-
竹子具备高强度、高韧性等优点,并且生长速度快,可快速成材,被广泛应用于建筑、家具和造纸等领域[1−3]。作为21世纪最具开发潜力的生物质资源,竹材具有不可比拟的生态、经济以及社会效益[4],对促进碳达峰、碳中和具有极大的意义。竹材被认为是以薄壁组织为基体,嵌入维管束作为增强相的纤维增强生物复合材料[5−6]。维管束起着承担力学强度的骨架作用,基本组织填充其余部分,起着传递载荷的作用[7]。竹材优异的力学性能主要与纤维鞘组织比量密切相关[8]。目前,竹产业主要生产传统竹胶合板、竹席/竹帘胶合板、竹集成材和重组竹等或新型工程竹复合材料[9]、复合吸波材料[10]和竹缠绕复合管[11]等,大多以毛竹Phyllostachys edulis等大径级的竹材为原料[12−13],小径级的竹材应用较少。竹材的力学性能决定其利用价值与领域[14],竹材顺纹抗压强度作为评估竹材不同用途的适用性的重要指标[15−16],具有测试方便快速等优点[17]。小径级竹材物理力学性能测试并无相关标准,相关科学研究较少,基本上都参照GB/T 15780—1995《竹材物理力学性质试验方法》[18−19],缺乏评价小径级竹材的系统的物理力学实验方法。
本研究对不同长径比试件进行顺纹抗压试验,探索适合测试小径级竹材顺纹抗压强度的方法,为发掘小径级竹材工业应用提供科学依据[20]。同时利用基于YOLO深度学习算法开发的维管束识别模型对小径级竹材纤维鞘的组织比量和维管束密度作出统计并对其与抗压强度的关系进行线性拟合。通过引入人工智能用于竹材基础性质的研究,不仅可以解决人工处理耗时费力以及容易出错等问题,相较于传统图像处理方法还能提高处理精度和准确性。
-
样品采自安徽省六安市金寨县。随机选取健康、完好无缺陷的3~4年生处于成熟期的竹株,采集胸径在50 mm以下的苦竹Pleioblastus amarus、篌竹Phyllostachys nidularia、水竹Phyllostachys heteroclada和早园竹Phyllostachys propinqua各5株,平均直径分别为12.04、30.44、19.92、33.02 mm,平均壁厚分别为2.38、3.90、3.24、4.58 mm。从离地约0.5 m处向上截取2.0~4.0 m竹段作为试样,并对试样进行标号带回实验室待用。
-
用游标卡尺测量试样同一点在相互垂直的2个方向的直径,求其平均值。沿顺纹方向按上述平均直径的1.0、1.5和2.0倍长度截制不同长径比试件,试件两端面平整并相互平行,端面应与顺纹方向垂直(图1)。参照 GB/T 15780—1995《竹材物理力学性质试验方法》[18]调整试样含水率。
-
对截断后的横截面用不同目数的砂纸砂光处理,最后一次精砂目数为320目,直至触摸手感光滑,既保证精确识别纤维鞘和薄壁细胞之间的分界线,又可以利用砂光产生的碎屑填充维管束中的大导管及韧皮部等孔隙,避免大导管等干扰计算机识别[21]。利用高清扫描仪对符合要求的试件横截面进行扫描,用局部聚类算法对图片进行二值化处理,采用经过训练的模型进行识别,检测维管束并统计纤维鞘总面积[22](图2)。
-
①尺寸测量。如图3所示:在扫描计算完的试件两端用游标卡尺测其相互垂直的2个方向长轴(D1)和短轴(D2),以同样方法测定试件两端竹壁厚(t1、t2、t3、t4)取其均值(t),准确至0.01 mm,计算试件两端面横截面面积均值。将横截面近似为椭圆计算。②顺纹抗压试验。将试件垂直放置于万能力学试验机球面滑动支座中心位置,调整下支座,从相互垂直的2个方向观察,使试件横截面与压头表面平行,施压方向和纤维方向平行。施加预荷载不大于10.0 N,调整放好试件。沿试件轴向以1 mm·min−1的速度均匀加载,在(90±30) s内破坏,记录试件破坏的最大载荷,精确至0.1 N。③含水率测定。抗压性能试验结束后,立即清理试件上易剥落物,进行称量,准确至0.001 g。测定含水率。测定方法依据GB/T 15780—1995《竹材物理力学性质试验方法》。④计算。顺纹抗压强度按近似椭圆管状件计算。采用$ \sigma_{\text{12}}\text{=}\sigma_{{w}}\left[\text{1+0.045}\left({w}-\text{12}\right)\right] $将含水率为w的顺纹抗压强度$ \sigma_{{w}}$换算为试件含水率为12%的顺纹抗压强度$\sigma_{{12}} $,准确至0.01 MPa。$ \sigma_{{w}}\text{=}\dfrac{\text{2}{{F}}_{\text{max}}}{\text{π}t\left({{D}}_{\text{1}}\text{+}{{D}}_{\text{2}}{-}{2t}\right)} $。其中:$ {{F}}_{\text{max}} $为试件破坏最大载荷(N);$ {t} $为试件平均壁厚(mm);$ {{D}}_{\text{1}} $为试件横截面长轴(mm);$ {{D}}_{\text{2}} $为试件横截面短轴(mm)。
-
由表1可见:4种小径级竹材的顺纹抗压强度较为优异,采用2.0倍长径比试件测试,早园竹顺纹抗压强度最大,为82.91 MPa,水竹顺纹抗压强度最小,为67.01 MPa。在不同长径比的试件中,顺纹抗压强度测试结果平均值相差不大。方差齐性检验表明:4种小径级竹材的不同长径比试件的顺纹抗压强度差异不显著(P>0.05),故进行单因素ANOVA检验。检验结果显示:除苦竹外,其余3种小径级竹材的不同长径比试件对顺纹抗压强度没有产生显著影响(P>0.05)。然而,苦竹不同长径比试件对顺纹抗压强度产生显著影响(F=3.342,P=0.040<0.05)。进行LSD多重比较分析苦竹不同长径比试样之间的差异是否显著,结果显示:苦竹的1.0倍长径比试件与其他2种试件之间差异不显著,而1.5与2.0倍试件之间产生显著差异(P=0.012<0.05)。这可能是由于苦竹平均直径仅为12.04 mm,直径太小并且制备设备落后,对试件造成了不同程度的破坏。
表 1 顺纹抗压测试结果
Table 1. Test results of compressive strength
竹种 长径比 顺纹抗压强度 方差齐性
检验P单因素
ANOVA检验平均值/
MPa标准差/
MPa变异系
数/%F P 苦竹 1.0 71.64 ab 3.80 5.30 0.456 3.342 0.040 1.5 70.27 b 3.20 4.55 2.0 72.65 a 3.89 5.35 篌竹 1.0 74.57 a 8.02 10.76 0.989 0.239 0.788 1.5 74.01 a 7.68 10.38 2.0 73.19 a 7.59 10.37 水竹 1.0 67.09 a 5.75 8.57 0.776 0.222 0.801 1.5 67.78 a 6.01 8.87 2.0 67.01 a 5.12 7.64 早园竹 1.0 83.29 a 9.52 11.43 0.528 0.010 0.990 1.5 83.06 a 8.19 9.86 2.0 82.91 a 7.76 9.36 说明:不同小写字母表示同一竹种不同处理之间LSD检验差异显著(P<0.05)。 除去由于试件制备中引起的破坏而产生的测量误差,不同长径比的试样对顺纹抗压强度没有产生显著影响。根据表1结果所示:除苦竹外,其他3种竹材均是2.0倍长径比的试件测试的顺纹抗压强度的变异系数最小。其中,篌竹、早园竹和水竹2.0倍长径比试件的顺纹抗压强度变异系数分别为10.37%、9.36%和7.64%。苦竹的3种试件变异系数均较小,1.5倍长径比试件变异系数为4.55%。变异系数越小,说明数据越稳定。早园竹和篌竹的标准差在一定范围内随着长径比的增加而减少。具体而言,2.0倍长径比试件的标准差分别为7.76和7.59 MPa。水竹的2.0倍长径比试件最小,为5.12 MPa。苦竹标准差是1.5倍长径比试件最小,为3.20 MPa。标准差越小,试验数据的离散程度越小。综上所述,2.0倍长径比的试件测试的数据比较稳定,可靠性较好,变异系数小,意味着需要准备的最小试件数量就最少,整个试验的操作就相对容易,试验数据更加准确。因此,2.0倍长径比的试件用于测试小径级圆竹顺纹抗压强度最好。
