留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

紫柏山国家级自然保护区不同植被类型土壤碳氮分布特征及其影响因素

李华 蔡建军 巫翠华 张利利 袁岸 康永祥

李华, 蔡建军, 巫翠华, 张利利, 袁岸, 康永祥. 紫柏山国家级自然保护区不同植被类型土壤碳氮分布特征及其影响因素[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200509
引用本文: 李华, 蔡建军, 巫翠华, 张利利, 袁岸, 康永祥. 紫柏山国家级自然保护区不同植被类型土壤碳氮分布特征及其影响因素[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200509
LI Hua, CAI Jianjun, WU Cuihua, ZHANG Lili, YUAN An, KANG Yongxiang. Distribution characteristics and influencing factors of soil carbon and nitrogen under different vegetation types in Zibaishan National Nature Reserve[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200509
Citation: LI Hua, CAI Jianjun, WU Cuihua, ZHANG Lili, YUAN An, KANG Yongxiang. Distribution characteristics and influencing factors of soil carbon and nitrogen under different vegetation types in Zibaishan National Nature Reserve[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200509

本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。

紫柏山国家级自然保护区不同植被类型土壤碳氮分布特征及其影响因素

doi: 10.11833/j.issn.2095-0756.20200509
基金项目: “十三五”国家重点研发计划资助项目(2016YFC0501706-01);紫柏山国家级自然保护区综合考察专项
详细信息
    作者简介: 李华(ORCID: 0000-0003-4587-4804),从事森林培育研究。E-mail: 2240459861@qq.com
    通信作者: 康永祥(ORCID: 0000-0003-4658-557X),教授,博士生导师,从事植物学和森林培育学研究。E-mail: yxkang@nwsuaf.edu.cn
  • 中图分类号: S714

Distribution characteristics and influencing factors of soil carbon and nitrogen under different vegetation types in Zibaishan National Nature Reserve

  • 摘要:   目的  研究陕西省宝鸡市紫柏山国家级自然保护区不同植被类型下土壤碳氮分布特征,探讨其主要影响因素。  方法  以保护区内壤土类型(槲栎Quercus aliena林、华山松Pinus armandii林)和砂质土类型(锐齿栎Q. aliena var. acuteserrata林、栓皮栎Q. variabilis林、白桦Betula platyphylla林)不同土层土壤样品为研究对象,比较5种植被类型下土壤有机碳质量分数、全氮质量分数、土壤碳氮密度和土壤碳氮储量及碳氮比的差异,分析土壤有机碳、全氮、碳氮比与土壤理化性质的关系。  结果  ①壤土区土壤有机碳质量分数、全氮质量分数、土壤碳氮密度及土壤碳氮储量显著高于砂质土区(P<0.05),其中壤土区各土层从大到小表现为槲栎林、华山松林,砂质土区各土层从大到小表现为白桦林、锐齿栎林、栓皮栎林。②土壤有机碳质量分数、全氮质量分数、土壤碳氮密度及土壤碳氮储量在0~30 cm土层均随土层深度的增加而显著降低(P<0.05);③各植被类型不同土层的土壤碳氮比分布无明显规律且差异不显著,碳氮比为9.94~16.23,有机质的矿化能力较强;④土壤含水量、容重是影响土壤有机碳和全氮质量分数的主要因子,土壤含水量、pH是影响碳氮比的主要因子。  结论  不同植被类型下土壤有机碳质量分数、全氮质量分数、土壤碳氮密度及土壤碳氮储量存在显著差异(P<0.05),土壤含水量是影响土壤有机碳、全氮和碳氮比的关键因子。图4表5参36
  • 图  1  不同植被类型下土壤有机碳和全氮质量分数分布特征

    不同大写字母表示同一植被类型不同土层间差异显著(P<0.05);不同小写字母表示同一土层不同植被类型间差异显著(P<0.05)

    Figure  1  Distribution characteristics of soil organic carbon and total nitrogen in soils under different vegetation types

    图  2  不同植被类型下土壤有机碳和全氮的密度分布特征

    不同大写字母表示同一植被类型不同土层间差异显著(P<0.05);不同小写字母表示同一土层不同植被类型间差异显著(P<0.05)    

    Figure  2  Distribution characteristics of density of soil organic carbon and total nitrogen under different vegetation types

