留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

猪粪水热炭对土壤有机碳矿化及土壤性质的影响

张曾 宋成芳 单胜道 郑华宝 张成

张曾, 宋成芳, 单胜道, 郑华宝, 张成. 猪粪水热炭对土壤有机碳矿化及土壤性质的影响[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200651
引用本文: 张曾, 宋成芳, 单胜道, 郑华宝, 张成. 猪粪水热炭对土壤有机碳矿化及土壤性质的影响[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200651
ZHANG Zeng, SONG Chengfang, SHAN Shengdao, ZHENG Huabao, ZHANG Cheng. Effects of swine manure hydrochar on soil organic carbon mineralization and soil properties[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200651
Citation: ZHANG Zeng, SONG Chengfang, SHAN Shengdao, ZHENG Huabao, ZHANG Cheng. Effects of swine manure hydrochar on soil organic carbon mineralization and soil properties[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200651

本文已在中国知网网络首发,可在知网搜索、下载并阅读全文。

猪粪水热炭对土壤有机碳矿化及土壤性质的影响

doi: 10.11833/j.issn.2095-0756.20200651
基金项目: 浙江省重点研发计划项目(2020C01017)
详细信息
    作者简介: 张曾(ORCID: 0000-0001-8967-4295),从事农业废弃物资源化研究。E-mail: zhz1995@126.com
    通信作者: 宋成芳(ORCID: 0000-0002-8538-0932),副教授,博士,从事农林固体废弃物资源化研究。E-mail: songcf@163.com
  • 中图分类号: S153

Effects of swine manure hydrochar on soil organic carbon mineralization and soil properties

  • 摘要:   目的  评价猪粪水热炭对土壤有机碳矿化、pH、电导率及营养成分的影响,为猪粪水热炭的实际应用提供理论依据。  方法  以猪粪为原料在180 ℃和1 h炭化条件下制备水热炭,以0(对照)、1%、2%和4%质量分数水热炭与土壤混合进行培养试验。  结果  猪粪水热炭可提升土壤矿化速率、土壤矿化潜力及土壤有机碳周转速率。当添加量为4%时,土壤累积矿化量增加了1.52倍。培养过程中土壤的pH由7.17降至6.67~6.98,总体变化趋势为先降后升。碱解氮与速效磷质量分数在第10天和第15天降至最低后回升。土壤电导率及营养成分随水热炭添加量增加而增加,当添加量为4%时土壤电导率和总有机碳、水溶性有机碳、速效氮、有效磷、速效钾质量分数分别提升了58.9%、54.3%、146.4%、27.4%、591.2%和88.6%。  结论  猪粪水热炭在加速土壤有机碳矿化的同时能显著提升土壤养分质量分数,是一种较为合适的土壤改良剂。图6表3参40
  • 图  1  水热炭对土壤有机碳矿化速率(A)和累积矿化量(B)的影响

    Figure  1  Influence of hydrochar on the mineralization rate(A) and cumulative mineralization(B) of soil organic carbon

    图  2  水热炭对土壤中总有机碳(A)和水溶性有机碳(B)的影响

    Figure  2  Influence of hydrochar on total organic carbon contents (A) and water-soluble organic carbon contents (B) in the soil

    图  3  水热炭对土壤中碱解氮的影响

    Figure  3  Influence of hydrochar on available nitrogen contents in the soil

    图  4  水热炭对土壤中速效磷的影响

    Figure  4  Influence of hydrochar on available phosphorus contents in the soil

    图  5  水热炭对土壤中速效钾的影响

    Figure  5  Influence of hydrochar on available potassium contents in the soil

    图  6  水热炭对土壤pH (A)和电导率(B)的影响

    Figure  6  Influence of hydrochar on soil pH(A) and conductivity (B)

    表  1  样品的理化性质

    Table  1.   Physical and chemical properties of the samples

    材料总有机碳/(g·kg−1)水溶性有机碳/(g·kg−1)碱解氮/(mg·kg−1)速效磷/(mg·kg−1)速效钾/(g·kg−1)pH电导率/(μS·cm−1)
    水热炭124.396.35210991.46.885.691 308
    土壤 19.420.100 6711.50.167.17 158
    下载: 导出CSV