-
从长径比为2.0的试样的维管束参数 (表2) 可以看出:4种竹材的纤维鞘组织比量的标准偏差均较小,说明同一竹种不同竹株不同部位的纤维鞘组织比量相差不大。其中篌竹纤维鞘组织比量最大,为35.64%,最小的是水竹,为33.05%。苦竹的维管束分布密度最大,达7.94 个·mm−2,早园竹最小,为5.77 个·mm−2。
表 2 4种小径级竹材长径比为2.0试样的维管束参数
Table 2. Vascular bundle parameters of four species of small diameter bamboo at the length-to-diameter ratio of 2.0
竹种 纤维鞘体积分数/% 维管束分布密度/(个·mm−2) 平均值 标准偏差 平均值 标准偏差 苦竹 34.61 2.18 7.94 0.73 篌竹 35.64 1.51 6.32 0.92 水竹 33.05 2.15 7.01 0.31 早园竹 34.65 5.53 5.77 1.07 如图4所示:纤维鞘体积分数 (y) 与顺纹抗压强度 (x) 之间呈线性正相关,即纤维鞘体积分数越大,顺纹抗压强度越大。基于最小二乘法对其进行线性拟合,得到线性方程:y = 260.44x−18.26,R2=0.60,r=0.778,P<0.001。维管束分布密度和顺纹抗压强度之间的相关性并不强,可能原因是不同竹种的维管束面积以及类型不同。换而言之,不同的竹种即使维管束分布密度相同,也有可能单位面积内所含的纤维含量不同。
-
本研究结果发现:4种竹材的顺纹抗压强度较为优异,高于同为圆竹形态测试的4年生毛竹的基部试件的顺纹抗压强度 (48.54 MPa)[23]。 竹子之所以具有轻质且高强度的特性,是由于其薄壁中空和功能梯度结构等优势。竹壁的构造包括表皮、维管束和基本组织等3种组织[24],其中富含二氧化硅的表皮起着保护竹子抵御外界环境破坏的作用,维管束则承担提供力学强度的骨架作用,基本组织则填充其余部分并起着传递载荷的作用[7]。竹材作为一种典型的单向纤维增强的生物质复合材料,其机械性能主要取决于呈梯度结构分布的维管束的机械特性,如纤维鞘的体积分数和维管束的分布密度等[21, 25]。纤维密度是表征竹子强度性能的良好指标[26],纤维鞘体积分数正是纤维密度的定量化表述。已有研究对不同纤维鞘体积分数的毛竹进行了顺纹抗压测试,发现顺纹抗压强度和模量随纤维鞘体积分数增加而线性增加的规律[27]。同样,具有梯度结构的竹材在抗弯强度和模量中随着纤维体积分数的增加而增加[28]。此外,针对不同纤维鞘体积分数的毛竹样品的拉伸测试发现,纤维鞘体积分数和拉伸强度之间存在明显的线性关系,并且根据混合定律得出的纤维和基本组织的拉伸强度和MOE分别为581.7 MPa、40.40 GPa、19.0 MPa和0.22 GPa[29]。纤维的力学性能远高于薄壁细胞,纤维在毛竹的抗拉性能中起着决定性作用[29]。这可以归因于纤维和薄壁细胞在结构和化学成分等方面的不同,竹纤维的细胞壁几乎呈实心状,而薄壁细胞则具有较大的细胞腔和较薄的细胞壁[30],竹纤维和薄壁细胞在化学组成和晶体结构也有一定的差异[31]。因此,纤维鞘体积分数是影响竹材的顺纹抗压强度的重要因素之一。然而,竹子的维管束类型是多样的,包括双断腰型、断腰型、紧腰型、开放型和半开放型等5种维管束类型[32],不同竹种维管束的面积各异,即使同一类型维管束在不同位置或者不同竹种中的面积也不尽相同[33],因此,在研究不同种竹材的力学性能中探究维管束分布密度对力学性能的影响意义不大。综上所述,了解竹材结构的影响因素是非常必要的,这有助于掌握竹材的材料特性,充分发挥机械性能。
-
基于YOLO深度学习算法开发的竹材维管束模型应用于小径级竹材维管束数量和纤维鞘面积的测定,可以达到快速且准确的效果。小径级竹材的顺纹抗压性能不亚于大径级的竹材,早园竹顺纹抗压强度高达82.91 MPa,因此,小径级竹材具有较高的开发潜力。纤维鞘体积分数极显著地正向影响顺纹抗压强度。纤维鞘体积分数(x)与顺纹抗压强度(y)关系表述为一元一次方程:$ {y}\text{=260.44}{x}-\text{18.26} $。而维管束密度与顺纹抗压强度相关性较小。对于胸高直径50 mm以下的竹材,测试顺纹抗压强度时,建议采用纵向长度为平均外径2.0倍的试件,采用上述试验方法操作并控制试件在(90±30) s内压溃。另外,对于较小直径竹材制备试件时需避免对竹材造成损伤。
Compressive strength of small-diameter bamboo and its influencing factors
-
摘要:
目的 探究测试小径级圆竹顺纹抗压强度的方法,以及纤维鞘体积分数和维管束分布密度对顺纹抗压强度的影响。 方法 以苦竹Pleioblastus amarus、篌竹Phyllostachys nidularia、水竹Phyllostachys heteroclada和早园竹Phyllostachys propinqua 等4种小径级竹材(胸高直径50 mm以下)为研究对象,采用圆竹形式的试件探究小径级竹材的顺纹抗压性能测试方法,测试不同长径比(试件长度与直径的比值)试件对顺纹抗压强度的影响。同时,利用基于YOLO深度学习算法开发竹材维管束检测模型对维管束数量和纤维鞘面积进行测定,以探索其对顺纹抗压强度的影响。 结果 不同长径比试件测试结果并无显著性差异,以数据稳定性为准,则2.0倍长径比试件测试结果较为合理。采用该长径比试件测试,早园竹顺纹抗压强度最大,为82.91 MPa,水竹顺纹抗压强度最小,为67.01 MPa。篌竹纤维鞘组织比量最大,为35.64%,水竹最小,为33.05%。苦竹的维管束分布密度最大,达7.94 个·mm−2,早园竹最小,为5.77 个·mm−2。将不同种竹材作为整体对象的研究表明:纤维鞘体积分数正向影响顺纹抗压强度,而维管束分布密度对顺纹抗压强度的影响较小。 结论 小径级竹材顺纹抗压强度的测试宜采用2.0倍长径比试件,控制试件在(90±30) s内压溃。该试验选用的小径级竹材的顺纹抗压性能较为优异,纤维鞘体积分数(y)与顺纹抗压强度(x)之间存在$ {y}\text{=260.44}{x}{-}\text{18.26} $线性相关性。