留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

好氧堆肥-蚯蚓堆肥结合法处理绿化废弃物与牛粪

蔡琳琳 李素艳 龚小强 孙向阳 张建伟 于鑫 魏乐

蔡琳琳, 李素艳, 龚小强, 孙向阳, 张建伟, 于鑫, 魏乐. 好氧堆肥-蚯蚓堆肥结合法处理绿化废弃物与牛粪[J]. 浙江农林大学学报, 2018, 35(2): 261-267. doi: 10.11833/j.issn.2095-0756.2018.02.009
引用本文: 蔡琳琳, 李素艳, 龚小强, 孙向阳, 张建伟, 于鑫, 魏乐. 好氧堆肥-蚯蚓堆肥结合法处理绿化废弃物与牛粪[J]. 浙江农林大学学报, 2018, 35(2): 261-267. doi: 10.11833/j.issn.2095-0756.2018.02.009
CAI Linlin, LI Suyan, GONG Xiaoqiang, SUN Xiangyang, ZHANG Jianwei, YU Xin, WEI Le. Composting-vermicomposting of green waste processing spiked with cow dung[J]. Journal of Zhejiang A&F University, 2018, 35(2): 261-267. doi: 10.11833/j.issn.2095-0756.2018.02.009
Citation: CAI Linlin, LI Suyan, GONG Xiaoqiang, SUN Xiangyang, ZHANG Jianwei, YU Xin, WEI Le. Composting-vermicomposting of green waste processing spiked with cow dung[J]. Journal of Zhejiang A&F University, 2018, 35(2): 261-267. doi: 10.11833/j.issn.2095-0756.2018.02.009

好氧堆肥-蚯蚓堆肥结合法处理绿化废弃物与牛粪

doi: 10.11833/j.issn.2095-0756.2018.02.009
基金项目: 

林业公益性行业科研专项资助 201504205

详细信息
    作者简介: 蔡琳琳, 从事土壤资源与环境研究。E-mail:cailinlin@bjfu.edu.cn
    通信作者: 李素艳, 副教授, 博士, 从事农林废弃物资源化再利用和土壤生态环境研究。E-mail:lisuyan@bjfu.edu.cn
  • 中图分类号: S606;S317

Composting-vermicomposting of green waste processing spiked with cow dung

  • 摘要: 为促进绿化废弃物和牛粪的资源化利用,采用赤子爱胜蚯蚓Eisenia fetida对绿化废弃物和牛粪的混合物进行好氧-蚯蚓结合堆肥处理。在绿化废弃物好氧堆肥60 d后,按0(T1),2%(T2),4%(T3),6%(T4),8%(T5),10%(T6)的质量分数在绿化废弃物中添加牛粪,并加入蚯蚓,继续蚯蚓堆肥60 d,以无牛粪无蚯蚓的绿化废弃物堆肥作为对照(T0),最终将堆肥产品用作基质进行美丽竹芋Calathea veitchiana栽培试验。结果表明:蚯蚓堆肥处理(T1~T6)产品在营养元素含量和美丽竹芋生长量上显著高于对照(T0)。不同蚯蚓堆肥处理中,绿化废弃物与牛粪混合处理在蚯蚓存活率、蚯蚓生长和繁殖速度、纤维素和木质素降解率、堆肥产品营养元素含量及细菌、真菌和放线菌数量,以及美丽竹芋生长(株高、冠幅、叶片数、鲜质量)上均显著高于纯绿化废弃物处理(T1)。在绿化废弃物与牛粪混合处理(T2~T6)中,添加质量分数8%(T5)和10%(T6)牛粪的处理在蚯蚓生长量、繁殖率、产品质量指标和美丽竹芋生长指标上优于其他处理。可见,利用好氧堆肥-蚯蚓堆肥结合处理方式可以有效应用于绿化废弃物处理,其中以添加质量分数8%(T5)和10%(T6)牛粪的处理效果最佳。
  • 图  1  牛粪添加对蚯蚓堆肥微生物数量的影响

    Figure  1  Effects of cow dung addition on numbers of bacteria, fungi and actinomyces of vermicomposts

