性。

    稳定同位素技术的优点有:①灵敏度高。用于检测的样品只需几毫克甚至零点几毫克,极大方便了低含量组分的检测。②实验过程简单快速。使用高自动化的同位素质谱仪,许多样品可以直接检测,避免了繁琐的提取和纯化工作。③适用范围广。在掺假鉴别过程中,普通方法难以检测结构相似的掺假物,而稳定同位素技术利用同位素的比值及分布能鉴别这一类物质;④安全环保。稳定同位素没有放射性,且实验过程中不会造成二次污染。这些优点使得稳定同位素技术的使用越来越广。

    然而该技术还存在一些不足之处。首先,稳定同位素技术所需设备较为昂贵,普通实验室难以配备,使得样品的分析成本高。其次,该技术在鉴别、溯源时,如果不同的地区具有相似的环境,则同位素比值分布差异性有可能不显著,这将对产品的溯源造成一定的困难。因此,在使用稳定同位素技术时还需考虑多方面的因素。

    稳定同位素技术在追溯林产品产地来源、鉴别掺假、有机产品认证等方面有着重要的作用。但是,目前,稳定同位素技术对林产品产地溯源及鉴别主要源于植物自身代谢导致的同位素分馏效应,由于中国幅员辽阔,气候、纬度等因素也对稳定同位素分馏有一定影响,因此植物生长机理与产地环境之间的关系需要深入研究,并将研究结果深入推广,使之能够用于更多林产品的溯源和鉴别问题。单一元素指标难以达到检测目的,可研究采用多元素,多种化合物检测,并利用LDA-PCA对测定结果进行分析,或联用其他的检测手段HPLC-IRMS和GC-IRMS等,进行有效成分的深入研究,及分子内的稳定同位素分布研究,从而建立更为可靠的林产品检测方法和溯源识别体系。

  • 图  1  杂交亲本和部分杂交后代花色图

    Figure  1  Flower colors diagram of parents and some hybrids

    表  1  6个铁线莲品种的主要信息

    Table  1.   Main information of of 6 Clematis cultivars

    品种名代码来源花期品种特征倍性
    ‘中国红’‘Westerplatte’ ZGH 波兰  4月 早花大花型 二倍体
    ‘浪子’‘The Vagabond’ LZ 英国  5月 晚花大花型 二倍体
    ‘马来西亚石榴石’‘Malaya Garnet’ SLS 日本  4月 早花大花型 二倍体
    ‘朱丽娅夫人’‘Mme Julia Correvon’ ZLY 法国  4—5月 意大利型  二倍体
    ‘羞嗒嗒’‘Innocent Blush’ XDD 波兰  4月 早花大花型 二倍体
    ‘鲁佩尔博士’‘Doctor Ruppel’ BS 阿根廷 4月 早花大花型 二倍体
    下载: 导出CSV

    表  2  花期遗传分析

    Table  2.   Heredity of flower time

    杂交组合(♀×♂)母本花期父本
    花期
    F1代株数/株F1代花期分布比例/%
    4月上旬4月中旬4月下旬5月上旬5月中旬5月下旬
    ZGH×LZ 4月下 5月上 28 39.3 25.0 28.6 7.1 0.0 0.0
    SLS×LZ 4月中 5月上 35 0.0 17.1 54.3 28.6 0.0 0.0
    BS×ZGH 4月中 4月下 51 0.0 2.0 45.1 13.7 17.6 21.6
    ZLY×XDD 4月下 4月中 38 0.0 7.9 44.7 21.1 26.3 0.0
    下载: 导出CSV

    表  3  花色遗传分析

    Table  3.   Heredity of the flower colors

    杂交组合
    (♀×♂)
    母本花色父本花色F1代花色分布比例/%
    复色(紫罗兰
    色和红紫色)
    红紫色紫罗
    兰色
    复色(紫罗兰
    色和紫色)
    复色(紫罗兰紫
    色和红紫色)
    复色(紫色和
    红紫色)
    紫罗兰
    蓝色
    白色
    ZGH×LZ 红紫色 紫罗兰色 70.4 0.0 29.6 0.0 0.0 0.0 0.0 0.0
    SLS×LZ 复色(紫罗兰色和紫色) 紫罗兰色 0.0 0.0 60.0 40.0 0.0 0.0 0.0 0.0
    BS×ZGH 复色(紫罗兰紫色和红紫色) 红紫色  0.0 36.5 0.0 0.0 0.0 63.5 0.0 0.0
    ZLY×XDD 红紫色 白色   0.0 42.1 31.6 0.0 0.0 0.0 26.3 0.0
    下载: 导出CSV

    表  4  花药颜色遗传分析

    Table  4.   Heredity of anther color

    杂交组合
    (♀×♂)
    母本花药颜色父本花药颜色F1代花药颜色分布比例/%
    红色黄色粉红色紫红色
    ZGH×LZ 红色  黄色 0.0 100.0 0.0 0.0
    SLS×LZ 粉红色 黄色 0.0 100.0 0.0 0.0
    BS×ZGH 紫红色 红色 36.5 0.0 0.0 63.5
    ZLY×XDD 黄色  黄色 0.0 100.0 0.0 0.0
    下载: 导出CSV

    表  5  花部形态性状遗传分析

    Table  5.   Heredity of floral morphological characters

    性状杂交组合
    (♀×♂)
    亲本数值/cmF1代群体与亲本比较/cmF1代分布比例/%
    母本父本中亲值均值/中亲值均值±标准差变幅变异系数/%小于低亲双亲之间大于高亲
    花梗长度  ZGH×LZ 8.73 9.48 9.10 0.79 7.15±1.14 5.35~8.99 15.90 92.31 7.69 0.00
    SLS×LZ 5.53 9.48 7.50 1.02 7.66±0.85 6.12~8.89 11.03 0.00 100.00 0.00
    BS×ZGH 7.49 8.73 8.11 0.82 6.66±0.83 5.03~7.94 12.44 76.47 23.53 0.00
    ZLY×XDD 14.94 8.99 11.97 0.76 9.05±2.24 6.21~18.66 24.73 48.65 48.65 2.70
    总平均 9.17 9.17 9.17 0.85 16.03 54.36 44.97 0.68
    花直径   ZGH×LZ 12.62 12.84 12.73 1.05 13.35±1.31 11.54~16.48 9.82 38.46 3.85 57.69
    SLS×LZ 13.27 12.84 13.06 0.85 11.14±1.12 9.11~12.93 10.03 0.00 94.12 5.88
    BS×ZGH 11.81 12.62 12.22 0.87 10.58±0.78 9.07~11.94 7.33 94.12 5.88 0.00
    ZLY×XDD 10.05 14.12 12.09 0.80 9.66±0.81 8.30~10.89 8.41 0.00 64.86 35.14
    总平均 11.94 13.11 12.53 0.89 8.90 33.15 42.18 24.68
    萼片长度  ZGH×LZ 5.65 6.23 5.94 1.23 7.28±0.49 6.11~7.97 6.76 0.00 3.85 96.15
    SLS×LZ 6.65 6.23 6.44 1.02 6.57±0.23 6.05~6.99 3.48 5.88 55.88 38.24
    BS×ZGH 5.92 5.65 5.79 0.89 5.14±0.58 4.08~5.98 11.28 76.47 13.73 9.80
    ZLY×XDD 4.96 7.05 6.01 0.77 4.62±0.79 3.19~5.96 17.09 59.46 40.54 0.00
    总平均 5.80 6.29 6.05 0.98 9.65 35.45 28.50 36.05
    萼片宽度  ZGH×LZ 2.56 3.06 2.81 1.37 3.85±0.52 3.04~4.69 13.49 0.00 7.69 92.31
    SLS×LZ 2.87 3.06 2.97 1.00 2.96±0.58 2.01~3.95 19.56 50.00 0.00 50.00
    BS×ZGH 2.47 2.56 2.52 1.16 2.91±0.49 2.02~3.98 16.76 21.57 5.88 72.55
    ZLY×XDD 2.90 4.92 3.91 0.91 3.54±0.86 2.02~4.92 24.25 29.73 70.27 0.00
    总平均 2.70 3.40 3.05 1.11 18.52 25.33 20.96 53.72
    萼片长宽比 ZGH×LZ 2.21 2.03 2.12 0.91 1.92±0.28 1.38~2.50 14.72 69.23 19.23 11.54
    SLS×LZ 2.32 2.03 2.18 1.06 2.31±0.49 1.57~3.20 21.02 41.18 17.65 41.18
    BS×ZGH 2.40 2.21 2.31 0.78 1.80±0.33 1.17~2.71 18.31 88.24 3.92 7.84
    ZLY×XDD 1.71 1.43 1.57 0.88 1.38±0.43 0.73~2.61 31.34 70.27 13.51 16.22
    总平均 2.16 1.93 2.05 0.91 21.35 67.23 13.58 19.20
    下载: 导出CSV