图4表2参33 Abstract:Objective This study is aimed to investigate the testing method for determining the compressive strength of small-diameter bamboo culms as well as the impact of fiber sheath volume fraction and distribution density of vascular bundles on it. Method Four species of small-diameter bamboo, namely Pleioblastus amarus, Phyllostachys nidularia, Phyllostachys heteroclada, and Phyllostachys propinqua, with a diameter at breast height of less than 50 mm, were selected as research subjects before bamboo culm samples were utilized to investigate the compressive strength testing method for small-diameter bamboo and to examine the impact of varying length-to-diameter ratios on compressive strength. At the same time, a bamboo vascular bundle detection model based on the YOLO deep learning algorithm was employed to determine the number of vascular bundles and fiber sheath area so as to investigate their influence on compressive strength. Result There were no significant differences in the test results among specimens with different length-to-diameter ratios and the test results for the specimen with a length-to-diameter ratio of 2.0 were more reasonable. Of specimens at the length-to-diameter ratio of 2.0, Phyllostachys propinqua exhibited the highest compressive strength at 82.91 MPa while Phyllostachys heteroclada demonstrated the lowest strength at 67.01 MPa. The volume fraction of fiber sheath was highest in Phyllostachys nidularia at 35.64% and lowest in Phyllostachys heteroclada at 33.05%. The density of vascular bundles in Pleioblastus amarus was highest at 7.94 pieces·mm−2, while that of Phyllostachys propinqua was the lowest at 5.77 pieces·mm−2. Studies that treated various species of bamboo as a unified entity have shown that the positive effect of the volume fraction of fiber sheath on compressive strength was significant while the influence of vascular bundle distribution density on compressive strength was relatively minor. Conclusion A specimen with a length-to-diameter ratio of 2.0 is an ideal choice for testing the compressive strength of small-diameter bamboo and the specimen should be controlled for a period of (90±30) seconds before it collapses. Furthermore, the small-diameter bamboo selected for this experiment exhibited excellent compressive performance while there was a direct correlation between the volume fraction of fiber sheath (y) and compressive strength (x), as shown in the equation y=260.44x−18.26. [Ch, 4 fig. 2 tab. 33 ref.] -
放牧是草地的主要利用方式之一,主要通过牲畜的采食、践踏、卧息和排泄粪便等方式对地表植被、土壤养分以及土壤微生物产生影响[1]。土壤微生物在有机质的分解、养分循环与转化等方面具有重要作用[2],其数量和群落功能多样性能够在一定程度上指示土壤质量及其可持续利用性[3]。研究放牧与土壤微生物的关系,有助于揭示过度放牧导致草场沙漠化的机制。根际是植物、土壤、微生物之间进行物质和能量交换的关键区域,是植物和土壤相互作用的重要界面,诸多学者对植物根际与非根际土壤的养分、微生物数量及群落组成的差异性开展了大量的研究[4-7]。邱权等[8]综合比较了4种人工灌木丛根际和非根际土壤的特性,发现土壤酶活性和微生物数量呈现出根际高于非根际;对宁夏宁南山区猪毛蒿Artemisia scoparia,百里香Thymus mongolicus等9种典型植物[9]和内蒙古羊草Leymus chinensis,大针茅Stipa grandis和冷蒿Artemisia frigida等典型植物[10]进行研究,表明大多数植物的根际土壤微生物数量、活性及多样性等均高于非根际土壤,是由于植物物种差异所引起。冷蒿是菊科Compositae蒿属Artemisia植物,多年生小半灌木,是退化草场的典型植物,具有强烈的耐牧生存能力,高强度放牧干扰后仍能够生长繁殖并维持一定的生产力,这与其自身的生物学特性[11]及根系代谢产物[12]对土壤微环境的调控密切相关。目前,关于放牧干扰对冷蒿根际土壤微生物群落多样性影响的研究尚未报道。本研究拟采用微生物传统培养法和Biolog-ECO板技术,对不同放牧强度下冷蒿根际土壤化学性质、微生物数量及其群落功能多样性进行研究,分析冷蒿根际土壤微生物数量及代谢功能多样性对放牧干扰的响应,探讨冷蒿耐牧性与土壤微生物群落多样性之间的关系,为揭示冷蒿成为草场退化阻击者提供土壤生态学方面的理论依据。
1. 材料与方法
1.1 研究地区概况
