留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

上庄河污染河水原位生物修复试验

褚淑祎 陈小敏 潘国武 肖继波

魏亚楠, 龚明贵, 白娜, 等. 梁山慈竹叶绿体基因组密码子偏好性分析[J]. 浙江农林大学学报, 2024, 41(4): 696-705. DOI: 10.11833/j.issn.2095-0756.20230498
引用本文: 褚淑祎, 陈小敏, 潘国武, 等. 上庄河污染河水原位生物修复试验[J]. 浙江农林大学学报, 2014, 31(1): 105-110. DOI: 10.11833/j.issn.2095-0756.2014.01.016
WEI Ya’nan, GONG Minggui, BAI Na, et al. Analysis of codon preference in chloroplast genome of Dendrocalamus farinosus[J]. Journal of Zhejiang A&F University, 2024, 41(4): 696-705. DOI: 10.11833/j.issn.2095-0756.20230498
Citation: CHU Shuyi, CHEN Xiaomin, PAN Guowu, et al. An in situ remediation test for polluted water in the Shangzhuang River[J]. Journal of Zhejiang A&F University, 2014, 31(1): 105-110. DOI: 10.11833/j.issn.2095-0756.2014.01.016

上庄河污染河水原位生物修复试验

DOI: 10.11833/j.issn.2095-0756.2014.01.016
基金项目: 

国家水体污染控制与治理重大科技专项 2008ZX07101-006-08

浙江省重大科技专项 2009C03006-3

浙江省温州市招投标项目 F-GB201106130119

浙江省温州市招投标项目 Z100602217

详细信息
    作者简介: 褚淑祎,从事面源污染控制技术和环境生物技术等研究。E-mail:chusy@zafu.edu.cn
    通信作者: 肖继波,副教授,博士,从事污染水体生态修复和环境生物技术等研究。E-mail:jbx958@yahoo.com.cn
  • 中图分类号: X703.1;X173

An in situ remediation test for polluted water in the Shangzhuang River

  • 摘要: 采用渔网、浮水植物(李氏禾Leersia hexandr,粉绿狐尾藻Myriophyllum aquaticum)和生物漂带构建软隔离区,结合人工增氧对浙江省温州市上庄河经雨水管排放污水进行原位处理。结果表明:污水化学需氧量、氨氮、总氮和总磷分别为100.20~178.80,10.50~17.89,12.15~21.47和2.19~3.17 mg·L-1,处理后主体河段溶解氧、化学需氧量和总磷平均为5.50,34.3和0.29 mg·L-1,达GB 3838-2002《地表水环境质量标准》之Ⅴ类水标准;氨氮和总氮平均为3.41和4.43 mg·L-1。软隔离区内氮的去除主要为植物吸收氨氮,氨氮和总氮的平均去除率达70.26%和71.41%,曝气区好氧微生物的硝化作用使氨氮和总氮进一步下降20.51%和5.74%;总磷的去除主要通过软隔离区内植物的吸收作用和曝气区微生物的同化作用,原位修复处理后总磷平均降至0.29 mg·L-1,去除率达88.1%。
  • 密码子是识别和传递生物体遗传信息、联系蛋白质与DNA之间的重要桥梁,在生物体遗传和变异中起着至关重要的作用[1]。编码同一氨基酸的不同密码子被称为同义密码子。由于基因突变和自然选择的影响,某些同义密码子在蛋白质翻译过程中往往被高频使用,被称为密码子的使用偏好性[23]。物种的生物学功能与密码子偏好性密切相关,密码子偏好性不仅可以影响生物编码基因的蛋白质合成速率和翻译速率[4],还会影响蛋白质结构、折叠程度和mRNA的合成[5]。研究表明:同一物种或亲缘关系相近的物种,具有相似的密码子偏好使用模式[6],通过分析物种的密码子偏好性可以衡量物种之间的基因表达量,进而探究物种之间亲属关系[7]。通过密码子偏好性的研究,能够更好地阐明物种进化过程中基因的表达规律[8],为利用基因工程技术改良物种目标基因提供参考依据[9]

    梁山慈竹Dendrocalamus farinosus属竹亚科Bambusoideae牡竹属Dendrocalamus,又名大叶竹和瓦灰竹,是中国西南地区重要的经济竹种[10],生长速度快,适应性强,竹笋效益高,属于优良的笋竹两用竹种,与硬头黄竹Bambusa rigida都属于竹编和制浆造纸的优质原料[11]。针对梁山慈竹叶绿体基因组密码子使用偏好性的研究鲜见报道。为了更好地挖掘和利用梁山慈竹的潜在经济价值,本研究以梁山慈竹叶绿体基因组序列为研究对象,分析其密码子偏好性使用模式,探究并总结其相关表达基因的密码子偏好性,以期分析影响梁山慈竹叶绿体基因组密码子偏好性的主要因素,并筛选出最优密码子,为后续梁山慈竹叶绿体基因工程改造等研究提供理论基础。

    根据GenBank登录号MZ681865.156在美国国家生物技术信息中心(NCBI)数据库中搜索并下载梁山慈竹叶绿体基因组序列,共有85条编码序列(CDS)。序列重复或小于300 bp会对密码子偏好性指标的测定产生影响[12]。对基因序列进行筛选,剔除序列长度小于300 bp且重复的序列,获取起始密码子为ATG,终止密码子为TAG、TGA和TAA的序列,最终获得51条CDS序列作为后续分析的样本序列。

    运用CodonW1.4.2 (http://sourceforge.net/projects/codonw)和EMBOSS (http://imed.med.ucm.es/EMBOSS/)计算有效密码子数(ENC)、适应指数(CAI)、密码子偏性指数(CBI)、最优密码子频率(FOP)以及密码子第3位核苷酸A、T、C、G的含量(分别记为A3、T3、C3、G3)。利用ENC判断密码子偏好性程度,ENC>35说明密码子偏好性比较弱;反之,说明偏好性强[13]。通过CUSP软件分析并获得密码子鸟嘌呤(G)和胞嘧啶(C)所占的比率(GC比率)及GC平均比率(GCall),使用SPSS 25.0软件对梁山慈竹密码子各位置的GC比率与ENC进行相关分析。

    运用CodonW 1.4.2对同义密码子相对使用度(RSCU)进行分析,即该密码子的实际使用频率与其理论使用频率的比值[14]。当RSCU大于1时,同义密码子中偏好使用该密码子,被称为高频密码子;当RSCU等于1时,密码子无偏好性;当RSCU小于1时,密码子使用偏好性较弱[15]

    中性绘图分析是对影响密码子使用偏好性的关键因素进行分析,X轴为GC3,Y轴为GC1和GC2的平均值,绘制二维散点图对GC3和GC12 (各基因 GC1和GC2的平均值)的相关性进行分析(GC1、GC2、GC3分别代表第1、2、3位密码子的GC比例)。若回归系数接近1,代表GC3和GC12显著相关,碱基组成没有差异,说明突变是决定密码子偏好性的主要因素;若回归系数接近0,则代表自然选择是主要因素。

    ENC-plot绘图分析表现密码子的使用偏好性受到突变和自然选择的影响程度。使用Python 3.7进行ENC-plot绘图分析,构建散点图,横纵坐标分别为GC3、ENC,并绘制ENC的标准曲线。基因位点靠近或在标准曲线上,表明突变是决定密码子偏好性的主要因素,若基因位点和标准曲线距离很大,则说明偏好性主要由自然选择决定。