    表  6  叶部形态性状遗传分析

    Table  6.   Heredity of leaf morphological characters

    性状杂交组合
    (♀×♂)
    亲本数值/cmF1代群体与亲本比较/cmF1代分布比例/%
    母本父本中亲值均值/中亲值均值±标准差变幅变异系数/%小于低亲双亲之间大于高亲
    节间距   ZGH×LZ 9.62 11.41 10.52 0.99 10.40±1.59 7.53~12.69 15.34 37.04 25.93 37.04
    SLS×LZ 8.68 11.41 10.05 1.05 10.60±1.07 9.08~12.71 10.12 0.00 71.43 28.57
    BS×ZGH 12.82 9.62 11.22 0.97 10.89±1.10 9.08~12.95 10.07 11.76 84.31 3.92
    ZLY×XDD 15.38 12.34 13.86 1.05 14.61±1.63 11.56~18.33 11.18 5.26 60.53 34.21
    总平均 11.63 11.20 11.41 1.02 11.68 13.52 60.55 25.94
    叶片长度  ZGH×LZ 18.07 13.07 15.57 1.28 19.91±2.10 15.32~23.15 10.53 0.00 25.93 74.07
    SLS×LZ 15.14 13.07 14.11 1.42 19.98±1.77 15.13~21.53 8.85 0.00 0.00 100.00
    BS×ZGH 16.27 18.07 17.17 0.93 16.02±1.17 14.62~17.85 7.30 54.90 45.10 0.00
    ZLY×XDD 18.68 17.12 17.90 0.91 16.22±2.31 11.40~20.35 14.24 60.53 21.05 18.42
    总平均 17.04 15.33 16.19 1.14 10.23 28.86 23.02 48.12
    叶片宽度  ZGH×LZ 17.39 11.92 14.66 1.37 20.02±2.34 15.03~23.42 11.71 0.00 14.81 85.19
    SLS×LZ 14.28 11.92 13.10 1.52 19.86±1.98 15.77~23.21 9.96 0.00 0.00 100.00
    BS×ZGH 16.33 17.39 16.86 0.95 16.03±1.32 13.46~18.53 8.26 56.86 43.14 0.00
    ZLY×XDD 17.55 18.13 17.84 0.91 16.19±2.38 12.01~21.41 14.71 68.42 0.00 31.58
    总计 16.39 14.84 15.62 1.19 11.16 31.32 14.49 54.19
    叶片长宽比 ZGH×LZ 1.93 1.10 1.52 0.66 1.00±0.05 0.91~1.09 4.97 100.00 0.00 0.00
    SLS×LZ 1.06 1.10 1.08 0.93 1.01±0.06 0.93~1.08 5.50 77.14 22.86 0.00
    BS×ZGH 1.01 1.93 1.47 0.68 1.00±0.04 0.88~1.07 4.45 52.94 47.06 0.00
    ZLY×XDD 1.07 0.95 1.01 0.99 1.00±0.07 0.90~1.12 6.61 21.05 60.53 18.42
    总平均 1.27 1.27 1.27 0.82 5.38 62.78 32.61 4.61
    下载: 导出CSV

    表  7  F1代9个性状的相关性分析

    Table  7.   Correlation analysis of 9 characters of F1 generation

    性状花梗长度花直径萼片长度萼片宽度萼片长宽比节间距叶片长度叶片宽度叶片长宽比
    花梗长度 1
    花直径 −0.318 1
    萼片长度 −0.122 0.608** 1
    萼片宽度 0.132 0.157 0.175* 1
    萼片长宽比 −0.159 0.250** 0.561** −0.675** 1
    节间距 0.510** −0.425 −0.493 0.239** −0.495 1
    叶片长度 −0.005 0.435** 0.563** 0.110 0.337** −0.249 1
    叶片宽度 0.025 0.409** 0.553** 0.107 0.347** −0.233 0.940** 1
    叶片长宽比 −0.084 0.016 −0.042 −0.006 −0.073 −0.015 0.040 −0.301 1
      说明:*表示显著相关(P<0.05);**表示极显著相关(P<0.01)
    下载: 导出CSV
  • [1] 朱玉雪, 张敏涛, 刘莹, 等. 4种早花大花组铁线莲的耐热性综合评价[J]. 上海交通大学学报(农业科学版), 2017, 35(1): 58 − 65, 71.

    ZHU Yuxue, ZHANG Mintao, LIU Ying, et al. Comprehensive evaluation of heat-tolerance of 4 cultivars of early large-flowered group Clematis [J]. Journal of Shanghai Jiaotong University (Agricultural Science), 2017, 35(1): 58 − 65, 71.
    [2] 亚里坤·努尔, 买买提江·吐尔逊, 吐尔逊古丽·托乎提. 铁线莲属植物资源及其研究与应用价值分析[J]. 中国林副特产, 2012(1): 89 − 91.

    Yalikun Nuer, Maimaitijang Tuerxun, Tuerxungul Tuhti. Clematis L. resources research and applied analysis [J]. Forest By-Product and Speciality in China, 2012(1): 89 − 91.
    [3] 王文采, 李良千. 铁线莲属一新分类系统[J]. 植物分类学报, 2005, 43(5): 431 − 488.

    WANG Wencai, LI Liangqian. A new system of classification on the genus Clematis (Ranunculaceae) [J]. Acta Phytotaxonomica Sinica, 2005, 43(5): 431 − 488.
    [4] 中国科学院中国植物志编辑委员会. 中国植物志(第28卷: 毛茛科)[M]. 北京: 科学出版社, 1980.

    Editorial Board of Flora of China Chinese Academy of Sciences. Flora of China (Vol. 28: Ranunculaceae) [M]. Beijing: Science Press, 1980.
    [5] 刘志高, 邵伟丽, 申亚梅, 等. 铁线莲品种耐热性分析及评价指标筛选[J]. 核农学报, 2020, 34(1): 203 − 213.

