留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

历史地理信息系统视角下野生蕙兰时空分布及其影响因素

焦鑫宇 龙梅 刘志雄

焦鑫宇, 龙梅, 刘志雄. 历史地理信息系统视角下野生蕙兰时空分布及其影响因素[J]. 浙江农林大学学报, 2023, 40(6): 1261-1272. DOI: 10.11833/j.issn.2095-0756.20220766
引用本文: 焦鑫宇, 龙梅, 刘志雄. 历史地理信息系统视角下野生蕙兰时空分布及其影响因素[J]. 浙江农林大学学报, 2023, 40(6): 1261-1272. DOI: 10.11833/j.issn.2095-0756.20220766
PANShi-xiu, MEN Xiu-xiang, FENG Jin-chao, et al. A review of studies on habitat selection by small and solitary forest ruminants[J]. Journal of Zhejiang A&F University, 2007, 24(3): 357-362.
Citation: JIAO Xinyu, LONG Mei, LIU Zhixiong. Spatiotemporal distribution and influencing factors of wild Cymbidium faberi from the perspective of historical geographic information system[J]. Journal of Zhejiang A&F University, 2023, 40(6): 1261-1272. DOI: 10.11833/j.issn.2095-0756.20220766

历史地理信息系统视角下野生蕙兰时空分布及其影响因素

DOI: 10.11833/j.issn.2095-0756.20220766
基金项目: 国家自然科学基金资助项目(31101202)
详细信息
    作者简介: 焦鑫宇(ORCID: 0009-0007-2877-4488),从事风景园林植物研究。E-mail: 942615293@qq.com
    通信作者: 刘志雄(ORCID: 0000-0001-6536-4639),教授,博士,从事风景园林植物研究。E-mail: zxliu@yangtzeu.edu.cn
  • 中图分类号: S682.31

Spatiotemporal distribution and influencing factors of wild Cymbidium faberi from the perspective of historical geographic information system

  • 摘要:   目的  明晰野生蕙兰Cymbidium faberi的分布与演变,有助于探究中国蕙兰自然种群的演替规律,为当代蕙兰自然种群的保育工作提供科学依据。  方法  基于ArcGIS平台,构建野生蕙兰历史地理信息数据库,对1368年以来野生蕙兰的时空分布及其影响因素进行研究。  结果  ①自1368年以来,野生蕙兰主要分布于中国秦岭—淮河以南的区域,分布中心由28.585°N,113.503°E逐渐向29.365°N,112.675°E迁移。1368—1644年主要聚集于江南、广东、福建和四川、云南交界处。1644—1912年在四川、云南一带聚集程度减弱; 1949—1978年四川、重庆地区聚集程度增强; 1978年至今,野生蕙兰呈多点聚集,湖北、陕西等地成为新的聚集区;②气温、降水量、土壤类型、地形地貌、水源缓冲距离等自然因素直接作用于野生蕙兰的分布,其主要分布于年平均气温为15~25 ℃,pH为5.3~6.2的温热铁铝土区及海拔为620~980 m、坡度为19.9°~25.0°的南坡或东南坡,且离水距离为1 000~2 000 m内的区域。③农业垦殖以及工业发展等人为活动间接影响野生蕙兰的分布与迁移。  结论  野生蕙兰主要聚集于中国南方地区,并趋于向高纬度地区迁移,其分布受气温和降水量影响显著,人为活动间接导致了其分布数量的减少,应对江南、广东、福建、云南、贵州、陕西、湖北等典型区域的野生蕙兰适生区进行营建或扩建,以加强对野生蕙兰的保护。图3表5参44
  • 铁路、公路等基础设施建设会破坏和占压地表植被,形成大量的裸露坡面,遇到降雨极易发生水土流失,甚至出现滑坡、泥石流等次生地质灾害。裸露坡面常常具有坡度陡、坡体稳定性低、水分条件差和土壤瘠薄等特征,是不利于植被生长的困难立地。客土喷播绿化是裸露坡面恢复植被最快速最有效的方式之一,喷播后灌溉养护对植被生长至关重要[1]。大量调查发现:客土喷播后普遍存在过度灌溉,产生坡面径流,造成水土流失和水资源浪费;同时喷播基质通气不畅也会影响植被生长。可见,确定适合植被生长且能保证灌溉时坡面不产流的客土喷播基质含水量已成为当前亟需解决的问题。目前,关于适宜含水量研究大多集中在林地土壤与林木之间,如夏江宝等[2]对贝壳堤岛旱柳Salix matsudana光合效率的土壤水分临界效应及其阈值进行了分级研究,景雄等[3]对毛竹Phyllostachys edulis实生苗土壤水分有效性及生产力进行了分级研究,张淑勇等[4]对黄刺玫Rosa xanthina叶片光合生理参数的土壤水分阈值响应及其生产力进行了分级研究等,客土喷播基质适宜含水量与植被生长的关系研究则较少。以往的研究大都只关注了植物某一个生长阶段的土壤水分适宜含水量阈值[2, 5-6],缺乏对不同季节植被生长与基质水分关系的研究。鉴于此,本研究以北方地区常用的喷播修复植物黑麦草Lolium perenne作为研究对象,利用种植盆模拟客土喷播绿化,通过控制不同客土喷播基质水分梯度,分析夏、秋季黑麦草光合特性日变化对不同喷播基质水分的响应规律,以叶片净光合速率(Pn)和水分利用效率(EWU)作为“产”“效”来评价黑麦草生产力和水分利用能力的依据,并进行季节间比较,建立夏、秋季黑麦草喷播基质适宜含水量阈值分级,以期为北京至张家口的公路、铁路等冬季奥林匹克运动会交通廊道以及自然条件相近地区的工程创面客土喷播恢复植被灌溉养护提供参考。

    研究区河北省张家口市涿鹿县为北京冬季奥林匹克运动会延庆赛区和张家口崇礼赛区廊道沿线,高速公路G6和G7之间,地理坐标为40°26′20″N,115°17′03″E。涿鹿县属温带半干旱大陆性季风气候,年均气温为9.1 ℃,极端最高气温为39.2 ℃,极端最低气温为−23.9 ℃,年均降水量为367 mm,年均蒸发量为1 600 mm,无霜期为169 d,年平均积温为2 100~3 400 ℃,风向以西北为主,平均风速2~3 m·s−1,土壤为沙壤质褐土。

    喷播基质材料为客土(取自河北省涿鹿县苗圃)、木纤维[长1~3 cm,中矿复地生态环境技术研究院(北京)有限公司]、保水剂(3005KCE,美国艾森公司)、黏合剂(A30,美国艾森公司)、稻壳和黑麦草种子(北京布莱特草业有限公司)。喷播基质层和种子层的材料配比见表1。黑麦草播种量为4 g·m−2

    表 1  基质层和种子层的材料配比
    Table 1  Material ratio of matrix layer and seed layer
    喷播层次客土/
    %
    木纤
    维/%
    稻壳/
    %
    复合肥/
    (g·m−3)
    保水剂/
    (g·m−3)
    黏合剂/
    (g·m−3)
    基质层(10 cm)701020300200150
    种子层(3 cm)6733
      说明:客土、木纤维和稻壳为体积比
    下载: 导出CSV 
    | 显示表格

    利用种植盆试验模拟客土喷播绿化,种植盆上口直径50 cm、盆底直径40 cm、高15 cm,底部打孔便于排水。使用恒睿牌HKP125型客土喷播机。2021年4月26日,根据表1的材料配比将基质层和种子层分上、下2层先后喷播到种植盆内,采用微喷灌雾化喷头对喷播基质灌溉养护,保持喷播基质充分湿润(每次灌溉以喷播基质表面不积水为准),保证种子出苗有充足的水分。

    2021年5月26日开始控制喷播基质含水量(为质量含水量,下同),用环刀法测得喷播基质的田间持水量为30.36%,容重为1.12 g·cm−3。喷播基质含水量设置5个水分梯度,分别为30.36%、25.81%、21.25%、16.70%和12.14%,即喷播基质相对含水量(CRW)为100%、85%、70%、55%和40%,每个水分梯度设置3个重复。每天16:00用TDR350土壤水分速测仪(美国Spectrum公司)测定CRW(通过容重换算为质量含水量),每盆测定重复3次取平均值,并根据公式计算耗水量:ww=m/m。其中:w为设计质量含水量(%);w为实测质量含水量(%),根据TDR350实测值和容重换算;m为每盆黑麦草耗水量(g);m为每盆喷播基质干质量(g),可由基质体积和容重计算得出。使用微喷灌雾化喷头对喷播基质补充水分,为避免降水影响,试验在透明通风遮雨大棚内进行。

    于夏季(2021年8月5日,即控水2个月后)、秋季(2021年10月11日,即控水4个月后)选择连续3 d晴朗无云的天气,使用Li-6400XT便携式光合作用测定仪(标准叶室,Li-COR)测定黑麦草叶片Pn (μmol·m−2·s−1)、蒸腾速率Tr (mmol·m−2·s−1)、气孔导度Gs (mol·m−2·s−1)、胞间二氧化碳(CO2)摩尔浓度Ci (μmol·mol−1)等生理参数以及大气CO2摩尔浓度Ca (μmol·mol−1)、光合有效辐射PAR (μmol·m−2·s−1)、气温Ta (℃)和相对湿度Rh (%)等环境因子,并根据公式EWU=Pn/Tr计算水分利用效率、Ls=1−Ci/Ca计算气孔限制值。测定时间为8:00—16:00,隔2 h测1次,每个种植盆选取3株生长健康、长势一致的黑麦草,每株选取3片叶,每片叶记录3次读数,取平均值。

    运用Excel 2016整理光合参数与基质相对含水量数据;SPSS 22.0进行差异显著性检验LSD;Origin 2018进行作图和多项式拟合建立回归模型,使用F检验对回归模型进行显著性检验。

    图1可知:夏、秋季PAR的日变化为单峰曲线,均为先升高后下降,峰值均出现在12:00,夏季峰值为(1 393.71±110.04) μmol·m−2·s−1,秋季为(786.73±88.74) μmol·m−2·s−1。夏季PAR日均值(999.75±459.61) μmol·m−2·s−1大于秋季(504.07±274.09) μmol·m−2·s−1。夏、秋季Ca日变化为“V”型曲线,8:00—12:00下降,之后上升。秋季Ca日均值(421.15±17.65) μmol·mol−1大于夏季(411.54 ±10.76) μmol·mol−1,两者相差较小,仅为2.30%。

    图 1  夏、秋季光合有效辐射(PAR)和大气CO2摩尔浓度(Ca)的日变化
    Figure 1  Diurnal variation of photosynthetically active radiation (PAR) and atmospheric CO2 concentration (Ca) in summer and autumn

    图2可知:夏、秋季Ta的日变化与PAR相似,也为单峰曲线,在12:00达最大值。夏季Ta最大为(42.88±1.46) ℃,秋季为(28.41±1.06) ℃。夏季日均值(37.87±3.23) ℃大于秋季(26.21±2.03) ℃。夏、秋季Rh的日变化与Ta相反,12:00前下降,之后上升,夏、秋季Rh最低值分别为20.98%±1.65%和17.05%±1.47%。夏季Rh日均值(26.72%±5.56%)大于秋季(19.98%±2.70%)。

    图 2  夏、秋季气温(Ta)和相对湿度(Rh)的日变化的日变化     
    Figure 2  Diurnal variation of temperature (Ta) and relative humidity (Rh) in summer and autumn
    2.2.1   不同喷播基质含水量下黑麦草叶片净光合速率(Pn)的日变化