    图  3  不同植被类型下土壤有机碳和全氮的储量分布特征

    不同小写字母表示不同植被类型间差异显著(P<0.05)

    Figure  3  Distribution characteristics of density of soil organic carbon and total nitrogen under different vegetation types

    图  4  影响因子与土壤碳、氮质量分数及碳氮比冗余分析二维排序图

    Figure  4  Two-dimensional sequence diagram of RDA analysis of influencing factors, soil C, N and carbon-nitrogen ratio

    表  1  样地基本情况

    Table  1.   Basic situation of the sample plots

    植被类型北纬(N)东经(E)土壤类型海拔/m坡位坡向林龄/a
    锐齿栎林33°42′37′′106°47′28′′砂质土1 406东南25
    栓皮栎林33°42′44′′106°47′17′′砂质土1 420东南20
    白桦林 33°42′59′′106°46′12′′砂质土1 450东南20
    槲栎林 33°43′06′′106°46′50′′壤土 1 424南 25
    华山松林33°41′38′′106°48′08′′壤土 1 546南 26
    下载: 导出CSV

    表  2  不同植被类型下土壤碳氮比的分布特征

    Table  2.   Distribution characteristics of soil C∶N under different vegetation types

    土层/cm不同植被类型下土壤碳氮比
    锐齿栎林栓皮栎林白桦林槲栎林华山松林
    0~1016.23±1.29 Aa13.77±0.41 Ab10.67±0.21 Ad11.90±0.39 Ac 10.35±0.06 Ad
    10~2016.02±0.53 Aa14.69±0.20 Ab 9.94±0.22 Ad12.38±0.16 Ac 11.70±0.56 Ac
    20~3015.98±1.46 Aa13.54±0.69 Ab10.63±0.23 Ad12.49±0.56 Abc11.29±0.09 Acd
    平均值16.0814.0010.4212.2611.12
      说明:不同大写字母表示同一植被类型不同土层间差异显著(P<0.05),不同小写字母表示同一土层类型不同植被间差异显著(P<     0.05)
    下载: 导出CSV

    表  3  不同植被类型下土壤有机碳与全氮的关系

    Table  3.   Relationship between SOC and TN under different vegetation types

    群落类型样点数回归方程R2显著性
    锐齿栎林 9y=15.780x+0.1220.956<0.01
    栓皮栎林 9y=13.644x+0.1270.922<0.01
    白桦林  9y=10.743x−0.3130.984<0.01
    槲栎林  9y=6.716x+8.191 0.705<0.01
    华山松林 9y=9.435x+1.660 0.995<0.01
    全部  54y=10.393x+1.4290.949<0.01
      说明:x为全氮质量分数,y为有机碳质量分数
    下载: 导出CSV

    表  4  不同土壤类型下土壤有机碳与全氮的关系

    Table  4.   Relationship between SOC and TN under different soil types

    土壤类型样点数回归方程R2显著性
    砂质土27y=9.113x+2.041 0.887<0.01
    壤土 18y=10.864x+1.0370.919<0.01
      说明:x为全氮质量分数,y为有机碳质量分数
    下载: 导出CSV

    表  5  土壤有机碳、全氮及 碳氮比与影响因子的相关系数

    Table  5.   Correlation coefficients of soil organic carbon, total nitrogen, C∶N and influencing factors

    项目土壤有机碳全氮土壤容重土壤含水量pH土壤电导率总孔隙度毛管孔隙度非毛管孔隙度
    土壤有机碳10.974**0.311*0.729**0.0080.0320.2210.2500.051
    全氮   10.336*0.733**0.1660.0280.1950.1890.082
    碳氮比  −0.501**−0.478**−0.645**0.1060.2840.309*0.078
      说明:**表示极显著相关(P<0.01),*表示显著相关(P<0.05)
    下载: 导出CSV
  • [1] LAL R. Forest soils and carbon sequestration [J]. For Ecol Manage, 2005, 220(1/3): 242 − 258.
    [2] SEDJO R A. The carbon cycle and global forest ecosystem [J]. Water Air Soil Poll, 1993, 70(1): 295 − 307.
    [3] 张旭辉, 李恋卿, 潘根兴. 不同轮作制度对淮北白浆土团聚体及其有机碳的积累与分布的影响[J]. 生态学杂志, 2001, 20(2): 16 − 19. doi:  10.3321/j.issn:1000-4890.2001.02.005

