-
土壤团聚体是指由许多土壤单粒在有机碳的黏结下形成的土壤构造,它的结构组成与土壤有机碳有着紧密的联系[1]。土壤团聚体重要的表征形式主要是土壤机械稳定性团聚体和水稳定性团聚体[1]。土壤总有机碳即有机质中的总碳含量,在土壤碳汇中具有重要意义。土壤总有机碳根据化学组分的不同可分为活性有机碳和腐殖质碳等。其中,活性有机碳是土壤总有机碳中不稳定的部分,是植物营养元素的直接来源。腐殖质碳是土壤总有机碳经过微生物分解转化后形成的较为稳定的部分,因两者具有较高的生物利用率与损失率,因而能显著影响土壤的理化性质[2]。土壤团聚体组成的变化与有机碳的变化紧密相关,两者作为重要的土壤属性,在保持土壤生物活性、通气性、渗透性和抗侵蚀能力等方面起着十分重要的作用,目前已被广泛认为是评价土壤肥力或土壤质量的综合指标[3-4]。因此,开展土壤团聚体组成及有机碳特征研究具有十分重要的意义。紫花苜蓿Medicago sativa因其粗蛋白含量高、固氮能力强而享有“牧草之王”的美誉,是世界范围内普遍种植的豆科Leguminosae牧草[5]。无芒雀麦Bromus inermis适口性好,是可消化物质产量较高的禾本科Gramineae牧草之一[6]。目前,两者已成为豫北地区不可替代的战略性保障饲草。近年来,许多学者对土壤团聚体组成及有机碳特征开展了广泛研究,但大多数的研究对象是林地或农田土壤[7-8],且多集中于不同母质[9-10]、施肥模式[11-12]和施肥量[13-14]等,而对不同栽培模式草地土壤团聚体组成和有机碳特征的研究较少。笔者曾对豫北地区紫花苜蓿与无芒雀麦不同栽培模式下沙化土壤微生量和酶活性进行了研究[15]。本研究对该地区紫花苜蓿与无芒雀麦不同栽培模式下,土壤团聚体组成和有机碳的影响以及两者的相互关系,旨在为该区人工草地建植及土壤环境改善提供理论依据。
-
通过扫描电镜对土壤团聚体的形态进行观察,紫花苜蓿与无芒雀麦不同栽培模式下的团聚体形态有明显的不同。撂荒地(图 2A)土壤团聚体外表表面孔隙较少,凝结成片。人工草地建植后的土壤团聚体大多呈现出球状或块状,表面孔隙较多且较为疏松,大多呈圆润多孔状(图 2B和图 2C)。各模式下团聚体形态从优至劣依次为紫花苜蓿/无芒雀麦混播、紫花苜蓿单播、无芒雀麦单播、撂荒地。其中,紫花苜蓿/无芒雀麦混播模式表现最为明显,团聚体凝聚程度较高。说明紫花苜蓿/无芒雀麦混播对团聚体形态改变促进作用较为明显。
-
由表 1可以看出:土壤机械稳定性团聚体组成均以5.00~3.00和3.00~2.00 mm粒径为主(比例为35.55%~57.12%)。其中:对于5.00~3.00 mm粒径的土壤团聚体而言(4个土层的均值),无芒雀麦单播、苜蓿单播和紫花苜蓿/无芒雀麦混播分别比撂荒地增加10.90%~22.55%,12.25%~27.17%和27.15%~38.14%,且与撂荒地的差异均达到显著水平(P<0.05)。对于3.00~2.00 mm粒径的土壤团聚体而言(4个土层的均值),无芒雀麦单播、苜蓿单播和紫花苜蓿/无芒雀麦混播分别比撂荒地增加22.98%~41.64%,25.92%~45.10%和35.87%~50.38%,且与撂荒地的差异也均显著(P<0.05)。团聚体所占比例最少的是0.50~0.25 mm粒径,占0.46%~2.66%。与撂荒地相比,单播或混播<0.25 mm机械稳定性团聚体明显减少,5.00~3.00和3.00~2.00 mm团聚体明显增加。
表 1 土壤机械稳定性团聚体组成及分形维数
Table 1. Composition and fractal dimension of soil mechanical stable aggregates
栽培模式 土层/cm 不同粒径土壤机械稳定性团聚体百分比组成/% Dm R2 ≥10.00 10.00~7.00 7.00~5.00 5.00~3.00 3.00~2.00 2.00~1.00 1.00~0.50 0.50~0.25 <0.25 mm 撂荒地 0~10 15.893 a 11.668 a 8.263 d 21.683 c 19.476 c 7.060 b 7.561 a 2.650 a 5.746 a 1.845 a 0.986** 10~20 17.431 a 13.224 a 12.139 a 19.481 c 18.836 c 7.694 b 5.575 a 1.655 a 3.965 a 1.885 a 0.982** 20~30 19.110 a 14.615 a 14.773 a 18.222 c 17.818 c 9.850 b 2.376 c 0.587 a 2.649 a 2.025 a 0.946** 30~40 20.100 a 17.214 a 10.125 a 17.206 c 18.346 b 10.068 bc 3.976 a 0.518 ab 2.447 a 2.165 a 0.970** 无芒雀 0~10 13.531 b 9.122 b 11.414 a 24.744 b 24.113 b 7.872 b 3.195 c 1.863 b 4.146 b 1.765 b 0.953** 麦单播 10~20 14.391 b 9.434 b 7.736 b 23.041 b 22.933 b 12.979 a 5.575 a 1.458 ab 2.453 b 1.846 a 0.977** 20~30 18.051 b 10.632 b 10.050 b 21.023 b 22.177 b 11.089 b 3.634 b 0.839 a 2.505 a 1.844 b 0.962** 30~40 19.040 bc 13.413 b 9.323 a 19.841 b 21.319 a 10.870 b 3.395 a 1.008 a 1.791 b 1.983 b 0.969** 紫花苜 0~10 12.182 c 8.372 bc 10.721 b 25.549 b 23.749 b 9.094 a 5.905 b 1.660 bc 2.768 c 1.713 b 0.981** 蓿单播 10~20 13.931 b 9.680 b 13.576 a 22.113 b 24.068 ab 9.478 b 3.784 b 1.039 ab 2.331 b 1.792 b 0.968** 20~30 16.351 b 10.854 bc 9.136 b 