    表  1  供试绿化废弃物和牛粪理化性质

    Table  1.   Initial physicochemical properties of the green waste and cow dung used for composting-vermicomposting

    项目 pH值 电导率/(dS·m-1) 有机碳/(g·kg-1) 全氮/(g·kg-1) 碳氮比 全磷/(g·kg-1) 全钾/(g·kg-1) 钙/(g·kg-1) 镁/(g·kg-1) 纤维素/% 木质素/%
    绿化废弃物 8.31 ± 0.01 1.55 ± 0.01 337.00 ± 0.41 14.36 ± 0.01 23.5 ± 0.03 2.04 ± 0.05 6.69 ± 0.01 119.00 ± 0.08 9.65 ± 0.00 30.30 ± 0.29 23.70 ± 0.10
    牛粪 8.74 ± 0.02 3.06 ± 0.07 290.00 ± 0.96 15.38 ± 0.05 18.9 ± 0.11 7.36 ± 0.54 9.07 ± 0.16 46.90 ± 0.67 10.40 ± 0.08 24.30 ± 0.47 12.00 ± 0.40
    下载: 导出CSV

    表  2  牛粪添加对蚯蚓生长和繁殖的影响

    Table  2.   Effects of cow dung addition on growth and reproductive performance of earthworm

    组别 成年蚯蚓数量/(条·kg-1) 单条成熟蚯蚓质量/(g·条-1) 蚯蚓幼体数/
    (条·kg-1)
    卵数/(个·kg-1)
    T1 12.67 ± 0.67 c 0.25 ± 0.00 c 417.00 ± 14.18 c 40.67 ± 3.93 b
    T2 16.33±0.33 b 0.27 ± 0.00 b 672.33 ± 15.98 b 43.00 ± 2.31 b
    T3 19.33 ± 0.33 a 0.28 ± 0.00 a 780.67 ± 14.50 a 63.67 ± 2.40 a
    T4 19.33 ± 0.67 a 0.29 ± 0.00 a 793.00 ± 28.92 a 70.33 ± 3.93 a
    T5 20.00 ± 0.00 a 0.29 ± 0.00 a 780.67 ± 9.96 a 69.00 ± 1.00 a
    T6 19.67 ± 0.33 a 0.29 ± 0.00 a 821.67 ± 24.36 a 71.67 ± 2.40 a
      说明:同列不同字母表示各组间差异显著(P < 0.05)
    下载: 导出CSV

    表  3  添加牛粪对蚯蚓堆肥中pH值、电导率和有机碳的影响

    Table  3.   Effects of cow dung addition on pH, EC and organic carbon of vermicomposting

    处理 pH值 电导率/(dS·m-1) 有机碳/(g·kg-1)
    初始 结束 降率/% 初始 结束 增率/% 初始 结束 降率/%
    T0 8.31 ± 0.01 8.27 ± 0.01 0.48 ± 0.18 g 1.55 ± 0.01 1.73 ± 0.01 11.60 ± 0.70 f 337.78 ± 0.41 322.10 ± 1.77 4.64 ± 0.62 g
    T1 8.31 ± 0.01 8.20 ± 0.01 1.28 ± 0.22 f 1.55 ± 0.01 1.95 ± 0.01 25.76 ± 1.11 e 337.78 ± 0.41 306.44 ± 0.41 9.28 ± 0.13 f
    T2 8.33 ± 0.01 8.16 ± 0.00 2.04 ± 0.07 e 1.59 ± 0.01 2.09 ± 0.03 31.19 ± 2.24 d 336.19 ± 0.62 292.74 ± 1.44 12.93 ± 0.27 e
    T3 8.36 ± 0.01 8.12 ± 0.00 2.79 ± 0.08 d 1.66 ± 0.01 2.24 ± 0.02 35.14 ± 0.84 c 335.01 ± 0.43 280.55 ± 0.56 16.26 ± 0.11 d
    T4 8.38 ± 0.01 8.08 ± 0.01 3.58 ± 0.18 c 1.69 ± 0.01 2.36 ± 0.02 39.19 ± 1.64 b 333.58 ± 0.54 274.76 ± 0.69 17.63 ± 0.27 c
    T5 8.40 ± 0.01 8.04 ± 0.01 4.25 ± 0.18 b 1.76 ± 0.01 2.47 ± 0.01 40.61 ± 0.55 b 332.96 ± 0.36 270.15 ± 0.54 18.86 ± 0.09 b
    T6 8.42 ± 0.00 7.96 ± 0.01 5.54 ± 0.08 a 1.80 ± 0.00 2.62 ± 0.01 45.11 ± 0.75 a 331.25 ± 0.34 258.86 ± 0.97 21.85 ± 0.21 a
      说明:同列不同字母表示各组间差异显著(P < 0.05)
    下载: 导出CSV