    LIU Zhigao, SHAO Weili, SHEN Yamei, et al. Evaluation of heat tolerance and screening the index for the assessment of heat tolerance in cultivars of Clematis [J]. Journal of Nuclear Agricultural Science, 2020, 34(1): 203 − 213.
    [6] 高露璐, 李林芳, 马育珠, 等. 铁线莲品种群的花期观赏性状分析[J]. 园艺学报, 2017, 44(5): 921 − 932.

    GAO Lulu, LI Linfang, MA Yuzhu, et al. Analysis of florescence characteristics on Clematis cultivars group [J]. Acta Horticulturae Sinica, 2017, 44(5): 921 − 932.
    [7] SHEN Ping, GAO Suping, CHEN Xi, et al. Genetic analysis of main flower characteristics in the F generation derived from intraspecific hybridization between Plumbago auriculata and Plumbago auriculata f. alba [J/OL]. Scientia Horticulturae, 2020, 274: 109652[2022-03-01]. doi: 10.1016/j.scienta.2020.109652.
    [8] 乔谦, 王雪, 王江勇, 等. 铁线莲杂交与花期观赏[J]. 山东林业科技, 2020, 50(1): 35 − 40.

    QIAO Qian, WANG Xue, WANG Jiangyong, et al. Artificial hybridization and flowering period of Clematis [J]. Shandong Forestry Science and Technology, 2020, 50(1): 35 − 40.
    [9] 孙瑞琦. 铁线莲杂交育种及遗传转化初步研究[D]. 福州: 福建农林大学, 2019.

    SUN Ruiqi. A Preliminary Study on Crossbreeding and Genetic Transformation of Clematis[D]. Fuzhou: Fujian Agriculture and Forestry University, 2019.
    [10] 余伟军. 铁线莲遗传多样性、杂交育种及离体快繁研究[D]. 福州: 福建农林大学, 2017.

    YU Weijun. Studies on Genetic Diversity, Hybridization and in vitro Rapid Propagation of Clematis[D]. Fuzhou: Fujian Agriculture and Forestry University, 2017.
    [11] 中国农业科学院蔬菜花卉研究所, 北京天地秀色园林科技有限公司. 植物新品种特异性、一致性和稳定性的测试指南 铁线莲属: NY/T 2583—2014[S]. 北京: 中华人民共和国农业部种子管理局, 2014.

    Beijing Tiandi Xiusei Garden Technology Co. LTD, The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences. Guidelines for the Conduct of Tests for Distinctness, Uniformity and Stability: Clematics (Clematics L. ): NY/T 2583−2014[S]. Beijing: Seed Administration Bureau of the Ministry of Agriculture of the People’s Republic of China, 2014.
    [12] 周利君, 于超, 常笑, 等. 月季F1代群体表型性状变异分析[J]. 植物研究, 2019, 39(1): 131 − 138.

    ZHOU Lijun, YU Chao, CHANG Xiao, et al. Variation analysis of phenotypic traits in F1 population of Rosa spp. [J]. Plant Research, 2019, 39(1): 131 − 138.
    [13] 李娟娟, 陈洪伟, 王红利, 等. 一串红若干观赏性状在F1的遗传表现[J]. 华北农学报, 2014, 29(6): 113 − 120.

    LI Juanjuan, CHEN Hongwei, WANG Hongli, et al. Genetic performance of several traits in F1 hybrids of different cross combinations in Salvia splendens [J]. Acta Agriculturae Boreali-Sinica, 2014, 29(6): 113 − 120.
    [14] 王东雪, 毕雯珺, 江泽鹏, 等. 油茶F1代苗期叶表型性状遗传多样性研究[J]. 西北林学院学报, 2019, 34(1): 113 − 118.

    WANG Dongxue, BI Wenjun, JIANG Zepeng, et al. Genetic diversity of leaf phenotypic traits in F1 progeny of Camellia oleifera [J]. Journal of Northwest Forestry College, 2019, 34(1): 113 − 118.
    [15] 董虹妤, 刘青华, 周志春, 等. 马尾松子代生长杂种优势与亲本配合力、遗传距离的相关性[J]. 林业科学, 2017, 53(2): 65 − 75.

    DONG Hongyu, LIU Qinghua, ZHOU Zhichun, et al. Correlation between heterosis in the growth of progeny and combining ability and genetic distance of the parents for Pinus massoniana [J]. Scientia Silvae Sinicae, 2017, 53(2): 65 − 75.
    [16] 张琳, 郭丽丽, 郭大龙, 等. 牡丹杂交F1代性状分离规律及混合遗传分析[J]. 南京林业大学学报(自然科学版), 2018, 42(6): 55 − 64.

    ZHANG Lin, GUO Lili, GUO Dalong, et al. Separation analysis and mixed genetic analysis of phenotypic traits in F1 progenies of tree peony [J]. Journal of Nanjing Forestry University (Natural Science Edition), 2018, 42(6): 55 − 64.
    [17] 王秀刚, 胡翠平, 杨涛, 等. 百合品种粉美与多安娜杂交F1代主要性状遗传分析[J]. 作物杂志, 2012(4): 90 − 94.

    WANG Xiugang, HU Cuiping, YANG Tao, et al. Genetic analysis of main characters of F1 generation from hybridization of Dark beauty and Pollyanna [J]. Crops, 2012(4): 90 − 94.
    [18] 郭宁, 杨树华, 葛维亚, 等. 新疆天山山脉地区疏花蔷薇天然居群表型多样性分析[J]. 园艺学报, 2011, 38(3): 495 − 502.

    GUO Ning, YANG Shuhua, GE Weiya, et al. Phenotypic diversity of natural populations of Rosa laxa Retz. in Tianshan Moutains of Xinjiang [J]. Acta Horticulturae Sinica, 2011, 38(3): 495 − 502.
    [19] SABA H, MUHAMMAD A J, UMER H, et al. Phenotypic characterization and RT-qPCR analysis of flower development in F-1 transgenics of Chrysanthemum×grandiflorum[J/OL]. Plants, 2021, 10(8): 1681[2022-03-04]. doi: 10.3390/plants10081681.
    [20] 杨云燕, 温超, 王珂永, 等. 切花菊杂交F1代若干性状的遗传分析[J]. 中国农业大学学报, 2015, 20(5): 179 − 187.

    YANG Yunyan, WEN Chao, WANG Keyong, et al. Heredity analysis of several characters in F1 hybrid generation of cut-flower chrysanthemums [J]. Journal of China Agricultural University, 2015, 20(5): 179 − 187.
    [21] 马绍宇, 李世峰, 钱兴, 等. 高山杜鹃品种‘罗伯茨’×大白杜鹃杂交F1代主要观赏性状的遗传分析[C] //张启翔. 中国观赏园艺研究进展. 北京: 中国林业出版社, 2017: 208 − 211.

    MA Shaoyu, LI Shifeng, QIAN Xing, et al. Heredity analysis of main ornamental characters in F1 hybrid generation of Rhododendron ‘Lord Roberts’× R. decorum[C]// ZHANG Qixiang. Advance in Ornamental Horticulture of China. Beijing: China Forestry Publishing House, 2017: 208 − 211.
    [22] 周熠玮, 许国宇, 王琴, 等. ‘白姜花’ב金姜花’杂交F1代花色遗传分析及其相关SSR分子标记开发[J]. 园艺学报, 2021, 48(10): 1921 − 1933.

