-
随着全球气候变化的日益严峻,温室气体排放成为研究热点。毛竹Phyllostachys edulis林是重要的森林资源,其扩张现象日趋严峻,并通过多种途径影响土壤碳氮库及温室气体排放。关于毛竹扩张过程中土壤二氧化碳(CO2)及氧化亚氮(N2O)排放的响应机制尚不明确,这对于讨论毛竹林在全球碳氮循环中的作用至关重要。本研究旨在通过分析毛竹扩张对凋落物分解、土壤理化性质及土壤微生物群落的影响,讨论毛竹扩张对土壤CO2和N2O排放的影响及其机制。
Response of soil CO2 and N2O emissions to Phyllostachys edulis expansion and its mechanism
-
摘要: 在全球变化背景下,森林土壤温室气体减排增汇研究,尤其是毛竹Phyllostachys edulis扩张林土壤温室气体排放响应研究日益增多。综述了毛竹扩张林土壤温室气体响应及其机制。毛竹依靠其强大的竹鞭迅速生长,不断向周围林分扩张,短期内即可完成生长。由于其特殊的繁殖方式及强大的扩张能力,许多邻近原生林被毛竹扩张形成混交林,逐渐演变为毛竹纯林。毛竹扩张对原生生态系统影响不断加剧,改变了生态系统物质循环过程,导致土壤碳氮输入和转化失衡,进而影响温室气体排放。氧化亚氮(N2O)和二氧化碳(CO2)是2种重要的温室气体,土壤是与CO2及N2O排放相关的重要碳氮库,土壤理化性质、凋落物分解及土壤微生物群落结构等共同决定土壤温室气体排放。近年来,毛竹扩张面积不断增大,导致扩张区域内土壤环境不断发生改变, 在一定程度上影响了N2O和CO2排放。毛竹扩张后土壤pH升高,凋落物分解速率加快,土壤碳氮增加。毛竹扩张对土壤CO2排放具有促进作用,扩张林土壤丛枝菌根真菌丰度增加,且通过调节氨氧化古菌、亚硝酸还原酶基因和 N2O还原酶基因等N2O相关功能基因丰度影响硝化与反硝化作用,从而进一步影响土壤N2O排放。未来的研究应进一步探究其内在机制,为扩张毛竹林科学管理和温室气体减排提供理论支持。参79Abstract: In the context of global change, research on greenhouse gas emission and sink in forest soil, especially on the response of soil greenhouse gas emission in Phyllostachys edulis expansion forests, is increasing. This paper reviews the soil greenhouse gas response and mechanism in P. edulis expansion forest. P. edulis relies on its powerful bamboo whips to grow rapidly and continuously expand into the surrounding stands, completing its growth within a short time. Due to its unique reproductive mode and strong expansion ability, many adjacent native forests are invaded by P. edulis expansion to form mixed forests, which gradually evolve into pure P. edulis forests. The expansion of P. edulis has an increasing impact on the native ecosystem, changing the material cycling process of the ecosystem, leading to an imbalance in soil carbon and nitrogen input and transformation, and thus affecting greenhouse gas emissions. Nitrous oxide (N2O) and carbon dioxide (CO2) are two important greenhouse gases. Soil is an important carbon and nitrogen pool related to CO2 and N2O emissions. Soil physiochemical properties, litter decomposition and soil microbial community structure jointly determine soil greenhouse gas emissions. In recent years, the expansion area of P. edulis has been increasing, resulting in continuous changes in the soil environment in the expansion area, which has affected N2O and CO2 emissions to a certain extent. The results showed that after P. edulis expansion, soil pH increased, litter decomposition rate accelerated, and soil carbon and nitrogen increased. P. edulis expansion promoted soil CO2 emission, increased the abundance of soil arbuscular mycorrhizal fungi (AMF) in the expanded forest and affected nitrification and denitrification by regulating the abundance of N2O related functional genes such as amoA in ammonia-oxidizing archaea (AOA), nitrite reductase gene (nirK) and nitrous oxide reductase gene (nosZ), thereby further affecting soil N2O emissions. Future research should further explore its internal mechanism to provide theoretical support for the scientific management of P. edulis expansion forest and greenhouse gas emission reduction. [Ch, 79 ref.]