20.318 b 22.378 b 13.860 a 4.037 ab 0.833 a 2.233 ab 1.813 c 0.963** 30~40 19.897 b 14.211 b 9.617 a 20.628 b 21.815 a 9.040 c 2.590 b 0.462 b 1.740 b 1.855 c 0.949** 紫花苜 0~10 11.627 c 8.022 c 9.219 bc 28.355 a 28.767 a 7.350 b 3.271 c 1.541 c 1.848 d 1.626 c 0.961** 蓿/无 10~20 12.042 c 8.734 b 7.934 b 25.963 a 25.429 a 12.784 a 4.982 a 0.759 b 1.373 c 1.682 c 0.971** 芒雀麦 20~30 13.299 c 11.032 c 6.860 c 23.441 a 24.849 a 13.329 a 4.455 a 0.932 a 1.803 b 1.703 d 0.967** 混播 30~40 15.670 c 13.336 c 5.024 b 22.328 a 22.573 a 14.674 a 3.903 a 0.717 ab 1.775 b 1.715 d 0.962** 说明:不同小写字母表示在相同土层不同地块团聚体间差异显著(P<0.05);**表示极显著相关(P<0.01) 分形维数是表征土壤肥力的一个定量化评价指标[17]。分形维数越小,土壤结构良好且肥力越高[18]。由表 1可知:各样地土壤机械稳定性团聚体分形维数值大小排序为撂荒地、无芒雀麦单播、紫花苜蓿单播、紫花苜蓿/无芒雀麦混播,变化范围为1.626~2.165。与撂荒地相应的土层相比,无芒雀麦单播(30~40 cm),紫花苜蓿单播(0~10,30~40 cm),紫花苜蓿/无芒雀麦混播(0~10,10~20,20~30和30~40 cm)的分形维数均差异显著(P<0.05),它们的线性方程的相关系数(R2)均在0.946以上,且都达到极显著水平(P<0.01)。
-
由表 2可知:各样地土壤水稳性团聚体组成以<0.25和3.00~1.00 mm粒径为主(比例为53.47%~74.47%)。与撂荒地同一土层相比,无芒雀麦单播、紫花苜蓿单播和紫花苜蓿/无芒雀麦混播<0.25和3.00~1.00 mm团聚体的含量均显著减少(P<0.05)。
表 2 土壤水稳性团聚体组成及其分形维数
Table 2. Composition and fractal dimension of soil water stable aggregates
栽培方式 土层/cm 不同粒径土壤水稳性团聚体百分比组成/% Dm R2 ≥5.00 5.00~3.00 3.00~1.00 1.00~0.50 0.50~0.25 <0.25 mm 撂荒地 0~10 3.451 c 9.886 c 17.153 c 8.217 c 7.581 b 53.712 a 2.803 a 0.965** 10~20 4.524 c 7.697 b 16.618 d 7.934 d 6.241 b 56.986 a 2.826 a 0.957** 20~30 4.988 d 6.644 b 16.358 c 7.376 c 7.065 d 57.569 a 2.837 a 0.960** 30~40 5.401 b 5.718 b 16.171 c 6.265 c 8.143 c 58.302 a 2.840 a 0.959** 无芒雀 0~10 14.798 a 9.556 bc 26.823 a 9.788 a 6.072 c 32.963 b 2.687 a 0.947** 麦单播 10~20 13.121 a 6.531 c 24.316 b 10.164 b 6.876 b 38.992 b 2.736 a 0.959** 20~30 7.639 a 5.175 c 22.746 ab 10.289 b 9.964 b 44.187 b 2.747 a 0.974** 30~40 4.283 c 4.876 c 20.454 b 11.747 a 8.462 c 50.178 b 2.765 a 0.980** 紫花苜 0~10 13.520 b 9.007 b 27.824 a 9.973 a 7.574 b 32.102 b 2.665 a 0.956** 蓿单播 10~20 9.742 b 7.787 b 25.890 a 12.658 a 6.236 b 37.687 b 2.682 a 0.963** 20~30 6.799 b 5.638 c 24.462 a 11.855 a 8.754 c 42.492 b 2.727 a 0.974** 30~40 2.523 d 6.039 b 21.429 b 12.351 a 10.477 b 47.181 b 2.756 a 0.984** 紫花苜蓿/ 0~10 4.603 d 17.259 a 22.661 b 9.198 b 15.468 a 30.811 c 2.636 a 0.969** 无芒雀麦 10~20 5.048 c 15.645 a 21.058 c 9.272 c 16.393 a 32.584 c 2.655 a 0.968** 混播 20~30 5.484 c 11.658 a 21.828 b 9.598 b 16.950 a 34.482 c 2.674 a 0.973** 30~40 6.411 a 8.346 a 24.853 a 10.367 b 12.231 a 37.792 c 2.700 a 0.976** 说明:不同小写字母表示在相同土层不同地块团聚体间差异显著(P<0.05);**表示极显著相关(P<0.01) ≥0.25 mm水稳性团聚体是表征土壤生态效应的重要指标,其含量越高,土壤团聚体水稳性越强,土壤结构越稳定[19]。对于≥0.25 mm粒径团聚体,其含量(4个土层的平均值)高低排序为紫花苜蓿/无芒雀麦混播(64.58%)、紫花苜蓿单播(57.96%)、无芒雀麦单播(56.37%)、撂荒地(40.81%),其中主要是促进了3.00~1.00和1.00~0.50 mm水稳性团聚体的形成,且无芒雀麦单播、紫花苜蓿单播和紫花苜蓿/无芒雀麦混播均较撂荒地呈现显著性差异(P<0.05)。