本研究依托内蒙古锡林浩特市毛登牧场(内蒙古大学草地生态学研究基地)进行,其地理位置为44°10′02.4″ N,116°28′56.8″ E,海拔1 160 m,属半干旱大陆性气候,冬季寒冷干燥,夏季在一定程度上受海洋季风气候影响。全年平均气温为-0.4 ℃,最冷月(1月)平均气温-22.3 ℃,最热月(7月)平均气温18.8 ℃,≥0 ℃年积温为2 410 ℃,≥10 ℃积温为1 597.9 ℃,无霜期91 d,草场植物生长期为150 d左右。全年平均降水量为365.6 mm,集中于6-9月,占年降水量的80%左右,但年度间的变幅较大,多雨和少雨的年份降水量相差1倍以上。该地雨热同期,有利于植物的生长,土壤为栗钙土。本研究区域主要草原植物为羊草,糙隐子草Cleistogenes squarrosa,克氏针茅Stipa krylovii,大针茅,防风Saposhnikovia divaricata,冷蒿,瓣蕊唐松草Thalictrum petaloideum,阿尔泰狗哇花Heteropappus altaicus等。
1.2 样地设置及土样采集
1.2.1 试验设计
于2012年5月至2014年7月连续2 a对草场进行不同放牧强度处理,每年放牧时间为5-9月。试验按照放牧强度设置不放牧为对照(ck),5月和7月每月21日放牧1 d为轻度放牧(light grazing,LG),5-9月每月21日放牧1 d为重度放牧(heavy grazing,HG),3个处理;受天气因素的影响,每次放牧时间延后。分别设置重复3个·处理-1,面积为33.3 m × 33.3 m·小区-1。试验用羊为当年生乌珠穆沁羊Capra hircus ‘Ujimqin’,各个放牧季节羊放牧率为6只·小区-1。
1.2.2 土壤样品的采集与保存
土壤样品采集于2014年7月冷蒿生长高峰期,在各个小区采用5点取样法。随即选取4~5丛冷蒿,以冷蒿株丛为中心,将冷蒿纯植株丛完整挖起(0~10 cm),轻轻抖动根系并去除粘附在根系上的较大颗粒土,作为冷蒿非根际土壤(NRS),采集粘附在根际上根系表面的土壤作为冷蒿根际土壤(ARS)。各个小区采集的土壤混合在一起作为该小区样地的土样,各个小区用5点取样法采样2次以获得同一小区的2份土样。将土壤装入无菌封口塑料袋,带回实验室。土样分成2份,1份于4 ℃保存,用于可培养微生物的分离、计数及Biolog-ECO板测定,另1份风干过2 mm筛,用于测定土壤理化性质。
1.2.3 微生物分离与记数
土壤可培养微生物数量(colony forming units,cfu)用稀释平板法分离计数。细菌采用牛肉膏蛋白胨固体培养基;真菌采用马丁培养基;放线菌采用高氏1号培养基,30 ℃恒温培养,细菌培养1 d后计数,真菌、放线菌培养3 d后计数。
1.2.4 微生物代谢功能多样性测定
土壤微生物代谢功能多样性采用Biolog-ECO板方法进行分析。称取新鲜土样1 g于9 mL磷酸缓冲液中,在摇床上震荡30 min,在接种前按10倍稀释法制成10-4土壤稀释液,使用8通道移液器,从V型槽中吸取150 μL稀释液至ECO板的微孔中,接种后的板置于30 ℃恒温培养,每隔24 h在Biolog读板仪上用Biolog Reader 4.2软件(Biolog,Hayward,CA,美国)读取590 nm波长的吸光度D(590),培养时间为168 h。
1.3 土壤理化性质测定
测定参照鲁如坤[13]的土壤农化分析方法进行。有机质(organic matter,OM)采用重铬酸钾容量法;全氮(total nitrogen,TN)采用半微量凯氏定氮法;碱解氮(hydrolysis nitrogen,HN)采用碱解扩散法;全磷(total phosphorus,TP)采用氢氧化钠碱溶-钼锑抗比色法;速效磷(available phosphorus,AP)采用碳酸氢钠浸提钼锑抗比色法;全钾(total potassium,TK)采用氢氧化钠碱溶-火焰光度法;速效钾(available potassium,AK)采用乙酸氨浸提-火焰光度法;pH值采用酸度计法,土壤悬液为水土比为m(水): m(土)=5:1。
1.4 数据处理
土壤微生物群落利用碳源的整体能力(即代谢活性)用平均孔颜色变化率(average well color development,AWCD)表示。AWCD=[∑(Ci-R)]/n,其中:Ci为测定的31个碳源孔吸光值,R为对照孔吸光值,n为碳源数目。土壤微生物群落功能多样性采用Shannon指数、Simpson指数、丰富度指数和McIntosh指数进行分析。
所有的数据均为5次重复的平均值±标准误差,利用Origin 8软件(美国Origin Lab公司)对96 h的AWCD值进行统计分析和作图。统计方法采用单因素方差分析(one-way ANOVA)进行检验,并进行Fisher最小显著差数法(LSD)多重比较(P<0.05)。采用双因素方差分析(two-way ANOVA)分析土壤×放牧处理之间相互作用的影响,利用SPSS 16.0进行主成分分析[14]。
2. 结果与分析
2.1 不同放牧强度下土壤部分化学性质的变化
由表 1可知:放牧对2种土壤中的有机质、全磷、碱解氮、速效钾和pH值具有极显著影响,对全氮和全钾具有显著影响。放牧特别是重度放牧后,NRS土壤中各养分质量分数均显著增加,pH值显著下降;ARS土壤中有机质和其他养分质量分数均显著增加,重度放牧后,有机质、全氮、全磷、碱解氮、速效磷和速效钾与对照相比分别增加20.0%,29.1%,17.7%,13.0%,3.4%和6.7%,但pH值显著降低,重度放牧后呈弱碱性;相同放牧处理下ARS土壤各养分质量分数均显著高于NRS土壤,pH值明显低于NRS土壤。
表 1 不同放牧强度下土壤化学性质Table 1. Soil chemical properties under different grazing intensity2.2 不同放牧强度下土壤微生物的组成
不同放牧强度下2类土壤中微生物的总量、主要类群数量差异显著(图 1),微生物总量以LG-ARS和ck-ARS最高,分别为24.6×106个(cfu)·g-1和20.4×106个(cfu)·g-1,显著高于其他处理组。三大类异养微生物数量在各土壤微生物组成中均以细菌类群占绝对优势,但细菌、真菌、放线菌间的组成比例差异较大,其中细菌占微生物总数88%~95%,放线菌其次,占微生物总数的3%~12%,真菌最少。放牧后NRS土壤中细菌、真菌数量显著下降,而ARS土壤中真菌数量增加显著,且显著高于NRS,细菌数量在轻度放牧后显著增加,重度放牧后下降。
2.3 土壤微生物群落代谢活性的变化
图 2为土壤微生物群落代谢活性(AWCD)随培养时间的变化曲线:在培养初始的24 h内土壤微生物活性较低,24 h后AWCD值快速增长,168 h时各处理的AWCD值均达到最大,利用碳源能力的顺序为LG-ARS>ck-ARS>ck-NRS>LG-NRS>HG-ARS>HG-NRS,平均值分别为0.999,0.918,0.861,0.769,0.695,0.310;相同牧压下ARS土壤微生物的AWCD值均显著高于NRS,对照、轻度和重度放牧后AWCD值分别是NRS的1.07倍、1.30倍和2.24倍。
2.4 土壤微生物对不同类型碳源利用强度分析