-
Key words:
- Phyllostachys edulis expansion /
- plant invasion /
- soil greenhouse gas /
- review
-
[1] 王正平, 耿伯介. 《中国植物志》第9卷第1分册(禾本科竹亚科)编后记[J]. 竹子研究汇刊, 1996, 15(1): 77 − 79. WANG Zhengping, GENG Bojie. Notes of editorial-work in the flora of P. R. China, Vol. 9, Part 1 (Graminesubfam, Bambusoiedae) [J]. Journal of Bamboo Research, 1996, 15(1): 77 − 79. [2] 蔡亮, 张瑞霖, 李春福, 等. 基于竹鞭状态分析的抑制毛竹林扩散的方法[J]. 东北林业大学学报, 2003, 31(5): 68 − 70. CAI Liang, ZHANG Ruilin, LI Chunfu, et al. A method to inhibit the expansion of Phyllostachys pubescens based on the analysis of underground rhizome [J]. Journal of Northeast Forestry University, 2003, 31(5): 68 − 70. [3] KLEINHENZ V, MIDMORE D J. Aspects of bamboo agronomy [J]. Advances in Agronomy, 2001, 74: 99 − 153. [4] 李玉敏, 冯鹏飞. 基于第9次全国森林资源清查的中国竹资源分析[J]. 世界竹藤通讯, 2019, 17(6): 45 − 48. LI Yumin, FENG Pengfei. Bamboo resources in China based on the ninth national forest inventory data [J]. World Bamboo and Rattan, 2019, 17(6): 45 − 48. [5] PAN Jun, LIU Yuanqiu, NIU Jiehui, et al. Moso bamboo expansion reduced soil N2O emissions while accelerated fine root litter decomposition: contrasting non-additive effects [J/OL]. Plant and Soil, 2022[2023-09-11]. doi: 10.1007/s11104-022-05785-8. [6] 李超, 刘苑秋, 王翰琨, 等. 庐山毛竹扩张及模拟氮沉降对土壤N2O和CO2排放的影响[J]. 土壤学报, 2019, 56(1): 146 − 155. LI Chao, LIU Yuanqiu, WANG Hankun, et al. Effects of moso bamboo (Phyllostachys edulis) expansion and simulate nitrogen deposition on emission of soil N2O and CO2 in Lushan Mountain [J]. Acta Pedologica Sinica, 2019, 56(1): 146 − 155. [7] OKUTOMI K, SHINODA S, FUKUDA H. Causal analysis of the invasion of broad-leaved forest by bamboo in Japan [J]. Journal of Vegetation Science, 1996, 7(5): 723 − 728. [8] 黄茹, 齐代华, 陶建平, 等. 竹类入侵干扰对桫椤种群空间分布格局的影响[J]. 四川师范大学学报(自然科学版), 2009, 32(1): 106 − 111. HUANG Ru, QI Daihua, TAO Jianping, et al. Effects of bamboo-invasion disturbance on the spatial distribution of Alsophila spinulosa population [J]. Journal of Sichuan Normal University (Natural Science), 2009, 32(1): 106 − 111. [9] 白尚斌, 周国模, 王懿祥, 等. 天目山保护区森林群落植物多样性对毛竹入侵的响应及动态变化[J]. 生物多样性, 2013, 21(3): 288 − 295. BAI Shangbin, ZHOU Guomo, WANG Yixiang, et al. Plant species diversity and dynamics in forests invaded by moso bamboo (Phyllostachys edulis) in Tianmu Mountain Nature Reserve [J]. Biodiversity Science, 2013, 21(3): 288 − 295. [10] 吴家森, 姜培坤, 王祖良. 天目山国家级自然保护区毛竹扩张对林地土壤肥力的影响[J]. 江西农业大学学报, 2008, 30(4): 689 − 692. WU Jiasen, JIANG Peikun, WANG Zuliang. The effects of Phyllostachys pubescens expansion on soil fertility in National Nature Reserve of Mount Tianmu [J]. Acta Agriculturae Universitatis Jiangxiensis, 2008, 30(4): 689 − 692. [11] 赵雨虹, 范少辉, 罗嘉东. 毛竹扩张对常绿阔叶林土壤性质的影响及相关分析[J]. 