本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。
紫柏山国家级自然保护区不同植被类型土壤碳氮分布特征及其影响因素
doi: 10.11833/j.issn.2095-0756.20200509
Distribution characteristics and influencing factors of soil carbon and nitrogen under different vegetation types in Zibaishan National Nature Reserve
-
摘要:
目的 研究陕西省宝鸡市紫柏山国家级自然保护区不同植被类型下土壤碳氮分布特征,探讨其主要影响因素。 方法 以保护区内壤土类型(槲栎Quercus aliena林、华山松Pinus armandii林)和砂质土类型(锐齿栎Q. aliena var. acuteserrata林、栓皮栎Q. variabilis林、白桦Betula platyphylla林)不同土层土壤样品为研究对象,比较5种植被类型下土壤有机碳质量分数、全氮质量分数、土壤碳氮密度和土壤碳氮储量及碳氮比的差异,分析土壤有机碳、全氮、碳氮比与土壤理化性质的关系。 结果 ①壤土区土壤有机碳质量分数、全氮质量分数、土壤碳氮密度及土壤碳氮储量显著高于砂质土区(P<0.05),其中壤土区各土层从大到小表现为槲栎林、华山松林,砂质土区各土层从大到小表现为白桦林、锐齿栎林、栓皮栎林。②土壤有机碳质量分数、全氮质量分数、土壤碳氮密度及土壤碳氮储量在0~30 cm土层均随土层深度的增加而显著降低(P<0.05);③各植被类型不同土层的土壤碳氮比分布无明显规律且差异不显著,碳氮比为9.94~16.23,有机质的矿化能力较强;④土壤含水量、容重是影响土壤有机碳和全氮质量分数的主要因子,土壤含水量、pH是影响碳氮比的主要因子。 结论 不同植被类型下土壤有机碳质量分数、全氮质量分数、土壤碳氮密度及土壤碳氮储量存在显著差异(P<0.05),土壤含水量是影响土壤有机碳、全氮和碳氮比的关键因子。图4表5参36 Abstract:Objective The objective of this study is to explore the distribution characteristics of soil carbon and nitrogen under different vegetation types in Zibaishan National Nature Reserve, and analyze its main influencing factors. Method Soil samples were collected from different soil layers, including loam types (Q. aliena forest and P. armandii forest) and sandy types (Q. aliena var. acuteserrata forest, Q. variabilis forest, B. platyphylla forest). The content, density and storage of soil organic carbon (SOC), total nitrogen (TN), and carbon-nitrogen ratio (C∶N) under 5 different vegetation types were compared, and the relationship between SOC, TN, C∶N and soil physical and chemical properties was analyzed. Result (1)The content, density and storage of SOC and TN in the loam soil were significantly higher than those in the sandy soil (P<0.05). As for loam soil, Q. aliena forest had the largest content, density and storage of SOC and TN, followed by P. armandii forest. For sandy soil, the order from large to small was B. platyphylla forest, Q. aliena var. acuteserrata forest, and Q. variabilis forest. (2)With the increase of soil depth, the content, density and storage of SOC and TN in 0−30 cm soil layer decreased significantly (P<0.05). (3)Soil C∶N in different soil layers of different vegetation types showed little regularity or differences. The value of C∶N was 9.94−16.23, indicating strong mineralization ability of organic matter. (4)Soil water content (SWC) and bulk density (BD) were the main factors affecting soil SOC and TN content, while SWC and pH were the main factors affecting C∶N. Conclusion There are significant differences in content, density and storage of SOC and TN under different vegetation types, and SWC is a key factor affecting SOC, TN and C∶N. This study has a certain reference value for the protection and management of forest ecosystem in the reserve. [Ch, 4 fig. 5 tab. 36 ref.] -