    PR2-plot分析表明基因中密码子的第3位碱基的构成情况。计算密码子碱基中第3位上4种碱基A、T、C、G比例,G3/(G3+C3)为X轴,A3/(A3+T3)为Y轴,绘制PR2-plot散点图,中心点为碱基比例A=T、C=G时的值,代表处于此区域的密码子并无使用偏好性[16]

    将51条基因升序排列后的ENC前后两端10%的基因建立高、低表达基因库。通过CodonW软件计算2个表达库中密码子的RSCU和ΔRSCU,同时满足高频密码子(RSCU>1)和高表达密码子(ΔRSCU≥0.08)的为最优密码子[17]

    在Codon Usage Database (http://www.kazusa.or.jp/codon/)下载异源表达宿主和植物代表类群,包括巨龙竹D. farinosus、粉麻竹D. sinicus、小叶龙竹D. pulverulentus、硬头黄竹、大肠埃希菌Escherichia coli、烟草Nicotiana tabacum、拟南芥Arabidopsis thaliana和酿酒酵母Saccharomyces cerevisiae等物种基因组密码子的使用频率,与梁山慈竹基因组密码子使用频率比值进行比较分析,当梁山慈竹密码子使用频率比其他生物的比值≥2.0或≤0.5时,说明该物种与梁山慈竹的同义密码子的使用偏好性差异较大,当比值不在上述范围内时,表明这2个物种对该密码子的偏好性较接近。

    将叶绿体基因如表1所示进行功能分类,使用CodinW软件,选择对应分析计算样本中各个基因的RSCU,将分析结果分布在59维向量空间中,分析指标间的对应性。

    表 1  梁山慈竹叶绿体基因结构分析
    Table 1  Structural analysis of the choroplast genome of D. farinosus
    基因分类基因分组基因名称
    光合系统基因光系统Ⅰ基因psaApsaBpsbApsbCpsbDpsbB
    光系统Ⅱ基因petApetBpetD
    细胞色素b/f复合体基因atpAatpBatpEatpFatpI
    三磷酸腺苷合成酶基因ndhAndhBndhCndhDndhEndhFndhGndhHndhIndhJndhK
    遗传系统基因烟酰胺腺票吟二核甘酸氧化还原酶基因rbcL
    二磷酸核酮糖羧化酶大亚基基因rpoArpoBrpoC1、rpoC2
    RNA聚合酶亚基基因rps2、rps3、rps4、rps7、rps8、rps11、rps12、rps14、rps18
    核糖体蛋白小亚基基因rpl2、rpl14、rpl16、rpl20、rpl22
    其他基因成熟酶K基因matK
    膜蛋白基因cemA
    细胞色素合成基因ccsA
    酪蛋白分解蛋白酶基因clpP
    未知功能基因假定叶绿体阅读框ycf2、ycf3、infA
    下载: 导出CSV 
    | 显示表格

    分析梁山慈竹叶绿体基因组CDS序列的碱基组成:梁山慈竹的4种碱基所对应的同义密码子的第3位碱基比例 (T3s、A3s、C3s、G3s)分别为45.28%、42.07%、18.13%、17.96%,T3s和A3s远高于G3s和C3s,表明梁山慈竹叶绿体基因组密码子的第3位碱基以A/U结尾为主。梁山慈竹的ENC为50.40,CAI为16.6%,第3位同义密码子的GC比率 (GC3S)为28.1%,表明其叶绿体基因组密码子偏好性较弱。

    梁山慈竹叶绿体基因组密码子的GC平均比率为39.48%,且GC1 (47.69%)>GC2 (39.70%)>GC3 (31.05%)。ENC为 39.04~61.00,均值为49.51,GC比率在基因密码子上并没有均匀分布(表2)。ENC和密码子3个位置GC比率的相关分析(表3)结果发现:ENC与GC3比率显著相关,与GC1、GC2不显著相关,说明密码子使用偏好性形成过程中GC3的影响作用大于GC1、GC2。

    表 2  梁山慈竹叶绿体基因组各基因密码子相关参数统计
    Table 2  Statistics of codon related parameters of various genes in the chloroplast genome of D. farinosus
    基因GC比率/%ENCCAIFOP基因GC比率/%ENCCAIFOP
    GCGC1GC2GC3GCGC1GC2GC3
    rps1241.8752.0047.2026.4044.850.1400.341rps1833.5334.5039.7726.3239.040.1470.333
    psbA42.5649.7242.9435.0341.330.3130.532rpl2036.1138.3340.8329.1750.970.1120.298
    matK34.4440.8232.4230.0849.490.1660.329clpP43.0152.5338.2538.2552.370.1750.337
    psbD44.4453.3943.5036.4448.990.2420.456psbB44.0154.4245.9731.6350.730.1900.380
    psbC44.6653.5944.7335.6348.910.1830.386petB41.0648.9341.2033.0547.310.1910.333
    rpoB39.1949.8138.0129.7449.690.1530.353petD40.3750.9339.1331.0649.460.1610.305
    rpoC139.8749.9338.0731.6352.770.1560.347rpoA37.0646.1835.5929.4149.940.1510.311
    rpoC238.9549.0136.6431.1852.290.1540.333rps1143.5250.6956.2523.6144.330.1740.396
    rps238.4040.5140.9333.7652.550.1680.338infA40.3543.8635.9641.2361.000.1810.409
    atpI38.8447.5836.2932.6650.550.1630.353rps836.5041.6141.6126.2846.620.1220.374
    atpF38.2747.6235.4531.7553.170.1470.353rpl1438.7154.8437.1024.1951.900.1810.392
    atpA42.0656.0139.9630.1249.960.1820.385rpl1644.7652.1453.5728.5739.410.1150.354
    rps1439.4239.4246.1532.6941.730.1350.384rps333.4743.7531.6725.0048.030.1930.402
    psaB41.8148.7143.1333.6149.340.1720.350rpl2237.5641.3336.6734.6747.480.1880.415
    psaA43.6851.8043.2835.9552.070.1980.373rpl244.5651.7748.5833.3353.330.1430.361
    ycf339.6947.4038.1533.5355.450.1560.343ndhB38.1642.0739.3333.0746.710.1560.348
    rps437.1347.5237.1326.7349.590.1690.386rps739.4949.6845.2223.5748.310.1640.373
    ndhJ39.3849.3836.8831.8851.480.1760.356ndhF34.1937.8438.9225.8146.190.1440.321
    ndhK38.6041.7043.7230.3651.910.1590.329ccsA33.6433.7441.1026.0745.600.1520.307
    ndhC39.6750.4136.3632.3348.750.1770.345ndhD36.1940.7236.9330.9448.980.1330.314
    atpE42.5152.1739.1336.2359.510.1670.405ndhE33.3341.1832.3526.4759.060.1440.316
    atpB42.6253.9141.6832.2647.430.1920.381ndhG34.4644.0732.7726.5545.770.1250.250
    rbcL44.1457.1143.9331.3850.190.2710.454ndhI34.9937.5738.6728.7352.090.1710.345
    ycf441.2248.3939.7835.4847.140.1620.385ndhA33.9842.4236.3623.1444.350.1400.321
    cemA33.6241.9927.7131.1755.910.1760.342ndhH37.8250.7634.7727.9249.950.1550.322
    petA40.2953.5835.232.0951.120.1550.331
    下载: 导出CSV 
    | 显示表格
    表 3  梁山慈竹叶绿体基因组中各基因参数的相关性分析
    Table 3  Correlation analysis of various gene parameters in the chloroplast genome of D. farinosus
    参数GC1GC2GC3ENCCAICBIFOPGC3sGC
    GC11
    GC20.300*1
    GC30.265−0.0091
    ENC0.142−0.425**0.389**1
    CAI0.409**0.0760.370**0.0121
    CBI0.438**0.2720.322*−0.0920.774**1
    FOP0.402**0.312*0.341*−0.0640.797**0.965**1
    GC3s0.271−0.0290.946**0.445**0.330*0.330*0.370**1
    GC0.814**0.673**0.525**0.0100.407**0.512**0.518**0.499**1
      说明: *表示显著相关 (P<0.05);**表示极显著相关 (P<0.01)。
    下载: 导出CSV 
    | 显示表格