林业科学研究, 2017, 30(2): 354 − 359. ZHAO Yuhong, FAN Shaohui, LUO Jiadong. The influence of Phyllostachys edulis expanding into evergreen broadleaf forest on soil property and its related analysis [J]. Forest Research, 2017, 30(2): 354 − 359. [12] LI Yongchun, LI Yongfu, CHANG S X, et al. Bamboo invasion of broadleaf forests altered soil fungal community closely linked to changes in soil organic C chemical composition and mineral N production [J]. Plant and Soil, 2017, 418(1): 507 − 521. [13] SONG Qingni, OUYANG Ming, YANG Qingpei, et al. Degradation of litter quality and decline of soil nitrogen mineralization after moso bamboo (Phyllostachys pubscens) expansion to neighboring broadleaved forest in subtropical China [J]. Plant and Soil, 2016, 404(1): 113 − 124. [14] LUAN Junwei, LIU Silong, LI Siyu, et al. Functional diversity of decomposers modulates litter decomposition affected by plant invasion along a climate gradient [J]. Journal of Ecology, 2021, 109(3): 1236 − 1249. [15] ZHANG Ling. Bamboo Expansion: Processes, Impacts, and Management[M]. Singapore: Springer, 2023. [16] IPCC. Climate Change 2022: Mitigation of Climate Change[R]. New York: Cambridge University Press, 2022. [17] BOSSIO D A, COOK-PATTON S C, ELLIS P W, et al. The role of soil carbon in natural climate solutions [J]. Nature Sustainability, 2020, 3(5): 391 − 398. [18] 郑翔, 刘琦, 曹敏敏, 等. 森林土壤氧化亚氮排放对氮输入的响应研究进展[J]. 土壤学报, 2022, 59(5): 1190 − 1203. ZHENG Xiang, LIU Qi, CAO Minmin, et al. A review of responses of soil nitrous oxide emissions to nitrogen input in forest ecosystems [J]. Acta Pedologica Sinica, 2022, 59(5): 1190 − 1203. [19] 李文娟, 蔡延江, 朱同彬, 等. 土壤团聚体氧化亚氮排放及其微生物学机制研究进展[J]. 土壤学报, 2021, 58(5): 1132 − 1144. LI Wenjuan, CAI Yanjiang, ZHU Tongbin, et al. Release of nitrous oxide from soil aggregates and its microbial mechanism [J]. Acta Pedologica Sinica, 2021, 58(5): 1132 − 1144. [20] MANGALASSERY S, SJÖGERSTEN S, SPARKES D L, et al. The effect of soil aggregate size on pore structure and its consequence on emission of greenhouse gases [J]. Soil and Tillage Research, 2013, 132: 39 − 46. [21] 陈慧娴, 肖意, 徐健鸿, 等. 毛竹扩张亚热带常绿阔叶林和针叶林对土壤无机氮的影响[J]. 生物灾害科学, 2022, 45(2): 210 − 215. CHEN Huixian, XIAO Yi, XU Jianhong, et al. Effects of moso bamboo expansion to subtropical evergreen broad-leaved and coniferous forests on soil inorganic nitrogen contents [J]. Biological Disaster Science, 2022, 45(2): 210 − 215. [22] 张东秋, 石培礼, 张宪洲. 土壤呼吸主要影响因素的研究进展[J]. 地球科学进展, 2005, 20(7): 778 − 785. ZHANG Dongqiu, SHI Peili, ZHANG Xianzhou. Some advance in the main factors controlling soil respiration [J]. Advances in Earth Science, 2005, 20(7): 778 − 785. [23] 施宇森, 王杉杉, 方伟, 等. 基于Meta分析研究毛竹入侵致土壤pH提升及养分和微生物群落结构的变化[J/OL]. 土壤学报, 2023-02-28[2023-09-11]. https://kns.cnki.net/kcms/detail//32.1119.P.20230227.1944.006.html. SHI Yusen, WANG Binbin, FANG Wei, et al. Bamboo invades surrounding forest increased soil pH, changed soil chemical nutrient and microbial community: a meta-analysis [J/OL]. Acta Pedologica Sinica, 2023-02-28[2023-09-11]. https://kns.cnki.net/kcms/detail//32.1119.P.20230227.1944.006.html. [24] 牛利敏. 