同机械稳定性结果一样,各样地土壤水稳性团聚体分形维数值大小排序也为撂荒地、无芒雀麦单播、紫花苜蓿单播、紫花苜蓿/无芒雀麦混播,变化范围为2.636~2.840,但各样地同一土层下的分形维数值之间并无显著性差异(P>0.05)。与土壤机械稳定性团聚体各分形维数拟合方程的情况一样,水稳性团聚体线性拟合方程的相关系数(R2)在0.947以上,且也均达到极显著水平(P<0.01)。
-
由图 3可知:各样地土壤总有机碳质量分数(4个土层的平均值)高低排序为紫花苜蓿/无芒雀麦混播(10.41 g·kg-1)、紫花苜蓿单播(8.60 g·kg-1)、无芒雀麦单播(8.21 g·kg-1)、撂荒地(6.32 g·kg-1),活性有机碳以及腐殖质碳质量分数也具有同样的变化规律。其中:土壤表层(0~20 cm)无芒雀麦单播、紫花苜蓿单播和紫花苜蓿/无芒雀麦混播总有机碳、活性有机碳和腐殖质碳均较撂荒地呈现显著性差异(P<0.05);土壤亚表层(20~40 cm)无芒雀麦单播、紫花苜蓿单播和紫花苜蓿/无芒雀麦混播总有机碳、活性有机碳均较撂荒地呈现显著性差异(P<0.05),紫花苜蓿/无芒雀麦混播腐殖质碳较撂荒地差异显著(P<0.05),而无芒雀麦单播和紫花苜蓿单播腐殖质碳较撂荒地差异不显著(P>0.05)。此外,从土壤剖面来看,各种形态的有机碳质量分数均随土层的加深而降低。
-
由表 3可知:土壤总有机碳、活性有机碳和腐殖质碳两两之间呈极显著正相关(P<0.01)。其中,总有机碳与活性有机碳、腐殖质碳的相关系数分别为0.975和0.954,活性有机碳与腐殖质碳的相关系数为0.975。
表 3 土壤有机碳和土壤机械稳定性团聚体的相互关系
Table 3. Correlation between soil organic carbon and soil dry-sieved aggregates
参数 总有机碳 活性有机碳 腐殖质碳 不同粒径土壤机械稳定性团聚体 ≥10.00 10.00~7.00 7.00~5.00 5.00~3.00 3.00~2.00 2.00~1.00 1.00~0.50 0.50~0.25 <0.25 mm 分形维数 -0.456 -0.323 -0.220 0.135 0.111 0.388 -0.265 -0.442 -0.632** 0.515* 0.745** 0.972** 总有机碳 1 0.975** 0.954** -0.887** -0.903** -0.319 0.928** 0.964** 0.123 0.041 0.170 -0.350 活性有机碳 1 0.975** -0.947** -0.931** -0.282 0.957** 0.964** 0.022 0.116 0.314 -0.202 腐殖质碳 1 -0.952** -0.933** -0.292 0.955** 0.916** -0.018 0.218 0.401 -0.091 说明:**表示在0.01水平(双侧)上极显著相关;*表示在0.05水平(双侧)上显著相关 土壤机械稳定性团聚体分形维数与土壤总有机碳、活性有机碳、腐殖质碳均呈负相关。土壤机械稳定性团聚体的分形维数与≥10.00,10.00~7.00,7.00~5.00,1.00~0.50,0.50~0.25和<0.25 mm粒径团聚体呈正相关,其中与1.00~0.50,0.50~0.25和<0.25 mm粒径团聚体呈显著或极显著正相关,相关系数分别为0.515,0.745和0.972。机械稳定性团聚体分形维数与5.00~3.00,3.00~2.00和2.00~1.00 mm粒径呈负相关,其中与2.00~1.00 mm粒径团聚体呈极显著负相关(相关系数为-0.632)。这说明机械稳定性团聚体分形维数受小粒径(1.00~0.50,0.50~0.25和<0.25 mm)和中等粒径(5.00~3.00, 3.00~2.00和2.00~1.00 mm)含量的影响明显,即分形维数值随小粒径团聚体含量的增加而增加,随中等粒径团聚体的增加而降低。
土壤总有机碳、活性有机碳、腐殖质碳与团聚体(≥10.00,10.00~7.00,7.00~5.00,<0.25 mm)呈负相关,其中与≥10.00,10.00~7.00 mm粒径团聚体呈极显著负相关(P<0.01),而与团聚体(5.00~3.00,3.00~2.00,2.00~1.00,1.00~0.50,0.50~0.25 mm)呈正相关,尤其与5.00~3.00和3.00~2.00 mm团聚体呈极显著正相关(P<0.01)。由此可见,中等粒径(5.00~3.00,3.00~2.00 mm)团聚体含量越高,大粒径(≥10.00,10.00~7.00 mm)团聚体含量越低,越有助于土壤有机碳质量分数的提高。
由表 4可知:土壤水稳性团聚体分形维数与总有机碳、活性有机碳和腐殖质碳均呈极显著负相关(P<0.01),相关系数分别为-0.964,-0.930和-0.894。水稳性团聚体分形维数与小粒径水稳性团聚体(<0.25 mm)呈极显著正相关(相关系数为0.980),而与中小粒径水稳性团聚体(≥5.00,5.00~3.00,3.00~1.00,1.00~0.50,0.50~0.25 mm)则基本呈显著或极显著负相关。同机械稳定性结果类似,这说明小粒径水稳性团聚体的增加有利于提高水稳性团聚体分形维数,而中小粒径水稳性团聚体的增加则会降低水稳性团聚体分形维数。
表 4 土壤有机碳和土壤水稳性团聚体的相互关系
Table 4. Correlation between soil organic carbon and soil water stable aggregates
参数 总有机碳 活性有机碳 腐殖质碳 不同粒径土壤水稳性团聚体 ≥5.00 5.00~3.00 3.00~1.00 1.00~0.50 0.50~0.25 <0.25 mm 分形维数 -0.964** -0.930** -0.894** -0.567* -0.636** -0.776** -0.406 -0.509* 0.980** 总有机碳 1 0.975** 0.954** 0.491 0.726** 0.673** 0.363 0.532* -0.944** 活性有机碳 1 0.975** 0.504* 0.714** 0.664** 0.348 0.446 -0.909** 腐殖质碳 1 0.490 0.779** 0.579* 0.192 0.481 -0.881** 说明:**表示在0.01水平(双侧)上极显著相关;*表示在0.05水平(双侧)上显著相关