Key words:
- forest soil science /
- Zibaishan National Nature Reserve /
- vegetation type /
- soil type /
- organic carbon /
- total nitrogen
-
表 1 样地基本情况
Table 1. Basic situation of the sample plots
植被类型 北纬(N) 东经(E) 土壤类型 海拔/m 坡位 坡向 林龄/a 锐齿栎林 33°42′37′′ 106°47′28′′ 砂质土 1 406 中 东南 25 栓皮栎林 33°42′44′′ 106°47′17′′ 砂质土 1 420 中 东南 20 白桦林 33°42′59′′ 106°46′12′′ 砂质土 1 450 中 东南 20 槲栎林 33°43′06′′ 106°46′50′′ 壤土 1 424 中 南 25 华山松林 33°41′38′′ 106°48′08′′ 壤土 1 546 中 南 26 表 2 不同植被类型下土壤碳氮比的分布特征
Table 2. Distribution characteristics of soil C∶N under different vegetation types
土层/cm 不同植被类型下土壤碳氮比 锐齿栎林 栓皮栎林 白桦林 槲栎林 华山松林 0~10 16.23±1.29 Aa 13.77±0.41 Ab 10.67±0.21 Ad 11.90±0.39 Ac 10.35±0.06 Ad 10~20 16.02±0.53 Aa 14.69±0.20 Ab 9.94±0.22 Ad 12.38±0.16 Ac 11.70±0.56 Ac 20~30 15.98±1.46 Aa 13.54±0.69 Ab 10.63±0.23 Ad 12.49±0.56 Abc 11.29±0.09 Acd 平均值 16.08 14.00 10.42 12.26 11.12 说明:不同大写字母表示同一植被类型不同土层间差异显著(P<0.05),不同小写字母表示同一土层类型不同植被间差异显著(P< 0.05) 表 3 不同植被类型下土壤有机碳与全氮的关系
Table 3. Relationship between SOC and TN under different vegetation types
群落类型 样点数 回归方程 R2 显著性 锐齿栎林 9 y=15.780x+0.122 0.956 <0.01 栓皮栎林 9 y=13.644x+0.127 0.922 <0.01 白桦林 9 y=10.743x−0.313 0.984 <0.01 槲栎林 9 y=6.716x+8.191 0.705 <0.01 华山松林 9 y=9.435x+1.660 0.995 <0.01 全部 54 y=10.393x+1.429 0.949 <0.01 说明:x为全氮质量分数,y为有机碳质量分数 表 4 不同土壤类型下土壤有机碳与全氮的关系
Table 4. Relationship between SOC and TN under different soil types
土壤类型 样点数 回归方程 R2 显著性 砂质土 27 y=9.113x+2.041 0.887 <0.01 壤土 18 y=10.864x+1.037 0.919 <0.01 说明:x为全氮质量分数,y为有机碳质量分数 表 5 土壤有机碳、全氮及 碳氮比与影响因子的相关系数
Table 5. Correlation coefficients of soil organic carbon, total nitrogen, C∶N and influencing factors
项目 土壤有机碳 全氮 土壤容重 土壤含水量 pH 土壤电导率 总孔隙度 毛管孔隙度 非毛管孔隙度 土壤有机碳 1 0.974** 0.311* 0.729** 0.008 0.032 0.221 0.250 0.051 全氮 1 0.336* 0.733** 0.166 0.028 0.195 0.189 0.082 碳氮比 −0.501** −0.478** −0.645** 0.106 0.284 0.309* 0.078 说明:**表示极显著相关(P<0.01),*表示显著相关(P<0.05) -
[1] LAL R. Forest soils and carbon sequestration [J]. For Ecol Manage, 2005, 220(1/3): 242 − 258. [2] SEDJO R A. The carbon cycle and global forest ecosystem [J]. Water Air Soil Poll, 1993, 70(1): 295 − 307. [3] 张旭辉, 李恋卿, 潘根兴. 不同轮作制度对淮北白浆土团聚体及其有机碳的积累与分布的影响[J]. 生态学杂志, 2001, 20(2): 16 − 19. doi: 10.3321/j.issn:1000-4890.2001.02.005 ZHANG Xuhui, LI Lianqin, PAN Genxing. Effect of different crop rotation systems on the aggregates and their SOC accumulation in paludalfs in North Huai Region, China [J]. Chin J Appl Ecol, 2001, 20(2): 16 − 19. doi: 10.3321/j.issn:1000-4890.2001.02.005 [4] CHEN Longfei, HE Zhibin, ZHU Xi, et al. Impacts of afforestation on plant diversity, soil properties, and soil organic carbon storage in a semi-arid grassland of northwestern China [J]. Catena, 