毛竹入侵及经营方式对土壤丛枝菌根真菌群落的影响及其机理研究[D]. 杭州: 浙江农林大学, 2017. NIU Limin. Effects of Phyllostachys pubescens Invasion and Management Model on Soil Arbuscular Mycorrhizal Fungal Communities and Their Mechanisms [D]. Hangzhou: Zhejiang A&F University, 2017. [25] RUBINO M, DUNGAIT J A J, EVERSHED R P, et al. Carbon input belowground is the major C flux contributing to leaf litter mass loss: evidence from a 13C labelled-leaf litter experiment [J]. Soil Biology and Biochemistry, 2010, 42(7): 1009 − 1016. [26] DORREPAAL E, CORNELISSEN J H C, AERTS R, et al. Are growth forms consistent predictors of leaf litter quality and decomposability across peatlands along a latitudinal gradient? [J]. Journal of Ecology, 2005, 93(4): 817 − 828. [27] 方华军, 程淑兰, 于贵瑞, 等. 森林土壤氧化亚氮排放对大气氮沉降增加的响应研究进展[J]. 土壤学报, 2015, 52(2): 262 − 271. FANG Huajun, CHENG Shulan, YU Guirui, et al. Study on the responses of nitrous oxide emission to increased nitrogen deposition in forest soils: a review [J]. Acta Pedologica Sinica, 2015, 52(2): 262 − 271. [28] 毛新伟, 程敏, 徐秋芳, 等. 硝化抑制剂对毛竹林土壤N2O排放和氨氧化微生物的影响[J]. 土壤学报, 2016, 53(6): 1528 − 1540. MAO Xinwei, CHENG Min, XU Qiufang, et al. Effects of nitrification inhibitors on soil N2O emission and community structure and abundance of ammonia oxidation microorganism in soil under extensively managed Phyllostachys edulis stands [J]. Acta Pedologica Sinica, 2016, 53(6): 1528 − 1540. [29] LI Zhenzhen, ZHANG Ling, DENG Bangliang, et al. Effects of moso bamboo (Phyllostachys edulis) invasions on soil nitrogen cycles depend on invasion stage and warming [J]. Environmental Science and Pollution Research, 2017, 24(32): 24989 − 24999. [30] UMEMURA M, TAKENAKA C. Changes in chemical characteristics of surface soils in hinoki cypress (Chamaecyparis obtusa) forests induced by the invasion of exotic moso bamboo (Phyllostachys pubescens) in central Japan [J]. Plant Species Biology, 2015, 30(1): 72 − 79. [31] 宋庆妮. 毛竹向常绿阔叶林扩张对土壤氮素矿化及有效性的影响[D]. 南昌: 江西农业大学, 2013. SONG Qingni. Effects of Phyllostachys edulis Expansion on Nitrogen Mineralization and Its Availability of Evergreen Broad-leaved Forest [D]. Nanchang: Jiangxi Agricultural University, 2013. [32] NICOL G W, LEININGER S, SCHLEPER C, et al. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria [J]. Environmental Microbiology, 2008, 10(11): 2966 − 2978. [33] ZOU Na, SHI Weiming, HOU Lihan, et al. Superior growth, N uptake and NH4 + tolerance in the giant bamboo Phyllostachys edulis over the broad-leaved tree Castanopsis fargesii at elevated NH4 + may underlie community succession and favor the expansion of bamboo [J]. Tree Physiology, 2020, 40(11): 1606 − 1622. [34] 毛莹儿, 周秀梅, 王楠, 等. 