    表  2  土壤中有机碳矿化速率的回归方程

    Table  2.   Regression equations of organic carbon mineralization rate in soil

    水热炭添加量/%回归方程R2
    0(ck)y=29.438−5.5lnx0.977*
    1y=66.731−15.485lnx0.918*
    2y=100.388−22.09lnx0.980*
    4y=137.835−30.918lnx0.976*
      说明:*表示显著相关(P<0.05)
    下载: 导出CSV

    表  3  土壤中有机碳矿化的动力学参数

    Table  3.   Kinetic parameters of organic carbon mineralization in soil

    水热炭添加量/%Cp/(mg·kg−1)k/d−1R2
    0(ck)436.857 a0.0450.965
    1617.018 b0.0520.964
    2786.049 c0.0920.958
    41 029.796 d0.0940.969
      说明:不同小写字母表示处理间差异显著(P<0.05)
    下载: 导出CSV
  • [1] 李顺姬, 邱莉萍, 张兴昌. 黄土高原土壤有机碳矿化及其与土壤理化性质的关系[J]. 生态学报, 2010, 30(5): 1217 − 1226.

    LI Shunji, QIU Liping, ZHANG Xingchang. Mineralization of soil organic carbon and its relations with soil physical and chemical properties on the Loess Plateau [J]. Acta Ecol Sin, 2010, 30(5): 1217 − 1226.
    [2] 王朔林, 杨艳菊, 王改兰, 等. 长期施肥对栗褐土有机碳矿化的影响[J]. 植物营养与肥料学报, 2016, 22(5): 1278 − 1285. doi:  10.11674/zwyf.15309

    WANG Shuolin, YANG Yanju, WANG Gailan, et al. Effects of long-term fertilization on organic carbon mineralization of cinnamon soil [J]. J Plant Nutr Fert, 2016, 22(5): 1278 − 1285. doi:  10.11674/zwyf.15309
    [3] 徐广平, 李艳琼, 沈育伊, 等. 桂林会仙喀斯特湿地水位梯度下不同植物群落土壤有机碳及其组分特征[J]. 环境科学, 2019, 40(3): 1491 − 1503.