    梁山慈竹叶绿体基因组中共包含18110个密码子(表4),总计编码20个氨基酸,密码子数为12~705个,其中密码子UGA共有12个,密码子含量最多的是编码谷氨酸的GAA,共有705个。梁山慈竹叶绿体基因组蛋白编码序列RSCU分析表明:氨基酸含量较高的有亮氨酸(Leu)和精氨酸(Arg),均为6个密码子编码,编码精氨酸的是UUA、UUG、CUU、CUC、CUA和CUG;编码亮氨酸的有AGA、AGG、CGU、CGC、CGA和CGG;除此之外,蛋氨酸(Met)和色氨酸(Trp)均只有1个密码子编码,分别是AUG和UGG,其余氨基酸密码子编码个数分别为2~4个。

    表 4  梁山慈竹叶绿体基因组蛋白编码序列RSCU分析
    Table 4  RSCU of protein coding region in the chloroplast of D. farinosus
    氨基酸
    密码子数量RSCU氨基酸密码子数量RSCU氨基酸
    密码子数量RSCU氨基酸密码子数量RSCU
    PheUUU*6441.29TyrUAU*5321.59SerUCU*3431.58CysUGU*1511.53
    PheUUC3510.71TyrUAC1370.41SerUCC*2601.19CysUGC470.47
    LeuUUA*6341.94TERUAA*281.56SerUCA*2221.02ArgAGA*3221.75
    LeuUUG*3621.11TERUAG140.78SerUCG1190.55ArgAGG1190.64
    LeuCUU*4201.29TERUGA120.67SerAGU*2731.25ArgCGU*2611.41
    LeuCUC1380.42TrpUGG*3281.00SerAGC890.41ArgCGC950.51
    LeuCUA2950.90GlnCAA*4771.53ThrACU*4031.68ArgCGA*2341.27
    LeuCUG1070.33GlnCAG1480.47ThrACC1810.75ArgCGG760.41
    IleAUU*7401.48GluGAA*7051.46ThrACA*2591.08GlyGGU*4211.24
    IleAUC2950.59GluGAG2630.54ThrACG1160.48GlyGGC1450.43
    IleAUA4610.92LysAAA*6471.44AlaGCU*4931.73GlyGGA*5381.58
    MetAUG*4161.00LysAAG2530.56AlaGCC1720.60GlyGGG2590.76
    ValGUU*3821.47AspGAU*5221.54AlaGCA*3431.20ProCCU*2861.48
    ValGUC1260.49AspGAC1550.46AlaGCG1350.47ProCCC*1961.01
    ValGUA*3901.50HisCAU*3111.47AsnAAU*5281.48ProCCA*2091.08
    ValGUG1390.54HisCAC1120.53AsnAAC1870.52ProCCG840.43
      说明:*表示RSCU大于1的高频密码子。
    下载: 导出CSV 
    | 显示表格

    梁山慈竹叶绿体基因组RSCU大于1的密码子数目为34个(分别为UUU、UUA、UUG、CUU、AUU、AUG、GUU、GUA、UCU、UCC、UCA、AGU、ACU、ACA、GCU、GCA、AAU、UAU、UAA、UGG、CAA、GAA、AAA、GAU、CAU、UGU、AGA、CGU、CGA、GGU、GGA、CCU、CCC和CCA),即筛选出了34个高频密码子,其中以A、U、C、G结尾的密码子分别有13、16、2和1个,这说明密码子偏好以A和U结尾,RSCU较高的3个密码子分别为UUU (1.94)、CUA (1.73)和UCU (1.75)。

    中性绘图分析量化自然选择和突变压力之间的关系,阐明3个密码子位置之间的联系。结果表明:横坐标GC3的数值为23.14%~41.23%,纵坐标GC12的数值为39.04%~61.00% (图1)。梁山慈竹的Pearson相关系数为0.17,呈正相关关系,数据拟合后的回归系数为0.1868,决定系数(R2)较小,为0.0282,GC12和GC3的相关性不显著,说明其叶绿体基因组密码子偏好性受自然选择影响较大。

    图 1  中性绘图分析
    Figure 1  Analysis of neutrality plot

    图2显示:ENC分布并不紧密,少量分布在标准曲线附近,还有个别分布在标准曲线上侧,位点的ENC均大于35,与预期ENC值有差距。说明梁山慈竹密码子偏好性较弱且自然选择和突变都对其偏好性有影响。由于落在标准曲线下方的基因点数量比较多,所以梁山慈竹基因组密码子使用偏好性主要受自然选择的影响。

    图 2  ENC-plot分析
    Figure 2  Analysis of ENC-plot

    图3显示:基因位点在平面图4个区域内分布并不均匀,在A3/(A3+T3)<0.5和G3/(G3+C3)>0.5区域范围内分布最多。表明第3位碱基使用频率为:T>A、G>C,梁山慈竹叶绿体基因组密码子的第3位碱基在选择上具有偏好性,同时说明其密码子使用偏好性主要受自然选择的影响。

    图 3  PR2-plot分析
    Figure 3  Analysis of PR2-plot

    对梁山慈竹的ENC进行升序排列,前10%为高表达基因,即rps18、rpl16、psbA、rps14、rps11,后10%为低表达基因,即 ycf3、cemA、ndhE、atpE、infA。梁山慈竹的RSCU和ΔRSCU表明(表5):梁山慈竹叶绿体基因组有32个高频密码子,筛选出GCA、GCU等25个高表达密码子,最终确定18个密码子作为梁山慈竹叶绿体基因组的最优密码子,分别为UAA、GCA、GCU、UUC、GGU、AAA、CUU、UUA、CCA、CCU、CAA、AGA、CGU、AGU、UCC、ACU、GUA、GUU。其中16个以A/U结尾,2个以C结尾。