    表  4  牛粪添加对蚯蚓堆肥中无机元素的影响

    Table  4.   Effects of cow dung addition on mineral elements of vermicomposting

    处理 全氮/(g·kg-1) 碳氮比 全磷/(g·kg-1) 全钾/(g·kg-1) 钙/(g·kg-1) 镁/(g·kg-1)
    初始 结束 增率/% 初始 结束 降率/% 初始 结束 增率/% 初始 结束 增率/% 初始 结束 增率/% 初始 结束 增率/%
    T0 14.36 ± 0.01 15.52 ± 0.41 8.07 ± 0.33 e 23.52 ± 0.03 20.75 ± 0.17 11.75 ± 0.84 f 2.04 ± 0.05 2.25 ± 0.01 10.56 ± 2.66 c 6.69 ± 0.01 7.14 ± 0.01 6.77 ± 0.04 e 119.91 ± 0.08 124.61 ± 0.79 3.92 ± 0.60 e 9.65 ± 0.00 9.73 ± 0.01 0.87 ± 0.11 c
    T1 14.36 ± 0.01 16.63 ± 0.02 15.79 ± 0.18 d 23.52 ± 0.03 18.43 ± 0.04 21.65 ± 0.23 e 2.04 ± 0.05 2.67 ± 0.01 31.38 ± 3.15 b 6.69 ± 0.01 7.44 ± 0.08 11.26 ± 1.13 cd 119.91 ± 0.08 129.46 ± 0.63 7.9 ± 0.58 d 9.65 ± 0.00 9.85 ± 0.00 2.11 ± 0.77 bc
    T2 14.40 ± 0.00 17.55 ± 0.15 21.88 ± 1.05c 23.35 ± 0.04 16.68 ± 0.06 28.55 ± 0.40 d 2.16 ± 0.02 2.86 ± 0.06 32.57 ± 3.40 b 6.74 ± 0.00 7.62 ± 0.09 13.16 ± 1.32cd 118.88 ± 0.32 131.57 ± 0.52 10.68 ± 0.60 c 9.70 ± 0.00 9.97 ± 0.04 2.78 ± 0.43 b
    T3 14.44 ± 0.00 17.83 ± 0.15 23.46 ± 1.00c 23.20 ± 0.03 15.74 ± 0.11 32.16 ± 0.55 /d 2.30 ± 0.01 3.17 ± 0.07 37.70 ± 3.69 b 6.80 ± 0.01 7.91 ± 0.05 16.39 ± 0.55 bc 117.83 ± 0.12 134.53 ± 0.21 14.17 ± 0.25 b 9.72 ± 0.01 10.34 ± 0.07 6.32 ± 0.78 a
    T4 14.46 ± 0.00 18.92 ± 0.76 30.82 ± 5.29 bc 23.07 ± 0.04 14.57 ± 0.60 36.83 ± 2.64 bc 2.51 ± 0.02 3.91 ± 0.15 55.92 ± 4.69 a 6.85 ± 0.01 8.47 ± 0.15 23.59 ± 2.18 a 116.70 ± 0.12 135.86 ± 0.92 16.42 ± 0.84 a 9.75 ± 0.00 10.36 ± 0.05 6.18 ± 0.52 a
    T5 14.50 ± 0.01 19.63 ± 0.94 35.35 ± 6.39 ab 22.96 ± 0.03 13.83 ± 0.65 39.79 ± 2.80 ab 2.65 ± 0.02 4.32 ± 0.08 59.51 ± 2.75 a 6.89 ± 0.01 8.45 ± 0.08 22.57 ± 1.15ab 115.02 ± 0.39 133.66 ± 0.50 16.20 ± 0.61 a 9.79 ± 0.01 10.41 ± 0.05 6.31 ± 0.56 a
    T6 14.52 ± 0.01 20.52 ± 0.19 41.29 ± 1.24 a 22.81 ± 0.02 12.62 ± 0.12 44.68 ± 0.50 a 2.75 ± 0.01 4.13 ± 0.04 50.33 ± 1.69 a 6.97 ± 0.02 8.97 ± 0.34 28.65 ± 5.08a 110.92 ± 0.36 129.63 ± 0.64 16.87 ± 0.36 a 9.84 ± 0.01 10.54 ± 0.03 7.10 ± 0.19 a
      说明:同列不同字母表示各组间差异显著(P < 0.05)
    下载: 导出CSV