Morphological structure, composition, and organic carbon characteristics of soil agglomerations for alfalfa and ryegrass planting patterns
-
摘要: 通过豫北地区6 a定位试验,以撂荒地为对照,研究了紫花苜蓿Medicago sativa单播、无芒雀麦Bromus inermis单播、紫花苜蓿/无芒雀麦混播3种不同的栽培模式对土壤团聚体组成与有机碳垂直分布的影响,并探讨了两者的相互关系。结果表明:人工草地建植后,土壤团聚体形态结构改善较为明显;土壤机械稳定性团聚体组成以5.00~3.00和3.00~2.00 mm粒径为主(比例为35.55%~57.12%);土壤水稳性团聚体组成以 < 0.25 mm和3.00~1.00 mm为主(比例为53.47%~74.47%);无论机械稳定性团聚体还是水稳性团聚体,不同栽培模式下土壤团聚体质量分形维数的大小顺序依次为撂荒地、无芒雀麦单播、紫花苜蓿单播、紫花苜蓿/无芒雀麦混播;土壤总有机碳、活性有机碳和腐殖质碳质量分数均随土层的增加而降低,各栽培模式下0~40 cm土壤有机碳质量分数从大到小依次为紫花苜蓿/无芒雀麦混播、紫花苜蓿单播、无芒雀麦单播、撂荒地;Pearson双侧检验结果显示:总有机碳、活性有机碳以及腐殖质碳质量分数两两之间均具有极显著的相关性(P < 0.01)。机械稳定性和水稳性团聚体的分形维数值均与小粒径团聚体(< 0.25 mm)呈极显著正相关(P < 0.01)。结论:相对于撂荒地,人工建植草地后能够显著改变土壤团聚体的分布,促进土壤固碳,其中又以紫花苜蓿/无芒雀麦混播为最佳栽培模式。Abstract: Through consecutive location tests in northern Henan Province over 6 years and compared with a waste land, the effects of different planting patterns for alfalfa(Medicago sativa) and ryegrass(Bromus inermis) on the composition of soil aggregate structure and vertical distribution of organic carbon were studied using a correlation analysis. The relationship between the two was also discussed. Results showed that morphological structure of the soil aggregates changed after an artificial grassland was planted. Soil dry-sieving aggregates consisted mainly of 2.00-3.00 mm and 3.00-5.00 mm particle sizes (proportion:35.55%-57.12%); whereas, soil water-stable aggregates were composed of particles < 0.25 mm and 1.00-3.00 mm in size (proportion:53.47%-74.47%). The order of fractal dimensions for both dry-sieving aggregates and water-stable aggregates was wasteland > ryegrass single-sowing > alfalfa single-sowing > alfalfa/ryegrass mixed-sowing. Total organic carbon content, soil active organic carbon, and humus carbon decreased with an increase of soil depth, and organic carbon content in the 0-40 cm soil layer was alfalfa/ryegrass mixed-sowing > alfalfa single-sowing > ryegrass single-sowing > wasteland. Also, a two-sided test for pears showed a highly significant correlation (P < 0.01) to total organic carbon and active organic carbon(r=0.975), active organic carbon and humus carbon(r=0.975), and total organic carbon and humus carbon (r=0.954); and fractal dimension values were highly significant (P < 0.01) and positively correlated to small-particle size aggregates (< 0.25 mm) for both dry-sieving aggregates (r=0.972) and water-stable aggregates (r=0.980). In conclusion, compared to wasteland, the distribution of soil aggregates was greatly changed and soil carbon sequestration was promoted after artificial grassland was planted with alfalfa/ryegrass mixed-sowing being the best planting pattern.