2016, 147: 300 − 307. doi: 10.1016/j.catena.2016.07.009 [5] COLE D W, RAPP M. Elemental Cycling in Forest Ecosystems[M]. London: Cambridge University Press, 1981: 341 − 409. [6] VESTERDAL L, SCHMIDT I K, CALLESEN I, et al. Carbon and nitrogen in forest floor and mineral soil under six common European tree species [J]. For Ecol Manage, 2008, 255(1): 35 − 48. doi: 10.1016/j.foreco.2007.08.015 [7] JOBBAGY E G, JACKSON R B. The vertical distribution of soil organic carbon and its relation to climate and vegetation [J]. Ecol Appl, 2000, 10(2): 423 − 436. doi: 10.1890/1051-0761(2000)010[0423:TVDOSO]2.0.CO;2 [8] 贾晓红, 李新荣, 李元寿. 干旱沙区植被恢复中土壤碳氮变化规律[J]. 植物生态学报, 2007, 31(7): 66 − 74. JIA Xiaohong, LI Xinrong, LI Yuanshou. Soil organic carbon and nitrogen dynamics during the re-vegetation process in the arid desert region [J]. Chin J Plant Ecol, 2007, 31(7): 66 − 74. [9] 王棣, 耿增超, 佘雕, 等. 秦岭典型林分土壤有机碳储量及碳氮垂直分布[J]. 生态学报, 2015, 35(16): 5421 − 5429. WANG Di, GENG Zengchao, SHE Diao, et al. Soil organic carbon storage and vertical distribution of carbon and nitrogen across different forest types in the Qinling Mountains [J]. Acta Ecol Sin, 2015, 35(16): 5421 − 5429. [10] OOSTRA S, MAJDI H, OLSSON M. Impact of tree species on soil carbon stocks and soil acidity in southern Sweden [J]. Scandinavian J For Res, 2006, 21: 364 − 371. doi: 10.1080/02827580600950172 [11] PREGITZER K S, BURTON A J, ZAK D R, et al. Simulated chronic nitrogen deposition increases carbon storage in northern temperate forests [J]. Global Change Biol, 2008, 14(1): 142 − 153. doi: 10.1111/j.1365-2486.2007.01465.x [12] 何姗, 刘娟, 姜培坤, 等. 经营管理对森林土壤有机碳库影响的研究进展[J]. 浙江农林大学学报, 2019, 36(4): 818 − 827. doi: 10.11833/j.issn.2095-0756.2019.04.023 HE Shan, LIU Juan, JIANG Peikun, et al. Effects of forest management on soil organic carbon pool: a review [J]. J Zhejiang A&F Univ, 2019, 36(4): 818 − 827. doi: 10.11833/j.issn.2095-0756.2019.04.023 [13] 李海滨, 吴林芳, 黄萧洒, 等. 莲花山白盆珠自然保护区3种森林土壤养分含量比较[J]. 林业与环境科学, 2017, 33(6): 61 − 64. doi: 10.3969/j.issn.1006-4427.2017.06.012 LI Haibin, WU Linfang, HUANG Xiaosa, et al. Soil nutrients of three forest types at Lianhuashan Baipanzhu Natural Reserve [J]. For Environ Sci, 2017, 33(6): 61 − 64. doi: 10.3969/j.issn.1006-4427.2017.06.012 [14] 任玉连, 曹乾斌, 李聪, 等. 南滚河自然保护区森林群落特征与土壤性质之间关联分析[J]. 西北林学院学报, 2019, 34(3): 50 − 59. doi: 10.3969/j.issn.1001-7461.2019.03.08 REN Yulian, CAO Qianbin, LI Cong, et al. Correlation analysis between forest community characteristics and soil characteristics in Nangunhe Nature Reserve [J]. J Northwest For Univ, 2019, 34(3): 50 − 59. doi: 10.3969/j.issn.1001-7461.2019.03.08 [15] ZHAO Zhenzhen, ZHANG Xiangfeng, DONG Sikui, et al. Soil organic carbon and total nitrogen stocks in alpine ecosystems of Altun Mountain National Nature Reserve in dry China [J]. Environ Monit Assess, 2018, 191(1): 1 − 12. [16] 康永祥, 高学斌, 张宣平, 等. 