    ZHOU Yiwei, XU Guoyu, WANG Qin, et al. Genetic analysis and development of associated SSR markers of the flower color in F1 population of Hedychium coronarium ‘COR01’בH. Jin’ [J]. Acta Horticulturae Sinica, 2021, 48(10): 1921 − 1933.
    [23] INAMURA T, NAKAZAWA M, ISHIBE M, et al. Production and characterization of intersectional hybrids between Tricyrtis sect. Brachycyrtis and sect. Hirtae via ovule culture [J]. Plant Biotechnology, 2019, 36(3): 175 − 180.
    [24] AROS D, SUAZO M, RIVAS C, et al. Molecular and morphological characterization of new interspecific hybrids of alstroemeria originated from A. caryophylleae scented lines[J/OL]. Euphytica, 2019, 215(5): 93[2022-03-05]. doi: 10.1007/s10681-019-2415-4.
  • [1] 李柯豫, 陈荣, 刘琏, 蔡晓郡, 姜郑楚, 谢前丹, 俞晨良, 喻卫武.  雌性榧树种实性状和SSR标记的遗传变异 . 浙江农林大学学报, 2025, 42(1): 94-102. doi: 10.11833/j.issn.2095-0756.20240254
    [2] 晏姝, 韦如萍, 王润辉, 黄荣, 郑会全.  南洋楹半同胞家系苗期变异及选择 . 浙江农林大学学报, 2024, 41(2): 306-313. doi: 10.11833/j.issn.2095-0756.20230371
    [3] 沈汉, 郑成忠, 邱勇斌, 汪清华, 华克达, 缪强, 范艳如, 姜景民, 韦一, 刘军.  10年生香椿生长与形质性状的种源变异及选择 . 浙江农林大学学报, 2024, 41(3): 597-605. doi: 10.11833/j.issn.2095-0756.20230481
    [4] 王家燚, 陈焕伟, 张蕊, 肖纪军, 高凯, 骆珍莎, 沈斌, 杜克久, 周志春.  木荷全同胞家系生长与分枝性状的遗传变异及效应分析 . 浙江农林大学学报, 2023, 40(4): 738-746. doi: 10.11833/j.issn.2095-0756.20220634
    [5] 韦如萍, 晏姝, 郑会全, 王润辉, 胡德活.  乐昌含笑种源不同林龄生长变异及早期选择 . 浙江农林大学学报, 2023, 40(2): 365-373. doi: 10.11833/j.issn.2095-0756.20220357
    [6] 任俊杰, 庞新博, 刘昭阳, 李静雅, 张婉莹, 尹书乐, 王利兵, 李迎超.  不同种源蒙古栎种子表型性状的多样性 . 浙江农林大学学报, 2022, 39(6): 1221-1228. doi: 10.11833/j.issn.2095-0756.20220133
    [7] 严艳兵, 潘惠新.  美洲黑杨杂交子代苗期性状遗传变异及选择 . 浙江农林大学学报, 2021, 38(6): 1144-1152. doi: 10.11833/j.issn.2095-0756.20200803
    [8] 尹焕焕, 刘青华, 周志春, 万雪琴, 余启新, 丰忠平.  马尾松无性系木材基本密度和纤维形态的变异及选择 . 浙江农林大学学报, 2020, 37(6): 1186-1192. doi: 10.11833/j.issn.2095-0756.20190720
    [9] 覃敏, 尹光天, 杨锦昌, 李荣生, 邹文涛.  米老排不同种源的表型性状变异分析 . 浙江农林大学学报, 2017, 34(1): 112-119. doi: 10.11833/j.issn.2095-0756.2017.01.016
    [10] 张晓飞, 李火根, 尤录祥, 曹健.  鹅掌楸不同交配组合子代苗期生长变异及遗传稳定性分析 . 浙江农林大学学报, 2011, 28(1): 103-108. doi: 10.11833/j.issn.2095-0756.2011.01.016
    [11] 邵果园, 陆方方.  远缘植物试管嫁接及ISSR分析 . 浙江农林大学学报, 2010, 27(4): 630-634. doi: 10.11833/j.issn.2095-0756.2010.04.026
    [12] 黄信金.  柳杉种源变异与联合选择 . 浙江农林大学学报, 2010, 27(6): 884-889. doi: 10.11833/j.issn.2095-0756.2010.06.013
    [13] 黄德龙.  福建柏优树子代测定及初步选择 . 浙江农林大学学报, 2009, 26(3): 449-454.
    [14] 郑勇平, 郑泉, 俞继英, 张瑛, 范文锋.  春石斛杂交育种及亲缘关系的AFLP分析 . 浙江农林大学学报, 2009, 26(1): 137-141.
    [15] 胡斌, 樊军锋, 高建设, 周永学.  美洲黑杨与青杨、川杨和卜氏杨人工杂交及杂种苗生长和抗病性状测定 . 浙江农林大学学报, 2009, 26(6): 778-783.
    [16] 张飞, 房伟民, 陈发棣, 赵宏波, 贾文珂.  切花菊花器性状的遗传变异与相关性研究 . 浙江农林大学学报, 2008, 25(3): 293-297.
    [17] 刘永红, 樊军锋, 杨培华, 韩创举.  油松单亲子代苗期生长性状遗传分析 . 浙江农林大学学报, 2005, 22(5): 513-517.
    [18] 黎章矩, 钱莲芳, 戴文圣, 汪祖潭, 骆文坚, 许树洪, 喻卫武.  山茱萸优良无性系选育 . 浙江农林大学学报, 2003, 20(4): 331-335.
    [19] 童再康, 郑勇平, 罗士元, 杨惠平, 史红正.  黑杨派南方型新无性系纸浆材材性变异与遗传 . 浙江农林大学学报, 2001, 18(1): 21-25.
    [20] 林同龙.  杉木杂交后代胸径生长和木材体积质量的遗传变异及联合选择 . 浙江农林大学学报, 2000, 17(2): 142-145.
  • 期刊类型引用(7)

    1. 孙学丽. 基于稳定同位素技术的食品检验应用研究进展. 食品安全导刊. 2024(01): 154-157 . 百度学术
    2. 檀慧芳,张洋,陈红兵,唐璐子,周方,周珊珊,王雨婷. 稳定同位素质谱技术及其在食品掺假检验及溯源中的应用研究. 现代食品. 2024(17): 119-122+129 . 百度学术
    3. 廖初琴,缪绅裕. 稳定碳·氮同位素在植物产地溯源中的应用. 安徽农业科学. 2022(15): 19-21 . 百度学术
    4. 卢波,孙园丹,陈建国,林志恩,马明,李锦花,康立,王海波. 不同产地大果紫檀木材中微量元素的定量分析研究. 中国口岸科学技术. 2022(12): 36-40 . 百度学术
    5. 丁长伟,张伟,马雪,赵丹,赵多勇. 植物体中的碳稳定同位素分馏影响因素及在食品真实性鉴别中的研究进展. 食品安全质量检测学报. 2021(13): 5438-5443 . 百度学术
    6. 李昕悦,梁社往,李冬雪,郭婷,赵会玉,郭春平,何忠俊. 三七各部位氢氧同位素特征及其与灌溉水关系. 同位素. 2021(04): 309-316 . 百度学术
    7. 赵超超,罗绪强,袁忠秀,赵文楷,李嘉华,赵升,田蓉,管海洋. 利用氮稳定同位素指纹技术验证市售有机食品真伪. 贵阳学院学报(自然科学版). 2019(04): 97-102 . 百度学术