    表 5  梁山慈竹叶绿体基因组各氨基酸的RSCU分析及最优密码子分析
    Table 5  RSCU analysis and optimal codon analysis of amino acids in chloroplast genome of D. farinosus
    氨基酸密码子基因组
    RSCU
    高表达
    RSCU
    低表达
    RSCU
    ΔRSCU氨基酸密码子基因组
    RSCU
    高表达
    RSCU
    低表达
    RSCU
    ΔRSCU
    TerUAA***1.560 01.800 01.200 00.600 0MetAUG1.000 01.000 01.000 00
    UAG0.780 00.600 01.200 0−0.600 0AsnAAC*0.520 00.893 60.625 00.268 6
    UGA0.670 00.600 00.600 00AAU1.480 01.106 41.375 0−0.268 6
    AlaGCA**1.200 01.200 00.734 70.465 3ProCCA**1.080 00.800 00.500 00.300 0
    GCC0.600 00.457 10.653 1−0.196 0CCC1.010 00.800 01.166 7−0.366 7
    GCG0.470 00.228 60.734 7−0.506 1CCG0.430 00.444 41.000 0−0.555 6
    GCU*1.730 02.114 31.877 60.236 7CCU***1.480 01.955 61.333 30.622 3
    CysUGC**0.470 00.400 000.400 0GlnCAA*1.530 01.500 01.368 40.131 6
    UGU1.530 01.600 02.000 0−0.400 0CAG0.470 00.500 00.631 6−0.131 6
    AspGAC*0.460 00.500 00.411 80.088 2ArgAGA*1.750 01.723 41.534 90.188 5
    GAU1.540 01.500 01.588 2-0.088 2AGG0.640 00.319 10.837 2−0.518 1
    GluGAA1.460 01.189 21.578 9−0.389 7CGA1.270 01.276 61.395 3−0.118 7
    GAG**0.540 00.810 80.421 10.389 7CGC0.510 00.319 10.837 2−0.518 1
    PheUUC**1.290 01.041 70.650 00.391 7CGG0.410 00.319 10.279 10.040 0
    UUU0.710 00.958 31.350 0−0.391 7CGU***1.410 02.042 61.116 30.926 3
    GlyGGA1.580 01.253 71.818 2−0.564 5SerAGC0.410 00.384 60.470 6−0.086 0
    GGC0.430 00.417 90.484 8−0.066 9AGU**1.250 01.846 21.411 80.434 4
    GGG0.760 00.119 40.363 6−0.244 2UCA1.020 00.615 41.058 8−0.443 4
    GGU***1.240 02.209 01.333 30.875 7UCC***1.190 01.769 20.941 20.828 0
    HisCAC**0.530 00.941 20.571 40.369 8UCG0.550 00.153 80.705 9−0.552 1
    CAU1.470 01.058 81.428 6−0.369 8UCU1.580 01.230 81.411 8−0.181 0
    Ile AUA0.920 00.850 70.949 4−0.098 7ThrACA1.080 01.181 81.176 50.005 3
    AUC*0.590 00.626 90.531 60.095 3ACC0.500 00.818 21.058 8−0.240 6
    AUU1.480 01.522 41.519 00.003 4ACG0.480 00.363 60.588 2−0.224 6
    LysAAA**1.440 01.471 71.155 60.316 1ACU**1.680 01.636 41.176 50.459 9
    AAG0.560 00.528 30.844 4−0.316 1ValGUA***1.500 01.767 41.257 10.510 3
    LeuCUA0.900 00.833 31.295 5−0.462 2GUC0.490 001.028 6−1.028 6
    CUC0.420 000.545 5−0.545 5GUG0.540 00.372 10.342 90.029 2
    CUG0.330 00.250 00.477 3−0.227 3GUU**1.470 01.860 51.371 40.489 1
    CUU*1.290 01.333 31.227 30.106 0TrpUGG1.000 01.000 01.000 00
    UUA***1.940 02.166 71.022 71.144 0TyrUAC**0.410 00.521 70.166 70.355 0
    UUG1.110 01.416 71.431 8−0.015 1UAU1.590 01.478 31.833 3−0.355 0
      说明: 高频密码子(RSCU>1.00)带下划线;*. ΔRSCU≥0.08;**. ΔRSCU≥0.3;***. ΔRSCU≥0.5; 加粗的密码子表示最优密码子。
    下载: 导出CSV 
    | 显示表格

    将梁山慈竹基因组密码子使用频率与巨龙竹、粉麻竹、小叶龙竹、硬头黄竹、大肠埃希菌、烟草、拟南芥和酿酒酵母等物种的基因组密码子使用频率进行比较(图4)。结果显示:梁山慈竹与巨龙竹、粉麻竹、小叶龙竹和硬头黄竹的密码子使用频率为0.5~2.0,说明它们的密码子使用偏好性相似,推测具有亲缘关系的禾本科Gramineae牡竹属植物叶绿体基因组密码子偏好性相似;在大肠埃希菌、烟草、拟南芥和酿酒酵母的密码子使用比值中筛选≥2.0或≤0.5的密码子,分别有28和15、15、14个,表明梁山慈竹与这些物种在同义密码子的偏好性上有一定差异。

    图 4  梁山慈竹与其他物种密码子偏好性比较
    Figure 4  Comparison of codon preference between D. farinosus and other species

    将梁山慈竹的51个叶绿体基因的基因功能分为光合系统基因、遗传系统基因、其他基因和未知功能基因四大类,在计算RSCU的基础上将各个基因分布到59维的向量空间。对应分析结果(图5)显示:前4个向量轴分别存在18.3%、16.8%、15.6%和15.4%的差异,前4向量轴累计差异为66.1%,4个轴对密码子均有不同程度的影响;第1轴的值大于其他轴,说明第1轴对梁山慈竹叶绿体基因组密码子偏好性的影响较大。对第1轴与CAI、CBI、FOP、ENC和GC3s等指数进行进一步的相关分析发现:梁山慈竹基因在第1轴上的坐标值与CAI (r=−0.001 7,P<0.01)、CBI (r=0.099 0,P<0.01)、FOP (r=0.083 0,P<0.01)、ENC (r=0.112 0,P<0.01)、GC3s (r=−0.145 0,P<0.01)间具有极显著的相关关系,其中CAI和GC3s第1轴具有负相关关系,表明基因组密码子的偏好性不止受单一因素的影响,自然选择、基因突变均有可能影响梁山慈竹基因组密码子使用偏好性[18]

    图 5  梁山慈竹基因组密码子RSCU的对应性分析
    Figure 5  Correspondence Analysis on RSCU of D. farinosus

    本研究对梁山慈竹叶绿体基因组密码子进行使用偏好性分析,筛选出51条CDS序列,分析表明:GC1>GC2>GC3,密码子在3个位置上的分布并不均匀,密码子偏好使用以A或U结尾的碱基,且梁山慈竹叶绿体基因组的ENC均值为49.51,表明其叶绿体基因组密码子使用偏好性较弱。这与乳油木Vitellaria paradoxa[19]和二乔玉兰Magnolia soulangeana[20]等植物叶绿体基因组密码子偏好性相似。

    对梁山慈竹叶绿体基因组密码子进行中性绘图、ENC-plot分析、PR2-plot分析和对应分析。在中性绘图分析中,回归系数为0.412 8,说明密码子偏好性更多受到自然选择的影响;在ENC-plot分析中,多数基因离标准曲线距离较远,实际ENC和预期ENC有差距,表明该部分基因的密码子偏好性主要受自然选择的影响;在PR2-plot绘图分析中,大部分基因位于平面图的右下方,即T>A、G>C,表明其密码子的使用更多受自然选择的影响。综上所述,影响梁山慈竹叶绿体基因组密码子偏好性的主要原因是自然选择。该研究结果与巨桉Eucalyptus grandi[21]、灰毛浆果楝Cipadessa cinerascens、酸枣Ziziphus jujuba var. spinosa[22]和云南油杉Keteleeria evelyniana[23]等叶绿体基因组密码子偏好性研究结果基本一致;但在对4种蔷薇科 Rosaceae果树[24]和银白杨Populus alba[25]的研究中发现:突变是影响密码子偏好性的主要因素。这说明密码子的使用偏好性受自然选择或基因突变因素影响。基于RSCU的对应分析表明:梁山慈竹的密码子使用变异原因除了突变和自然选择之外,还有其他的因素,这其中光合系统基因和遗传系统基因分布相对集中,各类基因密码子使用偏好性较为接近。该结论与木薯Manihot esculenta[26]和高山松Pinus densata[27]的研究结果一致。密码子使用频率比较结果显示:梁山慈竹与禾本科牡竹属的植物密码子偏好性相似,在基因选择外源系统表达时,可以选择密码子偏好性差异相对较小的酿酒酵母,在选择大肠埃希菌、烟草和拟南芥作为外源表达宿主时,需要根据密码子使用偏好性进行碱基优化,从而使基因在宿主体内更好地表达。