陕西屋梁山自然保护区综合科学考察[M]. 西安: 陕西科学技术出版社, 2006: 32 − 45. [17] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 1999: 21 − 114. [18] 董云中, 王永亮, 张建杰, 等. 晋西北黄土高原丘陵区不同土地利用方式下土壤碳氮储量[J]. 应用生态学报, 2014, 25(4): 955 − 960. DONG Yunzhong, WANG Yongliang, ZHANG Jianjie, et al. Soil carbon and nitrogen storage of different land use types in northwestern Shanxi Loess Plateau [J]. Chin J Appl Ecol, 2014, 25(4): 955 − 960. [19] 张雨鉴, 王克勤, 宋娅丽, 等. 滇中亚高山5种林型土壤碳氮磷生态化学计量特征[J]. 生态环境学报, 2019, 28(1): 73 − 82. ZHANG Yujian, WANG Keqin, SONG Yali, et al. Ecological stoichiometry of soil carbon, nitrogen and phosphorus in five forest types in subalpine of middle Yunnan Province [J]. Ecol Environ Sci, 2019, 28(1): 73 − 82. [20] HASSINK J. The capacity of soils to preserve organic C and N by their association with clay and silt particles [J]. Plant Soil, 1997, 191(1): 77 − 87. doi: 10.1023/A:1004213929699 [21] 惠波, 李鹏, 张维, 等. 王茂沟流域淤地坝系土壤颗粒与有机碳分布特征研究[J]. 水土保持研究, 2015, 22(4): 1 − 5. HUI Bo, LI Peng, ZHANG Wei, et al. Distribution characteristics of soil particles and organic carbon on check-dam system in Wangmaogou Watershed [J]. Res Soil Water Conserv, 2015, 22(4): 1 − 5. [22] 王强, 韩欢, 耿增超. 秦岭辛家山典型植被类型土壤活性有机碳分布特征[J]. 西北林学院学报, 2018, 33(2): 35 − 42. doi: 10.3969/j.issn.1001-7461.2018.02.06 WANG Qiang, HAN Huan, GENG Zengchao. Distribution characteristics of active soil organic carbon under typical vegetation types in Xinjiashan forest in Qinling Mountains [J]. J Northwest For Univ, 2018, 33(2): 35 − 42. doi: 10.3969/j.issn.1001-7461.2018.02.06 [23] 姜霞, 吴鹏, 谢涛, 等. 雷公山自然保护区森林土壤碳、氮、磷化学计量特征的垂直地带性[J]. 江苏农业科学, 2018, 46(14): 292 − 295. JIANG Xia, WU Peng, XIE Tao, et al. Vertical zonality of stoichiometric characteristics of carbon, nitrogen and phosphorus in forest soils of Leigongshan Nature Reserve [J]. Jiangsu Agric Sci, 2018, 46(14): 292 − 295. [24] 李哲, 董宁宁, 侯琳, 等. 秦岭山地不同龄组锐齿栎林土壤和枯落物有机碳、全氮特征[J]. 中南林业科技大学学报, 2017, 37(12): 127 − 132, 138. LI Zhe, DONG Ningning, HOU Lin, et al. Characteristics of soil and litter organic carbon and total nitrogen in different age groups of Quercus aliena var. acuteserrata forests in the Qinling Mountains [J]. J Central South Univ ForTechnol, 2017, 37(12): 127 − 132, 138. [25] YANG Yuanhe, LUO Yiqi. Carbon: nitrogen stoichiometry in forest ecosystems during stand development [J]. Global Ecol Biogeogr, 2011, 20(2): 354 − 361. doi: 10.1111/j.1466-8238.2010.00602.x [26] 卫玮, 党坤良. 秦岭南坡林地土壤有机碳密度空间分异特征[J]. 林业科学, 2019, 55(5): 11 − 19. doi: 10.11707/j.1001-7488.20190502 WEI Wei, DANG Kongliang. Spatial variation of the density of soil organic carbon in forest land on the southern slope of Qinling Mountains [J]. Sci Silv Sin, 2019, 55(5): 11 − 19. doi: 10.11707/j.1001-7488.20190502 [27] 孟文武, 郑利亚, 崔诚, 等. 