    其他类型引用(4)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20220214

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2023/1/72

图(1) / 表(7)
计量
  • 文章访问数:  702
  • HTML全文浏览量:  89
  • PDF下载量:  91
  • 被引次数: 11
出版历程
  • 收稿日期:  2022-03-14
  • 修回日期:  2022-09-10
  • 录用日期:  2022-09-23
  • 网络出版日期:  2023-01-18
  • 刊出日期:  2023-01-17

6个铁线莲品种杂交F1代表型性状遗传分析

doi: 10.11833/j.issn.2095-0756.20220214
    基金项目:  浙江省农业新品种重大专项花卉育种专项(2021C02071-6-4);浙江农林大学创新训练项目(2021KX0057);浙江省园林植物种质创新与利用重点实验室开放基金项目
    作者简介:

    陈晓蕾(ORCID: 0000-0003-2935-1608),从事铁线莲品种间杂交等研究。E-mail: 18332530987@163.com

    通信作者: 刘志高(ORCID: 0000-0002-2720-9619),副教授,博士,从事园林植物栽培与应用研究。E-mail: vzhigao@ sina.com
  • 中图分类号: S722.3

摘要:   目的  分析对比铁线莲Clematis杂交亲本与杂交一代(F1)之间表型性状的差异,探究铁线莲杂交的遗传变异规律。  方法  以6个铁线莲品种为亲本,开展了4个杂交组合试验,对F1代的表型性状进行统计分析。  结果  ①F1代的花期与双亲相比出现分离,但多介于亲本之间。②F1代花色发生广泛分离,紫罗兰色的遗传力高于红紫色以及复色紫罗兰色和紫色,白色相对于红紫色为相对隐性性状;F1代的花药颜色未发生分离,黄色花药对于粉红色和红色花药为相对显性性状。③F1代的萼片宽度、叶片长度、叶片宽度表现出超亲性状,总平均值分别为中亲值的111%、114%和119%;F1代的花梗长度、花直径、萼片长宽比及叶片长宽比均小于双亲,后代总平均值分别为中亲值的85%、89%、91%和82%;F1代的萼片长度和节间距变化不明显,总平均值分别为中亲值的98%和102%。④花部5个数量性状和叶片4个数量性状之间存在显著相关性(P<0.05),其中叶片长度与叶片宽度呈极显著正相关(P<0.01),且相关系数最高为0.940,趋于连锁遗传。  结论  F1代的大部分表型性状(除花药颜色外)都发生了变异,仅有萼片长度和节间距表现出偏母性遗传的特点,萼片宽度表现为偏父性遗传,花期、花色、花药颜色、花梗长度、花直径、萼片长宽比、叶片长度、叶片宽度、叶片长宽比等9个性状未表现出明显的遗传倾向。图1表7参24

English Abstract

王军围, 唐晓岚. 基于聚落适宜性分析的西山国家森林公园古村落空间布局[J]. 浙江农林大学学报, 2015, 32(6): 919-926. DOI: 10.11833/j.issn.2095-0756.2015.06.015
引用本文: 陈晓蕾, 邵伟丽, 厉思源, 等. 6个铁线莲品种杂交F1代表型性状遗传分析[J]. 浙江农林大学学报, 2023, 40(1): 72-80. DOI: 10.11833/j.issn.2095-0756.20220214
WANG Junwei, TANG Xiaolan. Spatial patterns of ancient villages in Xishan National Forest Park based on a settlement suitability analysis[J]. Journal of Zhejiang A&F University, 2015, 32(6): 919-926. DOI: 10.11833/j.issn.2095-0756.2015.06.015
Citation: CHEN Xiaolei, SHAO Weili, LI Siyuan, et al. Genetic analysis of phenotypic traits in F1 hybrids of 6 Clematis cultivars[J]. Journal of Zhejiang A&F University, 2023, 40(1): 72-80. DOI: 10.11833/j.issn.2095-0756.20220214
  • 铁线莲属Clematis植物为多年生木质藤本,少数为草本、灌木或亚灌木,隶属于毛茛科Ranunculaceae,全世界现有铁线莲属植物371种[1],主要分布在热带及亚热带,寒带地区亦有分布。中国约有159种铁线莲属植物[2],全国各地均有分布,集中于华中和西南地区[34]。铁线莲属植物兼具了药用及园艺观赏价值,被誉为“攀援植物皇后”。国外铁线莲属植物的栽培育种工作已有很长的历史,栽培品种多源于欧美等国家,数量多达3 000余种,适宜在冷凉干燥的环境下栽培,目前已有超过400个品种在世界各地广泛种植[56],大量应用在西方的私家庭院中,每年的英国切尔西花展中,铁线莲都是最耀眼的“明星”。中国该属植物种占世界1/3,而且世界上园艺变种的主要亲本大都源于中国,但中国拥有自主知识产权的铁线莲品种却寥寥无几。因此,对铁线莲属植物中优良观赏种资源的开发利用和育种等工作意义重大。

    杂交育种是人类有目的地创造变异的重要方法,也是目前观赏植物品种改良的主要途径[7]。铁线莲的花色、花期、花直径、花型、叶型等性状,都是新品种选育的主要目标性状。掌握性状的遗传,对正确选配亲本组合、提高育种效率具有重要意义。铁线莲遗传背景复杂,大多数栽培品种并非是纯合子,在复杂的遗传背景下,要获得目标性状则需要在大量的亲本组合中进行尝试。国内铁线莲的杂交育种工作尚处于起步阶段,目前已有关于亲本选配、杂交结实率以及子代观赏性筛选[810]的相关研究,对铁线莲杂交遗传规律的报道较少,而国外的杂交育种工作集中在新品种的研发以及现有品种的改良方面。鉴于此,本研究以观赏性及适应性较好的6个铁线莲品种为亲本,进行杂交试验,对杂交一代(F1)的表型性状进行统计分析,以期为铁线莲新品种选育提供理论支持。

    • 2016年4—5月,将6个铁线莲品种组配成4个不同的杂交组合进行杂交授粉,当年11月采收成熟的种子播种,盆栽于浙江农林大学铁线莲种质资源圃内,采用V(泥炭)∶V(珍珠岩)为1∶1的基质,50%遮光,常规水肥管理(表1)。

      表 1  6个铁线莲品种的主要信息

      Table 1.  Main information of of 6 Clematis cultivars

      品种名代码来源花期品种特征倍性
      ‘中国红’‘Westerplatte’ ZGH 波兰  4月 早花大花型 二倍体
      ‘浪子’‘The Vagabond’ LZ 英国  5月 晚花大花型 二倍体
      ‘马来西亚石榴石’‘Malaya Garnet’ SLS 日本  4月 早花大花型 二倍体
      ‘朱丽娅夫人’‘Mme Julia Correvon’ ZLY 法国  4—5月 意大利型  二倍体
      ‘羞嗒嗒’‘Innocent Blush’ XDD 波兰  4月 早花大花型 二倍体
      ‘鲁佩尔博士’‘Doctor Ruppel’ BS 阿根廷 4月 早花大花型 二倍体
    • 杂交F1代从2019年4月开始开花,确定花部性状稳定后于2021年4—5月,按照NY/T 2583—2014 《植物新品种特异性、一致性和稳定性的测试指南 铁线莲属》[11]中列出的性状标准,对亲本和F1代的12个表型性状进行观测记录。