    XU Guangping, LI Yanqiong, SHEN Yuyi, et al. Soil organic carbon distribution and components in different plant communities along a water table gradient in the Huixian Karst Wetland in Guilin [J]. Environ Sci, 2019, 40(3): 1491 − 1503.
    [4] GARCIA C, HERNANDEZ T. Organic matter in bare soils of the mediterranean region with a semiarid climate [J]. Arid Soil Res Manage, 1996, 10(1): 31 − 41. doi:  10.1080/15324989609381418
    [5] GALANTINI J A, ROSELL R. Long-term fertilization effects on soil organic matter quality and dynamics under different production systems in semiarid Pampean soils [J]. Soil Tillage Res, 2006, 87(1): 72 − 79. doi:  10.1016/j.still.2005.02.032
    [6] CAYUELA M L, SINICCO T, MONDINI C. Mineralization dynamics and biochemical properties during initial decomposition of plant and animal residues in soil [J]. Appl Soil Ecol, 2009, 41(1): 118 − 127. doi:  10.1016/j.apsoil.2008.10.001
    [7] FANG Changming, SMITH P, MONCRIEFF J B, et al. Similar response of labile and resistant soil organic matter pools to changes in temperature [J]. Nature, 2005, 433(7021): 57 − 59. doi:  10.1038/nature03138
    [8] XU Gang, LÜ Yingchun, SUN Junna, et al. Recent advances in biochar applications in agricultural soils: benefits and environmental implications [J]. Clean-Soil Air Water, 2012, 40(10): 1093 − 1098. doi:  10.1002/clen.201100738
    [9] SPOKAS K, BAKER J M, REICOSKY D C. Ethylene: potential key for biochar amendment impacts [J]. Plant Soil, 2010, 333(1/2): 443 − 452.
    [10] HITZL M, CORMA A, POMARES F, et al. The hydrothermal carbonization (HTC) plant as a decentral biorefinery for wet biomass [J]. Catal Today, 2015, 257: 154 − 159. doi:  10.1016/j.cattod.2014.09.024
    [11] SONG Chengfang, YUAN Wenqiao, SHAN Shengdao, et al. Changes of nutrients and potentially toxic elements during hydrothermal carbonization of pig manure[J]. Chemosphere, 2019, 243. doi: 10.1016/j.chemosphere.2019.125331.
    [12] SONG Chengfang, SHAN Shengdao, YANG Chao, et al. The comparison of dissolved organic matter in hydrochars and biochars from pig manure[J]. Sci Total Environ, 2020, 720(15). doi: 10.1016/j.scitotenv.2020.137423.
    [13] MAU V, ARYE G, GROSS A. Poultry litter hydrochar as an amendment for sandy soils[J]. J Environ Manage, 2020, 271. doi: 10.1016/j. jenvman. 2020.110959.
    [14] CHU Qingnan, XUE Lihong, SINGH B P, et al. Sewage sludge-derived hydrochar that inhibits ammonia volatilization, improves soil nitrogen retention and rice nitrogen utilization[J]. Chemosphere, 2020, 245. doi: 10.1016/j.chemosphere.2019.125558.
    [15] BENTO L, CASTRO J, MOREIRA A B, et al. Release of nutrients and organic carbon in different soil types from hydrochar obtained using sugarcane bagasse and vinasse [J]. Geoderma, 2019, 334: 24 − 32. doi:  10.1016/j.geoderma.2018.07.034
    [16] BREULMANN M, van AFFERDEN M, MUELLER R A, et al. Process conditions of pyrolysis and hydrothermal carbonization affect the potential of sewage sludge for soil carbon sequestration and amelioration [J]. J Anal Appl Pyrolysis, 2017, 124: 256 − 265. doi:  10.1016/j.jaap.2017.01.026
    [17] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000.
    [18] KIMETU J M, LEHMANN J, KINYANGI J M, et al. Soil organic C stabilization and thresholds in C saturation [J]. Soil Biol Biochem, 2009, 41(10): 2100 − 2104. doi:  10.1016/j.soilbio.2009.07.022
    [19] KHALIL M I, HOSSAIN M B, SCHMIDHALTER U. Carbon and nitrogen mineralization in different upland soils of the subtropics treated with organic materials [J]. Soil Biol Biochem, 2005, 37(8): 1507 − 1518. doi:  10.1016/j.soilbio.2005.01.014
    [20] SCHIMMELPFENNIG S, GLASER B. One step forward toward characterization: some important material properties to distinguish biochars [J]. J Environ Qual, 2012, 41(4): 1001 − 1013. doi:  10.2134/jeq2011.0146
    [21] 陈吉, 赵炳梓, 张佳宝, 等. 长期施肥潮土在玉米季施肥初期的有机碳矿化过程研究[J]. 土壤, 2009, 41(5): 719 − 725. doi:  10.3321/j.issn:0253-9829.2009.05.007

    CHEN Ji, ZHAO Bingzi, ZHANG Jiabao, et al. Research on process of fluvo-aquic soil organic carbon mineralization in initial stage of maize growth under long-term different fertilization [J]. Soils, 2009, 41(5): 719 − 725. doi:  10.3321/j.issn:0253-9829.2009.05.007
    [22] ZHANG Zhikun, ZHU Zhongyuan, SHEN Boxiong, et al. Insights into biochar and hydrochar production and applications: a review [J]. Energy, 2019, 171: 581 − 598. doi:  10.1016/j.energy.2019.01.035
    [23] 韩玮, 申双和, 谢祖彬, 等. 生物炭及秸秆对水稻土各密度组分有机碳及微生物的影响[J]. 生态学报, 2016, 36(18): 5838 − 5846.