武功山山地草甸不同植被群落碳氮分布格局及其耦合关系[J]. 南方林业科学, 2017, 45(2): 1 − 3, 10. MENG Wenwu, ZHENG Liya, CUI Cheng, et al. Carbon and nitrogen distribution pattern and its coupling relationship with different vegetation community in Wugong Mountain, Jiangxi Province [J]. South China For Sci, 2017, 45(2): 1 − 3, 10. [28] 赵华晨, 高菲, 李斯雯, 等. 长白山阔叶红松林和杨桦次生林土壤有机碳氮的协同积累特征[J]. 应用生态学报, 2019, 30(5): 1615 − 1624. ZHAO Huacheng, GAO Fei, LI Siwen, et al. Co-accumulation characters of soil organic carbon and nitrogen under broadleaved Korean pine and Betula platyphylla secondary forests in Changbai Mountain, China [J]. Chin J Appl Ecol, 2019, 30(5): 1615 − 1624. [29] OLANDER L P, VITOUSEK P M. Regulation of soil phosphatase and chitinase activity by N and P availability [J]. Biogeochemistry, 2000, 49(2): 175 − 190. doi: 10.1023/A:1006316117817 [30] MARTINS M R, ANGERS D A, CORA J E. Co-accumulation of microbial residues and particulate organic matter in the surface layer of a no-till Oxisol under different crops [J]. Soil Biol Biochem, 2012, 50: 208 − 213. doi: 10.1016/j.soilbio.2012.03.024 [31] 黄昌勇. 土壤学[M]. 北京: 中国农业出版社, 2000: 33 − 49. [32] BATJES N H. Total carbon and nitrogen in the soils of the world [J]. Eur J Soil Sci, 1996, 65(1): 151 − 163. [33] BENGTSSON G, BENGTSON P, MANSSON K F. Gross nitrogen mineralization, immoilization, and nitrification rates as a function of soil C/N ratio and microbial activity [J]. Soil Biol Biochem, 2003, 35(1): 143 − 154. doi: 10.1016/S0038-0717(02)00248-1 [34] 赵海燕, 张剑, 刘冬, 等. 不同沼泽湿地土壤碳氮磷生态化学计量学特征及其影响因素[J]. 干旱区研究, 2020, 37(3): 618 − 626. ZHAO Haiyan, ZHANG Jian, LIU Dong, et al. Characteristics and determining factors for ecological stoichiometry of soil carbon, nitrogen, and phosphorus in different marsh wetlands [J]. Arid Zone Res, 2020, 37(3): 618 − 626. [35] 汤洁, 娄云, 李娜, 等. 冻融作用下盐碱水田土壤含水率和氮素对有机碳影响研究[J]. 生态环境学报, 2012, 21(4): 620 − 623. doi: 10.3969/j.issn.1674-5906.2012.04.005 TANG Jie, LOU Yun, LI Na, et al. Soil moisture content and nitrogen impacts on soil organic carbon of saline-alkali paddy field under the effect of freeze-thaw [J]. Ecol Environ Sci, 2012, 21(4): 620 − 623. doi: 10.3969/j.issn.1674-5906.2012.04.005 [36] 卓志清, 李勇, 兴安, 等. 东北旱作区土壤碳氮磷生态化学计量特征及其影响因素[J]. 农业机械学报, 2019, 50(10): 259 − 268, 336. doi: 10.6041/j.issn.1000-1298.2019.10.030 ZHUO Zhiqing, LI Yong, XING An, et al. Characteristic of ecological stoichiometry of soil C, N and P and its influencing factors in dry farming region of Northeast China [J]. Trans Chin Soci Agric Mach, 2019, 50(10): 259 − 268, 336. doi: 10.6041/j.issn.1000-1298.2019.10.030 -
-
链接本文:
http://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200509

计量
- 文章访问数: 30
- 被引次数: 0