毛竹扩张对杉木林土壤细菌群落的影响[J]. 生物多样性, 2023, 31(6): 157 − 166. MAO Yinger, ZHOU Xiumei, WANG Nan, et al. Impact of Phyllostachys edulis expansion to Chinese fir forest on the soil bacterial community [J]. Biodiversity Science, 2023, 31(6): 157 − 166. [35] 何美霞, 段鹏鹏, 李德军. 土壤氧化亚氮产生路径及其研究方法进展[J]. 生态学杂志, 2023, 42(6): 1497 − 1508. HE Meixia, DUAN Pengpeng, LI Dejun. Review on the pathways of soil nitrous oxide production and its research methods [J]. Chinese Journal of Ecology, 2023, 42(6): 1497 − 1508. [36] 宋庆妮, 杨清培, 刘骏, 等. 毛竹扩张对常绿阔叶林土壤氮素矿化及有效性的影响[J]. 应用生态学报, 2013, 24(2): 338 − 344. SONG Qingni, YANG Qingpei, LIU Jun, et al. Effects of Phyllostachys edulis expansion on soil nitrogen mineralization and its availability in evergreen broadleaf forest [J]. Chinese Journal of Applied Ecology, 2013, 24(2): 338 − 344. [37] SANTONJA M, RODRÍGUEZ-PÉREZ H, NATHALIE L B, et al. Leaf nutrients and macroinvertebrates control litter mixing effects on decomposition in temperate streams [J]. Ecosystems, 2020, 23(2): 400 − 416. [38] LEFF J W, WIEDER W R, TAYLOR P G, et al. Experimental litterfall manipulation drives large and rapid changes in soil carbon cycling in a wet tropical forest [J]. Global Change Biology, 2012, 18(9): 2969 − 2979. [39] ZHENG Xiang, WANG Shuli, XU Xingtong, et al. Soil N2O emissions increased by litter removal but decreased by phosphorus additions [J]. Nutrient Cycling in Agroecosystems, 2022, 123(1): 49 − 59. [40] ZHANG Ling, WANG Hong, ZOU Jianwen, et al. Non-native plant litter enhances soil carbon dioxide emissions in an invaded annual grassland [J/OL]. PLoS One, 2014, 9(3): e92301[2023-09-11]. doi:10.1371/journal.pone.0092301. [41] BRADFORD M A, BERG B, MAYNARD D S, et al. Understanding the dominant controls on litter decomposition [J]. Journal of Ecology, 2016, 104(1): 229 − 238. [42] 汪思龙, 陈楚莹. 森林残落物生态学[M]. 北京: 科学出版社, 2010. WANG Silong, CHEN Chuying. Forest Litter Ecology [M]. Beijing: Science Press, 2010. [43] 顾娇, 毛莹儿, 李秀秀, 等. 杉木叶片、细根功能性状对毛竹扩张及伐除的响应[J]. 生态学报, 2023, 43(8): 3286 − 3294. GU Jiao, MAO Yinger, LI Xiuxiu, et al. Responses of leaf and fine root functional traits of Cunninghamia lanceolata to Phyllostachys edulis expansion and removal [J]. Acta Ecologica Sinica, 2023, 43(8): 3286 − 3294. [44] 刘喜帅. 毛竹扩张对凋落物-土壤碳氮磷含量的影响及其微生物学机制研究[D]. 南昌: 江西农业大学, 2018. LIU Xishuai. The Effect of Phyllostachys edulis Expansion on the Content of Carbon, Nitrogen and Phosphorus in Litter and Soil and Its Microbiological Mechanism [D]. Nanchang: Jiangxi Agricultural University, 2018. [45] LEITNER S, SAE-TUN O, KRANZINGER L, et al. Contribution of litter layer to soil greenhouse gas emissions in a temperate beech forest [J]. Plant and Soil, 2016, 403(1): 455 − 469. [46] 王灵杰, 栗青丽, 高培军, 等. 毛竹茎秆快速生长期光合关键酶活性及基因表达分析[J]. 