    HAN Wei, SHEN Shuanghe, XIE Zubin, et al. Effects of biochar and straw on both the organic carbon in different density fractions and the microbial biomass in paddy soil [J]. Acta Ecol Sin, 2016, 36(18): 5838 − 5846.
    [24] SMITH J L, COLLINS H P, BAILEY V L. The effect of young biochar on soil respiration [J]. Soil Biol Biochem, 2010, 42(12): 2345 − 2347. doi:  10.1016/j.soilbio.2010.09.013
    [25] BARGMANN I, MARTENS R, RILLIG M C, et al. Hydrochar amendment promotes microbial immobilization of mineral nitrogen [J]. J Plant Nutr Soil Sci, 2014, 177(1): 59 − 67. doi:  10.1002/jpln.201300154
    [26] MCGAUGHY K, REZA M T. Recovery of macro and micro-nutrients by hydrothermal carbonization of septage [J]. J Agric Food Chem, 2018, 66(8): 1854 − 1862. doi:  10.1021/acs.jafc.7b05667
    [27] YU Shan, FENG Yanfang, XUE Lihong, et al. Biowaste to treasure: application of microbial-aged hydrochar in rice paddy could improve nitrogen use efficiency and rice grain free amino acids [J]. J Clean Prod, 2019, 240: 1 − 12.
    [28] MELO T M, BOTTLINGER M, SCHULZ E, et al. Plant and soil responses to hydrothermally converted sewage sludge (sewchar) [J]. Chemosphere, 2018, 206: 338 − 348. doi:  10.1016/j.chemosphere.2018.04.178
    [29] SUBEDI R, KAMMANN C, PELISSETTI S, et al. Does soil amended with biochar and hydrochar reduce ammonia emissions following the application of pig slurry? [J]. Eur J Soil Sci, 2015, 66(6): 1044 − 1053. doi:  10.1111/ejss.12302
    [30] PRATIWI E P A, HILLARY A K, FUKUDA T, et al. The effects of rice husk char on ammonium, nitrate and phosphate retention and leaching in loamy soil [J]. Geoderma, 2016, 277: 61 − 68. doi:  10.1016/j.geoderma.2016.05.006
    [31] DAI Lichun, TAN Furong, WU Bo, et al. Immobilization of phosphorus in cow manure during hydrothermal carbonization [J]. J Environ Manage, 2015, 157: 49 − 53. doi:  10.1016/j.jenvman.2015.04.009
    [32] HANSEN H C B, HANSEN P E, MAGID J. Empirical modelling of the kinetics of phosphate sorption to macropore materials in aggregated subsoils [J]. Eur J Soil Sci, 2010, 50(2): 317 − 327.
    [33] FROSSARD E, CONDRON L M, OBERSON A, et al. Processes governing phosphorus availability in temperate soils [J]. J Environ Qual, 2000, 29(1): 15 − 23.
    [34] CHRISTEL W, BRUUN S, MAGID J, et al. Phosphorus availability from the solid fraction of pig slurry is altered by composting or thermal treatment [J]. Bioresour Technol, 2014, 169: 543 − 551. doi:  10.1016/j.biortech.2014.07.030
    [35] FEI Yingheng, ZHAO Dan, LIU Ye, et al. Feasibility of sewage sludge derived hydrochars for agricultural application: Nutrients (N, P, K) and potentially toxic elements (Zn, Cu, Pb, Ni, Cd)[J]. Chemosphere, 2019, 236. doi: 10.1016/j.chemosphere.2019.124841.
    [36] MELO C A, JUNIOR F H S, BISINOTI M C, et al. Transforming sugarcane bagasse and vinasse wastes into hydrochar in the presence of phosphoric acid: an evaluation of nutrient contents and structural properties [J]. Waste Biomass Valorization, 2017, 8(4): 1139 − 1151. doi:  10.1007/s12649-016-9664-4