    • 每个观测对象选取5朵处于盛花期的花朵,分别进行如下性状的测量:①花色。随机选择3片花萼,在室内上午北向自然光源下,使用英国皇家园艺学会比色卡对花萼的上表面进行色值参数比对,以比色卡比色中出现频率最高的颜色来确定花色。②花朵直径。过辐射对称中心测量花朵直径,每朵花测量3次取平均值[12]。③萼片长和宽。分别测量萼片中轴线及与中轴线垂直的花萼片最宽处,得到萼片的长和宽。④花期(盛花期)观测。每天8:00—9:00观测并记录花朵的开放情况,以全株50%的花朵开放作为盛花期的标准。

    • 选取植株上生长健壮、无病虫害的5个枝条,分别测定其中上部着生成熟叶片的各节间的距离,取平均值。

    • 随机选取5个植株中上的健康叶片,测量叶片中轴线和与中轴线垂直的叶片最宽处,得到叶片的长和宽。

    • 利用Excel进行数据统计,计算亲本中亲值(MPS)、F1代各表型性状(i)的平均值(Xi)、标准差(σi)、遗传变异系数(CV),其中CV<15%、15%≤CV≤30%、CV>30%分别定义为遗传变异度较小、中等和较大[13]。采用SPSS 25.0分析数据,利用Pearson相关性分析计算各数量性状间的相关系数。中亲值(MPS)=(P1+P2)/2,其中P1P2为亲本各表型性状的实际测量值。遗传变异系数(CV)=(σi/Xi)×100%。

    • 表2可见:铁线莲品种间杂交F1代的盛花期均在4—5月,集中于4月下旬(43.2%)。不同杂交组合F1代花期分离,出现了花期早于或晚于双亲的个体。其中ZGH×LZ杂交组合中,F1代早花个体在4月上旬和中旬开花,占比分别为39.3%和25.0%;BS×ZGH杂交组合中,F1代晚花个体,花期分别为5月上旬(13.7%)、中旬(17.6%)和下旬(21.6%),总占比为52.9%;ZLY×XDD杂交组合中,F1代出现了5月上旬和中旬开花的晚花株系,占比分别为21.1%和26.3%;SLS×LZ杂交组合中,F1代盛花期介于双亲之间。

      表 2  花期遗传分析

      Table 2.  Heredity of flower time

      杂交组合(♀×♂)母本花期父本
      花期
      F1代株数/株F1代花期分布比例/%
      4月上旬4月中旬4月下旬5月上旬5月中旬5月下旬
      ZGH×LZ 4月下 5月上 28 39.3 25.0 28.6 7.1 0.0 0.0
      SLS×LZ 4月中 5月上 35 0.0 17.1 54.3 28.6 0.0 0.0
      BS×ZGH 4月中 4月下 51 0.0 2.0 45.1 13.7 17.6 21.6
      ZLY×XDD 4月下 4月中 38 0.0 7.9 44.7 21.1 26.3 0.0
    • 铁线莲品种不仅花色繁多,还有含2种或2种以上颜色的复合花色,其遗传十分复杂,亲本及F1代的花色如图1所示。从表3可见:在以紫罗兰色系品种‘浪子’为父本的ZGH×LZ和SLS×LZ杂交组合中,前者F1代中紫罗兰色系植株占群体的29.6%,兼具父母本花色的复色(紫罗兰色和红紫色)植株占比为70.4%,不存在与母本花色(红紫色)一致的植株;后者F1代中紫罗兰色系植株占群体的60.0%,与母本花色(紫罗兰色和紫色)一致的植株占40.0%,表明紫罗兰色的遗传力高于红紫色以及复色紫罗兰色和紫色。BS×ZGH杂交组合中,有36.5%的F1代植株与父本花色(红紫色)一致,另外63.5%表现为紫色和红紫色的组合复色,与母本的紫罗兰紫色和红紫色的复色稍有差异;在ZLY×XDD杂交组合中,F1代中出现了与亲本花色完全不同的紫罗兰色系和紫罗兰蓝色系的植株,却没有出现于父本花色一致的白花后代,初步推测白色为相对隐性性状。

      图  1  杂交亲本和部分杂交后代花色图

      Figure 1.  Flower colors diagram of parents and some hybrids

      表 3  花色遗传分析

      Table 3.  Heredity of the flower colors

      杂交组合
      (♀×♂)
      母本花色父本花色F1代花色分布比例/%
      复色(紫罗兰
      色和红紫色)
      红紫色紫罗
      兰色
      复色(紫罗兰
      色和紫色)
      复色(紫罗兰紫
      色和红紫色)
      复色(紫色和
      红紫色)
      紫罗兰
      蓝色
      白色
      ZGH×LZ 红紫色 紫罗兰色 70.4 0.0 29.6 0.0 0.0 0.0 0.0 0.0
      SLS×LZ 复色(紫罗兰色和紫色) 紫罗兰色 0.0 0.0 60.0 40.0 0.0 0.0 0.0 0.0
      BS×ZGH 复色(紫罗兰紫色和红紫色) 红紫色  0.0 36.5 0.0 0.0 0.0 63.5 0.0 0.0
      ZLY×XDD 红紫色 白色   0.0 42.1 31.6 0.0 0.0 0.0 26.3 0.0
    • 表4可知:所有杂交组合的F1代花药颜色均未发生变异,与双亲中的一方保持一致。当黄色花药的品种作为亲本时,F1代花药均为黄色,初步推测黄色花药对于粉红和红色为相对显性性状。BS×ZGH杂交组合中,F1代紫红色花药的植株占群体的63.5%,红色花药颜色的植株占36.5%,表明紫红色花药的遗传力大于红色花药。

      表 4  花药颜色遗传分析

      Table 4.  Heredity of anther color

      杂交组合
      (♀×♂)
      母本花药颜色父本花药颜色F1代花药颜色分布比例/%
      红色黄色粉红色紫红色
      ZGH×LZ 红色  黄色 0.0 100.0 0.0 0.0
      SLS×LZ 粉红色 黄色 0.0 100.0 0.0 0.0
      BS×ZGH 紫红色 红色 36.5 0.0 0.0 63.5
      ZLY×XDD 黄色  黄色 0.0 100.0 0.0 0.0
    • 表5可以看出:几个杂交组合F1代的花梗长度分离广泛,变异系数皆大于10%,最高可达24.73% (ZLY×XDD),表明花梗长度具有丰富的遗传变异力。在ZGH×LZ和BS×ZGH的2个杂交组合中,F1代的花梗长度呈明显的减小趋势,F1代的平均花梗长度分别为中亲值的79%和82%,小于低亲值分别为92.31%和76.47%;而在ZLY×ZDD杂交组合中,虽然F1代的平均花梗长度为中亲值的76%,表现出低亲性,但小于低亲的个体只占48.65%,低亲优势并不显著,这可能是由于母本(ZLY)的花梗长度较大,起到了中和作用;SLS×LZ的杂交组合中,F1代的花梗长度介于双亲之间,并未表现出杂种优势。