    表  5  牛粪添加对蚯蚓堆肥中纤维素和木质素的影响

    Table  5.   Effects of cow dung addition on cellulose and lignin of vermicomposting

    处理 纤维素 木质素
    初始/% 结束/% 降解率/% 初始/% 结束/% 降解率/%
    T0 30.32 ± 0.29 27.54 ± 0.06 9.15 ± 0.88 e 23.75 ± 0.10 17.67 ± 0.05 25.60 ± 0.37 d
    T1 30.32 ± 0.29 24.66 ± 0.16 18.66 ± 0.41 d 23.75 ± 0.10 15.77 ± 0.05 33.60 ± 0.34 c
    T2 30.19 ± 0.26 23.97 ± 0.06 20.57 ± 0.85 c 23.50 ± 0.02 15.30 ± 0.08 34.90 ± 0.36 b
    T3 30.10 ± 0.04 23.65 ± 0.06 21.43 ± 0.22 bc 23.26 ± 0.04 15.18 ± 0.05 34.72 ± 0.15 b
    T4 29.91 ± 0.02 23.17 ± 0.02 22.55 ± 0.13 bc 22.95 ± 0.06 14.83 ± 0.06 35.39 ± 0.40 b
    T5 29.81 ± 0.07 22.26 ± 0.16 25.33 ± 0.39 a 22.82 ± 0.03 14.09 ± 0.04 38.25 ± 0.23 a
    T6 29.70 ± 0.02 22.17 ± 0.06 25.36 ± 0.18 a 22.58 ± 0.03 14.10 ± 0.04 37.58 ± 0.20 a
      说明:同列不同字母表示各组间差异显著(P < 0.05)
    下载: 导出CSV

    表  6  添加牛粪的蚯蚓堆肥产品对美丽竹芋的生长影响

    Table  6.   Effects of cow dung addition on the growth of Calathea veitchiana

    组别 株高/cm 冠幅/cm2 叶片数/(片·株-1) 鲜质量/(g·株-1)
    T0 11.06 ± 0.33 e 172.30 ± 6.10 e 2.80 ± 0.20 d 7.25 ± 0.83 e
    T1 12.56 ± 0.12 d 242.40 ± 3.70 d 4.80 ± 0.20 c 10.32 ± 0.54 d
    T2 13.34 ± 0.22 c 274.76 ± 4.68 cd 5.06 ± 0.40b c 12.32 ± 0.76 c
    T3 13.54 ± 0.07 c 300.67 ± 14.78 bc 5.60 ± 0.40 bc 12.93 ± 0.57 c
    T4 14.32 ± 0.16 b 322.37 ± 22.55 abc 7.00 ± 0.30 a 13.91 ± 0.50 bc
    T5 15.50 ± 0.40 a 336.18 ± 21.59 ab 6.60 ± 0.50 ab 15.64 ± 0.66 ab
    T6 16.08 ± 0.24 a 360.12 ± 26.41 a 7.20 ± 0.40 a 17.17 ± 0.53 a
      说明:同列不同字母表示各组间差异显著(P < 0.05)
    下载: 导出CSV
  • [1] 张璐, 孙向阳, 田赟.园林废弃物堆肥用于青苹果竹芋栽培研究[J].北京林业大学学报, 2011, 33(5):109-114. http://d.wanfangdata.com.cn/Periodical_bjlydxxb201105020.aspx