    夏、秋季黑麦草叶片Pn日变化对CRW有明显的阈值响应(图3)。当CRW为70%~85%时,Pn的变化呈双峰曲线,均出现光合“午休”现象,上午和下午各出现1个峰值,此水分范围内,Pn在全天各时段均最高。当CRW增加至100%时,Pn呈单峰曲线,峰值出现在12:00。当CRW降低到55%和40%时,Pn为单峰曲线,峰值均出现在8:00(但秋季CRW为55%时Pn峰值出现在10:00),Pn在全天各时段均处于较低水平,表明CRW低于55%会严重抑制植物的光合作用。由表2可知:Pn日均值对CRW也有明显的阈值响应。当CRW为85%时,夏季Pn日均值最大,达(11.17±3.08) μmol·m−2·s−1,与其他水分梯度有显著差异(P<0.05)。秋季的Pn日均值在CRW为70%时达最大,为(7.02±1.97) μmol·m−2·s−1,与其他水分梯度也有显著差异(P<0.05)。夏季Pn日均值均大于秋季,CRW为55%~100%时两季差异达到显著(P<0.05)。CRW为40%时,两季Pn日均值均较低,可见当CRW较低时植物光合作用将受到严重影响。综上所述,夏、秋两季维持黑麦草较高PnCRW为70%~85%,高于或低于此范围,Pn明显受到抑制。

    图 3  夏、秋季不同喷播基质含水量下黑麦草净光合速率(Pn)的日变化
    Figure 3  Diurnal variation of net photosynthetic rate (Pn) of L. perenne under different spraying substrate water content in summer and autumn
    表 2  夏、秋季不同喷播基质含水量下黑麦草光合生理参数的日均值变化
    Table 2  Change of daily mean of photosynthetic physiological parameters of L. perenne under different spraying substrate water content in summer and autumn
    CRW/%Pn/(μmol·m−2·s−1)Tr/(mmol·m−2·s−1)EWU/(mol·mol−1)
    夏季秋季夏季秋季夏季秋季
    1006.79±2.01 Abc4.30±0.95 Bb5.59±1.17 Aab2.75±0.16 Bab1.32±0.20 Bbc1.56±0.26 Acd
    8511.17±3.08 Aa6.07±1.24 Ba6.83±1.12 Aa3.13±0.40 Ba1.61±0.22 Ba1.92±0.22 Ab
    709.26±2.79 Aab7.02±1.97 Ba6.76±0.63 Aa2.92±0.59 Ba1.43±0.15 Bab2.37±0.25 Aa
    555.77±2.09 Ac3.77±1.03 Bb4.91±0.93 Ab2.35±0.30 Bbc1.20±0.12 Bbc1.63±0.20 Ac
    402.80±1.66 Ae2.74±0.78 Ab3.03±0.87 Ac2.16±0.28 Ac1.01±0.28 Ac1.28±0.16 Ad
      说明:同列不同小写字母、同行不同大写字母均表示差异显著(P<0.05)
    下载: 导出CSV 
    | 显示表格
    2.2.2   不同喷播基质含水量下黑麦草叶片蒸腾速率(Tr)的日变化

    夏、秋季黑麦草叶片Tr日变化规律与Pn基本相似(图4),当CRW为70%~85%时,黑麦草Tr的日变化呈双峰曲线。当CRW增加至100%时,Tr呈现单峰曲线,夏、秋季峰值均出现在14:00,但日均值却低于CRW为70%~85%时。表明基质水分充足可有效延缓Tr“午休”,但会降低Tr。当CRW≤55%时,Tr呈单峰曲线,峰值出现在8:00或10:00,全天各时段均处于较低的水平。结合表2可知:当CRW≥55%时,夏季Tr日均值显著高于秋季(P<0.05)),可见不同季节气候环境对植物Tr影响较大。当CRW为40%时,Tr日均值显著低于其他水分梯度(P<0.05),表明水分胁迫严重限制Tr。综上所述,CRW过高或过低均会降低黑麦草Tr,当CRW为70%~85%时,黑麦草会保持较高的Tr,保障植物正常生理活动。

    图 4  夏、秋季不同喷播基质含水量下黑麦草蒸腾速率(Tr)的日变化
    Figure 4  Diurnal variation of transpiration rate (Tr) of L. perenne under different spraying substrate water content in summer and autumn
    2.2.3   不同喷播基质含水量下黑麦草叶片水分利用效率(EWU)的日变化

    EWU日变化对基质含水量有明显的阈值响应(图5)。CRW为70%~85%时,EWU为双峰曲线(但秋季CRW=85%时为单峰曲线),全天各时段EWU均高于其他水分梯度。当CRW增加至100%时,EWU表现为单峰曲线,峰值出现在12:00。CRW为40%~55%时,EWU峰值出现在8:00或10:00,之后不断降低。结合表2可知:当CRW≥55%时,秋季EWU日均值显著高于夏季(P<0.05),CRW为40%时秋季EWU日均值高于夏季,但不差异显著。CRW为40%和100%时,EWU日均值均显著低于其他水分梯度(P<0.05),表明CRW过高或过低都会降低EWU。综上所述,夏、秋季维持黑麦草同时具有较高PnEWUCRW为70%~85%,在这个水分范围内,Tr也保持较高水平,有利于植物的光合作用。

    图 5  夏、秋季不同喷播基质含水量下黑麦草水分利用效率(EWU)的日变化
    Figure 5  Diurnal variation of water use efficiency (EWU) of L. perenne under different spraying substrate water content in summer and autumn
    2.2.4   不同喷播基质含水量下黑麦草叶片气孔导度(Gs)、胞间CO2摩尔浓度(Ci)和气孔限制值(Ls)的日变化

    夏、秋季黑麦草GsCRW具有明显的阈值响应(图6),当CRW为70%~85%时,Gs呈现双峰曲线。当CRW=100%时,Gs为单峰曲线,峰值出现在12:00。当CRW为40%~55%时,全天Gs峰值出现在8:00,之后一直降低,维持在较低水平。CiLsCRW的阈值响应表现不同的变化规律(图7图8),上午和下午表现也不同。CRW为70%~100%时,Pn下降,GsCi明显下降,Ls明显升高,表明Pn下降原因是气孔限制。CRW=55%时,上午Pn下降,GsCi明显下降,Ls升高,但下午Pn下降,GsLs下降,Ci反而升高,可见限制黑麦草Pn的原因上午和下午不同,上午以气孔限制为主,气孔关闭导致CO2供应不足,下午以非气孔限制为主,水分胁迫导致植物叶片光合结构受损,Pn下降。当CRW=40%时,Ci从8:00开始上升且一直处于较高水平,而Ls全天都较低,表明水分胁迫严重损坏了植物叶片光合结构,降低了光合作用有关酶的活性,从而降低了Pn。由图9可知:夏、秋季不同CRW范围内PnGs的正比关系不同,当CRW>55%时,随着Gs增大,Pn线性增大,PnGs为线性正比关系;当CRW≤55%时,PnGs为非线性关系。因此,当CRW=55%时,黑麦草不仅发生了Pn限制机制的转变,其PnGs之间的关系也发生转变。综上所述,在CRW=55%时出现上午、下午CiLs变化相反的情况,表明此基质含水量是黑麦草叶片Pn下降由气孔限制为主转变为非气孔限制为主的临界点。

    图 6  夏、秋季不同喷播基质含水量下黑麦草气孔导度(Gs)的日变化
    Figure 6  Diurnal variation of stomatal conductance (Gs) of L. perenne under different water content of spraying substrate in summer and autumn
    图 7  夏、秋季不同喷播基质含水量下黑麦草胞间CO2摩尔浓度(Ci)的日变化
    Figure 7  Diurnal variation of intercellular CO2 concentration (Ci) of L. perenne under different water content of spraying substrate in summer and autumn
    图 8  夏、秋季不同喷播基质含水量下黑麦草气孔限制值(Ls)的日变化
    Figure 8  Diurnal variation of stomatal limit value (Ls) of L. perenne under different spraying substrate water content in summer and autumn
    图 9  夏、秋季黑麦草净光合速率(Pn)和气孔导度(Gs)的关系
    Figure 9  Relationship between net photosynthetic rate (Pn) and stomatal conductance (Gs) of L. perenne in summer and autumn

    为进一步确定黑麦草喷播基质相对含水量(CRW)分级临界值,对黑麦草PnTr、EWUGs的日均值与CRW构建回归模型(表3)。由PnCRW的回归模型知:夏、秋季Pn达最大值的CRW分别为78.17%、76.02%,其对应的最大Pn分别为9.68和 6.33 μmol·m−2·s−1。令Pn=0,求出夏、秋季水合补偿点的CRW分别为35.02%、30.83%(CRW大于100%的点均已舍去)。根据回归模型的积分式[2]求出CRW为40%~100%时黑麦草夏季Pn平均值为7.77 μmol·m−2·s−1,对应的CRW分别为58.98%和97.36%。同理可求出黑麦草秋季Pn平均值为5.29 μmol·m−2·s−1,对应的CRW分别为57.71%和94.33%。由此可以确定黑麦草夏、秋季Pn达到中等以上水平的CRW分别为58.98%~97.36%、57.71%~94.33%。

    表 3  夏、秋季黑麦草光合参数与喷播基质相对含水量的回归模型
    Table 3  Regression model between photosynthetic parameters of L. perenne and relative water content of spraying substrate in summer and autumn
    参数季节回归模型决定系数FP
    Pn夏季y=−22.092 7+0.813 0x−0.005 2x20.8878.989.12×10−11
    秋季y=−11.584 0+0.471 3x−0.003 1x20.8145.601.49×10−8
    Tr夏季y=−9.497 1+0.398 7x−0.002 5x20.94595.830.000
    秋季y=−0.574 0+0.083 8x−0.000 5x20.8339.085.74×10−8
    EWU夏季y=−0.844 9+0.061 0x−0.000 4x20.8031.053.93×10−7
    秋季y=−2.344 8+0.122 2x−0.000 83x20.7635.291.37×10−7
    Gs夏季y=−0.354 2+0.013 5x−0.000 086x20.7839.974.73×10−8
    秋季y=−0.319 7+0.012 2x−0.000 077x20.8353.943.30×10−9
      说明:y表示各参数,x表示喷播基质相对含水量(CRW)
    下载: 导出CSV 
    | 显示表格

    根据EWUCRW的回归模型,求出夏、秋季EWU达最大值的CRW分别为76.25%、73.61%,对应的最大值分别为1.48和 2.15 μmol·mmol−1。令EWU=0,求出夏、秋季的对应的CRW分别为15.41%、22.68%(CRW大于100%的点均已舍去)。根据回归模型的积分式求出CRW为40%~100%时黑麦草夏季EWU的平均值为1.35 μmol·mmol−1,对应的CRW分别为58.17%和94.33%。同理可求出黑麦草秋季EWU的平均值为1.89 μmol·mmol−1,对应的CRW分别为55.81%和91.42%。由此确定黑麦草夏、秋季EWU达到中等以上水平的CRW分别为58.17%~94.33%、55.81%~91.42%。