-
Key words:
- soil science /
- planting pattern /
- soil aggregates /
- organic carbon /
- fractal dimension /
- correlation analysis
-
表 1 土壤机械稳定性团聚体组成及分形维数
Table 1. Composition and fractal dimension of soil mechanical stable aggregates
栽培模式 土层/cm 不同粒径土壤机械稳定性团聚体百分比组成/% Dm R2 ≥10.00 10.00~7.00 7.00~5.00 5.00~3.00 3.00~2.00 2.00~1.00 1.00~0.50 0.50~0.25 <0.25 mm 撂荒地 0~10 15.893 a 11.668 a 8.263 d 21.683 c 19.476 c 7.060 b 7.561 a 2.650 a 5.746 a 1.845 a 0.986** 10~20 17.431 a 13.224 a 12.139 a 19.481 c 18.836 c 7.694 b 5.575 a 1.655 a 3.965 a 1.885 a 0.982** 20~30 19.110 a 14.615 a 14.773 a 18.222 c 17.818 c 9.850 b 2.376 c 0.587 a 2.649 a 2.025 a 0.946** 30~40 20.100 a 17.214 a 10.125 a 17.206 c 18.346 b 10.068 bc 3.976 a 0.518 ab 2.447 a 2.165 a 0.970** 无芒雀 0~10 13.531 b 9.122 b 11.414 a 24.744 b 24.113 b 7.872 b 3.195 c 1.863 b 4.146 b 1.765 b 0.953** 麦单播 10~20 14.391 b 9.434 b 7.736 b 23.041 b 22.933 b 12.979 a 5.575 a 1.458 ab 2.453 b 1.846 a 0.977** 20~30 18.051 b 10.632 b 10.050 b 21.023 b 22.177 b 11.089 b 3.634 b 0.839 a 2.505 a 1.844 b 0.962** 30~40 19.040 bc 13.413 b 9.323 a 19.841 b 21.319 a 10.870 b 3.395 a 1.008 a 1.791 b 1.983 b 0.969** 紫花苜 0~10 12.182 c 8.372 bc 10.721 b 25.549 b 23.749 b 9.094 a 5.905 b 1.660 bc 2.768 c 1.713 b 0.981** 蓿单播 10~20 13.931 b 9.680 b 13.576 a 22.113 b 24.068 ab 9.478 b 3.784 b 1.039 ab 2.331 b 1.792 b 0.968** 20~30 16.351 b 10.854 bc 9.136 b 20.318 b 22.378 b 13.860 a 4.037 ab 0.833 a 2.233 ab 1.813 c 0.963** 30~40 19.897 b 14.211 b 9.617 a 20.628 b 21.815 a 9.040 c 2.590 b 0.462 b 1.740 b 1.855 c 0.949** 紫花苜 0~10 11.627 c 8.022 c 9.219 bc 28.355 a 28.767 a 7.350 b 3.271 c 1.541 c 1.848 d 1.626 c 0.961** 蓿/无 10~20 12.042 c 8.734 b 7.934 b 25.963 a 25.429 a 12.784 a 4.982 a 0.759 b 1.373 c 1.682 c 0.971** 芒雀麦 20~30 13.299 c 11.032 c 6.860 c 23.441 a 24.849 a 13.329 a 4.455 a 0.932 a 1.803 b 1.703 d 0.967** 混播 30~40 15.670 c 13.336 c 5.024 b 22.328 a 22.573 a 14.674 a 3.903 a 0.717 ab 1.775 b 1.715 d 0.962** 说明:不同小写字母表示在相同土层不同地块团聚体间差异显著(P<0.05);**表示极显著相关(P<0.01) 表 2 土壤水稳性团聚体组成及其分形维数
Table 2. Composition and fractal dimension of soil water stable aggregates
栽培方式 土层/cm 不同粒径土壤水稳性团聚体百分比组成/% Dm R2 ≥5.00 5.00~3.00 3.00~1.00 1.00~0.50 0.50~0.25 <0.25 mm 撂荒地 0~10 3.451 c 9.886 c 17.153 c 8.217 c 7.581 b 53.712 a 2.803 a 0.965** 10~20 4.524 c 7.697 b 16.618 d 7.934 d 6.241 b 56.986 a 2.826 a 0.957** 20~30 4.988 d 6.644 b 16.358 c 7.376 c 7.065 d 57.569 a 2.837 a 0.960** 30~40 5.401 b 5.718 b 16.171 c 6.265 c 8.143 c 58.302 a 2.840 a 0.959** 无芒雀 0~10 14.798 a 9.556 bc 26.823 a 9.788 a 6.072 c 32.963 b 2.687 a 0.947** 麦单播 10~20 13.121 a 6.531 c 24.316 b 10.164 b 6.876 b 38.992 b 2.736 a 0.959** 20~30 7.639 a 5.175 c 22.746 ab 10.289 b 9.964 b 44.187 b 2.747 a 0.974** 30~40 4.283 c 4.876 c 20.454 b 11.747 a 8.462 c 50.178 b 2.765 a 0.980** 紫花苜 0~10 13.520 b 9.007 b 27.824 a 9.973 a 7.574 b 32.102 b 2.665 a 0.956** 蓿单播 10~20 9.742 b 7.787 b 25.890 a 12.658 a 6.236 b 37.687 b 2.682 a 0.963** 20~30 6.799 b 5.638 c 24.462 a 11.855 a 8.754 c 42.492 b 2.727 a 0.974** 30~40 2.523 d 6.039 b 21.429 b 12.351 a 10.477 b 47.181 b 2.756 a 0.984** 紫花苜蓿/ 0~10 4.603 d 17.259 a 22.661 b 9.198 b 15.468 a 30.811 c 2.636 a 0.969** 无芒雀麦 10~20 5.048 c 15.645 a 21.058 c 9.272 c 16.393 a 32.584 c 2.655 a 0.968** 混播 20~30 5.484 c 11.658 a 21.828 b 9.598 b 16.950 a 34.482 c 2.674 a 0.973** 30~40 6.411 a 8.346 a 24.853 a 10.367 b 12.231 a 37.792 c 2.700 a 0.976** 说明:不同小写字母表示在相同土层不同地块团聚体间差异显著(P<0.05);**表示极显著相关(P<0.01) 表 3 土壤有机碳和土壤机械稳定性团聚体的相互关系