    最优密码子分析表明:梁山慈竹叶绿体基因组有GCU、GAU以及GGU等18个最优密码子,最优密码子大部分以A或U结尾。该结果与抽筒竹Gelidocalamus tessellatus[28]和毛竹Phyllostachys edulis[29]叶绿体基因组最优密码子分析结果一致,这可能与亲缘关系相近,但不同物种之间叶绿体基因组进化过程中的相对保守性有关系[21]。通过筛选获取梁山慈竹偏好使用密码子,可进一步对目标基因进行密码子优化,提高梁山慈竹的竹笋产量和造纸纤维含量,以及利用新一代精准基因编辑工具CRISPR/Cas9优化梁山慈竹密码子,从而改造梁山慈竹基因组编辑的Cas9基因,提高该基因在梁山慈竹中的表达水平[30]

    本研究通过分析梁山慈竹叶绿体基因组的CDS序列,对梁山慈竹的叶绿体基因组进行生物信息学分析,筛选出梁山慈竹叶绿体基因组有GCU、GAU以及GGU等18个最优密码子。研究结果表明:影响梁山慈竹密码子偏好性的主要因素是自然选择。研究结果为后续在分子层面上利用基因工程开发梁山慈竹优良资源提供参考。

  • 图  1  上庄河污染源原位生物修复示意图

    Figure  1  Diagram of in situ remediation of pollution source in Shangzhuang River

    图  2  溶解氧的动态变化

    Figure  2  Dynamic varation of dissolved oxygen

    图  3  化学需氧量的动态变化

    Figure  3  Dynamic varation of chemical oxygen demand

    图  4  氨氮的动态变化

    Figure  4  Dynamic variation of ammonium nitrogen

    图  5  总氮的动态变化

    Figure  5  Dynamic variation of total nitrogen

    图  6  总磷的动态变化

    Figure  6  Dynamic variation of total phosphorus

  • [1] HENRY C P,AMOROS C,ROSET N. Restoration ecology of river in wetlands:a 5 year post-operation survey on the Rhone River,France[J]. Ecol Eng,2002,18:543-554.
    [2] 李青,孙夏平,陈晓宏,等. 广州市石井河受污染水体修复中试研究[J]. 中山大学学报:自然科学版,2008,47(2):131-135.

    LI Qing,SUN Xiaping,CHEN Xiaohong,et al. Pilot-scale study on restoring polluted river water in the Shijing River, Guangzhou City[J]. Acta Sci Nat Unive Sunyatseni,2008,47(2):131-135.
    [3] 卢晓明,张勇,陈建军. 连续曝气下河水水质及睡莲生理响应的季节变化[J]. 环境工程学报, 2010,4(9):1978-1984.

    LU Xiaoming,ZHANG Yong,CHEN Jianjun. Seasonal variation of river water qualities and physiological responses of Nymphaea tetragona L. under continuous aeration[J]. Chin J Environml Eng,2010,4(9):1978-1984.
    [4] 黎贞,卫晋波,任随周,等. 生物制剂对城市黑臭河涌的原位修复技术[J]. 环境科学与技术, 2010,33(12F):435-439.

    LI Zhen,WEI Jinbo,REN Suizhou,et al. Recent progress of biological preparations for in situ remediation of urban black-odor river[J]. Environ Sci & Technol,2010,33(12F):435-439.
    [5] 李先宁,宋海亮,朱光灿,等. 组合型生态浮床的动态水质净化特性[J]. 环境科学,2007,28(11):2448-2452.

    LI Xianning,SONG Hailiang,ZHU Guangcan,et al. Characteristic of combined floating bed ecosystem for water purification under dynamic condition[J]. Environ Sci,2007,28(11):2448-2452.
    [6] PEDERSEN M L, ANDERSEN J M, NIELSEN K,et al. Restoration of Skjern River and its valley:project description and general ecological changes in the project area[J]. Ecol Eng,2007,30(2):131-144.
    [7] FARIA M S,LOPES R J,MALCATO J,et al. In situ bioassays with Chironomus riparius larvae to biomonitor metal pollution in rivers and to evaluate the efficiency of restoration measures in mine areas[J]. Environ Pollut,2008,151(1):213-221.
    [8] 肖继波,王慧明,褚淑祎,等. 生态槽净化污染河水的动态试验研究[J]. 水土保持学报,2012, 26(2):220-223.

    XIAO Jibo,WANG Huiming,CHU Shuyi,et al. Dynamic test-study of eco-tank on polluted river purification[J]. J Soil Water Conserv,2012,26(2):220-223.
    [9] 肖继波,蒋凯凤,吴加伟. 生物漂带接触氧化处理废纸造纸废水[J]. 中国造纸,2009,28(9):38-42.

    XIAO Jibo,JIANG Kaifeng,WU Jiawei. Study on bio-contact oxidation reactor treatment of wastewater from recycled paper mill[J]. China Pulp & Paper,2009,28(9):38-42.
    [10] 吴海明,张建,李伟江,等. 人工湿地植物泌氧与污染物降解耗氧关系研究[J]. 环境工程学报,2010,4(9):1974-1977.

    WU Haiming,ZHANG Jian,LI Weijiang,et al. Relationship between oxygen release from plants in constructed wetland and oxygen demand for pollutant degradation[J]. Chin J Environ Eng, 2010,4(9):1974-1977.
    [11] 高尚,黄民生,吴林林,等. 生物净化槽对黑臭河水净化的中试研究[J]. 中国环境科学,2008,28(5):433-437.

    GAO Shang,HUANG Minsheng,WU Linlin,et al. The control test-study of biological purification tank on malodorous river water purification[J]. China Environ Sci,2008,28(5):433-437.
    [12] 李睿华,管运涛,何苗,等. 河岸混合植物带处理受污染河水中试研究[J]. 环境科学,2006, 27(4):651-654.

    LI Ruihua,GUAN Yuntao,HE Miao,et al. Pilot-scale study on riparian mixed plant zones treating polluted river water[J]. Environ Sci,2006,27(4):651-654.
    [13] 向律成,郝虎林,杨肖娥,等. 多年生漂浮植物对富营养化水体的响应及净化效果研究[J]. 水土保持学报,2009,23(5):152-155,194.

    XIANG Lücheng,HAO Hulin, YANG Xiaoe,et al. Response and purification of perennial floating plants in eutrophic waterbody[J]. J Soil Water Conserv,2009,23(5):152-155,194.
    [14] 吴湘,杨肖娥,李廷强,等. 漂浮植物对富营养化景观水体的净化效果研究[J]. 水土保持学报,2007,21(5):128-132.