放牧强度不同,土壤微生物对不同种类碳源利用强度存在显著差异(表 2);冷蒿根际土壤中,轻度放牧可增加微生物对不同种类碳源的利用能力,碳源代谢的优势群落与对照相同,依次为糖类>氨基酸>羧酸>聚合物>胺类>酚酸代谢群落,土壤微生物群落结构稳定;重度放牧后,微生物对各类碳源的利用率显著下降,优势群落发生改变;冷蒿非根际土壤中,放牧强度增强,土壤微生物对不同种类碳源利用率变化较大,未显示一定的规律性,土壤微生物群落功能多样性变化很大,不稳定。
表 2 不同放牧强度下土壤微生物群落对6类碳源的利用(96 h)Table 2. Effect of soil microbial on the ability to utilize six types carbon source under different grazing intensity (96 h)2.5 土壤微生物群落功能多样性指数分析
随放牧强度的增加,冷蒿根际和非根际土壤微生物的4种指数均显著降低(表 3)。Shannon指数和碳源利用丰富度指数表明放牧降低微生物群落功能多样性,减少碳源的利用数目,而冷蒿根际土壤微生物种类多且较均匀,利用的碳源数量较多;冷蒿根际土壤的Simpson指数显著高于非冷蒿根际,表明冷蒿能够显著提高优势菌的数量,削弱放牧对常见微生物物种的不良影响;LG-ARS和HG-ARS的McIntosh指数显著高于LG-NRS和HG-NRS,说明LG-ARS和HG-ARS的土壤微生物种类更为丰富,碳源利用程度较高;重度放牧后McIntosh指数最低,表明过度放牧会降低土壤微生物种类丰富度和碳源利用程度。
表 3 不同放牧强度下土壤微生物群落功能多样性指数比较(96 h)Table 3. Functional diversity indices for soil microbial community under different grazing intensity (96 h)2.6 不同放牧强度下土壤微生物碳源利用的主成分分析
运用SPSS软件对培养96 h测定的AWCD数据进行主成分分析,得到2个与土壤微生物利用碳源多样性相关的主成分,累计贡献率达到69.3%。其中第1主成分(PC1)的方差贡献率为52.1%,权重最大,第2主成分(PC2)贡献率为17.2%。因其他主成分贡献率较小,因此只用PC1和PC2得分作图来表征微生物群落碳源代谢特征(图 3)。由图 3可知:不同处理在PC轴上出现明显的分布差异,HG-ARS位于PC1负方向,得分系数为-0.308,其他处理均位于PC1正方向,得分系数为0.160~1.030;HG-NRS位于PC2负方向,得分系数为-0.357,其他处理位于PC2正方向,得分系数范围为0.300~0.950。可见,提取的2个主成分基本上能够区分不同放牧强度ARS和NRS土壤类别的微生物群落功能多样性。另外,将主成分PC1和PC2的得分系数与31种单一碳源做相关性分析,其中与PC1相关的碳源有16种,其中11个呈负相关,主要是糖类、羧酸类和聚合物,肝糖与PC1显著负相关;5个呈正相关,主要是氨基酸类和胺类。与PC2相关的碳源有17种,其中15种呈正相关,主要是糖类和羧酸类碳源,L-苯丙氨酸与其相关性显著。可见羧酸类和氨基酸类碳源在主成分分离中具有主要贡献作用。
3. 讨论
3.1 放牧对冷蒿根际土壤养分的影响
土壤养分是土壤健康状况的重要指标,放牧对土壤有机质、元素循环产生影响。对中国西藏高原高山草甸[15]、科尔沁沙漠化草地[16]、松嫩平原羊草草甸[17]和玉树隆宝滩地区高寒草甸[18]的研究中均发现土壤有机质质量分数在放牧后显著降低,但是REEDER等[19]和WIENHOLD等[20]的研究结果与之相反,认为放牧能够增加土壤中的有机质等。安慧等[21]认为放牧过程动物通过粪便将消耗的植物养分大部分返还到土壤中,增加土壤碳氮输入,使有机质、氮素和速效钾、速效磷等增加。本研究结果与上述研究结果相似,放牧后土壤中有机质、全氮、全磷、全钾、碱解氮、速效钾和速效磷等增加,土壤pH值下降。同时,本研究还发现冷蒿根际土壤中有机质、全氮、碱解氮、速效磷和速效钾等养分显著高于非根际,而土壤的pH值显著低于非根际(P<0.05),冷蒿的生长能够有效改善土壤健康状况,降低放牧对土壤的扰动,可能是由于冷蒿的生物量、盖度、根茎比与牧压成正比[22],较大的根茎比增加了碳素等向地下的分配量[23],使得土壤中各化学组分的量增加;根系分泌大量的酸性物质[12],降低土壤pH值的同时增加各种元素的可溶性和可被利用性。
3.2 放牧对冷蒿根际土壤微生物数量的影响
关于放牧对草原土壤微生物影响的研究很多,但结果不一致。WANG等[24]在美国佛罗里达州一草地的研究结果表明,放牧草地土壤微生物数量显著高于未放牧草地,停止放牧微生物数量也随之下降;BARDGETT等[25]研究表明:放牧能增加高原草地土壤的微生物量。有更多研究认为,适度放牧有助于土壤微生物数量的增加,过度放牧则会导致微生物数量显著降低[26]。与此类研究结果不同,本研究中放牧干扰降低了非根际土壤微生物数量,但冷蒿的生长却使土壤微生物数量在放牧后显著升高,并且相同放牧强度下,冷蒿根际微生物的数量均高于非根际(图 1)。表明冷蒿的生长能够降低放牧对土壤微生物产生的干扰,使土壤微生物能够较正常的生长繁殖,这可能是冷蒿在放牧后较其他草原植物仍能生长良好引起的。冷蒿被动物践踏破坏顶端优势后,其半匍匐型枝条生成不定根进行克隆生长[22, 27],其发达的根系及丰富的根系分泌物能够为土壤微生物提供丰富的生长基质和有利的生存环境,丰富了土壤微生物的能量来源。另外,冷蒿地上茎叶部分常释放出具有抑制动物采食、其他牧草种子萌发、幼苗生长和繁衍能力的挥发性物质,增强冷蒿的生存竞争力[28-29],这些特性为构建稳定土壤生态群落提供了坚实基础。冷蒿的良好生长为土壤微生物提供了良好的生存环境以及丰富的碳源,而对非根际土壤微生物来说土壤微环境破坏严重且可用的碳源较少而不能大量繁殖。本研究表明:土壤微生物量与冷蒿的有无具有密切关系,冷蒿能够为微生物提供相对稳定的微生态环境以及相对丰富的土壤养分,降低放牧对土壤的扰动,使土壤微生物量显著升高。
3.3 放牧对冷蒿根际土壤微生物群落功能多样性的影响
本试验采用Biolog-ECO板技术对内蒙古典型草原不同放牧强度下冷蒿根际和非根际土壤微生物功能多样性进行了研究,结果显示放牧后土壤微生物活性、4种微生物多样性指数及碳源利用能力均显著下降。导致微生物群落功能多样性下降的可能原因是放牧改变了地表植被多样性,使输入地下的植物残体、根系分泌物成分改变,加之牧畜践踏增强对土壤团聚体及地表的破坏,改变了土壤结构,使土壤微生物生境改变,从而影响土壤微生物的活性及群落多样性。当前,诸多研究证明草地利用、管理条件和植被类型的变化能显著改变土壤微生物群落组成、活性及功能多样性[30]。张海芳等[31]对内蒙古贝加尔针茅草原在放牧、刈割和围封等3种不同利用方式下土壤微生物功能多样性进行研究,发现放牧后土壤微生物代谢活性降低,但功能多样性增强;刈割与放牧方式下微生物群落碳源利用情况及代谢功能相似,而围封土壤微生物群落代谢活性最高,碳源利用模式及代谢强度也不同于放牧和刈割。李玉洁等[32]认为随着休牧年限增加,贝加尔针茅草原土壤微生物的代谢功能增强,数量增大;毕江涛等[33]研究荒漠草原5种不同植被类型土壤微生物活性、主要利用碳源类型、群落功能多样性均存在显著差异。可见,植物根际土壤微生物多样性不仅随着利用方式改变,还随着植物类型改变,具有很强的植物种的特异性。