    ZHANG Xuhui, LI Lianqin, PAN Genxing. Effect of different crop rotation systems on the aggregates and their SOC accumulation in paludalfs in North Huai Region, China [J]. Chin J Appl Ecol, 2001, 20(2): 16 − 19. doi:  10.3321/j.issn:1000-4890.2001.02.005
    [4] CHEN Longfei, HE Zhibin, ZHU Xi, et al. Impacts of afforestation on plant diversity, soil properties, and soil organic carbon storage in a semi-arid grassland of northwestern China [J]. Catena, 2016, 147: 300 − 307. doi:  10.1016/j.catena.2016.07.009
    [5] COLE D W, RAPP M. Elemental Cycling in Forest Ecosystems[M]. London: Cambridge University Press, 1981: 341 − 409.
    [6] VESTERDAL L, SCHMIDT I K, CALLESEN I, et al. Carbon and nitrogen in forest floor and mineral soil under six common European tree species [J]. For Ecol Manage, 2008, 255(1): 35 − 48. doi:  10.1016/j.foreco.2007.08.015
    [7] JOBBAGY E G, JACKSON R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation [J]. Ecol Appl, 2000, 10(2): 423 − 436. doi:  10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2
    [8] 贾晓红, 李新荣, 李元寿. 干旱沙区植被恢复中土壤碳氮变化规律[J]. 植物生态学报, 2007, 31(7): 66 − 74.

    JIA Xiaohong, LI Xinrong, LI Yuanshou. Soil organic carbon and nitrogen dynamics during the re-vegetation process in the arid desert region [J]. Chin J Plant Ecol, 2007, 31(7): 66 − 74.
    [9] 王棣, 耿增超, 佘雕, 等. 秦岭典型林分土壤有机碳储量及碳氮垂直分布[J]. 生态学报, 2015, 35(16): 5421 − 5429.

    WANG Di, GENG Zengchao, SHE Diao, et al. Soil organic carbon storage and vertical distribution of carbon and nitrogen across different forest types in the Qinling Mountains [J]. Acta Ecol Sin, 2015, 35(16): 5421 − 5429.
    [10] OOSTRA S, MAJDI H, OLSSON M. Impact of tree species on soil carbon stocks and soil acidity in southern Sweden [J]. Scandinavian J For Res, 2006, 21: 364 − 371. doi:  10.1080/02827580600950172
    [11] PREGITZER K S, BURTON A J, ZAK D R, et al. Simulated chronic nitrogen deposition increases carbon storage in northern temperate forests [J]. Global Change Biol, 2008, 14(1): 142 − 153. doi:  10.1111/j.1365-2486.2007.01465.x
    [12] 何姗, 刘娟, 姜培坤, 等. 经营管理对森林土壤有机碳库影响的研究进展[J]. 浙江农林大学学报, 2019, 36(4): 818 − 827. doi:  10.11833/j.issn.2095-0756.2019.04.023

    HE Shan, LIU Juan, JIANG Peikun, et al. Effects of forest management on soil organic carbon pool: a review [J]. J Zhejiang A&F Univ, 2019, 36(4): 818 − 827. doi:  10.11833/j.issn.2095-0756.2019.04.023
    [13] 李海滨, 吴林芳, 黄萧洒, 等. 莲花山白盆珠自然保护区3种森林土壤养分含量比较[J]. 林业与环境科学, 2017, 33(6): 61 − 64. doi:  10.3969/j.issn.1006-4427.2017.06.012

    LI Haibin, WU Linfang, HUANG Xiaosa, et al. Soil nutrients of three forest types at Lianhuashan Baipanzhu Natural Reserve [J]. For Environ Sci, 2017, 33(6): 61 − 64. doi:  10.3969/j.issn.1006-4427.2017.06.012
    [14] 任玉连, 曹乾斌, 李聪, 等. 南滚河自然保护区森林群落特征与土壤性质之间关联分析[J]. 西北林学院学报, 2019, 34(3): 50 − 59. doi:  10.3969/j.issn.1001-7461.2019.03.08