      表 5  花部形态性状遗传分析

      Table 5.  Heredity of floral morphological characters

      性状杂交组合
      (♀×♂)
      亲本数值/cmF1代群体与亲本比较/cmF1代分布比例/%
      母本父本中亲值均值/中亲值均值±标准差变幅变异系数/%小于低亲双亲之间大于高亲
      花梗长度  ZGH×LZ 8.73 9.48 9.10 0.79 7.15±1.14 5.35~8.99 15.90 92.31 7.69 0.00
      SLS×LZ 5.53 9.48 7.50 1.02 7.66±0.85 6.12~8.89 11.03 0.00 100.00 0.00
      BS×ZGH 7.49 8.73 8.11 0.82 6.66±0.83 5.03~7.94 12.44 76.47 23.53 0.00
      ZLY×XDD 14.94 8.99 11.97 0.76 9.05±2.24 6.21~18.66 24.73 48.65 48.65 2.70
      总平均 9.17 9.17 9.17 0.85 16.03 54.36 44.97 0.68
      花直径   ZGH×LZ 12.62 12.84 12.73 1.05 13.35±1.31 11.54~16.48 9.82 38.46 3.85 57.69
      SLS×LZ 13.27 12.84 13.06 0.85 11.14±1.12 9.11~12.93 10.03 0.00 94.12 5.88
      BS×ZGH 11.81 12.62 12.22 0.87 10.58±0.78 9.07~11.94 7.33 94.12 5.88 0.00
      ZLY×XDD 10.05 14.12 12.09 0.80 9.66±0.81 8.30~10.89 8.41 0.00 64.86 35.14
      总平均 11.94 13.11 12.53 0.89 8.90 33.15 42.18 24.68
      萼片长度  ZGH×LZ 5.65 6.23 5.94 1.23 7.28±0.49 6.11~7.97 6.76 0.00 3.85 96.15
      SLS×LZ 6.65 6.23 6.44 1.02 6.57±0.23 6.05~6.99 3.48 5.88 55.88 38.24
      BS×ZGH 5.92 5.65 5.79 0.89 5.14±0.58 4.08~5.98 11.28 76.47 13.73 9.80
      ZLY×XDD 4.96 7.05 6.01 0.77 4.62±0.79 3.19~5.96 17.09 59.46 40.54 0.00
      总平均 5.80 6.29 6.05 0.98 9.65 35.45 28.50 36.05
      萼片宽度  ZGH×LZ 2.56 3.06 2.81 1.37 3.85±0.52 3.04~4.69 13.49 0.00 7.69 92.31
      SLS×LZ 2.87 3.06 2.97 1.00 2.96±0.58 2.01~3.95 19.56 50.00 0.00 50.00
      BS×ZGH 2.47 2.56 2.52 1.16 2.91±0.49 2.02~3.98 16.76 21.57 5.88 72.55
      ZLY×XDD 2.90 4.92 3.91 0.91 3.54±0.86 2.02~4.92 24.25 29.73 70.27 0.00
      总平均 2.70 3.40 3.05 1.11 18.52 25.33 20.96 53.72
      萼片长宽比 ZGH×LZ 2.21 2.03 2.12 0.91 1.92±0.28 1.38~2.50 14.72 69.23 19.23 11.54
      SLS×LZ 2.32 2.03 2.18 1.06 2.31±0.49 1.57~3.20 21.02 41.18 17.65 41.18
      BS×ZGH 2.40 2.21 2.31 0.78 1.80±0.33 1.17~2.71 18.31 88.24 3.92 7.84
      ZLY×XDD 1.71 1.43 1.57 0.88 1.38±0.43 0.73~2.61 31.34 70.27 13.51 16.22
      总平均 2.16 1.93 2.05 0.91 21.35 67.23 13.58 19.20

      F1代花直径总平均值相当于中亲值的89%,总体表现出衰退趋势,但组合间存在差异。SLS×LZ、BS×ZGH和ZLY×XDD的3个杂交组合中,F1代的花直径呈减小趋势,F1代花直径的总平均值为中亲值的84%,但从F1代花直径的分布比例来看,仅在BS×ZGH杂交组合中出现了94.12%的小于低亲个体,另外2个杂交组合中则不存在小于低亲的个体。因此,虽然3个杂交组合中F1代的花直径均值表现出了一定的低亲性,但小于低亲的个体出现的几率并不高。而在ZGH×LZ杂交组合中,F1代的花直径表现出一定的超亲性,超高亲个体出现的概率为57.69%。

      铁线莲品种间杂交组合F1代的萼片长度呈微弱的减小趋势,F1代的总平均萼片长度为中亲值的98%,萼片宽度呈一定的增大趋势,F1代的总平均萼片宽度为中亲值的111%,萼片长宽比呈明显的减小趋势,F1代的总平均萼片长宽比为中亲值的91%。萼片长度的减小,萼片宽度的增加,导致萼片长宽比减小,说明F1代的萼片形状已发生变化。几个组合杂交后代的萼片长宽比的变异系数均值为21.35%,表明其遗传变异丰富,杂交后代的萼片形状发生变化且F1代间差异较大。

    • 表6可知:F1代节间距的平均变异系数为11.68%,遗传力较差。总体来看,节间距介于双亲之间的F1代个体占群体的60.55%,低亲个体和高亲个体分别占13.52%和25.94%,F1代节间距的总平均值为中亲值的102%,未表现出明显的超亲优势。

      表 6  叶部形态性状遗传分析

      Table 6.  Heredity of leaf morphological characters

      性状杂交组合
      (♀×♂)
      亲本数值/cmF1代群体与亲本比较/cmF1代分布比例/%
      母本父本中亲值均值/中亲值均值±标准差变幅变异系数/%小于低亲双亲之间大于高亲
      节间距   ZGH×LZ 9.62 11.41 10.52 0.99 10.40±1.59 7.53~12.69 15.34 37.04 25.93 37.04
      SLS×LZ 8.68 11.41 10.05 1.05 10.60±1.07 9.08~12.71 10.12 0.00 71.43 28.57
      BS×ZGH 12.82 9.62 11.22 0.97 10.89±1.10 9.08~12.95 10.07 11.76 84.31 3.92
      ZLY×XDD 15.38 12.34 13.86 1.05 14.61±1.63 11.56~18.33 11.18 5.26 60.53 34.21
      总平均 11.63 11.20 11.41 1.02 11.68 13.52 60.55 25.94
      叶片长度  ZGH×LZ 18.07 13.07 15.57 1.28 19.91±2.10 15.32~23.15 10.53 0.00 25.93 74.07
      SLS×LZ 15.14 13.07 14.11 1.42 19.98±1.77 15.13~21.53 8.85 0.00 0.00 100.00
      BS×ZGH 16.27 18.07 17.17 0.93 16.02±1.17 14.62~17.85 7.30 54.90 45.10 0.00
      ZLY×XDD 18.68 17.12 17.90 0.91 16.22±2.31 11.40~20.35 14.24 60.53 21.05 18.42
      总平均 17.04 15.33 16.19 1.14 10.23 28.86 23.02 48.12
      叶片宽度  ZGH×LZ 17.39 11.92 14.66 1.37 20.02±2.34 15.03~23.42 11.71 0.00 14.81 85.19
      SLS×LZ 14.28 11.92 13.10 1.52 19.86±1.98 15.77~23.21 9.96 0.00 0.00 100.00
      BS×ZGH 16.33 17.39 16.86 0.95 16.03±1.32 13.46~18.53 8.26 56.86 43.14 0.00
      ZLY×XDD 17.55 18.13 17.84 0.91 16.19±2.38 12.01~21.41 14.71 68.42 0.00 31.58
      总计 16.39 14.84 15.62 1.19 11.16 31.32 14.49 54.19
      叶片长宽比 ZGH×LZ 1.93 1.10 1.52 0.66 1.00±0.05 0.91~1.09 4.97 100.00 0.00 0.00
      SLS×LZ 1.06 1.10 1.08 0.93 1.01±0.06 0.93~1.08 5.50 77.14 22.86 0.00
      BS×ZGH 1.01 1.93 1.47 0.68 1.00±0.04 0.88~1.07 4.45 52.94 47.06 0.00
      ZLY×XDD 1.07 0.95 1.01 0.99 1.00±0.07 0.90~1.12 6.61 21.05 60.53 18.42
      总平均 1.27 1.27 1.27 0.82 5.38 62.78 32.61 4.61