Table 3. Correlation between soil organic carbon and soil dry-sieved aggregates
参数 总有机碳 活性有机碳 腐殖质碳 不同粒径土壤机械稳定性团聚体 ≥10.00 10.00~7.00 7.00~5.00 5.00~3.00 3.00~2.00 2.00~1.00 1.00~0.50 0.50~0.25 <0.25 mm 分形维数 -0.456 -0.323 -0.220 0.135 0.111 0.388 -0.265 -0.442 -0.632** 0.515* 0.745** 0.972** 总有机碳 1 0.975** 0.954** -0.887** -0.903** -0.319 0.928** 0.964** 0.123 0.041 0.170 -0.350 活性有机碳 1 0.975** -0.947** -0.931** -0.282 0.957** 0.964** 0.022 0.116 0.314 -0.202 腐殖质碳 1 -0.952** -0.933** -0.292 0.955** 0.916** -0.018 0.218 0.401 -0.091 说明:**表示在0.01水平(双侧)上极显著相关;*表示在0.05水平(双侧)上显著相关 表 4 土壤有机碳和土壤水稳性团聚体的相互关系
Table 4. Correlation between soil organic carbon and soil water stable aggregates
参数 总有机碳 活性有机碳 腐殖质碳 不同粒径土壤水稳性团聚体 ≥5.00 5.00~3.00 3.00~1.00 1.00~0.50 0.50~0.25 <0.25 mm 分形维数 -0.964** -0.930** -0.894** -0.567* -0.636** -0.776** -0.406 -0.509* 0.980** 总有机碳 1 0.975** 0.954** 0.491 0.726** 0.673** 0.363 0.532* -0.944** 活性有机碳 1 0.975** 0.504* 0.714** 0.664** 0.348 0.446 -0.909** 腐殖质碳 1 0.490 0.779** 0.579* 0.192 0.481 -0.881** 说明:**表示在0.01水平(双侧)上极显著相关;*表示在0.05水平(双侧)上显著相关 -
[1] PIRMORADIAN N, SEPASKHAH A, HAJABBASI R M. Application of fractal theory to quantify soil aggregate stability as influenced by tillage treatments[J]. Biosyst Eng, 2005, 90(2):227-234. [2] 马瑞萍, 刘雷, 安韶山, 等.黄土丘陵区不同植被群落土壤团聚体有机碳及其组分的分布[J].中国生态农业学报, 2013, 21(3):324-332. MA Ruiping, LIU Lei, AN Shaoshan, et al. Soil organic carbon and its fractions in aggregates under different plantcommunities in the hill-gully region of the Loess Plateau[J]. Chin J Eco-Agric, 2013, 21(3):324-332. [3] CHRISTENSEN B T. Physical fractionation of soil and organic matter in primary particle size and density separates[M]//STEWART B A. Advances in Soil Science: Vol 20. New York: Springer, 1992. [4] PERFECT F E, KAY B D. Applications of fractals in soil and tillage research:a review[J]. Soil Tillage Res, 1995, 36(1):1-20. [5] 刘晓静, 张进霞, 李文卿, 等.施肥及刈割对干旱地区紫花苜蓿产量和品质的影响[J].中国沙漠, 2014, 34(6):1516-1526. LIU Xiaojing, ZHANG Jinxia, LI Wenqing, et al. Effects of nitrogen and phosphorus addition and cuttings on yield and quality of alfalfa in dry region of Gansu, China[J]. J Desert Res, 2014, 34(6):1516-1526. [6] 邰继承, 杨恒山, 范富, 等.播种方式对紫花苜蓿+无芒雀麦草地土壤碳密度和组分的影响[J].草业科学, 2010, 27(6):102-107. TAI Jicheng, YANG Hengshan, FAN Fu, et al. Effects of sowing methods on soil carbon density and composition in the alfalfa and Bromus inermispasture[J]. Pratacultural Sci, 2010, 27(6):102-107. [7] 沈芳芳, 袁颖红, 樊后保, 等.氮沉降对杉木人工林土壤有机碳矿化和土壤酶活性的影响[J].生态学报, 2012, 32(2):517-527. SHEN Fangfang, YUAN Yinghong, FAN Houbao, et al. Effects of elevated nitrogen deposition on soil organic carbon mineralization and soil enzyme activities in a Chinese fir plantation[J]. Acta Ecol Sin, 2012, 32(2):517-527. [8] 周虎, 吕贻忠, 杨志臣, 等.