    WU Xiang,YANG Xiaoe,LI Tingqiang,et al. Study on purified efficiency of phosphorus and nitrogen from eutrophicated sight water by several floating macrophytes[J]. J Soil Water Conserv,2007,21(5):128-132.
    [15] 赵丰,卢晓明,黄民生,等. 净化槽水质改善与植物生理日变化关系的研究[J]. 华东师范大学学报:自然科学版,2010(2):50-57.

    ZHAO Feng,LU Xiaoming,HUANG Minsheng,et al. Study on the relationship between water quality improvement and Nymphaea tetragona physiological diurnal variation in purification tanks[J]. J East China Norm Univ Nat Sci, 2010(2):50-57.
    [16] 刘士哲,林东教,唐淑军,等. 利用漂浮植物修复系统栽培风车草、彩叶草和茉莉净化富营养化污水的研究[J]. 应用生态学报,2004,15(7):1261-1265.

    LIU Shizhe,LIN Dongjiao,TANG Shujun,et al. Purification of eutrophic wastewater by Cyperus alternfolius,Coleus blumei and Jasminum sambac planted in a floating phytoremediation system[J]. Chin J Appl Ecol,2004,15(7):1261-1265.
  • [1] 汤旭, 郑洁, 冯彦, 李燕坤, 王时军, 张大红.  云南省县域森林生态安全评价与空间分析 . 浙江农林大学学报, 2018, 35(4): 684-694. doi: 10.11833/j.issn.2095-0756.2018.04.014
    [2] 裴建川, 张书廷, 杨金艳, 张进.  立体生态模块处理杭州市玉皇山南基金小镇水体氮的效果 . 浙江农林大学学报, 2018, 35(6): 987-996. doi: 10.11833/j.issn.2095-0756.2018.06.001
    [3] 彭琛琛, 蔡玉梅, 边振兴.  烟台市生态红线划定研究 . 浙江农林大学学报, 2018, 35(5): 818-828. doi: 10.11833/j.issn.2095-0756.2018.05.005
    [4] 孙敏, 陈健, 林鑫涛, 杨山.  城市景观格局对PM2.5污染的影响 . 浙江农林大学学报, 2018, 35(1): 135-144. doi: 10.11833/j.issn.2095-0756.2018.01.018
    [5] 高常军, 魏龙, 贾朋, 田惠玲, 李树光.  基于去重复性分析的广东省滨海湿地生态系统服务价值估算 . 浙江农林大学学报, 2017, 34(1): 152-160. doi: 10.11833/j.issn.2095-0756.2017.01.021
    [6] 金文奖, 侯平, 张伟, 梁立成, 俞飞.  温州鳌江流域表层底泥及河岸土壤重金属空间分布与生态风险评价 . 浙江农林大学学报, 2017, 34(6): 963-971. doi: 10.11833/j.issn.2095-0756.2017.06.001
    [7] 曾琪, 刘健, 余坤勇, 张今朝, 郑文英, 陈樟昊.  福建金丝湾森林公园功能区划与生态脆弱性耦合研究 . 浙江农林大学学报, 2017, 34(5): 833-840. doi: 10.11833/j.issn.2095-0756.2017.05.009
    [8] 王帆, 江洪, 牛晓栋.  大气水汽稳定同位素组成在生态系统水循环中的应用 . 浙江农林大学学报, 2016, 33(1): 156-165. doi: 10.11833/j.issn.2095-0756.2016.01.021
    [9] 陈永根, 周传斌, 朱慧芳, 王如松.  发达地区农村固体废弃物管理与资源化策略 . 浙江农林大学学报, 2015, 32(6): 940-946. doi: 10.11833/j.issn.2095-0756.2015.06.018
    [10] 王琳, 景元书, 张悦.  基于MODIS的长江中下游地区植被净第一性生产力时空变化规律 . 浙江农林大学学报, 2015, 32(6): 829-836. doi: 10.11833/j.issn.2095-0756.2015.06.002
    [11] 易武英, 苏维词, 周文龙, 唐金刚, 张凤太.  基于元胞自动机模型的贵阳市花溪区生态安全预警模拟研究 . 浙江农林大学学报, 2015, 32(3): 369-375. doi: 10.11833/j.issn.2095-0756.2015.03.006
    [12] 晏闻博, 柳丹, 彭丹莉, 李松, 陈俊任, 叶正钱, 吴家森, 王海龙.  重金属矿山生态治理与环境修复技术进展 . 浙江农林大学学报, 2015, 32(3): 467-477. doi: 10.11833/j.issn.2095-0756.2015.03.021
    [13] 王适, 吴永波, 陈杰, 丁晓叶.  上海崇明生态农业园区花菜田的碳平衡 . 浙江农林大学学报, 2014, 31(2): 190-195. doi: 10.11833/j.issn.2095-0756.2014.02.005
    [14] 李正才, 徐德应, 杨校生, 傅懋毅, 孙雪忠, 奚金荣.  7 种不同林农土地利用类型残体的有机碳储量 . 浙江农林大学学报, 2007, 24(5): 581-586.
    [15] 李德会, 李贤伟, 王巧, 荣丽, 杨渺, 刘朔.  林木根系呼吸影响因素及根系呼吸对全球变化的响应 . 浙江农林大学学报, 2007, 24(2): 231-238.
    [16] 戴建兵, 俞益武, 曹群.  湿地保护与管理研究综述 . 浙江农林大学学报, 2006, 23(3): 328-333.
    [17] 贺佳飞, 周伟, 李明会.  多疣狭口蛙繁殖生态初步观察 . 浙江农林大学学报, 2006, 23(3): 311-315.
    [18] 付晓萍, 田大伦, 黄智勇.  模拟酸雨对植物形态学效应的影响 . 浙江农林大学学报, 2006, 23(5): 521-526.
    [19] 温国胜.  毛乌素沙地臭柏群落景观动态 . 浙江农林大学学报, 2005, 22(2): 129-132.
    [20] 蒋文伟, 刘彤, 丁丽霞, 温国胜, 张万荣, 钟泰林.  景观生态空间异质性的研究进展 . 浙江农林大学学报, 2003, 20(3): 311-314.
  • 期刊类型引用(1)

    1. 何刀山,阳小强,秦雅林,何海燕,谢维,罗治国,李鹏. ‘湘辣14号’叶绿体基因组密码子偏好性分析. 中国果菜. 2025(01): 47-54+79 . 百度学术

    其他类型引用(0)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2014.01.016

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2014/1/105

图(6)
计量
  • 文章访问数:  4057
  • HTML全文浏览量:  593
  • PDF下载量:  582
  • 被引次数: 1
出版历程
  • 收稿日期:  2012-12-28
  • 修回日期:  2013-05-06
  • 刊出日期:  2014-02-20

上庄河污染河水原位生物修复试验

doi: 10.11833/j.issn.2095-0756.2014.01.016
    基金项目:

    国家水体污染控制与治理重大科技专项 2008ZX07101-006-08

    浙江省重大科技专项 2009C03006-3

    浙江省温州市招投标项目 F-GB201106130119

    浙江省温州市招投标项目 Z100602217

    作者简介:

    褚淑祎,从事面源污染控制技术和环境生物技术等研究。E-mail:chusy@zafu.edu.cn

    通信作者: 肖继波,副教授,博士,从事污染水体生态修复和环境生物技术等研究。E-mail:jbx958@yahoo.com.cn
  • 中图分类号: X703.1;X173