    PnEWU取最大值点、平均值点、最低值点和Pn下降气孔限制转折点的喷播基质CRW临界值,作为黑麦草喷播基质适宜含水量阈值分级临界点,建立喷播基质适宜含水量的阈值分级(表4)。此分级标准将PnEWU作为“产”“效”来评价黑麦草生产力和水分利用能力的依据,建立了黑麦草喷播基质适宜含水量阈值分级。以Pn=0时的水合补偿点作为临界点,低于此临界点划为“无产无效水”范围。Pn下降原因由气孔限制为主转为非气孔限制为主对应的CRW称为“Pn气孔限制转折点”。PnEWU取最大值时的CRW确定为“高产高效水”临界值点。依据PnEWUCRW的回归模型积分式求解二者的平均值来确定PnEWU达到中等以上水平的临界点,在此范围内称为“中产”“中效”,此范围外称为“低产”“低效”。为更清晰地展示5种阈值分级类型,借助坐标轴对其划分参数和数值进行展示(图10)。

    表 4  基于光合特性的黑麦草喷播基质适宜含水量阈值分级
    Table 4  Threshold gradient of suitable water content of L. perenne spraying substrate based on photosynthetic characteristics
    季节临界值指标临界点对应的CRW/%基质适宜含水量阈值分级类型基质适宜含水量阈值/%
    夏季 Pn=0 35.02 无产无效水 <35.02
    Pn(sl→nsl) 55.00 低产低效水 35.02~55.00,97.36~100.00
    Pn取平均值(Pn-ave) 58.98~97.36 中产中效水 78.17~97.36
    Pn取最大值(Pn-max) 78.17 中产高效水 55.00~76.25
    EWU取最大值(EWU-max) 76.25 高产高效水 76.25~78.17
    EWU取平均值(EWU-ave) 58.17~94.33
    秋季 Pn=0 30.83 无产无效水 <30.83
    Pn(sl→nsl) 55.00 低产低效水 30.83~55.00,94.33~100.00
    Pn取平均值(Pn-ave) 57.71~94.33 中产中效水 76.02~94.33
    Pn取最大值(Pn-max) 76.02 中产高效水 55.00~73.61
    EWU取最大值(EWU-max) 73.61 高产高效水 73.61~76.02
    EWU取平均值(EWU-ave) 55.81~91.42
      说明:Pn=0为水合补偿点,Pn(sl→nsl)Pn气孔限制转折点
    下载: 导出CSV 
    | 显示表格
    图 10  夏、秋季黑麦草喷播基质适宜含水量阈值分级坐标轴图示
    Figure 10  Coordinate graphic figures of spraying substrate suitable water content threshold gradient of L. perenne in summer and autumn

    夏、秋季黑麦草光合生理参数(PnTrEWUGsCiLs)日变化对喷播基质含水量的阈值响应规律与黄刺玫[5]、文冠果Xanthoceras sorbifolia[6]、连翘Forsythia suspensa[7]、山杏Prunus sibirica[8]、羊草Leymus chinensis和紫花苜蓿Medicago sativa[9]等对土壤水分阈值响应的规律一致,即CRW过高或过低均会抑制植物光合作用。CRW为70%~85%时,夏、秋季PnTr日变化均呈现双峰曲线,在12:00表现出“光合午休”现象。主要原因是中午气温最高,高温影响植物光合酶的活性,降低Pn;空气相对湿度低,叶片表面饱和水汽压差增大,叶片气孔保卫细胞失水过多,导致部分气孔关闭,降低TrPn[10]CRW为100%时,夏、秋季Pn日变化均呈现单峰曲线,峰值出现在12:00,但Pn日均值并不高。表明水分充足可以延缓植物光合午休,但CRW过高,喷播基质孔隙较小,不利于根系呼吸,影响根系吸收营养元素,造成光合叶绿素含量降低,从而降低Pn[11]CRW为100%时,夏、秋季Tr日变化的峰值延迟到14:00。已有研究表明:当水分充足时光照强度是影响Tr的主要因子,光合辐射可以促进叶片气孔开放,从而增强Tr[12-13]CRW为40%~55%时,夏、秋季PnTr均处于较低水平,原因是严重水分胁迫下植物为减少体内水分散失增加了气孔阻力[4],导致PnTr降低。研究表明:适度的干旱胁迫能有效提高植物的水分利用效率[14-15],与本研究观点一致,即CRW为70%~85%时黑麦草EWU达最大值,并非在CRW最高的时候。秋季EWU显著高于夏季,主要原因是秋季Tr的降低幅度比Pn的降低幅度要更大,这与许多学者[16-18]的研究结果一致。

    夏、秋季黑麦草Gs日变化与Pn的变化规律基本相似,但通过对PnGs的关系拟合可知:PnGsCRW≤55%时两者为非线性关系,CRW>55%时为线性正比关系,这与郎莹等[19]的研究结果一致。轻度水分胁迫下,叶片气孔部分关闭,Gs下降,进入叶片CO2减少,因此Ci降低,Ls升高,但是当CRW为55%时,下午时段Gs下降,Ci升高,表明水分胁迫可能破坏了叶片的光合结构,导致叶片吸收CO2、光合作用能力下降。这也进一步说明,在CRW为55%时,黑麦草Pn下降原因已经由气孔限制为主转变为非气孔限制为主。已有研究表明:当植物光合作用受到非气孔限制时,水分胁迫可能开始损坏光合结构[20-21],叶绿体受损并且不可逆[22],当CRW进一步降低,植物叶子变黄甚至脱落[21]。因此,CRW=55%被认为是黑麦草喷播基质适宜含水量阈值分级的临界点。

    采用PnEWU作为土壤水分的“产”“效”指标可评价土壤水分有效性和适宜含水量范围[2-3, 5, 7, 23],主要方法有3类:第1类为聚类分析法[4, 24],即通过试验获取多个水分梯度下的PnEWU进行聚类分析,得到不同的水分分级临界点。由于获取的水分梯度随机性较大,该方法缺乏足够代表性。第2类为极限值法,即通过获取PnEWUCRW的定量关系,找出PnEWU的最低值、最大值点和气孔限制转折点,以此来划分水分分级临界点。但此法并未对中等水平的“产”“效”进行划分[26]。第3类为回归方程拟合法,即通过建立植物PnEWUCRW的回归模型,计算Pn的水合补偿点、PnEWU最低值点、最大值点和平均值点对应的土壤水分,并以此作为土壤水分有效性阈值分级临界点。该方法对土壤水分分级比较完整[2-3, 21]。本研究结合第2类和第3类方法,即采用回归方程拟合法计算临界值点再结合Pn气孔限制转折点来确定喷播基质适宜含水量阈值分级标准。在拟合时采用了PnEWU的日平均值与CRW,相比只测上午光合数据[2, 4, 6, 21]的研究更具有代表性。本研究确定的“无产无效水”“低产低效水”“中产中效水”“中产高效水”和“高产高效水”5种喷播基质适宜含水量阈值分级类型,可以根据不同的工程绿化养护要求和黑麦草不同生长阶段对水分的需求来选择利用。例如,在裸露边坡等困难立地最突出的特征是干旱和缺水,坡面工程绿化以防治水土流失和提高水分利用效率为目标,而不是充分供水达到最高产量 [24-25]。因此既满足边坡植被修复要求,又不因灌溉量过大而造成坡面水土流失、影响植物生长和浪费水资源等问题,可以保持喷播基质含水量在“中产高效水”(55.00%≤CRW≤76.25%和55.00%≤CRW≤73.61%)的范围,以此为标准进行灌溉。

    夏、秋季黑麦草净光合速率水合补偿点的喷播基质相对含水量分别为35.02%和30.83%,即实际质量含水量分别为10.63%和9.36%,喷播基质含水量低于此值光合作用无效。夏、秋季黑麦草净光合速率下降由气孔限制转变为非气孔限制的喷播基质相对含水量均为55%,即实际质量含水量为16.70%,喷播基质含水量低于此值将对黑麦草叶片光合结构造成不可逆性损坏,建议灌溉养护时保持基质含水量不能低于此水分范围。客土喷播绿化以快速恢复植被为目标时可以保持喷播基质含水量在“高产高效水”范围,以此为标准进行灌溉,夏、秋季分别为76.25%≤CRW≤78.17%和73.61%≤CRW≤76.02%,即实际质量含水量分别为23.15%~23.73%和22.35%~23.08%。客土喷播绿化以提高水分利用效率并恢复基本植被(即恢复到当地自然植被盖度为准)为目标时,可以保持喷播基质含水量在“中产高效水”范围,以此为标准进行灌溉,夏、秋季分别为55.00%≤CRW≤76.25%和55.00%≤CRW≤73.61%,即实际质量含水量分别为16.70%~23.15%和16.70%~22.35%。

  • 图  1  野生蕙兰在不同土壤中的分布区数量

    Figure  1  Numbers for wild C. faberi in different soil types

    图  2  野生蕙兰在不同海拔和坡度下的分布区数量

    Figure  2  Numbers of wild C. faberi distribution sites in the different altitudes and slopes

    图  3  野生蕙兰在不同坡向的分布区数量

    Figure  3  Numbers of wild C. faberi distribution sites in the different slope aspects

    表  1  野生蕙兰历史分布模型自变量

    Table  1.   Historical distribution model independent variables of C. faberi

    自然因子描述数据来源及处理工具自然因子描述数据来源及处理工具
    海拔 地形分析因子 DEM数据 气温 年均气温 BIO1及CRU TStemp数据集
    坡度 地表起伏形态 坡度工具 降水量 年均降水量 BIO12及CRU TSpre数据集
    坡向 坡向 坡向工具 水源距离 分布点至水系的距离 河网数据
    土壤类型 分布区域的土壤类型 土壤数据
    下载: 导出CSV

    表  2  1368年以来野生蕙兰资源分布标准差椭圆分析

    Table  2.   Analysis for the standard deviational ellipse of the distribution sites of wild C. faberi resources since the year of 1368

    年份椭圆周长/km椭圆面积/km²椭圆中心点(N)椭圆中心点(E)长半轴/km短半轴/km椭圆的方向角度/(°)
    1368—164472.088 167208.792 73028.584 810°113.503 226°16.941 3993.924 42791.145 131
    1644—191241.965 962120.646 29829.519 570°116.191 821°8.548 6084.492 69279.365 494
    1912—194946.740 223112.516 14328.872 057°114.902 188°10.549 9903.395 45680.062 387
    1949—197842.521 332116.530 01829.564 576°112.446 761°8.944 9404.147 20888.409 640
    1978年至今39.360 687105.286 12529.364 727°112.674 798°8.056 3934.160 24678.474 936
    下载: 导出CSV

    表  3  不同时期气候因子与野生蕙兰分布情况

    Table  3.   Distribution sites of wild C. faberi under the effect of climatic factors in various periods

    分布区1644—1912年1912—1949年
    气温/℃降水量/mm分布区数量/个气温/℃降水量/mm分布区数量/个
    江苏13.3~15.5850.0~983.63413.0~16.2807.0~901.09
    浙江13.6~16.7750.0~983.66213.6~19.0901.8~980.031
    安徽13.7~16.1750.0~980.21912.9~15.3807.7~980.37
    上海14.9~15.8810.0~820.0511.2~13.4807.4~901.81
    福建15.3~21.0800.0~850.02113.0~19.8901.8~980.44
    广东17.8~23.2750.0~900.0816.2~22.8901.8~980.45
    广西16.3~22.8600.0~897.0316.2~22.8567.7~925.61
    云南7.1~23.2295.0~950.0107.8~24.8308.2~980.415
    四川−1.6~18.351.0~450.09−0.8~18.580.3~901.86
    贵州14.6~18.1413.0~802.0714.8~18.4697.4~920.62
    湖南15.2~17.4600.0~950.0715.4~17.3901.8~980.42
    湖北11.3~16.2250.0~983.6510.4~16.3697.4~980.42
    江西15.3~19.1750.0~930.0615.2~18.9901.8~980.42
    重庆12.1~18.2250.0~700.0016.2~19.6807.5~901.80
    陕西6.3~13.3169.0~450.055.7~13.0567.7~901.81
    甘肃−4.8~11.851.0~169.03−4.2~9.480.2~567.80
    台湾11.1~20.3897.0~983.029.4~19.6901.8~980.40
    山东10.4~14.1450.0~950.025.7~13.0807.4~901.80
    河南11.1~15.3350.0.0~897.049.4~16.2697.4~901.81
    河北2.6~13.7543.0~820.022.4~13.0807.5~890.50
    山西4.4~12.5100.0~450.012.4~9.4697.4~901.80
    北京1.3~11.4450.0~700.022.4~13.0901.8~980.40
    吉林0.3~6.2680.0~950.01−0.8~5.7807.5~980.40
    香港21.8~24.3802.0~897.0216.2~19.6901.8~980.40
    西藏−4.1~19.551.0~450.00−9.4~19.450.0~550.00
    海南19.1~24.3295.7~413.6019.6~24.8450.0~650.01
    下载: 导出CSV