浙江农林大学学报, 2021, 38(1): 84 − 92. WANG Lingjie, LI Qingli, GAO Peijun, et al. Activities of key enzymes involved in photosynthesis and expression patterns of corresponding genes during rapid growth of Phyllostachys edulis [J]. Journal of Zhejiang A&F University, 2021, 38(1): 84 − 92. [47] 田亚男, 何志龙, 吕昭琪, 等. 凋落茶叶对华中地区酸化茶园土壤N2O与CO2排放的影响[J]. 农业环境科学学报, 2016, 35(8): 1625 − 1632. TIAN Ya’nan, HE Zhilong, LÜ Zhaoqi, et al. Effects of tea litter applications on N2O and CO2 fluxes from acidification of tea garde [J]. Journal of Agro-Environment Science, 2016, 35(8): 1625 − 1632. [48] DOUKALIANOU F, SPYROGLOU G, ORFANOUDAKIS M, et al. Effects of forest thinning on soil litter input nutrients in relation to soil CO2, CH4, and N2O fluxes in Greece [J/OL]. Atmosphere, 2022, 13(3): 376[2023-09-11]. doi: 10.3390/atmos13030376. [49] 李彬彬, 马军花, 武兰芳. 土壤溶解性有机物对CO2和N2O排放的影响[J]. 生态学报, 2014, 34(16): 4690 − 4697. LI Binbin, MA Junhua, WU Lanfang. Effects of dissolved organic matter in soil on the emission of CO2 and N2O [J]. Acta Ecologica Sinica, 2014, 34(16): 4690 − 4697. [50] 李超. 模拟氮沉降下毛竹扩张对凋落物分解及土壤N2O和CO2排放的影响[D]. 南昌: 江西农业大学, 2019. LI Chao. Effects of Moso Bamboo Expansion on Litter Decomposition, Soil N2O and CO2 Emissions under Simulated N Deposition [D]. Nanchang: Jiangxi Agricultural University, 2019. [51] LIN Yute, TANG Shenlin, PAI Chuangwen, et al. Changes in the soil bacterial communities in a cedar plantation invaded by moso bamboo [J]. Microbial Ecology, 2014, 67(2): 421 − 429. [52] HOYWEGHEN L V, de BEER T, DEFORCE D, et al. Phenolic compounds and anti-oxidant capacity of twelve morphologically heterogeneous bamboo species [J]. Phytochemical Analysis, 2012, 23(5): 433 − 443. [53] JOANISSE G D, BRADLEY R L, PRESTON C M, et al. Soil enzyme inhibition by condensed litter tannins may drive ecosystem structure and processes: the case of Kalmia angustifolia [J]. New Phytologist, 2007, 175(3): 535 − 546. [54] 彭鑫怡, 李永春, 王秀玲, 等. 植物入侵对土壤微生物的影响[J]. 浙江农林大学学报, 2019, 36(5): 1019 − 1027. PENG Xinyi, LI Yongchun, WANG Xiuling, et al. Effects of invasive plants on soil microbial communities: a review [J]. Journal of Zhejiang A&F University, 2019, 36(5): 1019 − 1027. [55] SMITH S E, DAVID J R. Mycorrhizal Symbiosis [M]. Cambridge: Academic Press, 2010. [56] BOWLES T M, JACKSON L E, CAVAGNARO T R. Mycorrhizal fungi enhance plant nutrient acquisition and modulate nitrogen loss with variable water regimes[J/OL]. Global Change Biology, 2018, 24(1): e171-e182[2023-09-11]. doi: 10.1111/gcb.13884. [57] ZOU Guiwu, WU Binsheng, CHEN Baodong, et al. What are the effects of moso bamboo expansion into Japanese cedar on arbuscular mycorrhizal fungi: altering the community composition rather than the diversity [J/OL]. Journal of Fungi, 2023, 9(2): 273[2023-09-11]. doi: 10.3390/jof9life12122105020273. [58] STERNGREN A E, HALLIN S, BENGTSON P. Archaeal ammonia oxidizers dominate in numbers, but bacteria drive gross nitrification in N-amended grassland soil [J/OL]. Frontiers in Microbiology, 2015, 6[2023-09-11]. doi: 10.3389/fmicb.2015.01350. [59] 周燕. 