保护性耕作对华北平原土壤团聚体特征的影响[J].中国农业科学, 2007, 40(9):1973-1979. ZHOU Hu, LÜ Yizhong, YANG Zhichen, et al. Effects of conservation tillage on soil aggregates in Huabei Plain, China[J]. Sci Agric Sin, 2007, 40(9):1973-1979. [9] 马世五, 高雪松, 邓良基, 等.不同母质发育的紫色水稻土腐殖质分布特征[J].山地学报, 2008, 26(1):45-52. MA Shiwu, GAO Xuesong, DENG Liangji, et al. Distribution of humus in purple paddy soils derived from different parent materials[J]. J Mt Sci, 2008, 26(1):45-52. [10] 马瑞萍, 安韶山, 党廷辉, 等.黄土高原不同植物群落土壤团聚体中有机碳和酶活性研究[J].土壤学报, 2014, 51(1):104-112. MA Ruiping, AN Shaoshan, DANG Tinghui, et al. Soil organic carbon and enzymatic activity in aggregates of soils under different plant communities in hilly-gully regions of Loess Plateau[J]. Acta Pedol Sin, 2014, 51(1):104-112. [11] 徐江兵, 李成亮, 何园球, 等.不同施肥处理对旱地红壤团聚体中有机碳含量及其组分的影响[J].土壤学报, 2007, 44(4):675-682. XU Jiangbing, LI Chengliang, HE Yuanqiu, et al. Effect of fertilization on organic carbon content and fractionation of aggregates in upland red soil[J]. Acta Pedol Sin, 2007, 44(4):675-682. [12] 刘恩科, 赵秉强, 梅旭荣, 等.不同施肥处理对土壤水稳定性团聚体及有机碳分布的影响[J].生态学报, 2010, 30(4):1035-1041. LIU Enke, ZHAO Bingqiang, MEI Xurong, et al. Distribution of water-stable aggregates and organic carbon of arable soils affected by different fertilizer application[J]. Acta Ecol Sin, 2010, 30(4):1035-1041. [13] 张鹏, 贾志宽, 路文涛, 等.不同有机肥施用量对宁南旱区土壤养分、酶活性及作物生产力的影响[J].植物营养与肥料学报, 2011, 17(5):1122-1130. ZHANG Peng, JIA Zhikuan, LU Wentao, et al. Effects of organic fertilization on soil nutrient, enzyme activity and crop productivity in semi-arid areas of southern Ningxia[J]. Plant Nutr Fertil Sci, 2011, 17(5):1122-1130. [14] 李亚杰, 徐文修, 苏丽丽, 等.水氮管理对麦后复播大豆土壤固碳效应和产量的影响[J].农业环境科学学报, 2016, 35(3):524-531. LI Yajie, XU Wenxiu, SU Lili, et al. Effects of water and nitrogen management on soil carbon sequestration and soybean yields in wheat-soybean cropping fields[J]. J Agro-Environ Sci, 2016, 35(3):524-531. [15] 蔺芳, 邢晶鑫, 任思敏, 等.不同栽培模式下豫北沙化土壤微生物量和酶活性[J].浙江农林大学学报, 2019, 36(3):590-597. LIN Fang, XING Jingxin, REN Simin, et al. Microbial biomass and enzymatic activity in sandy soils of northern Henan Province with different alfalfa and awnless brome cultivation patterns[J]. J Zhejiang A&F Univ, 2019, 36(3):590-597. [16] 杨培岭, 罗远培, 石元春.用粒径的重量分布表征的土壤分形特征[J].科学通报, 1993, 38(20):1896-1899. YANG Peiling, LUO Yuanpei, SHI Yuanchun. Fractal characteristics of soil characterized by weight distribution of particle size[J]. Chin Sci Bull, 1993, 38(20):1896-1899. [17] 祁迎春, 王益权, 刘军, 等.不同土地利用方式土壤团聚体组成及几种团聚体稳定性指标的比较[J].农业工程学报, 2011, 27(1):340-347. QI Yingchun, WANG Yiquan, LIU Jun, et al. Comparative study on composition of soil aggregates with different land use patterns and several kinds of soil aggregate stability index[J]. Trans CSAE, 2011, 27(1):340-347. [18] 蔺芳, 刘晓静, 张家洋.人工草地种植模式对沙化土壤团聚体及有机质含量的影响[J].中国沙漠, 2018, 38(6):1219-1229. LIN Fang, LIU Xiaojing, ZHANG Jiayang. Effects of planting patterns on soil aggregates and organic matter characteristics of sandy soil[J]. J Desert Res, 2018, 38(6):1219-1229. [19] 田慎重, 王瑜, 李娜, 等.