    [37] RILLING M C, WAGNER M, SALEM M, et al. Material derived from hydrothermal carbonization: effects on plant growth and arbuscular mycorrhiza [J]. Appl Soil Ecol, 2010, 45(3): 238 − 242. doi:  10.1016/j.apsoil.2010.04.011
    [38] GEORGE C, WAGNER M, KÜCKE M, et al. Divergent consequences of hydrochar in the plant-soil system: arbuscular mycorrhiza, nodulation, plant growth and soil aggregation effects [J]. Appl Soil Ecol, 2012, 59: 68 − 72. doi:  10.1016/j.apsoil.2012.02.021
    [39] BUSCH D, STARK A, KAMMANN C I, et al. Genotoxic and phytotoxic risk assessment of fresh and treated hydrochar from hydrothermal carbonization compared to biochar from pyrolysis [J]. Ecotoxicol Environ Saf, 2013, 97: 59 − 66. doi:  10.1016/j.ecoenv.2013.07.003
    [40] QIN Peng, WANG Hailong, YANG Xing, et al. Bamboo- and pig-derived biochars reduce leaching losses of dibutyl phthalate, cadmium, and lead from co-contaminated soils [J]. Chemosphere, 2018, 198: 450 − 459. doi:  10.1016/j.chemosphere.2018.01.162
  • [1] 陈丽美, 李小英, 李俊龙, 梁智, 史亮涛.  竹炭与有机肥配施对土壤肥力及紫甘蓝生长的影响 . 浙江农林大学学报, doi: 10.11833/j.issn.2095-0756.20200723
    [2] 张红桔, 马闪闪, 赵科理, 叶正钱, 汪智勇, 白珊.  山核桃林地土壤肥力状况及其空间分布特征 . 浙江农林大学学报, 2018, 35(4): 664-673. doi: 10.11833/j.issn.2095-0756.2018.04.012
    [3] 张曾, 单胜道, 吴胜春, 宋成芳.  炭化条件对猪粪水热炭主要营养成分的影响 . 浙江农林大学学报, 2018, 35(3): 398-404. doi: 10.11833/j.issn.2095-0756.2018.03.002
    [4] 王丹, 马元丹, 郭慧媛, 高岩, 张汝民, 侯平.  模拟酸雨胁迫与柳杉凋落物对土壤养分及微生物的影响 . 浙江农林大学学报, 2015, 32(2): 195-203. doi: 10.11833/j.issn.2095-0756.2015.02.005
    [5] 宋哲岳, 宋照亮, 单胜道.  施猪粪对水稻土有机碳剖面分布的影响 . 浙江农林大学学报, 2013, 30(2): 157-164. doi: 10.11833/j.issn.2095-0756.2013.02.001
    [6] 郑蓉.  产地绿竹笋品质及土壤养分的主成分与典型相关分析 . 浙江农林大学学报, 2012, 29(5): 710-714. doi: 10.11833/j.issn.2095-0756.2012.05.012
    [7] 杜华强, 汤孟平, 崔瑞蕊.  天目山常绿阔叶林土壤养分的空间异质性 . 浙江农林大学学报, 2011, 28(4): 562-568. doi: 10.11833/j.issn.2095-0756.2011.04.007
    [8] 柳丽娜, 金爱武.  集约经营毛竹林土壤养分空间变异特征初探 . 浙江农林大学学报, 2011, 28(5): 828-832. doi: 10.11833/j.issn.2095-0756.2011.05.025
    [9] 王艮梅, 张焕朝, 杨丽.  林地施用污泥对杨树生长和土壤环境的影响 . 浙江农林大学学报, 2010, 27(3): 385-390. doi: 10.11833/j.issn.2095-0756.2010.03.011
    [10] 郑红波, 吴健平, 张珊.  浙江宁海农用地土壤有机质和土壤养分空间变异分析 . 浙江农林大学学报, 2010, 27(3): 379-384. doi: 10.11833/j.issn.2095-0756.2010.03.010
    [11] 郝瑞军, 方海兰, 沈烈英, 车玉萍.  上海典型植物群落土壤有机碳矿化特征 . 浙江农林大学学报, 2010, 27(5): 664-670. doi: 10.11833/j.issn.2095-0756.2010.05.005
    [12] 童根平, 王卫国, 张圆圆, 徐温新, 窦春英, 盛卫星, 虞青平, 叶正钱.  大田条件下山核桃林地土壤和叶片养分变化规律 . 浙江农林大学学报, 2009, 26(4): 516-521.
    [13] 姜培坤, 徐秋芳, 邬奇峰, 吴家森.  施肥对板栗林土壤养分和生物学性质的影响 . 浙江农林大学学报, 2007, 24(4): 445-449.
    [14] 姜培坤, 徐秋芳, 储家淼, 吴丽君.  雷竹早产高效栽培过程中土壤养分质量分数的变化 . 浙江农林大学学报, 2006, 23(3): 242-247.
    [15] 戴文圣, 黎章矩, 程晓建, 喻卫武, 符庆功.  香榧林地土壤养分、重金属及对香榧子成分的影响 . 浙江农林大学学报, 2006, 23(4): 393-399.
    [16] 戴文圣, 黎章矩, 程晓建, 喻卫武, 符庆功.  香榧林地土壤养分状况的调查分析 . 浙江农林大学学报, 2006, 23(2): 140-144.
    [17] 马焕成, 罗质斌, 陈义群, 林文杰.  保水剂对土壤养分的保蓄作用 . 浙江农林大学学报, 2004, 21(4): 404-407.
    [18] 杨芳, 徐秋芳.  不同栽培历史雷竹林土壤养分与重金属含量的变化 . 浙江农林大学学报, 2003, 20(2): 111-114.
    [19] 姜培坤, 徐秋芳, 俞益武.  土壤微生物量碳作为林地土壤肥力指标 . 浙江农林大学学报, 2002, 19(1): 17-19.
    [20] 江志标, 俞勤民.  施肥对杉木实生苗某些生理特性和土壤养分的影响 . 浙江农林大学学报, 1999, 16(4): 365-368.
  • 加载中
  • 链接本文:

    http://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200651

    http://zlxb.zafu.edu.cn/article/zjnldxxb/2021/4/1

计量
  • 文章访问数:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-14
  • 修回日期:  2021-03-23

猪粪水热炭对土壤有机碳矿化及土壤性质的影响

doi: 10.11833/j.issn.2095-0756.20200651
    基金项目:  浙江省重点研发计划项目(2020C01017)
    作者简介:

    张曾(ORCID: 0000-0001-8967-4295),从事农业废弃物资源化研究。E-mail: zhz1995@126.com

    通信作者: 宋成芳(ORCID: 0000-0002-8538-0932),副教授,博士,从事农林固体废弃物资源化研究。E-mail: songcf@163.com
  • 中图分类号: S153

摘要:   目的  评价猪粪水热炭对土壤有机碳矿化、pH、电导率及营养成分的影响,为猪粪水热炭的实际应用提供理论依据。  方法  以猪粪为原料在180 ℃和1 h炭化条件下制备水热炭,以0(对照)、1%、2%和4%质量分数水热炭与土壤混合进行培养试验。  结果  猪粪水热炭可提升土壤矿化速率、土壤矿化潜力及土壤有机碳周转速率。当添加量为4%时,土壤累积矿化量增加了1.52倍。培养过程中土壤的pH由7.17降至6.67~6.98,总体变化趋势为先降后升。碱解氮与速效磷质量分数在第10天和第15天降至最低后回升。土壤电导率及营养成分随水热炭添加量增加而增加,当添加量为4%时土壤电导率和总有机碳、水溶性有机碳、速效氮、有效磷、速效钾质量分数分别提升了58.9%、54.3%、146.4%、27.4%、591.2%和88.6%。  结论  猪粪水热炭在加速土壤有机碳矿化的同时能显著提升土壤养分质量分数,是一种较为合适的土壤改良剂。图6表3参40

English Abstract

张曾, 宋成芳, 单胜道, 郑华宝, 张成. 猪粪水热炭对土壤有机碳矿化及土壤性质的影响[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200651
引用本文: 张曾, 宋成芳, 单胜道, 郑华宝, 张成. 猪粪水热炭对土壤有机碳矿化及土壤性质的影响[J]. 浙江农林大学学报. doi: 10.11833/j.issn.2095-0756.20200651
ZHANG Zeng, SONG Chengfang, SHAN Shengdao, ZHENG Huabao, ZHANG Cheng. Effects of swine manure hydrochar on soil organic carbon mineralization and soil properties[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200651
Citation: ZHANG Zeng, SONG Chengfang, SHAN Shengdao, ZHENG Huabao, ZHANG Cheng. Effects of swine manure hydrochar on soil organic carbon mineralization and soil properties[J]. Journal of Zhejiang A&F University. doi: 10.11833/j.issn.2095-0756.20200651

返回顶部

目录

    /

    返回文章
    返回