    REN Yulian, CAO Qianbin, LI Cong, et al. Correlation analysis between forest community characteristics and soil characteristics in Nangunhe Nature Reserve [J]. J Northwest For Univ, 2019, 34(3): 50 − 59. doi:  10.3969/j.issn.1001-7461.2019.03.08
    [15] ZHAO Zhenzhen, ZHANG Xiangfeng, DONG Sikui, et al. Soil organic carbon and total nitrogen stocks in alpine ecosystems of Altun Mountain National Nature Reserve in dry China [J]. Environ Monit Assess, 2018, 191(1): 1 − 12.
    [16] 康永祥, 高学斌, 张宣平, 等. 陕西屋梁山自然保护区综合科学考察[M]. 西安: 陕西科学技术出版社, 2006: 32 − 45.
    [17] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 1999: 21 − 114.
    [18] 董云中, 王永亮, 张建杰, 等. 晋西北黄土高原丘陵区不同土地利用方式下土壤碳氮储量[J]. 应用生态学报, 2014, 25(4): 955 − 960.

    DONG Yunzhong, WANG Yongliang, ZHANG Jianjie, et al. Soil carbon and nitrogen storage of different land use types in northwestern Shanxi Loess Plateau [J]. Chin J Appl Ecol, 2014, 25(4): 955 − 960.
    [19] 张雨鉴, 王克勤, 宋娅丽, 等. 滇中亚高山5种林型土壤碳氮磷生态化学计量特征[J]. 生态环境学报, 2019, 28(1): 73 − 82.

    ZHANG Yujian, WANG Keqin, SONG Yali, et al. Ecological stoichiometry of soil carbon, nitrogen and phosphorus in five forest types in subalpine of middle Yunnan Province [J]. Ecol Environ Sci, 2019, 28(1): 73 − 82.
    [20] HASSINK J. The capacity of soils to preserve organic C and N by their association with clay and silt particles [J]. Plant Soil, 1997, 191(1): 77 − 87. doi:  10.1023/A:1004213929699
    [21] 惠波, 李鹏, 张维, 等. 王茂沟流域淤地坝系土壤颗粒与有机碳分布特征研究[J]. 水土保持研究, 2015, 22(4): 1 − 5.

    HUI Bo, LI Peng, ZHANG Wei, et al. Distribution characteristics of soil particles and organic carbon on check-dam system in Wangmaogou Watershed [J]. Res Soil Water Conserv, 2015, 22(4): 1 − 5.
    [22] 王强, 韩欢, 耿增超. 秦岭辛家山典型植被类型土壤活性有机碳分布特征[J]. 西北林学院学报, 2018, 33(2): 35 − 42. doi:  10.3969/j.issn.1001-7461.2018.02.06

    WANG Qiang, HAN Huan, GENG Zengchao. Distribution characteristics of active soil organic carbon under typical vegetation types in Xinjiashan forest in Qinling Mountains [J]. J Northwest For Univ, 2018, 33(2): 35 − 42. doi:  10.3969/j.issn.1001-7461.2018.02.06
    [23] 姜霞, 吴鹏, 谢涛, 等. 雷公山自然保护区森林土壤碳、氮、磷化学计量特征的垂直地带性[J]. 江苏农业科学, 2018, 46(14): 292 − 295.

    JIANG Xia, WU Peng, XIE Tao, et al. Vertical zonality of stoichiometric characteristics of carbon, nitrogen and phosphorus in forest soils of Leigongshan Nature Reserve [J]. Jiangsu Agric Sci, 2018, 46(14): 292 − 295.
    [24] 李哲, 董宁宁, 侯琳, 等. 秦岭山地不同龄组锐齿栎林土壤和枯落物有机碳、全氮特征[J]. 中南林业科技大学学报, 2017, 37(12): 127 − 132, 138.

    LI Zhe, DONG Ningning, HOU Lin, et al. Characteristics of soil and litter organic carbon and total nitrogen in different age groups of Quercus aliena var. acuteserrata forests in the Qinling Mountains [J]. J Central South Univ ForTechnol, 2017, 37(12): 127 − 132, 138.
    [25] YANG Yuanhe, LUO Yiqi. Carbon: nitrogen stoichiometry in forest ecosystems during stand development [J]. Global Ecol Biogeogr, 2011, 20(2): 354 − 361. doi:  10.1111/j.1466-8238.2010.00602.x
    [26] 卫玮, 党坤良. 秦岭南坡林地土壤有机碳密度空间分异特征[J]. 林业科学, 2019, 55(5): 11 − 19. doi:  10.11707/j.1001-7488.20190502

    WEI Wei, DANG Kongliang. Spatial variation of the density of soil organic carbon in forest land on the southern slope of Qinling Mountains [J]. Sci Silv Sin, 2019, 55(5): 11 − 19. doi:  10.11707/j.1001-7488.20190502
    [27] 孟文武, 郑利亚, 崔诚, 等. 武功山山地草甸不同植被群落碳氮分布格局及其耦合关系[J]. 南方林业科学, 2017, 45(2): 1 − 3, 10.