摘要: 采用渔网、浮水植物(李氏禾Leersia hexandr,粉绿狐尾藻Myriophyllum aquaticum)和生物漂带构建软隔离区,结合人工增氧对浙江省温州市上庄河经雨水管排放污水进行原位处理。结果表明:污水化学需氧量、氨氮、总氮和总磷分别为100.20~178.80,10.50~17.89,12.15~21.47和2.19~3.17 mg·L-1,处理后主体河段溶解氧、化学需氧量和总磷平均为5.50,34.3和0.29 mg·L-1,达GB 3838-2002《地表水环境质量标准》之Ⅴ类水标准;氨氮和总氮平均为3.41和4.43 mg·L-1。软隔离区内氮的去除主要为植物吸收氨氮,氨氮和总氮的平均去除率达70.26%和71.41%,曝气区好氧微生物的硝化作用使氨氮和总氮进一步下降20.51%和5.74%;总磷的去除主要通过软隔离区内植物的吸收作用和曝气区微生物的同化作用,原位修复处理后总磷平均降至0.29 mg·L-1,去除率达88.1%。

English Abstract

魏亚楠, 龚明贵, 白娜, 等. 梁山慈竹叶绿体基因组密码子偏好性分析[J]. 浙江农林大学学报, 2024, 41(4): 696-705. DOI: 10.11833/j.issn.2095-0756.20230498
引用本文: 褚淑祎, 陈小敏, 潘国武, 等. 上庄河污染河水原位生物修复试验[J]. 浙江农林大学学报, 2014, 31(1): 105-110. DOI: 10.11833/j.issn.2095-0756.2014.01.016
WEI Ya’nan, GONG Minggui, BAI Na, et al. Analysis of codon preference in chloroplast genome of Dendrocalamus farinosus[J]. Journal of Zhejiang A&F University, 2024, 41(4): 696-705. DOI: 10.11833/j.issn.2095-0756.20230498
Citation: CHU Shuyi, CHEN Xiaomin, PAN Guowu, et al. An in situ remediation test for polluted water in the Shangzhuang River[J]. Journal of Zhejiang A&F University, 2014, 31(1): 105-110. DOI: 10.11833/j.issn.2095-0756.2014.01.016
  • 由于经济快速发展和环境基础设施建设滞后,城市河流受到了不同程度的污染,黑臭已成为城市河流的一种普遍现象,严重影响了城市的可持续发展[1]。雨水管和污水管的混接和搭接,导致污水经由雨水管排入河流,为大部分城区河流黑臭的主要原因[2]。原位生物修复技术通过曝气增氧、投加微生物菌剂、构建生态浮床等技术对河水进行治理,因具有经济安全、对水生态系统扰动小、利于提高水体自净能力等优点,在污染河流修复中得到了广泛的应用[3-5],但对于污水排入量大、黑臭严重的河流,常规原位修复技术因注重于整体治理,实际投资过大,且效果不甚显著[6]。以河流空间为处理场所,对排入河道的主要污染源进行就地治理与控制将有效降低其对主河段的污染程度,其技术与方法逐渐成为河流原位修复的研究热点[7-8]。上庄河地处温州市蒲州街道,西北向与屿田河交界,东南向与石坦河和三郎桥河相交,全长1 300.0 m,平均宽度58.0 m,平均深度1.8 m。河水一般不流动,由于大量生活污水和工业废水及其尾水经雨水管网排入,导致河水发黑发臭,且水面泡沫较多,严重影响了两岸居民的正常生产生活;2009年上半年上庄河化学需氧量和氨氮平均为78.3 mg·L-1和16.7 mg·L-1。经污染源排查,上庄河与屿田河交汇处有一直径为1 200.0 mm的雨水管,污水流量约为900.0 m3·d-1,为上庄河最大的污染源。为了控制该雨水管所排污水对河水的污染,本试验在雨水管出水口周围构建了软隔离原位生物修复区,研究了污水经原位生物修复处理后,污水及河水溶解氧、化学需氧量、氨氮、总氮及总磷的动态变化,以期为污染河水原位生物修复提供参考和借鉴。

    • 浮水植物李氏禾Leersia hexandr和粉绿狐尾藻Myriophyllum aquaticum均采自浙江温州。聚乙烯经编无结渔网,网目为0.5 cm。NOZZLE-A2200强力造流曝气机,功率为2.2 kW,循环通量为615.0 m3·h-1,溶氧(O2)能力为4.1 kg·h-1。生物漂带[9]宽5.0 cm,长度与河水深度一致。

    • 试验区河宽为65.0 m,均深2.5 m。采用2层渔网将直通河道的雨水管出水口围隔在内(图 1),构成原位生物修复区(120.0 m×20.0 m);近岸5.0 m区域内种植浮水植物李氏禾,构成浮水植物区;浮水植物+生物漂带区内,生物漂带间距为15.0 cm,水面种植粉绿狐尾藻。采用4支直径为150 mm的聚氯乙烯(PVC)管将雨水管中的污水引至a,b,c,d等4个点,间距均为24.0 m,使雨水管中的污水均匀分配至原位修复区域。原位处理区外10.0 m左右平行安装3台强力造流曝气机,间距均为50.0 m,曝气机运行12.0 h·d-1,工作时间为20:00至次日8:00。渔网围隔、浮水植物种植、生物漂带安装于2011年4月实施完毕,待李氏禾和粉绿狐尾藻长满隔离区后,开始实施水质监测。

      图  1  上庄河污染源原位生物修复示意图

      Figure 1.  Diagram of in situ remediation of pollution source in Shangzhuang River

    • 水质监测位点如图 1所示。其中:Ⅰ为雨水管出水口水样;Ⅱ代表雨水管所排污水经隔离区修复处理后水样,位于近河中心渔网内侧0.5 m处;Ⅲ代表原位修复处理后水样;Ⅳ和Ⅴ代表河水水质,分别位于监测位点Ⅲ两侧150.0 m处;Ⅲ,Ⅳ和Ⅴ监测位点均处于河道中心线。水质监测于2011年7月10日开始,连续监测100 d;隔5 d于上午10:00采用500.0 mL采样瓶采集水面下30.0 cm处水样,并于当天测定各项指标。化学需氧量、氨氮、总氮和总磷参照废水监测分析方法(第4版);溶解氧采用HI9147-04便携式溶解氧测定仪现场测定;硝态氮采用美国戴安ICS1500型离子色谱仪测定。

    • 所有实验数据均为3个平行样均值。采用Excel 2007对数据进行分析和作图。

    • 上庄河两岸分布着人造革厂、制笔厂、钢管厂等多家企业,部分生活污水、工业废水及其尾水经雨水管排入上庄河,由于有机污染物的耗氧作用,导致河水溶解氧接近于0而出现黑臭。由于浮水植物的根际泌氧作用[10],试验期间测得浮水植物区水面下30.0 cm处溶解氧平均为0.87 mg·L-1,高于雨水管所排污水溶解氧平均值0.26 mg·L-1图 2)。原位修复区溶解氧较低,说明水生植物虽然能一定程度上提高水体的溶解氧,但其提高量有限,宜结合人工增氧。污水经浮水植物区和浮水植物+生物漂带区处理后,经软隔离渔网进入河道,在强力曝气增氧机的作用下,河水溶解氧升高至4.40~5.98 mg·L-1。曝气增氧机的运行时间为20:00至次日8:00,溶解氧测定于10:00进行。因此,2.0 h内溶解氧并未显著下降,仍平均可达5.50 mg·L-1,表明河水中大部分有机污染物为耗氧速率慢的难降解污染物质[11]。监测位点Ⅳ和Ⅴ周围溶解氧值平均为1.93 mg·L-1和1.89 mg·L-1,接近GB 3838-2002《地表水环境质量标准》之Ⅴ类水标准的2.0 mg·L-1