本研究还发现:不同放牧强度处理下冷蒿根际土壤微生物活性、碳源利用能力及功能多样性等都高于非根际土壤。主成分分析表明:对照和轻度放牧后冷蒿根际与非冷蒿根际土壤差异不显著,重度放牧后两者差异显著,羧酸类和氨基酸类碳源在分异中起重要作用,植被类型和多样性的改变影响微生物的碳源利用,尤其体现在对这两类碳源的利用上[34-35]。其中羧酸类和氨基酸类碳源是根系分泌物的主要成分,分别与植物抗胁迫和土壤养分有效性有关[36]。根际土壤与非根际土壤微生物之间的差异与植物凋落物和根系分泌物息息相关,植物凋落物和根系分泌物是土壤微生物生长基质和有利环境的提供者。而不同植物的凋落物和根系分泌物化学组分差异很大[37],是植被类型影响土壤微生物活性及功能类群的主要推进力量[38]。王纳纳等[10]对内蒙古草原典型植物对土壤微生物群落影响的研究发现,植物不同土壤微生物群落组成不同,并且土壤微生物群落结构在根际和非根际间的差异大于不同物种间的差异,说明植物根际和非根际土壤性质和微生物群落功能多样性存在巨大不同。杨阳等[7]对宁夏荒漠草原不同植物根际与非根际微生物量分布特征的研究也发现,长芒草Stipa bungeana,蒙古冰草Agropyron mongolicum,甘草Glycyrrhiza uralensis等6种地带性优势植物根际土壤微生物量显著高于非根际土壤。滕应等[39]发现矿区土壤根际微生物数量、群落功能多样性、碳源利用类型及群落结构因种植牧草种类不同而发生相应变化,且根际土壤微生物代谢活性均显著高于非根际土壤。
4. 结论
本研究结果表明:放牧处理后,在冷蒿根际和非根际土壤化学性质、微生物量、群落结构和代谢功能上存在不同程度的差异。冷蒿根际土壤微生物量、代谢活性、碳源利用能力和多样性指数均高于非根际。LG-ARS微生物代谢活性最高,ck-ARS微生物多样性指数最高,对31种碳源利用最强,而HG-NRS微生物多样性指数均最低。冷蒿根际土壤微生物优势代谢群落为糖类、氨基酸类和羧酸类,相对稳定,而非根际优势代谢群落变化较大,不稳定。放牧处理后,冷蒿根际土壤pH值均低于pH 8.0,土壤养分均高于非根际。总之,冷蒿的“纯植株丛”生长方式能够改善土壤微环境,增加其根际土壤微生物群落功能多样性,从而增强抵抗放牧胁迫的能力,成为草场的优势群落。
-
表 1 顺纹抗压测试结果
Table 1. Test results of compressive strength
竹种 长径比 顺纹抗压强度 方差齐性
检验P单因素
ANOVA检验平均值/
MPa标准差/
MPa变异系
数/%F P 苦竹 1.0 71.64 ab 3.80 5.30 0.456 3.342 0.040 1.5 70.27 b 3.20 4.55 2.0 72.65 a 3.89 5.35 篌竹 1.0 74.57 a 8.02 10.76 0.989 0.239 0.788 1.5 74.01 a 7.68 10.38 2.0 73.19 a 7.59 10.37 水竹 1.0 67.09 a 5.75 8.57 0.776 0.222 0.801 1.5 67.78 a 6.01 8.87 2.0 67.01 a 5.12 7.64 早园竹 1.0 83.29 a 9.52 11.43 0.528 0.010 0.990 1.5 83.06 a 8.19 9.86 2.0 82.91 a 7.76 9.36 说明:不同小写字母表示同一竹种不同处理之间LSD检验差异显著(P<0.05)。 表 2 4种小径级竹材长径比为2.0试样的维管束参数
Table 2. Vascular bundle parameters of four species of small diameter bamboo at the length-to-diameter ratio of 2.0
竹种 纤维鞘体积分数/% 维管束分布密度/(个·mm−2) 平均值 标准偏差 平均值 标准偏差 苦竹 34.61 2.18 7.94 0.73 篌竹 35.64 1.51 6.32 0.92 水竹 33.05 2.15 7.01 0.31 早园竹 34.65 5.53 5.77 1.07 -
[1] KAUR P J. Bamboo availability and utilization potential as a building material [J]. Forestry Research and Engineering: International Journal, 2018, 2(5): 240 − 242. [2] YUAN Tiancheng, WANG Xinzhou, LIU Xiaorong, et al. Bamboo flattening technology ebables efficient and value-added utilization of bamboo in the manufacture of furniture and engineered composites [J/OL]. Composites Part B: Engineering, 2022, 242: 110097[2023-02-28]. doi:10.1016/j.compositesb.2022.110097. [3] SHAMSURI M A, MAIN N M. Review on the paper making process from bamboo as a paper product [J]. Progress in Engineering Application and Technology, 2021, 2(1): 965 − 971. [4] 李佳, 顾蕾, 朱玮强, 等. 浙江省安吉县CCER竹林经营碳汇交易项目经济效益分析[J]. 浙江农林大学学报, 2018, 35(4): 581 − 588. LI Jia, GU Lei, ZHU Weiqiang, et al. Economic benefit of carbon sequestration project of CCER bamboo forest management in Anji Country, Zhejiang Province [J]. Journal of Zhejiang A&F University, 2018, 35(4): 581 − 588. [5] DAI Fukuan, WANG Ziwei, WANG Hankun, et al. Vascular bundle characteristics and mechanical properties of Dendrocalamus sinicus [J/OL]. Construction and Building Materials, 2023, 363: 129858[2023-02-28]. doi: 10.1016/j. conbuildmat. 