毛竹入侵对土壤氮循环主要微生物群落结构和丰度的影响[D]. 杭州: 浙江农林大学, 2018. ZHOU Yan. The Effects of Moso Bamboo Invasion on Nitrogen Cycle Related Microbial Community Structure and Abundance [D]. Hangzhou: Zhejiang A&F University, 2018. [60] AAMER M, SHAABAN M, HASSAN M U, et al. Biochar mitigates the N2O emissions from acidic soil by increasing the nosZ and nirK gene abundance and soil pH [J/OL]. Journal of Environmental Management, 2020, 255: 109891[2023-09-11]. doi: 10.1016/j.jenvman.2019.109891. [61] 沈秋兰. 毛竹林土壤氨氧化和固氮微生物特征及其演变规律[D]. 杭州: 浙江农林大学, 2015. SHEN Qiulan. Characteristics and Evolution of Ammonia-oxidizing and Nitrogen-fixing Bacteria in Moso Bamboo (Phyllostachys pubescens) Forest Soils [D]. Hangzhou: Zhejiang A&F University, 2015. [62] WANG Shuli, YUAN Xi, ZHANG Ling, et al. Litter age interacted with N and P addition to impact soil N2O emissions in Cunninghamia lanceolata plantations [J]. Journal of Plant Ecology, 2022, 15(4): 771 − 782. [63] CAO Linhua, YU Xiao, LIU Caixia, et al. Alteration of soil nitrifiers and denitrifiers and their driving factors during intensive management of moso bamboo (Phyllostachys pubescens) [J/OL]. Science of the Total Environment, 2020, 705: 135236[2023-09-11]. doi: 10.1016/j.scitotenv.2019.135236. [64] 孙棣棣. 应用磷脂脂肪酸方法研究毛竹林土壤微生物群落结构演变规律[D]. 杭州: 浙江农林大学, 2010. SUN Didi. Community Structure Diversity of Soil Microbes Under Phyllostachy pubescens Stands Revealed by PLFAs Analysis [D]. Hangzhou: Zhejiang A&F University, 2010. [65] 董慧芸. 毛竹凋落叶输入对阔叶林土壤酶活性、微生物群落和有机碳矿化的影响[D]. 杭州: 浙江农林大学, 2021. DONG Huiyun. Effects of Bamboo Litter Input on Soil Enzyme Activity, Microbial Community and Soil Organic Carbon Mineralization in a Broad-leaved Forest [D]. Hangzhou: Zhejiang A&F University, 2021. [66] GRAYSTON S J, CAMPBELL C D. Functional biodiversity of microbial communities in the rhizospheres of hybrid larch (Larix eurolepis) and Sitka spruce (Picea sitchensis) [J]. Tree Physiology, 1996, 16(11/12): 1031 − 1038. [67] 杨清培, 郭英荣, 兰文军, 等. 竹子扩张对阔叶林物种多样性的影响: 两竹种的叠加效应[J]. 应用生态学报, 2017, 28(10): 3155 − 3162. YANG Qingpei, GUO Yingrong, LAN Wenjun, et al. Addition effects of co-expansion of two bamboos on plant diversity in broad-leaved forests [J]. Chinese Journal of Applied Ecology, 2017, 28(10): 3155 − 3162. [68] MERILÄ P, MALMIVAARA-LÄMSÄ M, SPETZ P, et al. Soil organic matter quality as a link between microbial community structure and vegetation composition along a successional gradient in a boreal forest [J]. Applied Soil Ecology, 2010, 46(2): 259 − 267. [69] DOUTERELO I, GOULDER R, LILLIE M. Soil microbial community response to land-management and depth, related to the