Years of cultivation along with light and high fractions of soil organic carbon in a Carya cathayensis forest
-
摘要: 为探讨不同集约经营历史山核桃Carya cathayensis林地土壤轻重组有机碳的演变规律, 在浙江省临安市分别采集了集约经营历史为5,10,15,20 a的山核桃林土壤样品,并与天然山核桃?鄄阔叶混交林(0 a)进行比较。结果表明:天然混交林改造为山核桃纯林并经强度经营后,土壤有机碳的变化主要发生在表层(0~10 cm),表层土壤总有机碳(SOC),轻组有机碳(LFOC),重组有机碳(HFOC)质量分数均呈下降趋势,与0 a相比,经过5 a经营后,土壤SOC,LFOC,HFOC分别下降了28.4%,59.3%和15.1%, 而20 a后,则分别下降了38.6%,68.2%和26.0%。经营前5 a,LFOC/SOC从23.0%下降为17.0%,而HFOC/SOC则从从70.0%上升到83.0%,在后期的经营过程中,轻重组有机碳占总有机碳的比例保持相对稳定。图3表2参26Abstract: Forests of Carya cathayensis (Chinese hickory), a unique tree species with seeds that produce high-grade oil. Intensive management including heavy application of chemical fertilizer and long-term application of herbicides has resulted in serious soil organic carbon (SOC) decrea. To evaluate what kind of composition of SOC decrea, soil samples collected from intensively-managed forests (IMF) of 5, 10, 15, and 20 years were compared to samples of IMF forests newly converted (year 0) from an evergreen and deciduous broadleaf forest (EDBF). The results indicated that SOC, light fraction organic carbon (LFOC), and high fraction organic carbon (HFOC) decreased after converting an EDBE to an IMF. Compared to the EDBF, in the Chinese hickory forest with 20 years intensive management, there was a decrease in SOC (38.6%), LFOC (68.2%), and HFOC (26.0%). After 5 years of intensive management, LFOC/SOC decreased from 23.0% to 17.0%; whereas HFOC/SOC increased from 70.0% to 83.0%. The results demonstrate that LFOC is the main composition of SOC decreased after converting an EDBE to an IMF. [Ch, 3 fig. 2 tab. 26 ref.]
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2015.05.022
计量
- 文章访问数: 2570
- HTML全文浏览量: 402
- PDF下载量: 534
- 被引次数: 0