    3  (续)

    3.   Continued

    分布区1949—1978年1978年至今
    气温/℃降水量/mm分布区数量/个气温/℃降水量/mm分布区数量/个
    江苏13.0~16.0687.5~1 294.5214.1~16.7982.5~1 320.015
    浙江13.0~19.31 294.5~1 670.01614.6~18.31 294.5~1 701.071
    安徽13.0~16.0687.5~1 572.0514.1~18.3690.2~1 639.239
    上海15.9~17.2982.3~1 294.5015.9~16.1983.5~1 310.41
    福建16.0~20.3982.3~1 572.1615.7~21.41 024.2~1 653.011
    广东16.0~24.51 294.5~2 070.9218.3~24.71 350.0~2 600.021
    广西16.3~24.5982.3~1 971.0218.3~24.6723.9~2 983.812
    云南1.84~24.5687.5~1 572.132.8~24.6781.8~2 118.217
    四川−1.5~19.3444.6~1 294.513−3.4~18.9601.2~1 294.514
    贵州9.1~19.4687.5~1 082.339.9~18.4687.5~1 449.784
    湖南13.0~19.3982.3~1 374.2014.2~20.71 150.0~2 100.025
    湖北9.1~16.7687.5~1 380.619.9~18.4860.5~2 100.084
    江西16.0~20.31 294.5~1 970.9515.6~19.81 143.2~1 935.019
    重庆13.0~19.3982.3~1 572.1514.2~19.41 000.0~1 572.18
    陕西6.2~13.0444.6~982.357.1~14.2460.2~904.515
    甘肃−4.8~9.1187.8~687.51−6.5~9.9136.6~734.96
    台湾9.1~20.61 294.5~2 800.509.4~23.51 294.5~2 760.02
    山东9.1~16.0687.5~982.309.5~16.5565.5~982.37
    河南13.0~16.3450.6~1 094.5813.5~17.3500.4~1 100.522
    河北−1.5~14.1444.6~687.50−0.3~14.2503.4~687.51
    山西1.8~10.9444.6~687.502.8~14.2567.2~864.92
    北京5.3~13.0444.6~687.516.1~14.2374.6~687.53
    吉林−1.5~9.1350.8~982.30−0.3~9.9380.5~703.20
    香港16.0~24.51 294.5~2 070.9018.3~24.71 350.0~2 600.01
    西藏−10.5~19.385.0~687.50−6.5~23.576.2~700.21
    海南19.3~24.51 572.0~1970.0018.3~27.11 320.0~2 600.01
    下载: 导出CSV

    表  4  野生蕙兰历史分布区域与水系缓冲区关系

    Table  4.   Relationship between the historical distribution sites of wild C. faberi and the water buffer area

    离水距离/m不同时期分布区数量/个
    1368—1644年1644—1912年1912—1949年1949—1978年1978年至今
    <500184210792
    500~1 00021321814103
    1 000~2 00044872429153
    >2 00027593828134
    下载: 导出CSV

    表  5  各时期野生蕙兰分布模型

    Table  5.   Distribution model for wild C. faberi in various periods

    自然因素1644—1912年自然因素1912—1949年
    βm标准误卡方值显著性exp(βm)βm标准误卡方值显著性exp(βm)
    海拔 0.000 0.001 0.217 0.041 1.000 海拔 0.001 0.001 1.029 0.031 1.001
    坡度 −0.038 0.075 0.263 0.018 0.962 坡度 0.297 0.144 1.226 0.040 1.346
    坡向 0.006 0.002 2.914 0.009 1.006 坡向 0.001 0.002 0.084 0.007 1.001
    土壤类型 0.014 0.010 1.978 0.061 1.015 土壤类型 −0.010 0.014 0.505 0.002 0.990
    气温 0.001 0.001 0.531 0.006 1.001 气温 0.032 0.000 6.924 0.009 1.032
    降水量 0.247 0.115 4.592 0.032 1.003 降水量 0.001 0.002 0.435 0.003 1.031
    离水距离 0.000 0.001 0.217 0.081 1.000 离水距离 0.004 0.003 1.438 0.231 1.004
    自然因素 1949—1978年 自然因素 1978年至今
    βm 标准误 卡方值 显著性 exp(βm) βm 标准误 卡方值 显著性 exp(βm)
    海拔 −0.001 0.001 0.999 0.018 0.999 海拔 0.001 0.001 2.962 0.045 1.001
    坡度 0.261 0.198 0.741 0.187 1.298 坡度 −0.008 0.069 0.013 0.910 0.992
    坡向 −0.004 0.004 0.672 0.035 0.996 坡向 0.004 0.003 2.158 0.042 1.004
    土壤类型 0.014 0.019 0.564 0.003 1.014 土壤类型 −0.008 0.006 1.871 0.071 0.992
    气温 0.038 0.241 0.024 0.046 1.038 气温 0.347 0.145 5.749 0.016 1.414
    降水量 −0.001 0.002 0.435 0.003 0.999 降水量 −0.001 0.001 2.756 0.047 0.999
    离水距离 0.000 0.000 0.715 0.013 1.000 离水距离 0.000 0.000 0.022 0.042 1.000
      说明:βm为回归系数;exp(βm)为优势比。
    下载: 导出CSV
  • [1] YU Yun, CUI Yahua, HSIANG T, et al. Isolation and identification of endophytes from roots of Cymbidium goeringii and Cymbidium faberi (Orchidaceae) [J]. Nova Hedwigia, 2015, 101(1/2): 57 − 64.
    [2] 蒋楚楚, 辛静静, 夏树全, 等. 蕙兰‘红香妃’内生真菌分离鉴定及体外抑菌效应[J]. 浙江农林大学学报, 2023, 40(4): 783 − 791.

    JIANG Chuchu, XIN Jingjing, XIA Shuquan, et al. Isolation and identification of endophytic fungi from Cymbidium faberi ‘Hongxiangfei’ and their bacteriostatic effect in vitro [J]. Journal of Zhejiang A&F University, 2023, 40(4): 783 − 791.
    [3] 袁媛, 曹彬, 张咏琪, 等. 基于SRAP标记的国兰种质资源遗传多样性分析[J]. 热带作物学报, 2020, 41(5): 929 − 938.

    YUAN Yuan, CAO Bin, ZHANG Yongqi, et al. Genetic diversity analysis of Cymbidium germplasms based on SRAP markers [J]. Chinese Journal of Tropical Crops, 2020, 41(5): 929 − 938.
    [4] LIANG Hongyan, WANG Xiaoguo, CHEN Wei, et al. Spatial genetic structure of terrestrial orchid Cymbidium faberi in the Qinling Mountains revealed by microsatellite loci [J/OL]. Plant Systematics and Evolution, 2021, 307(1): 5[2023-01-13]. doi: 10.1007/s00606-020-01735-y.
    [5] FEI Yue, LIU Zhixiong. Isolation and characterization of the PISTILLATA ortholog gene from Cymbidium faberi Rolfe [J/OL]. Agronomy, 2019, 9(8): 425[2023-01-13]. doi: 10.3390/agronomy9080425.
    [6] XU Yanqin, ZHOU Junjiang, LIU Qingqing, et al. Construction and characterization of a high-quality cDNA library of Cymbidium faberi suitable for yeast one- and two-hybrid assays [J/OL]. BMC Biotechology, 2020, 20(1): 4[2-23-01-13]. doi: 10.1186/s12896-020-0599-2.
    [7] 徐婉, 林雅君, 赵荘, 等. 兰属植物资源与育种研究进展[J]. 园艺学报, 2022, 49(12): 2722 − 2742.

    XU Wan, LIN Yajun, ZHAO Zhuang, et al. Advances in genetic resources and breeding research of Cymbidium [J]. Acta Horticulturae Sinica, 2022, 49(12): 2722 − 2742.
    [8] 梁红艳, 姜效雷, 孔玉华, 等. 气候变暖背景下春兰和蕙兰的适生区分布预测[J]. 生态学报, 2018, 38(23): 8345 − 8353.

    LIANG Hongyan, JIANG Xiaolei, KONG Yuhua, et al. Prediction of the potential geographical distribution of Cymbidium goeringii and C. faberi under the background of global warming [J]. Acta Ecologica Sinica, 2018, 38(23): 8345 − 8353.
    [9] 费越, 黄承石, 贺心茹, 等. 湖北京山县野生蕙兰群落结构与种子植物区系分析[J]. 云南农业大学学报(自然科学), 2019, 34(6): 1055 − 1060.

    FEI Yue, HUANG Chengshi, HE Xinru, et al. Study on the community structure of wild Cymbidium faberi and the spermatophyte flora in Jingshan County, Hubei [J]. Journal of Yunnan Agricultural University (Natural Science), 2019, 34(6): 1055 − 1060.
    [10] 杨立. 基于物种历史分布数据与生态位模型的濒危物种分布模拟[D]. 北京: 北京林业大学, 2018.

    YANG Li. Reconstructing Distribution Change of Endangered Species Based on Species Historical Distribution Data and Ecological Niche Modeling [D]. Beijing: Beijing Forestry University, 2018.
    [11] 王志威. 药用植物云南土沉香潜在适生区及其关键气候影响因子[J]. 生态学杂志, 2022, 41(10): 1991 − 1997.

    WANG Zhiwei. The potential suitable areas and key climatic impacting factors of medicinal plant Excoecaria acerifolia Didr [J]. Chinese Journal of Ecology, 2022, 41(10): 1991 − 1997.
    [12] XIE Chunping, HUANG Boyang, JIM C Y, et al. Predicting suitable habitat for the endangered plant Cephalotaxus oliveri Mast. in China [J]. Environmental Conservation, 2022, 50(1): 50 − 57.
    [13] 王鑫, 任亦钊, 黄琴, 等. 基于GIS和Maxent模型的赤水河地区濒危植物桫椤生境适宜性评价[J]. 生态学报, 2021, 41(15): 6123 − 6133.

    WANG Xin, REN Yizhao, HUANG Qin, et al. Habitat suitability assessment of endangered plant Alsophila spinulosa in Chishui river area based on GIS and Maxent model [J]. Acta Ecologica Sinica, 2021, 41(15): 6123 − 6133.
    [14] TANG Shuangli, SONG Yaobin, ZENG Bo, et al. Potential distribution of the extremely endangered species Ostrya rehderiana (Betulaceae) in China under future climate change [J]. Environmental Science and Pollution Research, 2022, 29(5): 7782 − 7792.
    [15] 唐丽雅, 韩凯, 马明志, 等. 农作物传播研究: 以陕西汉中龙岗寺遗址新石器时代炭化植物遗存为例[J]. 第四纪研究, 2020, 40(2): 512 − 524.