degradation of organic matter in English wetlands: implications for the in situ preservation of archaeological remains [J]. Applied Soil Ecology, 2010, 44(3): 219 − 227. [70] BAI Jian, LUO Laicong, LI Aixin, et al. Effects of biofuel crop switchgrass (Panicum virgatum) cultivation on soil carbon sequestration and greenhouse gas emissions: a review [J/OL]. Life, 2022, 12(12): 2105[2023-09-11]. doi: 10.3390/life12122105. [71] 李波成, 邬奇峰, 张金林, 等. 真菌及细菌对毛竹及阔叶林土壤氧化亚氮排放的贡献[J]. 浙江农林大学学报, 2014, 31(6): 919 − 925. LI Bocheng, WU Qifeng, ZHANG Jinlin, et al. Fungal and bacterial contribution to soil N2O production in Phyllostachys edulis and broadleaf forest ecosystems [J]. Journal of Zhejiang A&F University, 2014, 31(6): 919 − 925. [72] 罗来聪, 赖晓琴, 白健, 等. 氮添加背景下土壤真菌和细菌对不同种源入侵植物乌桕生长特征的影响[J]. 植物生态学报, 2023, 47(2): 206 − 215. LUO Laicong, LAI Xiaoqin, BAI Jian, et al. Effects of soil bacteria and fungi on growth of invasive plant Triadica sebifera with different provenances under nitrogen addition [J]. Chinese Journal of Plant Ecology, 2023, 47(2): 206 − 215. [73] FOX C A, MACDONALD K B. Challenges related to soil biodiversity research in agroecosystems-Issues within the context of scale of observation [J]. Canadian Journal of Soil Science, 2003, 83: 231 − 244. [74] ROUSK J, BROOKES P C, BÅÅTH E. Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization [J]. Applied and Environmental Microbiology, 2009, 75(6): 1589 − 1596. [75] BURTON J, CHEN Cengrong, XU Zhihong, et al. Soil microbial biomass, activity and community composition in adjacent native and plantation forests of subtropical Australia [J]. Journal of Soils and Sediments, 2010, 10(7): 1267 − 1277. [76] WANG Xin, SASAKI A, TODA M, et al. Changes in soil microbial community and activity in warm temperate forests invaded by moso bamboo (Phyllostachys pubescens) [J]. Journal of Forest Research, 2016, 21(5): 235 − 243. [77] 马鑫茹, 郑旭理, 郑春颖, 等. 毛竹扩张对常绿阔叶林土壤微生物群落的影响[J]. 应用生态学报, 2022, 33(4): 1091 − 1098. MA Xinru, ZHENG Xuli, ZHENG Chunying, et al. Effects of moso bamboo (Phyllostachys edulis) expansion on soil microbial community in evergreen broadleaved forest [J]. Chinese Journal of Applied Ecology, 2022, 33(4): 1091 − 1098. [78] LIU Xishuai, SIEMANN E, CUI Cheng, et al. Moso bamboo (Phyllostachys edulis) invasion effects on litter, soil and microbial PLFA characteristics depend on sites and invaded forests [J]. Plant and Soil, 2019, 438(1/2): 85 − 99. [79] de MARCO A, ESPOSITO F, BERG B, et al. Litter inhibitory effects on soil microbial biomass, activity, and catabolic diversity in two paired stands of Robinia pseudoacacia L. and Pinus nigra Arn. [J/OL]. Forests, 2018, 9(12): 766[2023-09-11]. doi: 10.3390/f9120766. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20230501
计量
- 文章访问数: 354
- HTML全文浏览量: 83
- PDF下载量: 30
- 被引次数: 0