    ZHANG Lu, SUN Xiangyang, TIAN Yun. Application of green waste compost for Calathca rotundifola cv. Fasciata cultivation[J]. J Beijing For Univ, 2011, 33(5):109-114. http://d.wanfangdata.com.cn/Periodical_bjlydxxb201105020.aspx
    [2] 张璐. 园林绿化废弃物堆肥化的过程控制及其产品改良与应用研究[D]. 北京: 北京林业大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10022-1015319204.htm

    ZHANG Lu. The Process Control of Green Waste Composting and the Improvement and Application of Compost Product[D]. Beijing: Beijing Forestry University, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10022-1015319204.htm
    [3] 于鑫. 北京市园林绿化废弃物再利用调查及堆肥实验[D]. 北京: 北京林业大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10022-2010129128.htm

    YU Xin. Survey on the Recycling Status of Beijing garden Waste and Study on Garden Waste Composting[D]. Beijing: Beijing Forestry University, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10022-2010129128.htm
    [4] 张振都, 吴景贵, 石峰, 等.不同绿肥与牛粪混合堆腐过程中有机组分的动态变化[J].土壤通报, 2012, 43(1):87-92. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=trtb201201018&dbname=CJFD&dbcode=CJFQ

    ZHANG Zhendu, WU Jinggui, SHI Feng, et al. Dynamics of organic components during decomposition of cow manure mixed with different green manures[J]. Chin J Soil Sci, 2012, 43(1):87-92. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=trtb201201018&dbname=CJFD&dbcode=CJFQ
    [5] 张志剑, 刘萌, 朱军.蚯蚓堆肥及蝇蛆生物转化技术在有机废弃物处理应用中的研究进展[J].环境科学, 2013, 34(5):1679-1686. http://www.doc88.com/p-8039033199544.html

    ZHANG Zhijian, LIU Meng, ZHU Jun. Organic waste treatment by earthworm vermicomposting and larvae bioconversion:review and perspective[J]. Environ Sci, 2013, 34(5):1679-1686. http://www.doc88.com/p-8039033199544.html
    [6] 周波, 唐晶磊, 代金君, 等.蚯蚓作用下污泥重金属形态变化及其与化学生物学性质变化的关系[J].生态学报, 2015, 35(19):6269-6279. http://www.cnki.com.cn/Article/CJFDTOTAL-STXB201519004.htm

    ZHOU Bo, TANG Jinglei, DAI Jinjun, et al. Remediating effluent sludge with earthworms:changes in heavy metal speciation and associated chemical and biological properties[J]. Acta Ecol Sin, 2015, 35(19):6269-6279. http://www.cnki.com.cn/Article/CJFDTOTAL-STXB201519004.htm
    [7] 王清威, 张松林, 臧兰兰, 等.餐厨垃圾堆肥处理的蚯蚓适应性研究[J].环境工程, 2014, 32(9):119-124. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjgc201409027

    WANG Qingwei, ZHANG Songlin, ZANG Lanlan, et al. The adaptability of earthworm Eisenia foetida during composting treatment of kitchen waste[J]. Environ Eng, 2014, 32(9):119-124. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjgc201409027
    [8] 于建光, 常志州, 沈磊, 等.稻秸蚯蚓堆制后的物理、化学及微生物特性变化[J].植物营养与肥料学报, 2010, 16(6):1503-1508. doi:  10.11674/zwyf.2010.0629