    TANG Liya, HAN Kai, MA Mingzhi, et al. The dispersals of erops: s study on the remains of catonize plants in the Neolihic age at Longgangsisite in Hanzhong, Shaanxi Province [J]. Quaternary Sciences, 2020, 40(2): 512 − 524.
    [16] BIPPUS A C, FLORES J R, HYVONEN J, et al. The role of paleontological data in bryophyte systematics [J]. Journal of Experimental Botany, 2022, 73(13): 4273 − 4290.
    [17] 刘爽, 惠富平. 明清时期苜蓿的地域分布及其影响因素[J]. 草业学报, 2021, 30(2): 178 − 189.

    LIU Shuang, HUI Fuping. Distribution of alfalfa in the Ming and Qing Dynasties and the underlying driving factors [J]. Acta Prataculturae Sinica, 2021, 30(2): 178 − 189.
    [18] FENG Gang, MAO Lingfeng, BENITO B M, et al. Historical anthropogenic footprints in the distribution of threatened plants in China [J/OL]. Biological Conservation, 2017, 210[2023-01-13]. doi: 10.1016/j.biocon.2016.05.038.
    [19] 赵令妹. 中国养兰集成[M]. 北京: 中国林业出版社, 2007: 30, 383−385.

    ZHAO Lingmei. Chinese Orchid Raising Integration [M]. Beijing: China Forestry Publishing House, 2007: 30, 383 − 385.
    [20] 竺可桢. 中国近五千年来气候变迁的初步研究[J]. 考古学报, 1972(1): 15 − 38.

    ZHU Kezhen. Climatic change in China over the past 5000 years [J]. Acta Archaeologica Sinica, 1972(1): 15 − 38.
    [21] 张德二. 中国三千年气象记录总集[M]. 南京: 凤凰出版社, 2004: 1643 − 2297.

    ZHANG De’er. A Compendium of Chinese Meteorological Records of the Last 3000 Years [M]. Nanjing: Phoenix Publishing House, 2004: 1643 − 2297.
    [22] 文焕然. 历史时期中国气候变化[M]. 济南: 山东科学技术出版社, 2019: 243 − 283.

    WEN Huanran. Climate Changes in China in Historical Periods [M]. Ji’nan: Technology Press, 2019: 243 − 283.
    [23] 白雪锋, 许浩, 周燚. 基于路网中心性的近代南京城市寺庙选址特征[J]. 中国园林, 2023, 39(4): 71 − 76.

    BAI Xuefeng, XU Hao, ZHOU Yi. Characteristics of temple location in modern Nanjing based on the centrality of road network [J]. Chinese Landscape Architecture, 2023, 39(4): 71 − 76.
    [24] 白雪锋, 许浩. 近代南京钟山风景区历史景观资源时空分布与演变研究[J]. 中国园林, 2022, 38(7): 139 − 144.

    BAI Xuefeng, XU Hao. Study on temporal and spatial distribution and evolution of historical landscape resources in Zhongshan Scenic Area in modern Nanjing [J]. Chinese Landscape Architecture, 2022, 38(7): 139 − 144.
    [25] ZHANG Xinghang, ZHANG Baiping, YAO Yonghui, et al. Dynamics and climatic drivers of evergreen vegetation in the Qinling-Daba mountains of China [J/OL]. Ecological Indicators, 2022, 136: 108625[2023-01-13]. doi: 10.1016/j.ecolind.2022.108625.
    [26] CUI Jianxin, CHANG Hong, BURR G S, et al. Climatic change and the rise of the Manchu from northeast China during AD 1600−1650 [J]. Climatic Change, 2019, 156(3): 405 − 423.
    [27] 葛全胜. 中国历朝气候变化[M]. 北京: 科学出版社, 2010: 494 − 523.

    GE Quansheng. Climate Change in Chinese Dynasties [M]. Beijing: Science Press, 2010: 494 − 523.
    [28] XIAO Lingbo, FANG Xiuqi, ZHENG Jingyun et al. Famine, migration and war: comparison of climate change impacts and social responses in North China between the late Ming and late Qing dynasties [J]. Holocene, 2015, 25(6): 900 − 910.
    [29] WU J. Population growth in the Jiangnan area in the Qing Dynasty: an analysis [J]. Chinese Journal of Population Science, 1989, 1(2): 235 − 249.
    [30] 徐波. 近400年来中国西部社会变迁与生态环境[M]. 北京: 中国社会科学出版社, 2014: 280, 410 − 420.

    XU Bo. Social Changes and Ecological Environment in Western China in the Past 400 Years [M]. Beijing: China Social Sciences Press, 2014: 280, 410 − 420.
    [31] 李娜, 包平. 基于数字人文的明至民国山西物产分布研究[J]. 中国科技史杂志, 2022, 43(2): 204 − 217.

    LI Na, BAO Ping. The Chinese journal for the history of science and technology [J]. The Chinese Journal for the History of Science, 2022, 43(2): 204 − 217.
    [32] 刘京晶, 斯金平. 黄精本草考证与启迪[J]. 中国中药杂志, 2018, 43(3): 631 − 636.

    LIU Jingjing, SI Jinping. Herbal textual research on Chinese medicine Huangjing (Polygonati rhizoma) and some enlightenments [J]. China Journal of Chinese Materia Medica, 2018, 43(3): 631 − 636.
    [33] LIU Hong, FENG Changlin, CHEN Baoshan, et al. Overcoming extreme weather challenges: successful but variable assisted colonization of wild orchids in southwestern China [J]. Biological Conservation, 2012, 150(1): 68 − 75.
    [34] CHEN Feng, MARTIN H, ZHAO Xiaoen, et al. Abnormally low precipitation-induced ecological imbalance contributed to the fall of the Ming Dynasty: new evidence from tree rings [J/OL]. Climatic Change, 2022, 173(1): 13[2023-01-13]. doi: 10.1007/s10584-022-03406-y.
    [35] HAN Jianfu, YANG Yuda. The socioeconomic effects of extreme drought events in northern China on the Ming dynasty in the late fifteenth century [J/OL]. Climatic Change, 2021, 164[2023-01-11]. doi: 10.1007/s10584-021-02972-x.
    [36] BI Shouben, BI Shengjie, CHEN Changchun et al. Analysis of the spatiotemporal characteristics of drought disasters in north China during the Ming and Qing dynasties [J]. Geomatics,Natural Hazards and Risk, 2020, 11(1): 2509 − 2539.
    [37] 孟万忠. 近六百年华北地区霜雪灾害与寒冷气候事件研究[M]. 北京: 气象出版社, 2022: 375 − 380.

    MENG Wanzhong. Study of Frost and Snow Disasters and Cold Weather Events in North China in the Last 600 Years [M]. Beijing: China Meteorological Press, 2022: 375 − 380.
    [38] HAO Zhixin, YU Yingzhuo, GE Quansheng, et al. Reconstruction of high-resolution climate data over China from rainfall and snowfall records in the Qing Dynasty [J/OL]. Wiley Interdisciplinary Reviews: Climate Change, 2018, 9(3): e517[2023-01-13]. doi: 10.1002/wcc.517.
    [39] 周康, 张哲, 宋希强, 等. 海南主要陆域自然保护地兰科植物多样性与生境的关联分析[J]. 广西植物, 2022, 42(8): 1337 − 1356.

    ZHOU Kang, ZHANG Zhe, SONG Xiqiang, et al. Association analysis of orchid diversity and habitat in main land nature reserves in Hainan [J]. Guihaia, 2022, 42(8): 1337 − 1356.
    [40] 刘飞虎, 黄浪, 刘环, 等. 罗霄山脉兰科植物区系及其生态地理学特征[J]. 植物科学学报, 2020, 38(4): 467 − 475.

    LIU Feihu, HUANG Lang, LIU Huan, et al. Flora of Orchidaceae in Luoxiao Mountains and its ecogeographical characteristics [J]. Plant Science Journal, 2020, 38(4): 467 − 475.
    [41] 张殷波, 杜昊东, 金效华, 等. 中国野生兰科植物物种多样性与地理分布[J]. 科学通报, 2015, 60(2): 179 − 188.

    ZHANG Yinbo, DU Haodong, JIN Xiaohua, et al. Species diversity and geographic distribution of wild Orchidaceae in China [J]. Chinese Science Bulletin, 2015, 60(2): 179 − 188.
    [42] 张一林, 李功权, 刘颖. 长江流域濒危兰科植物的空间分布[J]. 浙江农林大学学报, 2022, 39(4): 750 − 757.

    ZHANG Yilin, LI Gongquan, LIU Ying. Spatial distribution of endangered orchids in the Yangtze River Watershed [J]. Journal of Zhejiang A&F University, 2022, 39(4): 750 − 757.
    [43] 陈定超, 李卫朋, 蔡晓雨, 等. 四川省森林资源动态变化及其影响因素分析[J]. 地球环境学报, 2021, 12(4): 425 − 435.

    CHEN Dingchao, LI Weipeng, CAI Xiaoyu, et al. Analysis on the dynamic changes and their influencing factors of forest resources in Sichuan Province [J]. Journal of Earth Environment, 2021, 12(4): 425 − 435.
    [44] 黄婧, 孙美, 余文峰, 等. 我国网络平台本土兰科植物贸易状况[J]. 生物多样性, 2022, 30(4): 78 − 87.