    MENG Wenwu, ZHENG Liya, CUI Cheng, et al. Carbon and nitrogen distribution pattern and its coupling relationship with different vegetation community in Wugong Mountain, Jiangxi Province [J]. South China For Sci, 2017, 45(2): 1 − 3, 10.
    [28] 赵华晨, 高菲, 李斯雯, 等. 长白山阔叶红松林和杨桦次生林土壤有机碳氮的协同积累特征[J]. 应用生态学报, 2019, 30(5): 1615 − 1624.

    ZHAO Huacheng, GAO Fei, LI Siwen, et al. Co-accumulation characters of soil organic carbon and nitrogen under broadleaved Korean pine and Betula platyphylla secondary forests in Changbai Mountain, China [J]. Chin J Appl Ecol, 2019, 30(5): 1615 − 1624.
    [29] OLANDER L P, VITOUSEK P M. Regulation of soil phosphatase and chitinase activity by N and P availability [J]. Biogeochemistry, 2000, 49(2): 175 − 190. doi:  10.1023/A:1006316117817
    [30] MARTINS M R, ANGERS D A, CORA J E. Co-accumulation of microbial residues and particulate organic matter in the surface layer of a no-till Oxisol under different crops [J]. Soil Biol Biochem, 2012, 50: 208 − 213. doi:  10.1016/j.soilbio.2012.03.024
    [31] 黄昌勇. 土壤学[M]. 北京: 中国农业出版社, 2000: 33 − 49.
    [32] BATJES N H. Total carbon and nitrogen in the soils of the world [J]. Eur J Soil Sci, 1996, 65(1): 151 − 163.
    [33] BENGTSSON G, BENGTSON P, MANSSON K F. Gross nitrogen mineralization, immoilization, and nitrification rates as a function of soil C/N ratio and microbial activity [J]. Soil Biol Biochem, 2003, 35(1): 143 − 154. doi:  10.1016/S0038-0717(02)00248-1
    [34] 赵海燕, 张剑, 刘冬, 等. 不同沼泽湿地土壤碳氮磷生态化学计量学特征及其影响因素[J]. 干旱区研究, 2020, 37(3): 618 − 626.

    ZHAO Haiyan, ZHANG Jian, LIU Dong, et al. Characteristics and determining factors for ecological stoichiometry of soil carbon, nitrogen, and phosphorus in different marsh wetlands [J]. Arid Zone Res, 2020, 37(3): 618 − 626.
    [35] 汤洁, 娄云, 李娜, 等. 冻融作用下盐碱水田土壤含水率和氮素对有机碳影响研究[J]. 生态环境学报, 2012, 21(4): 620 − 623. doi:  10.3969/j.issn.1674-5906.2012.04.005

    TANG Jie, LOU Yun, LI Na, et al. Soil moisture content and nitrogen impacts on soil organic carbon of saline-alkali paddy field under the effect of freeze-thaw [J]. Ecol Environ Sci, 2012, 21(4): 620 − 623. doi:  10.3969/j.issn.1674-5906.2012.04.005
    [36] 卓志清, 李勇, 兴安, 等. 东北旱作区土壤碳氮磷生态化学计量特征及其影响因素[J]. 农业机械学报, 2019, 50(10): 259 − 268, 336. doi:  10.6041/j.issn.1000-1298.2019.10.030