    YU Jianguang, CHANG Zhizhou, SHEN Lei, et al. Change in physical-chemical and microbial properties of rice straw through vermicomposting[J]. Plant Nutri Fert Sci, 2010, 16(6):1503-1508. doi:  10.11674/zwyf.2010.0629
    [9] ZHANG Lu, SUN Xiangyang. Effects of rhamnolipid and initial compost particle size on the two-stage composting of green waste[J]. Bioresour Technol, 2014, 163(7):112-122. http://www.sciencedirect.com/science/article/pii/S096085241400546X
    [10] SUTHAR S. Recycling of agro-industrial sludge through vermitechnology[J]. Ecol Eng, 2010, 36(8):1028-1036. doi:  10.1016/j.ecoleng.2010.04.015
    [11] FLEGEL M, SCHRADER S. Importance of food quality on selected enzyme activities in earthworm casts (Dendrobae naoctaedra, Lumbricidae)[J]. Soil Biol Biochem, 2000, 32(8/9):1191-1196. http://www.sciencedirect.com/science/article/pii/S0038071700000353
    [12] YADAV A, GARG V K. Effect of poultry waste on vermicomposting of anaerobically digested cattle dung slurry[J]. Int J Environ Tech Manage, 2014, 17(2/3/4):154-164. doi:  10.1504/IJETM.2014.061783
    [13] 鲍士旦.土壤农化分析[M].北京:中国农业出版社, 2000.
    [14] 刘书钗.制浆造纸分析与检测[M].北京:化学工业出版社, 2003.
    [15] PRAKASH M, KARMEGAM N. Vermistabilization of pressmud using Perionyx ceylanensis Mich.[J]. Bioresour Technol, 2010, 101(21):8464-8468. doi:  10.1016/j.biortech.2010.06.002
    [16] TRIPATHI G, BHARDWAJ P. Comparative studies on biomass production, life cycles and composting efficiency of Eisenia fetida (Savigny) and Lampito mauritii (Kinberg)[J]. Bioresour Technol, 2004, 92(3):275-283. doi:  10.1016/j.biortech.2003.09.005
    [17] MASÓM A, BLASI A B. Evaluation of composting as a strategy for managing organic wastes from a municipal market in Nicaragua[J]. Bioresour Technol, 2008, 99(11):5120-5124. doi:  10.1016/j.biortech.2007.09.083
    [18] YADAV A, GARG V K. Vermicomposting:an effective tool for the management of invasive weed Parthenium hysterophorus[J]. Bioresour Technol, 2011, 102(10):5891-5895. doi:  10.1016/j.biortech.2011.02.062
    [19] SUTHAR S. Vermicomposting potential of Perionyx sansibaricus (Perrier) in different waste materials[J]. Bioresour Technol, 2007, 98(6):1231-1237. doi:  10.1016/j.biortech.2006.05.008
    [20] Van HEERDEN I, CRONJÉC, SWART S H, et al. Microbial, chemical and physical aspects of citrus waste composting[J]. Bioresour Technol, 2002, 81(1):71-76. doi:  10.1016/S0960-8524(01)00058-X
    [21] 姜宇蛟, 朱静平.添加牛粪对蚯蚓处理污泥的影响[J].环境工程学报, 2014, 8(5):2079-2084. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjwrzljsysb201405064

    JIANG Yujiao, ZHU Jingping. Influnce of cow dung addition on sewage sludge treatment by earthworms[J]. Chin J Environ Eng, 2014, 8(5):2079-2084. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hjwrzljsysb201405064
    [22] 张振都. 添加绿肥改性牛粪腐解过程中组分变化及培肥研究[D]. 长春: 吉林农业大学, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10193-1011150382.htm

    ZHANG Zhendu. Research on Soil Fertilization and Changes of Components during Decomposition of Cow Manure Mixed with Green Manure[D]. Changchun: Jilin Agricultural University, 2011. http://cdmd.cnki.com.cn/Article/CDMD-10193-1011150382.htm
    [23] FERNÁNDEZ-GÓMEZ M J, ROMERO E, NOGALES R. Feasibility of vermicomposting for vegetable greenhouse waste recycling[J]. Bioresour Technol, 2010, 101(24):9654-9660. doi:  10.1016/j.biortech.2010.07.109
    [24] KUMAR R, SHWATA. Enhancement of wood waste decomposition by microbial inoculation prior to vermicomposting[J]. Bioresour Technol, 2011, 102(2):1475-1480. doi:  10.1016/j.biortech.2010.09.090
    [25] 李碧洁. 城市污泥蚯蚓堆肥过程中的营养元素、酶活性及微生物动态研究[D]. 兰州: 西北师范大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10736-1014019525.htm