    HUANG Jing, SUN Mei, YU Wenfeng, et al. Trade of native orchids on Chinese online platforms [J]. Biodiversity Science, 2022, 30(4): 78 − 87.
  • [1] 林洲羽, 韩仁杰, 李健.  中国国家森林城市时空演变历程、特征及动因分析 . 浙江农林大学学报, 2024, 41(1): 183-191. doi: 10.11833/j.issn.2095-0756.20230248
    [2] 陈棋, 张超, 田湘云, 史小蓉, 张玉薇, 王妍.  云南省2000—2020年石漠化时空演变分析 . 浙江农林大学学报, 2023, 40(2): 417-426. doi: 10.11833/j.issn.2095-0756.20210806
    [3] 许浩, 李蔚, 刘伟, 王成康.  南京市域绿地格局时空演变特征及其影响因素 . 浙江农林大学学报, 2023, 40(2): 407-416. doi: 10.11833/j.issn.2095-0756.20220332
    [4] 张成虎, 刘菊, 胡宝清, 陈秀芬.  广西西江流域水源涵养服务空间格局及其影响因素 . 浙江农林大学学报, 2022, 39(5): 1104-1113. doi: 10.11833/j.issn.2095-0756.20210616
    [5] 何韦均, 杨锦昌, 郝建, 董明亮, 余纽, 覃国铭, 李荣生.  米老排人工林节子时空分布特征及变色规律 . 浙江农林大学学报, 2022, 39(4): 814-820. doi: 10.11833/j.issn.2095-0756.20210517
    [6] 何思笑, 张建国.  浙江省森林康养品牌资源空间分布特征及其影响因素 . 浙江农林大学学报, 2022, 39(1): 180-189. doi: 10.11833/j.issn.2095-0756.20210103
    [7] 黄晓芬, 白鸥.  浙江省森林乡村空间分布特征及其影响因素 . 浙江农林大学学报, 2022, 39(4): 884-893. doi: 10.11833/j.issn.2095-0756.20210558
    [8] 王越, 栾亚宁, 王丹, 戴伟.  油松林土壤有机碳储量变化及其影响因素 . 浙江农林大学学报, 2021, 38(5): 1023-1032. doi: 10.11833/j.issn.2095-0756.20210390
    [9] 葛扬, 张建国.  浙江省森林特色小镇空间分布特征及影响因素分析 . 浙江农林大学学报, 2020, 37(2): 374-381. doi: 10.11833/j.issn.2095-0756.2020.02.024
    [10] 李政欣, 包亚芳, 孙治.  浙江省3A级景区村庄空间分布特征及其影响因素 . 浙江农林大学学报, 2019, 36(6): 1096-1106. doi: 10.11833/j.issn.2095-0756.2019.06.006
    [11] 张素, 梁鹏, 吴胜春, 张进, 曹志洪.  节能灯产地竹林土壤重金属污染的时空分布特征 . 浙江农林大学学报, 2017, 34(3): 484-490. doi: 10.11833/j.issn.2095-0756.2017.03.014
    [12] 李洪吉, 蔡先锋, 袁佳丽, 曾莹莹, 于晓鹏, 温国胜.  毛竹快速生长期光合固碳特征及其与影响因素的关系 . 浙江农林大学学报, 2016, 33(1): 11-16. doi: 10.11833/j.issn.2095-0756.2016.01.002
    [13] 蔡碧凡, 陶卓民, 张明如, 李涛, 陆森宏.  天目山景区客流季节性波动特征及影响因素 . 浙江农林大学学报, 2015, 32(6): 947-957. doi: 10.11833/j.issn.2095-0756.2015.06.019
    [14] 高诚, 张超, 余树全.  2005-2013年长江三角洲地区对流层二氧化氮时空变化特征 . 浙江农林大学学报, 2015, 32(5): 691-700. doi: 10.11833/j.issn.2095-0756.2015.05.006
    [15] 王国新, 杨晓娜, 苏飞.  临安市山地气候旅游资源时空分布特征 . 浙江农林大学学报, 2015, 32(2): 298-307. doi: 10.11833/j.issn.2095-0756.2015.02.019
    [16] 牛晓栋, 江洪, 王帆.  天目山森林生态系统大气水汽稳定同位素组成的影响因素 . 浙江农林大学学报, 2015, 32(3): 327-334. doi: 10.11833/j.issn.2095-0756.2015.03.001
    [17] 吕琨珑, 饶良懿, 李菲菲, 李会杰, 朱梦洵, 朱振亚, 周建.  中国森林粗木质残体储量及其影响因素 . 浙江农林大学学报, 2013, 30(1): 114-122. doi: 10.11833/j.issn.2095-0756.2013.01.017
    [18] 张佳佳, 傅伟军, 杜群, 张国江, 姜培坤.  浙江省森林凋落物碳密度空间分布的影响因素 . 浙江农林大学学报, 2013, 30(6): 814-820. doi: 10.11833/j.issn.2095-0756.2013.06.003
    [19] 李德会, 李贤伟, 王巧, 荣丽, 杨渺, 刘朔.  林木根系呼吸影响因素及根系呼吸对全球变化的响应 . 浙江农林大学学报, 2007, 24(2): 231-238.
    [20] 文桂峰, 孙芳利, 于红卫.  苦槠木染色深度影响因素初探 . 浙江农林大学学报, 2004, 21(1): 6-9.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20220766

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2023/6/1261

图(3) / 表(6)
计量
  • 文章访问数:  494
  • HTML全文浏览量:  142
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-13
  • 修回日期:  2023-08-18
  • 录用日期:  2023-08-23
  • 网络出版日期:  2023-11-23
  • 刊出日期:  2023-11-23

历史地理信息系统视角下野生蕙兰时空分布及其影响因素

doi: 10.11833/j.issn.2095-0756.20220766
    基金项目:  国家自然科学基金资助项目(31101202)
    作者简介:

    焦鑫宇(ORCID: 0009-0007-2877-4488),从事风景园林植物研究。E-mail: 942615293@qq.com

    通信作者: 刘志雄(ORCID: 0000-0001-6536-4639),教授,博士,从事风景园林植物研究。E-mail: zxliu@yangtzeu.edu.cn
  • 中图分类号: S682.31

摘要:   目的  明晰野生蕙兰Cymbidium faberi的分布与演变,有助于探究中国蕙兰自然种群的演替规律,为当代蕙兰自然种群的保育工作提供科学依据。  方法  基于ArcGIS平台,构建野生蕙兰历史地理信息数据库,对1368年以来野生蕙兰的时空分布及其影响因素进行研究。  结果  ①自1368年以来,野生蕙兰主要分布于中国秦岭—淮河以南的区域,分布中心由28.585°N,113.503°E逐渐向29.365°N,112.675°E迁移。1368—1644年主要聚集于江南、广东、福建和四川、云南交界处。1644—1912年在四川、云南一带聚集程度减弱; 1949—1978年四川、重庆地区聚集程度增强; 1978年至今,野生蕙兰呈多点聚集,湖北、陕西等地成为新的聚集区;②气温、降水量、土壤类型、地形地貌、水源缓冲距离等自然因素直接作用于野生蕙兰的分布,其主要分布于年平均气温为15~25 ℃,pH为5.3~6.2的温热铁铝土区及海拔为620~980 m、坡度为19.9°~25.0°的南坡或东南坡,且离水距离为1 000~2 000 m内的区域。③农业垦殖以及工业发展等人为活动间接影响野生蕙兰的分布与迁移。  结论  野生蕙兰主要聚集于中国南方地区,并趋于向高纬度地区迁移,其分布受气温和降水量影响显著,人为活动间接导致了其分布数量的减少,应对江南、广东、福建、云南、贵州、陕西、湖北等典型区域的野生蕙兰适生区进行营建或扩建,以加强对野生蕙兰的保护。图3表5参44

English Abstract

焦鑫宇, 龙梅, 刘志雄. 历史地理信息系统视角下野生蕙兰时空分布及其影响因素[J]. 浙江农林大学学报, 2023, 40(6): 1261-1272. DOI: 10.11833/j.issn.2095-0756.20220766
引用本文: 焦鑫宇, 龙梅, 刘志雄. 历史地理信息系统视角下野生蕙兰时空分布及其影响因素[J]. 浙江农林大学学报, 2023, 40(6): 1261-1272. DOI: 10.11833/j.issn.2095-0756.20220766
PANShi-xiu, MEN Xiu-xiang, FENG Jin-chao, et al. A review of studies on habitat selection by small and solitary forest ruminants[J]. Journal of Zhejiang A&F University, 2007, 24(3): 357-362.
Citation: JIAO Xinyu, LONG Mei, LIU Zhixiong. Spatiotemporal distribution and influencing factors of wild Cymbidium faberi from the perspective of historical geographic information system[J]. Journal of Zhejiang A&F University, 2023, 40(6): 1261-1272. DOI: 10.11833/j.issn.2095-0756.20220766
  • 蕙兰Cymbidium faberi是中国传统名花之一,栽培历史悠久。近年来,由于自然环境改变和人类活动干扰等原因,蕙兰的自然种群数量在不断减少,已被列为《国家重点保护野生植物名录》二级保护植物。对野生蕙兰的历史分布格局及影响因素进行研究,有助于了解蕙兰自然种群的演变规律及生长环境特点,引导相应保育措施的制定,遏制或减缓野生蕙兰的濒危进程,为蕙兰种质资源的保育工作提供科学依据。

    目前,对野生蕙兰的研究集中在根部内生真菌的生态学特性及共生作用[12]、遗传多样性[34]、基因功能的解析及验证[56]、野外种质资源调查[7]及潜在分布[8]等方面。其中,野生蕙兰的资源分布研究时段集中于1949年以后,而对历史数据研究较少;研究角度多以资源的性状等本体属性为主,空间信息属性常被忽略;研究区域集中于单一区域[9],系统性构建全国野生蕙兰种质资源分布的研究相对匮乏。地理信息技术的发展,为历史数据的量化、野生植物资源信息化提供了可能[10]。地理信息系统在预测物种分布、可视化物种扩散迁移路径模拟[1112]及物种生态适宜性评价[1314]等研究中发挥了重要作用。关于植物时空分布长期演化的历史,前人多借助孢粉化石[1516]。对近几百年内植物种群的动态变化,前人则多借鉴方志文献[1718]。自1368年以来,诗文、方志、游记出现大量关于野生蕙兰的记载,为蕙兰自然种群的历史分布研究提供可靠的数据来源。基于此,本研究在梳理野生蕙兰空间地理信息分布、构建野生蕙兰历史地理信息数据库的基础上,总结其时空分布特征、分布格局及迁移方向,探讨蕙兰的自然种群分布区域与自然环境变化的关系,旨在为中国野生蕙兰种群的保育提供科学依据。

    • 本研究所涉及的野生蕙兰历史分布数据主要来源于各历史时期的方志、植物志以及林史资料、专著、中国数字植物标本馆(https://www.cvh.ac.cn)、中国植物图像库(http://ppbc.iplant.cn/)等。①方志:梳理1368—1912年的《八闽通志》(2017年福建人民出版社出版)和《浙江通志》(1991年上海古籍出版社出版)等110余本方志;②植物志:《中国植物志》(2016年科学出版社出版)和《农业野生植物资源调查与保护系列丛书》(2015年中国农业出版社出版) 等10余本植物志;③专著:《兰蕙纵横》(2018年中国林业出版社出版)和《夏兰》(2004年杭州出版社出版)等20余本专著。本研究以南京林业大学白雪锋等提出的从方志中提取历史空间信息的方法为参考依据,以“应采尽采”为原则,共搜集到980处野生蕙兰资源分布区域,数据空间坐标定位方法主要分为直接定位法和间接定位法2种。

    • 从中国植物数字标本馆、中国植物图像库以及相关调查资料中,直接对野生蕙兰采集点位置的经纬度进行记录;又如《中国养兰集成》[19]第8章第1节中“兰花的引种”中详述记录了野生蕙兰具体的采集位置。可采用直接定位采集的野生蕙兰资源集中于1949年以后,数量为560处,占总数的57.1%。

    • 间接定位法是指无法通过现有研究成果进行空间定位,需要通过文献史料中的信息进行定位的方法。通过对各方志的山川卷、物产卷等卷中“蕙”“九节兰”“夏兰”“蝉兰”等异名进行查阅,抽取地理位置的相关描述。主要可分为方位关系、拓扑关系和距离关系3种类型。①方位关系。方位指地理空间中的东西南北(基本方位)、上下左右(相对方位)等概念。相关文献史料中常用山水等地名作为参考点,描述野生蕙兰的所处位置。如《广东通志·卷十》山川“合兰洲”中记录道:“三门海中与龙穴相对,上多兰蕙,有二石并峙潮至此则合”;《陕西通志·卷三》山川“石瓮谷”中记录道:“东绣岭左谷中尽植兰蕙亦谓之芝兰谷”。②拓扑关系。拓扑关系是指风景资源之间的空间结构关系,包括拓扑邻接、拓扑关联和拓扑包含等类型。相关史料中多以“$在 \cdots \cdots 之 $内”“$与 \cdots \cdots 相 $邻”等形式出现,如《贵州通志·卷十五》记录道:“贵阳府境山谷中亦有蕙”;《兰蕙同心录》载“赤蕙永春梅产富阳砂石山中”。③距离关系。距离关系包含定性和定量2种方法。定性距离通常描述为“$在 \cdots \cdots 附 $近”“$在 \cdots \cdots 之 $间”。定量距离则描述为“城东八里”“西约百步”等。定性距离可参考方位关系和拓扑关系的原则,结合史料文本进行定位。而定量距离则可换算后直接定位。1644—1912年每里合576 m。《广东通志·卷十三》载:“阳山县香山在城东十里一名香冈山上,多蕙草”;《广西通志·卷十四》山川卷“东香山”中载:“东香山在州西北四十里,山势高险,芳兰异蕙四时有焉”。