    ZHUO Zhiqing, LI Yong, XING An, et al. Characteristic of ecological stoichiometry of soil C, N and P and its influencing factors in dry farming region of Northeast China [J]. Trans Chin Soci Agric Mach, 2019, 50(10): 259 − 268, 336. doi:  10.6041/j.issn.1000-1298.2019.10.030
  • [1] 朱丹苗, 陈俊辉, 姜培坤.  杉木人工林土壤有机碳和微生物特征及其影响因素的研究进展 . 浙江农林大学学报, doi: 10.11833/j.issn.2095-0756.20200598
    [2] 姜仕昆, 周运超, 谭伟, 陈竹, 黄剑峰.  马尾松林近自然不同经营管理措施下土壤肥力 . 浙江农林大学学报, 2020, 37(5): 876-882. doi: 10.11833/j.issn.2095-0756.20190549
    [3] 朱荣玮, 葛之葳, 阮宏华, 徐瑾, 彭思利.  外源氮输入下土壤有机碳与土壤微生物生物量碳分形特征 . 浙江农林大学学报, 2019, 36(4): 656-663. doi: 10.11833/j.issn.2095-0756.2019.04.004
    [4] 何姗, 刘娟, 姜培坤, 周国模, 王会来, 李永夫, 吴家森.  经营管理对森林土壤有机碳库影响的研究进展 . 浙江农林大学学报, 2019, 36(4): 818-827. doi: 10.11833/j.issn.2095-0756.2019.04.023
    [5] 张家洋, 蔺芳, 詹乃才, 任敏.  紫花苜蓿与无芒雀麦不同栽培模式下土壤团聚体形态结构、组成及有机碳特征 . 浙江农林大学学报, 2019, 36(6): 1077-1086. doi: 10.11833/j.issn.2095-0756.2019.06.004
    [6] 张青青, 张桂莲, 伍海兵, 仲启铖, 何小丽, 陈平, 朱清, 徐冰, 梁晶.  上海市林地土壤有机碳分布特征及其与土壤理化性质的关系 . 浙江农林大学学报, 2019, 36(6): 1087-1095. doi: 10.11833/j.issn.2095-0756.2019.06.005
    [7] 戴奥娜, 刘肖肖, 王兵, 戴伟.  丝栗栲林下土壤有机碳及其组分的时空年变化特征 . 浙江农林大学学报, 2018, 35(3): 405-411. doi: 10.11833/j.issn.2095-0756.2018.03.003
    [8] 许俊丽, 张桂莲, 张希金, 高志文, 仲启铖, 张亚萍, 宋坤, 达良俊.  上海市人工林土壤理化性质与群落特征的相关性 . 浙江农林大学学报, 2018, 35(6): 1017-1026. doi: 10.11833/j.issn.2095-0756.2018.06.004
    [9] 辜忠春, 李光荣, 李军章, 杜业云, 王宵.  正交试验优化分光光度法测定森林土壤有机质 . 浙江农林大学学报, 2017, 34(2): 239-243. doi: 10.11833/j.issn.2095-0756.2017.02.006
    [10] 朱仁欢, 李玮, 郑子成, 李廷轩, 洪月, 何秋佳, 田宗渠.  退耕植茶地土壤碳氮磷生态化学计量学特征 . 浙江农林大学学报, 2016, 33(4): 612-619. doi: 10.11833/j.issn.2095-0756.2016.04.009
    [11] 盛卫星, 吴家森, 徐建春, 张少伟, 蔡建荣.  不同经营年限对山核桃林地土壤轻重组有机碳的影响 . 浙江农林大学学报, 2015, 32(5): 803-808. doi: 10.11833/j.issn.2095-0756.2015.05.022
    [12] 叶玲燕, 傅伟军, 姜培坤, 李永夫, 张国江, 杜群.  浙江省森林表层土壤基本化学性质和有机碳储量的空间变异 . 浙江农林大学学报, 2012, 29(6): 803-810. doi: 10.11833/j.issn.2095-0756.2012.06.001
    [13] 沈年华, 李传磊, 王小德.  浙江省丹霞地貌岩生植被类型 . 浙江农林大学学报, 2011, 28(4): 614-618. doi: 10.11833/j.issn.2095-0756.2011.04.015
    [14] 徐桂林, 方晰, 田大伦, 唐志娟, 张铸三.  杉木林地不同更新方式土壤有机碳垂直分布及储量 . 浙江农林大学学报, 2009, 26(3): 333-340.
    [15] 龙午, 杨云华, 王克勤, 李建增, 李宝荣, 李云蛟.  云南尖山河流域不同植被类型的蓄水能力 . 浙江农林大学学报, 2007, 24(2): 135-139.
    [16] 汪荣, 潘文斌.  武夷山国家级自然保护区植被类型的地形分异 . 浙江农林大学学报, 2007, 24(6): 731-735.
    [17] 戴文圣, 黎章矩, 程晓建, 喻卫武, 符庆功.  香榧林地土壤养分状况的调查分析 . 浙江农林大学学报, 2006, 23(2): 140-144.
    [18] 李冬林, 李荣锦, 王宝松, 王希华.  常熟虞山森林植被类型及木本植物区系分析 . 浙江农林大学学报, 2006, 23(1): 46-51.
    [19] 李正才, 傅懋毅, 杨校生.  经营干扰对森林土壤有机碳的影响研究概述 . 浙江农林大学学报, 2005, 22(4): 469-474.
    [20] 李根有, 陈征海, 刘安兴, 孙孟军, 应顺东.  浙江省湿地植被分类系统及主要植被类型与分布特点 . 浙江农林大学学报, 2002, 19(4): 356-362.
  • 加载中
  • 链接本文:

    http://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200509

    http://zlxb.zafu.edu.cn/article/zjnldxxb/2021/3/1

计量
  • 文章访问数:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-02
  • 修回日期:  2021-01-28

紫柏山国家级自然保护区不同植被类型土壤碳氮分布特征及其影响因素

doi: 10.11833/j.issn.2095-0756.20200509
    基金项目:  “十三五”国家重点研发计划资助项目(2016YFC0501706-01);紫柏山国家级自然保护区综合考察专项
    作者简介:

    李华(ORCID: 0000-0003-4587-4804),从事森林培育研究。E-mail: 2240459861@qq.com

    通信作者: 康永祥(ORCID: 0000-0003-4658-557X),教授,博士生导师,从事植物学和森林培育学研究。E-mail: yxkang@nwsuaf.edu.cn
  • 中图分类号: S714

摘要:   目的  研究陕西省宝鸡市紫柏山国家级自然保护区不同植被类型下土壤碳氮分布特征,探讨其主要影响因素。  方法  以保护区内壤土类型(槲栎Quercus aliena林、华山松Pinus armandii林)和砂质土类型(锐齿栎Q. aliena var. acuteserrata林、栓皮栎Q. variabilis林、白桦Betula platyphylla林)不同土层土壤样品为研究对象,比较5种植被类型下土壤有机碳质量分数、全氮质量分数、土壤碳氮密度和土壤碳氮储量及碳氮比的差异,分析土壤有机碳、全氮、碳氮比与土壤理化性质的关系。  结果  ①壤土区土壤有机碳质量分数、全氮质量分数、土壤碳氮密度及土壤碳氮储量显著高于砂质土区(P<0.05),其中壤土区各土层从大到小表现为槲栎林、华山松林,砂质土区各土层从大到小表现为白桦林、锐齿栎林、栓皮栎林。②土壤有机碳质量分数、全氮质量分数、土壤碳氮密度及土壤碳氮储量在0~30 cm土层均随土层深度的增加而显著降低(P<0.05);③各植被类型不同土层的土壤碳氮比分布无明显规律且差异不显著,碳氮比为9.94~16.23,有机质的矿化能力较强;④土壤含水量、容重是影响土壤有机碳和全氮质量分数的主要因子,土壤含水量、pH是影响碳氮比的主要因子。  结论  不同植被类型下土壤有机碳质量分数、全氮质量分数、土壤碳氮密度及土壤碳氮储量存在显著差异(P<0.05),土壤含水量是影响土壤有机碳、全氮和碳氮比的关键因子。图4表5参36

English Abstract

李华, 蔡建军, 巫翠华, 张利利, 袁岸, 康永祥. 紫柏山国家级自然保护区不同植被类型土壤碳氮分布特征及其影响因素[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200509
引用本文: 李华, 蔡建军, 巫翠华, 张利利, 袁岸, 康永祥. 紫柏山国家级自然保护区不同植被类型土壤碳氮分布特征及其影响因素[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200509
LI Hua, CAI Jianjun, WU Cuihua, ZHANG Lili, YUAN An, KANG Yongxiang. Distribution characteristics and influencing factors of soil carbon and nitrogen under different vegetation types in Zibaishan National Nature Reserve[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200509
Citation: LI Hua, CAI Jianjun, WU Cuihua, ZHANG Lili, YUAN An, KANG Yongxiang. Distribution characteristics and influencing factors of soil carbon and nitrogen under different vegetation types in Zibaishan National Nature Reserve[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200509

返回顶部

目录

    /

    返回文章
    返回