2022.129858. [6] MA Xinxin, LUO Zhiqiang, JI Conghui, et al. Flexural creep behaviors of bamboo subjected to different gradient variation directions and relative humidity [J/OL]. Industrial Crops and Products, 2022, 179: 114679[2023-02-28]. doi: 10.1016/j.indcrop.2022.114679. [7] YU Yanglun, HUANG Yuxiang, ZHANG Yahui, et al. The reinforcing mechanism of mechanical properties of bamboo fiber bundle-reinforced composites [J]. Polymer Composites, 2019, 40(4): 1463 − 1472. [8] LI Hongbo, SHEN Shengping. The mechanical properties of bamboo and vascular bundles [J]. Journal of Materials Research, 2011, 26(21): 2749 − 2756. [9] LIU Yanyan, HUANG Dongsheng, ZHU Junjie. Experimental investigation of mixed-mode I/II fracture behavior of parallel strand bamboo [J/OL]. Construction and Building Materials, 2021, 288: 123127[2023-02-28]. doi: 10.1016/j.conbuildmat.2021.123127. [10] ZHAO Xiaoxiao, YAN Jing, HUANG Ying, et al. Magnetic porous CoNi@C derived from bamboo fiber combined with metal-organic-framework for enhanced electromagnetic wave absorption [J]. Journal of Colloid and Interface Science, 2021, 595: 78 − 87. [11] CHEN Meiling, WENG Yun, SEMPLE K, et al. Sustainability and innovation of bamboo winding composite pipe products [J/OL]. Renewable and Sustainable Energy Reviews, 2021, 144: 110976[2023-02-28]. doi: 10.1016/j.rser.2021.110976. [12] 张亚慧, 黄宇翔, 于文吉, 等. 我国竹产业的发展历程、现状及趋势[J]. 中国人造板, 2019, 26(6): 32 − 36. ZHANG Yahui, HUANG Yuxiang, YU Wenji, et al. Development, current situation and trend of bamboo industry in China [J]. China Wood-Based Panels, 2019, 26(6): 32 − 36. [13] 林敏, 龚媛媛, 石金明, 等. 江西的竹产业发展现状与建议[J]. 能源研究与管理, 2019(3): 1 − 5. LIN Min, GONG Yuanyuan, SHI Jinming, et al. Development status and suggestion of bamboo industry in Jiangxi [J]. Energy Research and Management, 2019(3): 1 − 5. [14] CHEN Lin, YU Zixuan, FEI Benhua, et al. Study on performance and structural design of bamboo helmet [J/OL]. Forests, 2022, 13(7): 1091[2023-02-28]. doi: 10.3390/f13071091. [15] 夏雨, 牛帅红, 李延军, 等. 常压高温热处理对红竹竹材物理力学性能的影响[J]. 浙江农林大学学报, 2018, 35(4): 765 − 770. XIA Yu, NIU Shuaihong, LI Yanjun, et al. Physical and mechanical properties of Phyllostachys iridescins under normal pressure and heat temperature [J]. Journal of Zhejiang A&F University, 2018, 35(4): 765 − 770. [16] BAHTIAR E T, IMANULLAH A P, HERMAWAN D, et al. Structural grading of three sympodial bamboo culms (Hitam, Andong, and Tali) subjected to axial compressive load [J]. Engineering Structures, 2019, 181: 233 − 245. [17] 陈冠军, 袁晶, 余雁, 等. 竹材顺纹抗压性能的种间差异及其影响因子研究[J]. 木材加工机械, 2018, 29(6): 23 − 27. CHEN Guanjun, YUAN Jing, YU Yan, et al. Study on interspecific differences of the compression performance parallel to the grain of bamboo and its influencing factors [J]. Forestry and Grassland Machinery, 2018, 29(6): 23 − 27. [18] 中国木材标准化技术委员会. 竹材物理力学性质试验方法: GB/T 15780—1995[S]. 北京: 中国标准出版社, 1995. National Technical Committee on Timber of Standardization Administrator of China. Testing Methods for Physical and Mechanical Properties of Bamboos: GB/T 15780−1995 [S]. Beijing: Standards Press of China, 1995. [19] 蔡绍祥, 夏雨, 徐冰洁, 等. 小径级圆竹家具用材力学性能及其设计改良研究[J]. 林产工业, 2020, 57(9): 32 − 36. CAI Shaoxiang, XIA Yu, XU Bingjie, et al. Study on mechanical properties and furniture design improvement of small diameter round bamboo [J]. China Forest Products Industry, 2020, 57(9): 32 − 36. [20] 代福宽, 潘怀志, 王传贵. 小径级竹材抗弯性能测试方法[J]. 