耕作方式和秸秆还田对华北地区农田土壤水稳性团聚体分布及稳定性的影响[J].生态学报, 2013, 33(22):7116-7124. TIAN Shenzhong, WANG Yu, LI Na, et al. Effects of different tillage and straw systems on soil water-stable aggregate distribution and stability in the North China Plain[J]. Acta Ecol Sin, 2013, 33(22):7116-7124. [20] 蔡立群, 杜伟, 罗珠珠, 等.陇中坡地不同退耕模式对土壤团粒结构分形特征的影响[J].水土保持学报, 2012, 26(1):200-208. CAI Liqun, DU Wei, LUO Zhuzhu, et al. Effect of different plants on fractal features of soil aggregates after land retired from crop cultivation in slopes of central Gausu[J]. J Soil Water Conserv, 2012, 26(1):200-208. [21] 王轶浩, 耿养会, 黄仲华.三峡库区紫色土植被恢复过程的土壤团粒组成及分形特征[J].生态学报, 2013, 33(18):5493-5499. WANG Yihao, GENG Yanghui, HUANG Zhonghua. Composition and fractal features of purple soil aggregates during the vegetation restoration processes in the Three Gorges Reservoir Region[J]. Acta Ecol Sin, 2013, 33(18):5493-5499. [22] 宋丽萍, 罗珠珠, 李玲玲, 等.陇中黄土高原半干旱区苜蓿-作物轮作对土壤物理性质的影响[J].草业学报, 2015, 24(7):12-20. SONG Liping, LUO Zhuzhu, LI Lingling, et al. Effect of lucerne-crop rotations on soil physical properties in the semi-arid Loess Plateau of Central Gansu[J]. Acta Prataculturae Sin, 2015, 24(7):12-20. [23] SIX J, BOSSUYT H, DEGRYZE S, et al. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics[J]. Soil Till Res, 2004, 79(1):7-31. [24] 秦娟, 上官周平.植物之间互作效应及其生理机制[J].干旱地区农业研究, 2005, 23(3):225-230. QIN Juan, SHANGGUAN Zhouping. Interaction effect and physiological mechanism in plants[J]. Agric Res Arid Areas, 2005, 23(3):225-230. [25] 赵鹏, 史东梅, 赵培, 等.紫色土坡耕地土壤团聚体分形维数与有机碳关系[J].农业工程学报, 2013, 29(22):137-144. ZHAO Peng, SHI Dongmei, ZHAO Pei, et al. Relation of soil aggregate fractal dimension and organic carbon in purple-soilslope farmland[J]. Trans CSAE, 2013, 29(22):137-144. [26] 王景燕, 胡庭兴, 龚伟, 等.川南坡地不同退耕模式对土壤团粒结构分形特征的影响[J].应用生态学报, 2010, 21(6):1410-1416. WANG Jingyan, HU Tingxing, GONG Wei, et al. Fractal features of soil aggregate structure in slope farm land with different de-farming patterns in south Sichuan Province of China[J]. Chin J Appl Ecol, 2010, 21(6):1410-1416. [27] 张世熔, 邓良基, 周倩, 等.耕层土壤颗粒表面的分形维数及其与主要土壤特性的关系[J].土壤学报, 2002, 39(2):221-226. ZHANG Shirong, DENG Liangji, ZHOU Qian, et al. Fractal dimensions of particle surface in the plowed layersand their relationships with main soil properties[J]. Acta Pedol Sin, 2002, 39(2):221-226. [28] 姚姣转, 刘廷玺, 童新, 等.科尔沁沙地沙丘-草甸相间地土壤颗粒的分形特征[J].中国沙漠, 2016, 36(2):433-440. YAO Jiaozhuan, LIU Tingxi, TONG Xin, et al. Soil particle fractal dimension in the dune-meadow ecotone of the Horqin Sandy Land[J]. J Desert Res, 2016, 36(2):433-440. [29] WU Gaolin, LIU Zhenheng, ZHANG Lei, et al. Effects of artificial grassland establishment on soil nutrients and carbon properties in a black-soil-type degraded grassland[J]. Plant Soil, 2010, 333(1/2):469-479. [30] FONTE S J, YEBOAH E, OFORI P, et al. Fertilizer and residue quality effects on organic matter stabilization in soil aggregates[J]. Soil Sci Soc Am J, 2009, 73(3):961-966. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2019.06.004