    • 本研究中,1970—2020年气候数据来源于WorldClim (https://worldclim.org),1901—1970年的数据来源于CRU TS (https://crudata.uea.ac.uk/cru/data/hrg),1901年之前的气候数据来源于相关文献[2022]。

    • 土壤数据(包括土壤类型、土壤酸碱度等)来源于中国科学院南京土壤研究所(www.issas.ac.cn)。

    • 本研究数字高程模型(DEM)数据来源于地理空间数据云(www.gscloud.cn),空间分辨率为30 m。

    • 本研究中的河网数据是基于空间分辨率为30 m的DEM数据,借助ArcGIS中的“Spatial Analyst”工具对其进行河网提取,数据集包括中国所有河网和流域面积大于100 km²的子流域。

    • 基于ArcGIS 10.8.2平台,借助核密度分析[23]及最近邻指数(R)[24],分析不同时期野生蕙兰的分布区域,当R<1时,说明要素呈聚集性分布,当R>1时,说明要素呈均匀分布;借助标准差椭圆[25],探究自1368年以来野生蕙兰的分布重心与迁移方向,椭圆的长短半轴差距越大,则野生蕙兰分布格局的方向性越明显。

    • 基于SPSS Statistics数据编辑器,运用逻辑(Logistic)回归方法,建立野生蕙兰的历史分布模型,探究野生蕙兰分布与自然环境之间的关系。方程如下[24]:Logit(P)=β0 1x12x23x3$+\cdots + $βmXm。其中:P为野生蕙兰存在的概率,β0为回归截距,代表直线的起点;βm为回归系数,表示在其他所有自变量保持不变的情况下,自变量xmP的影响程度;xm表示影响野生蕙兰历史分布的自然因子;m表示自然因子数量(表1)。

      表 1  野生蕙兰历史分布模型自变量

      Table 1.  Historical distribution model independent variables of C. faberi

      自然因子描述数据来源及处理工具自然因子描述数据来源及处理工具
      海拔 地形分析因子 DEM数据 气温 年均气温 BIO1及CRU TStemp数据集
      坡度 地表起伏形态 坡度工具 降水量 年均降水量 BIO12及CRU TSpre数据集
      坡向 坡向 坡向工具 水源距离 分布点至水系的距离 河网数据
      土壤类型 分布区域的土壤类型 土壤数据
    • 以不同时期方志撰写的年代为划分依据,以每个时期的结束时间作为时间断面,将中国野生蕙兰时空演变特征划分为1368—1644、1644—1912、1912—1949、1949—1978年以及1978年至今共5个时期。

    • 总体上看,野生蕙兰集中分布于南方地区,特别是东南沿海区域及西南地区。1368—1644年所载野生蕙兰分布区域110处,R为0.80,表现为聚集分布,主要的聚集区域为江南、福建、广东和四川、云南交界处,其中江南为高密度区。1644—1912年分布区域多达220处,R为0.58,江南、广东、福建地区聚集增强,四川、云南交界处一带的聚集程度减弱;华北中部、东北南部有少量的野生蕙兰分布点。1912—1949年所载野生蕙兰分布区域共90处,R为0.72,表现为聚集分布;聚集程度较1644—1912年减弱,但江南地区仍为高密度聚集区,而福建、广东地区的聚集程度减弱,香港有少量分布。1949—1978年所载野生蕙兰的分布区域仅78处,R为0.82,江南地区仍为野生蕙兰的主要聚集区,四川、重庆、贵州一带的聚集程度持续增强。1978至今所载野生蕙兰分布区域共482处,R为0.55,出现明显的多点聚集分布态势,江南、华中、云贵高原等地为主要聚集区,北京、天津、河北和黄河中游一带有少量分布。

    • 从野生蕙兰分布中心的偏移情况来看(表2):1368—1912年,分布中心由湖南省岳阳市逐渐向江西省九江市迁移,椭圆短半轴变长,向心力逐渐减弱。1912—1949年,分布中心逐渐向江西省宜春市北部偏移,椭圆长短半轴的差值增大,扁率变大,说明1912—1949年野生蕙兰向西南方向偏移的趋势更为显著;1949—1978年,野生蕙兰的分布中心点逐渐由江西省宜春市北部向湖北省荆州市南部迁移;1978年至今,分布中心点迁移变化不大。总体来看,从1368年至今,野生蕙兰分布中心整体上呈现向高纬度地区迁移的趋势,分布的方向性由强变弱,分布范围进一步扩大,离散度先降低后增高,空间聚合度呈下降趋势。

      表 2  1368年以来野生蕙兰资源分布标准差椭圆分析

      Table 2.  Analysis for the standard deviational ellipse of the distribution sites of wild C. faberi resources since the year of 1368

      年份椭圆周长/km椭圆面积/km²椭圆中心点(N)椭圆中心点(E)长半轴/km短半轴/km椭圆的方向角度/(°)
      1368—164472.088 167208.792 73028.584 810°113.503 226°16.941 3993.924 42791.145 131
      1644—191241.965 962120.646 29829.519 570°116.191 821°8.548 6084.492 69279.365 494
      1912—194946.740 223112.516 14328.872 057°114.902 188°10.549 9903.395 45680.062 387
      1949—197842.521 332116.530 01829.564 576°112.446 761°8.944 9404.147 20888.409 640
      1978年至今39.360 687105.286 12529.364 727°112.674 798°8.056 3934.160 24678.474 936
    • 1368—1644年总体干冷,但江南、福建、江西、广东、云南洱海及贵州却温暖湿润[2627],是这一时期野生蕙兰资源分布的聚集地区;较为干旱的西北地区(如甘肃南部)及川北地区分布较少。结合不同时期气候因子作用下野生蕙兰的分布情况来看(表3):1644—1912年江南、福建、江西、广东等地区气温较低,但降水充沛[2728],野生蕙兰分布区域较多;四川、云南地区年平均气温较低,降水少,聚集程度减弱。1912—1949年,除四川、陕西、安徽外,整体气温上升,江南地区仍为重要聚集区域;云南、贵州地区平均气温相较于1644—1912年上升了0.3~0.6 ℃,聚集程度较1644—1912年增强。总体上看,1912—1949年气候温暖湿润,西南地区相较于1644—1912年有回温现象,降水量有所增加,野生蕙兰资源分布中心又转向西南方向偏移。1949—1978年,江南、四川、重庆地区的年均气温为10.1~17.9 ℃,年降水量约687.2~1 480.6 mm,野生蕙兰的聚集程度增强。陕南地区的降水量增加,分布数量有所增多。1978年至今,中国气候明显变暖。江南、广东、福建等地区的年降水量为1 300.0~1 950.0 mm;华中地区年降水量增多至836.9~1 766.8 mm。野生蕙兰呈现多点聚集分布,并逐渐向纬度更高的华中、陕南地区扩展。

      表 3  不同时期气候因子与野生蕙兰分布情况

      Table 3.  Distribution sites of wild C. faberi under the effect of climatic factors in various periods

      分布区1644—1912年1912—1949年
      气温/℃降水量/mm分布区数量/个气温/℃降水量/mm分布区数量/个
      江苏13.3~15.5850.0~983.63413.0~16.2807.0~901.09
      浙江13.6~16.7750.0~983.66213.6~19.0901.8~980.031
      安徽13.7~16.1750.0~980.21912.9~15.3807.7~980.37
      上海14.9~15.8810.0~820.0511.2~13.4807.4~901.81
      福建15.3~21.0800.0~850.02113.0~19.8901.8~980.44
      广东17.8~23.2750.0~900.0816.2~22.8901.8~980.45
      广西16.3~22.8600.0~897.0316.2~22.8567.7~925.61
      云南7.1~23.2295.0~950.0107.8~24.8308.2~980.415
      四川−1.6~18.351.0~450.09−0.8~18.580.3~901.86
      贵州14.6~18.1413.0~802.0714.8~18.4697.4~920.62
      湖南15.2~17.4600.0~950.0715.4~17.3901.8~980.42
      湖北11.3~16.2250.0~983.6510.4~16.3697.4~980.42
      江西15.3~19.1750.0~930.0615.2~18.9901.8~980.42
      重庆12.1~18.2250.0~700.0016.2~19.6807.5~901.80
      陕西6.3~13.3169.0~450.055.7~13.0567.7~901.81
      甘肃−4.8~11.851.0~169.03−4.2~9.480.2~567.80
      台湾11.1~20.3897.0~983.029.4~19.6901.8~980.40
      山东10.4~14.1450.0~950.025.7~13.0807.4~901.80
      河南11.1~15.3350.0.0~897.049.4~16.2697.4~901.81
      河北2.6~13.7543.0~820.022.4~13.0807.5~890.50
      山西4.4~12.5100.0~450.012.4~9.4697.4~901.80
      北京1.3~11.4450.0~700.022.4~13.0901.8~980.40
      吉林0.3~6.2680.0~950.01−0.8~5.7807.5~980.40
      香港21.8~24.3802.0~897.0216.2~19.6901.8~980.40
      西藏−4.1~19.551.0~450.00−9.4~19.450.0~550.00
      海南19.1~24.3295.7~413.6019.6~24.8450.0~650.01

      表 3  (续)

      Table 3.  Continued

      分布区1949—1978年1978年至今
      气温/℃降水量/mm分布区数量/个气温/℃降水量/mm分布区数量/个
      江苏13.0~16.0687.5~1 294.5214.1~16.7982.5~1 320.015
      浙江13.0~19.31 294.5~1 670.01614.6~18.31 294.5~1 701.071
      安徽13.0~16.0687.5~1 572.0514.1~18.3690.2~1 639.239
      上海15.9~17.2982.3~1 294.5015.9~16.1983.5~1 310.41
      福建16.0~20.3982.3~1 572.1615.7~21.41 024.2~1 653.011
      广东16.0~24.51 294.5~2 070.9218.3~24.71 350.0~2 600.021
      广西16.3~24.5982.3~1 971.0218.3~24.6723.9~2 983.812
      云南1.84~24.5687.5~1 572.132.8~24.6781.8~2 118.217
      四川−1.5~19.3444.6~1 294.513−3.4~18.9601.2~1 294.514
      贵州9.1~19.4687.5~1 082.339.9~18.4687.5~1 449.784
      湖南13.0~19.3982.3~1 374.2014.2~20.71 150.0~2 100.025
      湖北9.1~16.7687.5~1 380.619.9~18.4860.5~2 100.084
      江西16.0~20.31 294.5~1 970.9515.6~19.81 143.2~1 935.019
      重庆13.0~19.3982.3~1 572.1514.2~19.41 000.0~1 572.18
      陕西6.2~13.0444.6~982.357.1~14.2460.2~904.515
      甘肃−4.8~9.1187.8~687.51−6.5~9.9136.6~734.96
      台湾9.1~20.61 294.5~2 800.509.4~23.51 294.5~2 760.02
      山东9.1~16.0687.5~982.309.5~16.5565.5~982.37
      河南13.0~16.3450.6~1 094.5813.5~17.3500.4~1 100.522
      河北−1.5~14.1444.6~687.50−0.3~14.2503.4~687.51
      山西1.8~10.9444.6~687.502.8~14.2567.2~864.92
      北京5.3~13.0444.6~687.516.1~14.2374.6~687.53
      吉林−1.5~9.1350.8~982.30−0.3~9.9380.5~703.20
      香港16.0~24.51 294.5~2 070.9018.3~24.71 350.0~2 600.01
      西藏−10.5~19.385.0~687.50−6.5~23.576.2~700.21
      海南19.3~24.51 572.0~1970.0018.3~27.11 320.0~2 600.01
    • 野生蕙兰分布区域的土壤类型主要为温热铁铝土和人为水成土。温热铁铝土含有氧化铁和氧化铝,具有富铁作用;人为水成土肥力较高、微生物酶活性较强。野生蕙兰分布区域的土壤pH大多数为5.3~6.2(图1A~B)。