世界竹藤通讯, 2020, 18(3): 45 − 49, 54. DAI Fukuan, PAN Huaizhi, WANG Chuangui. Test method of bending properties for small diameter bamboo [J]. World Bamboo and Rattan, 2020, 18(3): 45 − 49, 54. [21] LI Jing, XU Haocheng, YU Yan, et al. Intelligent analysis technology of bamboo structure. PartⅠ: The variability of vascular bundles and fiber sheath area [J/OL]. Industrial Crops and Products, 2021, 174: 114163[2023-02-28]. doi: 10.1016/j.indcrop.2021.114163. [22] 黎静, 黄汉霄, 石俊利, 等. 竹环中维管束分布密度和纤维鞘组织比量纵向变异研究[J]. 世界竹藤通讯, 2019, 17(2): 7 − 11. LI Jing, HUANG Hanxiao, SHI Junli, et al. A study of longitudinal variation of vascular bundles distribution density and fiber sheath tissue proportion in internode of moso bamboo [J]. World Bamboo and Rattan, 2019, 17(2): 7 − 11. [23] 张文福. 圆竹性能评价及其帚化加工技术的研究[D]. 北京: 中国林业科学研究院, 2012. ZHANG Wenfu. Mechanical Properties and Brooming Processing of Bamboo-culm [D]. Beijing: Chinese academy of forestry, 2012. [24] AKINBADE Y, HARRIES K A. Is the rule of mixture appropriate for assessing bamboo material properties? [J/OL]. Construction and Building Materials, 2021, 267: 120955[2023-02-28]. doi: 10.1016/j.conbuildmat.2020.120955. [25] 李荣荣, 贺楚君, 彭博, 等. 毛竹材不同部位纤维形态及部分物理性能差异[J]. 浙江农林大学学报, 2021, 38(4): 854 − 860. LI Rongrong, HE Chujun, PENG Bo, et al. Differences in fiber morphology and partial physical properties in different parts of Phyllostachys edulis [J]. Journal of Zhejiang A&F University, 2021, 38(4): 854 − 860. [26] LO T Y, CUI Hongzhi, LEUNG H C. The effect of fiber density on strength capacity of bamboo [J]. Materials Letters, 2004, 58(21): 2595 − 2598. [27] ZHANG Xuexia, LI Jinghao, YU Zixuan, et al. Compressive failure mechanism and buckling analysis of the graded hierarchical bamboo structure [J]. Journal of Materials Science, 2017, 52: 6999 − 7007. [28] HABIBI M K, SAMAEI A T, GHESHLAGHI B, et al. Asymmetric flexural behavior from bamboo’s functionally graded hierarchical structure: underlying mechanisms [J]. Acta Biomaterialia, 2015, 16: 178 − 186. [29] SHAO Zhuoping, FANG Changhua, HUANG Shengxia, et al. Tensile properties of Moso bamboo (Phyllostachys pubescens) and its components with respect to its fiber-reinforced composite structure [J]. Wood Science and Technology, 2010, 44: 655 − 666. [30] WANG Hankun, ZHANG Xuexia, JIANG Zehui, et al. A comparison study on the preparation of nanocellulose fibrils from fibers and parenchymal cells in bamboo (Phyllostachys pubescens) [J]. Industrial Crops and Products, 2015, 71: 80 − 88. [31] REN Wenting, ZHU Jiawei, GUO Fei, et al. Structural evolution of cellulose from bamboo fibers and parenchyma cells during ionic liquid pretreatment for enhanced hydrolysis [J]. Biomacromolecules, 2022, 23(5): 1938 − 1948. [32] DARWIS A, ISWANTO A H. Morphological characteristics of Bambusa vulgaris and the distribution and shape of vascular bundles therein [J]. Journal of the Korean Wood Science and Technology, 2018, 46(4): 315 − 322. [33] XU Haocheng , LI Jing, MA Xingxing , et al. Intelligent analysis technology of bamboo structure. Part Ⅱ: The variability of radial distribution of fiber volume fraction [J/OL]. Industrial Crops and Products, 2021, 174: 114164[2023-02-28]. doi: 10.1016/j.indcrop.2021.114164. -
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20230207