      铁线莲品种间杂交组合F1代的叶片长度整体上表现出一定的增大趋势,总平均值为中亲值的114%。在ZGH×LZ和SLS×LZ杂交组合中表现为超亲性,在BS×ZGH和ZLY×XDD杂交组合中则表现为低亲性;叶片宽度总体呈一定的增大趋势,F1代总平均叶片宽度为中亲值的119%;由于F1代的叶片宽度增幅较大,导致叶片长宽比减小,F1代的总平均叶片长宽比为中亲值的82%,叶片形状发生了明显的变化,但总平均变异系数(5.38%)小于15%,F1代间差异较小,遗传变异度较小。

    • 分析花部5个性状和叶片4个性状之间的相关性(表7)发现:花直径分别与萼片长度、萼片长宽比呈极显著(P<0.01)正相关关系,花直径越大,萼片长度越大,萼片长宽比越大,表明萼片长度和萼片长宽比在一定程度上影响花直径的大小,但未表现出对萼片宽度的影响;萼片长宽比与萼片长度呈极显著(P<0.01)正相关关系,与萼片宽度呈极显著(P<0.01)负相关关系。叶片长度与叶片宽度呈极显著(P<0.01)正相关,即叶片长度越长,片宽度就越大,且相关系数最高(0.940),趋于连锁遗传。花梗长度与节间距之间呈极显著(P<0.01)正相关关系,说明节间距与花梗长度之间存在一定的联系。

      表 7  F1代9个性状的相关性分析

      Table 7.  Correlation analysis of 9 characters of F1 generation

      性状花梗长度花直径萼片长度萼片宽度萼片长宽比节间距叶片长度叶片宽度叶片长宽比
      花梗长度 1
      花直径 −0.318 1
      萼片长度 −0.122 0.608** 1
      萼片宽度 0.132 0.157 0.175* 1
      萼片长宽比 −0.159 0.250** 0.561** −0.675** 1
      节间距 0.510** −0.425 −0.493 0.239** −0.495 1
      叶片长度 −0.005 0.435** 0.563** 0.110 0.337** −0.249 1
      叶片宽度 0.025 0.409** 0.553** 0.107 0.347** −0.233 0.940** 1
      叶片长宽比 −0.084 0.016 −0.042 −0.006 −0.073 −0.015 0.040 −0.301 1
        说明:*表示显著相关(P<0.05);**表示极显著相关(P<0.01)
    • 杂种优势利用是观赏植物杂交育种的有效手段[1416]。亲本间的异质性在很大程度上决定了杂种优势,亲本间主要性状的差异反映了它们的遗传差异,而选择遗传差异大的亲本进行杂交,才能产生较强的杂种优势[17]。对生长于同一环境中的杂交群体表型性状进行系统测定和分析,对于研究观赏性状的遗传规律、探索该性状表现型与基因型的关联性以及开展后续目标育种具有重要意义[18]

      本研究对6个铁线莲品种进行杂交试验,发现F1代的大部分表型性状(除花药颜色外)都发生了变异,仅有萼片长度和节间距2个性状表现出偏母性遗传的特点,萼片宽度表现为偏父性遗传,花期、花色、花药颜色、花梗长度、花直径、萼片长宽比、叶片长度、叶片宽度、叶片长宽比等9个性状未表现出明显的遗传倾向。余伟军[10]研究发现:铁线莲品种间杂交后代综合了父本与母本之间的遗传特性,不同程度地遗传了双亲的某个或某些性状,部分单株之间存在差异。SABA等[19]研究发现:部分菊花Chrysanthemum morifolium杂交F1代的表型性状与双亲中的一方相似,F1代间存在差异且与亲本有别。本研究结果与以上结果一致。

      杂交F1代的花期出现分离,其中ZGH×LZ杂交组合中,F1代出现了花期早于双亲的个体,BS×ZGH和ZLY×XDD杂交组合中,F1代出现了花期晚于双亲的个体,但多数介于亲本之间,这与杨云燕等[20]在切花菊品种间杂交试验中所得的结果一致。马绍宇等[21]在高山杜鹃 Rhododendron lapponicum杂种中发现花色发生广泛分离,分离的色谱范围并不局限于双亲之间;周熠玮等[22]在姜花Hedychium coronarium的杂交F1代中发现了亲本中没有的橙红色花色植株;INAMURA等[23]研究发现:三叶草 Trifolium repens的杂交F1代中出现了花色优于亲本的个体,在本研究中部分F1代表现出一定的超亲优势,出现了兼具父本与母本花色的复色植株;而以白色植株作为父本时,F1代中有57.9%的植株与亲本花色均不相同,却没有出现与父本花色一致的白花后代,初步推测白色为相对隐性性状,这与AROS等[24]在石竹Dianthus chinensis的杂交后代中,发现与亲本花色一致的橙色和红色丢失的结果一致。因此,在现实育种工作中选择白花的铁线莲品种作为亲本有利于创造出花色更为丰富的植株。通过分析杂交亲本与F1代的花药颜色,发现黄色花药的植株做亲本时,F1代的花药均为黄色,可以初步推测黄色花药为显性性状,因此若要选育其他颜色(除黄色外)花药的品种,不宜选择黄色花药的品种作为亲本。本研究中F1代的萼片长度呈轻微的减小趋势,萼片宽度呈一定的增大趋势,从而导致了萼片长宽比的减小,说明F1代的萼片形状已发生变化;F1代的叶片长度表现出一定的增大趋势,叶片宽度呈明显的增大趋势,导致叶片长宽比明显减小,叶片形状发生了明显的变化,但总平均变异系数为5.38%,F1代间差异较小。花梗长度和花直径总体上呈现出减小的趋势,其原因可能是亲本品种都是经过单项选择育成的优良品种,经过长期无性繁殖又使入选品种的非加性效应占较大比例,一经有性杂交可能使其优势解体,致使杂种群体的性状平均值下降。在实际育种工作中,将上述性状在杂种中的下降表现估计在内,提高亲本性状平均值,仍可提高杂种平均值,从而有利于提高入选率。

      本研究中,杂交后代9个数量性状的变异系数为3.48%~31.34%,所有杂交组合的F1代花直径、叶片长度、叶片宽度和叶片长宽比4个性状的变异系数均小于15%,遗传变异力较差;不存在所有杂交组合的F1代变异系数均大于15%的性状,但F1代中仍可能出现少数超高亲个体,选育观赏性更好的新品种依然可能实现。

      铁线莲品种大多是经过人工杂交而来,又经过长期的无性繁殖,因此大多数栽培品种基因型高度杂合,品种间杂交后代分离极为广泛,要研究其性状的遗传规律是十分困难的。但通过对各类杂交组合的亲本品种及其杂种的性状表现进行比较统计与分析,仍可发现各性状在遗传上带有规律性的倾向。总结这些遗传倾向,对杂交育种中的亲本选择与选配、提高育种效率具有指导意义。本研究中杂种F1代群体花色分离广泛,为群体遗传学、花色分类、花色形成机理、新品种培育等研究提供了重要依据,但通过肉眼及比色卡测定的花色结果带有一定的主观性,后续可通过色差仪来将花色数量化,以及测定杂种后代的花色素种类及含量来深入研究花色遗传变异机制。

参考文献 (24)

目录

/

返回文章
返回