      图  1  野生蕙兰在不同土壤中的分布区数量

      Figure 1.  Numbers for wild C. faberi in different soil types

    • 海拔、坡度和坡向等影响着野生蕙兰的分布。各时期的野生蕙兰主要分布在海拔620~980 m的区域 (图2A)。叠加统计分析后发现:野生蕙兰大多数生长在19.5°~25.0°的斜坡上(图2B)。野生蕙兰的分布以南坡居多,北坡最少(图3)。

      图  2  野生蕙兰在不同海拔和坡度下的分布区数量

      Figure 2.  Numbers of wild C. faberi distribution sites in the different altitudes and slopes

      图  3  野生蕙兰在不同坡向的分布区数量

      Figure 3.  Numbers of wild C. faberi distribution sites in the different slope aspects

    • 利用ArcGIS建立水系缓冲区,并结合野生蕙兰的分布情况(表4)进行分析可知:自1368年以来,野生蕙兰在距水系1 000~2 000 m的缓冲区分布相对集中。江南地区作为5个历史时期的野生蕙兰分布聚集点之一,北侧河网相对密集,野生蕙兰距离水源距离适中,分布相对集中。

      表 4  野生蕙兰历史分布区域与水系缓冲区关系

      Table 4.  Relationship between the historical distribution sites of wild C. faberi and the water buffer area

      离水距离/m不同时期分布区数量/个
      1368—1644年1644—1912年1912—1949年1949—1978年1978年至今
      <500184210792
      500~1 00021321814103
      1 000~2 00044872429153
      >2 00027593828134
    • 对1368年以来的野生蕙兰分布区数量与自然因素各因子以及离水距离数据建立二元Logistic回归模型,探究其影响因子(表5)。

      表 5  各时期野生蕙兰分布模型

      Table 5.  Distribution model for wild C. faberi in various periods

      自然因素1644—1912年自然因素1912—1949年
      βm标准误卡方值显著性exp(βm)βm标准误卡方值显著性exp(βm)
      海拔 0.000 0.001 0.217 0.041 1.000 海拔 0.001 0.001 1.029 0.031 1.001
      坡度 −0.038 0.075 0.263 0.018 0.962 坡度 0.297 0.144 1.226 0.040 1.346
      坡向 0.006 0.002 2.914 0.009 1.006 坡向 0.001 0.002 0.084 0.007 1.001
      土壤类型 0.014 0.010 1.978 0.061 1.015 土壤类型 −0.010 0.014 0.505 0.002 0.990
      气温 0.001 0.001 0.531 0.006 1.001 气温 0.032 0.000 6.924 0.009 1.032
      降水量 0.247 0.115 4.592 0.032 1.003 降水量 0.001 0.002 0.435 0.003 1.031
      离水距离 0.000 0.001 0.217 0.081 1.000 离水距离 0.004 0.003 1.438 0.231 1.004
      自然因素 1949—1978年 自然因素 1978年至今
      βm 标准误 卡方值 显著性 exp(βm) βm 标准误 卡方值 显著性 exp(βm)
      海拔 −0.001 0.001 0.999 0.018 0.999 海拔 0.001 0.001 2.962 0.045 1.001
      坡度 0.261 0.198 0.741 0.187 1.298 坡度 −0.008 0.069 0.013 0.910 0.992
      坡向 −0.004 0.004 0.672 0.035 0.996 坡向 0.004 0.003 2.158 0.042 1.004
      土壤类型 0.014 0.019 0.564 0.003 1.014 土壤类型 −0.008 0.006 1.871 0.071 0.992
      气温 0.038 0.241 0.024 0.046 1.038 气温 0.347 0.145 5.749 0.016 1.414
      降水量 −0.001 0.002 0.435 0.003 0.999 降水量 −0.001 0.001 2.756 0.047 0.999
      离水距离 0.000 0.000 0.715 0.013 1.000 离水距离 0.000 0.000 0.022 0.042 1.000
        说明:βm为回归系数;exp(βm)为优势比。

      7个自变量中,海拔、坡向、土壤类型、气温、降水量、离水距离均通过检验(P<0.05),表示野生蕙兰的分布区随以上自然因子的改变而存在差异。坡度等级在模型中的影响力较小,除1644—1912年之外,地势起伏变化对野生蕙兰的分布无显著影响。进一步分析模型中自变量的回归系数βm和优势比exp(βm)可知:降水量和气温是影响野生蕙兰分布变化的最大诱因。

    • 1368—1912年,因“劝奖垦荒”和“改土归流”政策激励,贵州西部、四川南部、云南南部的山地边缘成为垦荒的重点区域。四川、云南、贵州人口的激增加大了对垦殖的刚性需求[29],导致四川、云南、贵州等地的森林资源被严重破坏,该区域野生蕙兰因生境破坏,分布锐减。1912—1949年,因垦殖破坏和工业布局西迁,四川、云南、贵州3省的森林覆盖率分别由40.0%、52.7%和21.0%下降至20.0%、40.0%和9.0%[30],野生蕙兰适生区进一步减少。1949—1978年,由于土地开垦范围的进一步扩大,使四川省和云南省的森林覆盖率分别减少了8.0%和13.0%[30],野生蕙兰的适生区面积进一步缩小。1978年至今,由于经济的发展和人们对生态环境保护的增强,四川、云南、贵州地区的森林资源逐渐恢复,至2020年,四川、云南、贵州森林覆盖率分别达40.0%、65.0%和60.0%,野生蕙兰的分布区数量增多。

    • 前人的研究结果表明[3132]:借助方志分析植物历史分布变迁是一种有效的手段,但受到古代交通条件和科学技术的限制,可能会存在少数记载盲区。1949年后,特别是1978年后中国经济和科技的高速发展,林史资料更加丰富,物种信息库更加完善,野生蕙兰的记载也更加科学,保障了数据采集的科学性。

    • 气温和降水量对各时期野生蕙兰的分布均造成影响,但不同时期的影响程度不同。本研究发现:1368—1912年,气温无显著变化,但野生蕙兰的时空分布具有一定差异。1368—1644年,野生蕙兰在陕西、河南及华北诸地的分布极少,而1645—1912年野生蕙兰分布点在以上区域明显增多,并逐渐向华北中部迁移,这种时空分布差异可能是由降水量差异导致的。前人研究表明:最干月降水量会限制其分布。极端的干旱不仅会抑制兰科Orchidaceae植物根的活性,还会减少其开花的数量,降低传粉效率[8, 33]。1470—1644年整体干旱,特别是陕西、河南及华北诸地长期处于低降水状态,平均1.8 a发生1次旱灾[27, 3436],而1644—1912年较为湿润,东亚季风增强,年际降水量增多,华北诸地雨泽无缺[3738]。由于蕙兰适宜生长在湿润的地区[19],因此降水量的增多能够进一步促进其生长繁殖。此外,本研究发现:1368—1912年,野生蕙兰的分布均呈现出“东南多而西北少”的分布格局,中国东南地区降水多,西北地区降水少,更加佐证了降水量影响了1368—1912年野生蕙兰分布的结论。前人研究表明:全球变暖对野生蕙兰适生区的扩张具有一定的积极作用[8]。本研究同样发现:气温升高促进了野生蕙兰分布区数量的增多,并且是导致1912年后野生蕙兰分布变化的主要原因。1912—1949年整体湿润,中国西南地区和华南地区平均气温升高,云南平均气温较1644—1912年上升了约0.6 ℃,该地区野生蕙兰分布区数量增多;而四川、陕西和安徽等地的平均气温较1644—1912年分别下降了约0.4、0.3和0.8 ℃,使这些地区野生蕙兰分布区数量减少。1978年至今,华北、西南、湖南和湖北的平均气温持续升高,陕西、云南、贵州、湖北等的气温相较于1978年前上升,这些区域野生蕙兰分布区明显增加,并呈多点聚集的趋势;陕西、湖北等地成为新的野生蕙兰聚集区。野生蕙兰的分布中心逐渐向高纬度地区迁移,进一步说明气温能直接影响野生蕙兰的分布。

      前人研究发现:兰科植物在贵州、广西交界山区,湖北西部和重庆东部山地,秦岭—伏牛山一带最为丰富,地形地貌和土壤类型是造成其在小区域分布差异的重要原因[3941]。本研究发现:野生蕙兰在小尺度区域上的分布同样受到地形地貌和土壤类型的影响,如四川、云南、贵州地理位置相近,但野生蕙兰分布数量却不同。四川省地形地貌复杂,海拔较低;云南省海拔整体较高,地貌丰富,土壤类型多以微酸性的红壤为主;贵州省西高东低,土壤类型以红壤、黄壤为主。另外,本研究发现:野生蕙兰适宜生长在pH 5.3~6.2的温热铁铝土区,及海拔620~980 m的南坡或东南坡,云南、贵州两地合适的土壤类型和地形地貌与野生蕙兰的生态习性相耦合,为其生长繁育提供有利条件,因此云南、贵州两省的野生蕙兰资源相比于四川省更加集中。

    • 前人研究表明:过度砍伐森林和采集销售都有可能成为兰科植物分布变化和数量减少的原因[42]。本研究同样发现:人为导致的生境恶化以及过度采集是野生蕙兰自然数量减少的原因之一。首先,以西南地区为例,1363—1978年,该地区经历了过度的森林砍伐、农业垦殖和工业布局西迁,导致野生蕙兰的生境被严重破坏,分布区数量减少。1978年至今,随着经济的发展和生态环境保护力度的加强,西南地区的天然林面积增加了58%[43],野生蕙兰的适宜生境增加,分布区数量增多。其次,以南岭地区为例,集市对野生蕙兰的采集销售加剧了该地区的人为采挖,导致该地区野生蕙兰的生存环境恶化[42]。21世纪后,互联网的发展为野生蕙兰的售卖提供了更加便捷的平台,使其生存数量减少[44]

    • 为了对野生蕙兰及其遗传多样性进行有效保育,应有针对性地对其分布集中且适宜生长的区域进行重点保护。结合本研究结果来看,仅有28.4%的野生蕙兰分布区在现有的保护区范围内,且仅有广西雅长国家级自然保护区是以兰科植物为保护对象的保护区。应进一步加强对江南、广东、福建、云南、贵州、陕西、湖北等典型区域的野生蕙兰适生区营建或扩建,及时追踪以上区域内野生蕙兰种群的变化动态;同时,随着全球气候的变暖,野生蕙兰逐渐向纬度更高的区域迁移,可以加强对华北地区,特别是该地区年平均气温为15~25 ℃,海拔为620~980 m、坡度为19.9°~25.0°的南坡或东南坡野生蕙兰的资源调查及监测,及时制定长期保护规划,调整其保护区范围。同时,应提高公众的保护意识,倡导利用当地适宜的气候条件建立可持续的兰科植物栽培企业。

参考文献 (44)

目录

/

返回文章
返回