    • 污水化学需氧量为100.20~178.80 mg·L-1时,经浮水植物区和浮水植物+生物漂带区处理后,化学需氧量降为43.40~62.70 mg·L-1,平均去除率为63.8%(图 3)。浮水植物区近岸约1.8 m宽区域水深较浅,李氏禾扎根于底泥中,构成了120.0 m × 1.8 m的近岸植物带,由于李氏禾根茎及其上负载的生物膜的过滤截留及吸附吸收作用[12],污水中大部分悬浮物得以截留,部分难溶化学需氧量为生物膜所吸附。污水经浮水植物区处理后,进入浮水植物+生物漂带区,其上层为粉绿狐尾藻,下层为比表面积达5 000.0 m2·m-3的软性悬浮载体即生物漂带,上部由于粉绿狐尾藻的根际泌氧作用及河中心高浓度溶解氧的扩散作用,表层处于好氧和兼氧状态;下部则由于生物漂带负载生物膜的耗氧作用处于厌氧状态;污水经浮水植物区的过滤截留、吸附吸收作用及浮水植物+生物漂带区的上部好氧、兼氧和下部厌氧的共同作用[13],化学需氧量降低显著。若将隔离区看作污水处理设施,则水力停留时间为6.67 d时,对于化学需氧量为100.20~178.80 mg·L-1的污水,采用水生植物和微生物联合处理后,化学需氧量平均降至50.36 mg·L-1

      在河水的稀释作用及河水中土著细菌的作用下,位点Ⅲ处化学需氧量进一步降低为29.70~38.80 mg·L-1,稳定达到GB 3838-2002《地表水环境质量标准》之Ⅴ类水标准,即化学需氧量<40.00 mg·L-1。监测位点Ⅳ和Ⅴ 化学需氧量分别为28.50~36.70 mg·L-1和31.60~41.30 mg·L-1,表明雨水管排出污水基本得到有效控制,并未对主体河段水质产生显著影响。监测位点Ⅴ处化学需氧量略高于位点Ⅳ,说明位点Ⅴ周围河段存在其他潜在污染源或底泥对上覆水体的污染较为严重。

      图  2  溶解氧的动态变化

      Figure 2.  Dynamic varation of dissolved oxygen

      图  3  化学需氧量的动态变化

      Figure 3.  Dynamic varation of chemical oxygen demand

    • 污水氨氮和总氮分别为10.50~17.89 mg·L-1和12.15~21.47 mg·L-1时,由于李氏禾和粉绿狐尾藻的吸收作用及其根系负载生物膜的硝化作用,氨氮和总氮分别降低为3.12~7.21 mg·L-1和3.19~6.16 mg·L-1图 4~5),平均去除率分别达70.26%和71.41%。监测位点Ⅱ处硝态氮平均为0.42 mg·L-1,由于隔离区表层溶解氧较低,说明氨氮的去除并非微生物的好氧硝化作用;氨氮/总氮平均达91.06%,表明污水中氮的去除主要为植物的吸收作用[14]。监测位点Ⅱ,Ⅲ,Ⅳ和Ⅴ氨氮平均分别为4.29,3.41,3.10和3.34 mg·L-1,总氮平均分别为4.70,4.43,4.37和4.41 mg·L-1,位点Ⅴ氨氮和总氮均较位点Ⅳ略高;位点Ⅲ氨氮和总氮分别较位点Ⅱ降低了20.51%和5.74%,氨氮降低的比例较大,而监测位点Ⅲ溶解氧较高,说明该河段氨氮的去除主要为微生物的硝化作用[15]。由于河水的稀释及扩散作用,位点Ⅳ和Ⅴ氨氮和总氮略有降低,进一步说明位点Ⅴ周围河段存在其他潜在污染源或底泥对上覆水体的污染较为严重。污水经原位修复处理后,同GB 3838-2002《地表水环境质量标准》之Ⅴ类水标准要求的氨氮和总氮均小于2.00 mg·L-1相比,仍存在一定差距,表明污水经本试验原位修复处理氨氮和总氮尚不能达到Ⅴ类水标准,有待采取其他措施进行强化。

      图  4  氨氮的动态变化

      Figure 4.  Dynamic variation of ammonium nitrogen

      图  5  总氮的动态变化

      Figure 5.  Dynamic variation of total nitrogen

    • 污水经隔离区处理后,总磷由2.24~2.62 mg·L-1降低为0.24~0.43 mg·L-1,平均为0.36 mg·L-1图 6),达GB 3838-2002《地表水环境质量标准》之Ⅴ类水标准,即总磷<0.40 mg·L-1;总磷的去除主要有微生物同化和植物吸收2种途径,隔离区溶解氧较低,故该区中总磷的去除主要为植物的吸收作用[16]。监测位点Ⅲ,Ⅳ和Ⅴ总磷平均为0.29,0.28和0.25 mg·L-1;位点Ⅲ周围河水中溶解氧较高,由于微生物的同化作用,位点Ⅲ较位点Ⅱ平均降低了19.44%;在河水的稀释作用下,位点Ⅳ和Ⅴ较位点Ⅲ总磷有所降低,均小于0.30 mg·L-1,表明经雨水管排入河道的总磷得到了有效控制,主体河段水质未受直接经由软隔离渔网进入的总磷所污染。

      图  6  总磷的动态变化

      Figure 6.  Dynamic variation of total phosphorus

    • 对于经由雨水管排入温州上庄河的化学需氧量、氨氮、总氮和总磷分别为100.2~178.8,10.50~17.89,12.15~21.47和2.19~3.17 mg·L-1的污水,采用渔网、浮水植物和生物漂带构建软隔离区结合人工增氧进行原位修复处理,主体河段溶解氧、化学需氧量和总磷平均为5.50,33.05和0.29 mg·L-1,达GB 3838-2002《地表水环境质量标准》之Ⅴ类水标准;氨氮和总氮平均为3.41 mg·L-1和4.43 mg·L-1

      隔离区内河水溶解氧由0.26 mg·L-1升至0.87 mg·L-1。隔离区外在强力曝气增氧机的作用下,河水溶解氧升至4.40~5.98 mg·L-1。因此,单一依靠植物作用不能有效提高河水溶解氧,仍需借助人工增氧;通过浮水植物根系过滤截留、吸附吸收和微生物降解作用,化学需氧量平均降至50.36 mg·L-1,去除率达63.8%。

      隔离区氮的去除主要为植物吸收氨氮,氨氮和总氮的平均去除率达70.26%和71.41%,经曝气区好氧微生物硝化作用,氨氮和总氮进一步降低20.51%和5.74%;隔离区内总磷的去除也主要为植物的吸收作用,处理后总磷平均降为0.36 mg·L-1,去除率达85.1%,曝气区微生物的同化作用使总磷平均降低19.44%。

参考文献 (16)

目录

/

返回文章
返回