    LI Bijie. The Changes of Nutrient Elements, Enzymatic Activity and Microbes during Vermicomposting for Sewage Sludge[D]. Lanzhou: Northwest Normal University, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10736-1014019525.htm
    [26] IEVINSH G. Vermicompost treatment differentially affects seed germination, seedling growth and physiological status of vegetable crop species[J]. Plant Growth Regul, 2011, 65(1):169-181. doi:  10.1007/s10725-011-9586-x
    [27] 龚小强, 李素艳, 李燕, 等.绿化废弃物好氧堆肥和蚯蚓堆肥作为蔬菜育苗基质研究[J].浙江农林大学学报, 2016, 33(2):280-287. doi:  10.11833/j.issn.2095-0756.2016.02.013

    GONG Xiaoqiang, LI Suyan, LI Yan, et al. Compost and vermicompost from green wastes as substrates for vegetable seedlings cultivation[J]. J Zhejiang A&F Univ, 2016, 33(2):280-287. doi:  10.11833/j.issn.2095-0756.2016.02.013
  • [1] 胡自航, 赵霞, 董晓芸, 郑景明, 蒋丽伟.  污泥与园林废弃物混合堆肥施用量对林地土壤重金属质量分数及微生物活性的影响 . 浙江农林大学学报, 2021, 38(1): 31-37. doi: 10.11833/j.issn.2095-0756.20200262
    [2] 孟童瑶, 李素艳, 邹荣松, 余克非, 付冰妍, 揭阳.  固定化木质素降解菌对园林废弃物堆肥的影响 . 浙江农林大学学报, 2021, 38(1): 38-46. doi: 10.11833/j.issn.2095-0756.20200219
    [3] 肖超群, 郭小平, 刘玲, 罗超, 李若愚, 刘冠宏.  绿化废弃物堆肥配制屋顶绿化新型基质的研究 . 浙江农林大学学报, 2019, 36(3): 598-604. doi: 10.11833/j.issn.2095-0756.2019.03.022
    [4] 王琳, 李素艳, 孙向阳, 龚小强, 余克非, 蔡琳琳.  不同配比园林绿化废弃物和蘑菇渣混合蚯蚓堆肥的效果 . 浙江农林大学学报, 2019, 36(2): 326-334. doi: 10.11833/j.issn.2095-0756.2019.02.014
    [5] 朱咪咪, 张迟, 常爱玲, 党婉誉, 周彩红, 俞狄虎, 吴莹莹, 张敏.  ‘无籽’瓯柑小孢子母细胞减数分裂特性基因RAD51和MS1的表达差异分析 . 浙江农林大学学报, 2016, 33(6): 921-927. doi: 10.11833/j.issn.2095-0756.2016.06.001
    [6] 魏乐, 李素艳, 李燕, 龚小强, 孙向阳.  园林废弃物堆肥替代泥炭用于天竺葵和金盏菊栽培 . 浙江农林大学学报, 2016, 33(5): 849-854. doi: 10.11833/j.issn.2095-0756.2016.05.017
    [7] 龚小强, 李素艳, 李燕, 孙向阳.  绿化废弃物好氧堆肥和蚯蚓堆肥作为蔬菜育苗基质研究 . 浙江农林大学学报, 2016, 33(2): 280-287. doi: 10.11833/j.issn.2095-0756.2016.02.013
    [8] 雷燕, 李庆卫, 李文广, 景珊, 陈俊愉.  2个地被菊品种对不同遮光处理的生理适应性 . 浙江农林大学学报, 2015, 32(5): 708-715. doi: 10.11833/j.issn.2095-0756.2015.05.008
    [9] 王文鹏, 周莉花, 赵宏波, 包志毅.  蜡梅与光叶红蜡梅和夏蜡梅属间杂交亲和性初步研究 . 浙江农林大学学报, 2015, 32(5): 756-762. doi: 10.11833/j.issn.2095-0756.2015.05.015
    [10] 李燕, 孙向阳, 龚小强.  园林废弃物堆肥替代泥炭用于红掌和鸟巢蕨栽培 . 浙江农林大学学报, 2015, 32(5): 736-742. doi: 10.11833/j.issn.2095-0756.2015.05.012
    [11] 王旭艳, 林夏珍, 李琳, 阮颖, 邢小明.  几种农林废弃物复合基质的理化特性及对浙江楠容器育苗的效果 . 浙江农林大学学报, 2013, 30(5): 674-680. doi: 10.11833/j.issn.2095-0756.2013.05.007
    [12] 秦巧平, 林飞凡, 张岚岚.  枇杷果实糖酸积累的分子生理机制 . 浙江农林大学学报, 2012, 29(3): 453-457. doi: 10.11833/j.issn.2095-0756.2012.03.021
    [13] 孟赐福, 曹志洪, 姜培坤, 徐秋芳, 周国模.  叶面施硼矫正杨梅缺硼的研究 . 浙江农林大学学报, 2008, 25(5): 543-547.
    [14] 曾艳玲, 谭晓风, 张党权, 曾晓峰, 李秀根, 刘先雄.  5个中国砂梨品种S基因型的确定 . 浙江农林大学学报, 2007, 24(6): 654-660.
    [15] 贺文婷, 安晓芹, 郭维明.  超声波与复合保鲜剂预处理对素心蜡梅离体小花和花枝储鲜效应的影响 . 浙江农林大学学报, 2007, 24(6): 661-665.
    [16] 靳晓翠, 王伟, 刘玉艳.  天门冬种子萌发特性 . 浙江农林大学学报, 2007, 24(4): 428-432.
    [17] 余学军, 窦可, 章兆福, 柳德坚.  不同保鲜预处理对绿竹笋呼吸速率的影响 . 浙江农林大学学报, 2007, 24(4): 424-427.
    [18] 周建, 袁德义, 张琳, 李佑武.  黄金梨叶片营养诊断及施肥标准 . 浙江农林大学学报, 2007, 24(1): 39-43.
    [19] 邵果园, 秦国新, 武宇坤, 季昆.  温室葡萄结果枝叶片数对果实品质的影响 . 浙江农林大学学报, 2006, 23(6): 656-659.
    [20] 王齐瑞, 谭晓风, 张琳.  覆草栽培对甜樱桃生长及光合速率的影响 . 浙江农林大学学报, 2006, 23(1): 24-28.
  • 加载中
  • 链接本文:

    http://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2018.02.009

    http://zlxb.zafu.edu.cn/article/zjnldxxb/2018/2/261

图(1) / 表(6)
计量
  • 文章访问数:  1444
  • HTML全文浏览量:  346
  • PDF下载量:  441
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-08
  • 修回日期:  2017-05-24
  • 刊出日期:  2018-04-20

好氧堆肥-蚯蚓堆肥结合法处理绿化废弃物与牛粪

doi: 10.11833/j.issn.2095-0756.2018.02.009
    基金项目:

    林业公益性行业科研专项资助 201504205

    作者简介:

    蔡琳琳, 从事土壤资源与环境研究。E-mail:cailinlin@bjfu.edu.cn

    通信作者: 李素艳, 副教授, 博士, 从事农林废弃物资源化再利用和土壤生态环境研究。E-mail:lisuyan@bjfu.edu.cn
  • 中图分类号: S606;S317

摘要: 为促进绿化废弃物和牛粪的资源化利用,采用赤子爱胜蚯蚓Eisenia fetida对绿化废弃物和牛粪的混合物进行好氧-蚯蚓结合堆肥处理。在绿化废弃物好氧堆肥60 d后,按0(T1),2%(T2),4%(T3),6%(T4),8%(T5),10%(T6)的质量分数在绿化废弃物中添加牛粪,并加入蚯蚓,继续蚯蚓堆肥60 d,以无牛粪无蚯蚓的绿化废弃物堆肥作为对照(T0),最终将堆肥产品用作基质进行美丽竹芋Calathea veitchiana栽培试验。结果表明:蚯蚓堆肥处理(T1~T6)产品在营养元素含量和美丽竹芋生长量上显著高于对照(T0)。不同蚯蚓堆肥处理中,绿化废弃物与牛粪混合处理在蚯蚓存活率、蚯蚓生长和繁殖速度、纤维素和木质素降解率、堆肥产品营养元素含量及细菌、真菌和放线菌数量,以及美丽竹芋生长(株高、冠幅、叶片数、鲜质量)上均显著高于纯绿化废弃物处理(T1)。在绿化废弃物与牛粪混合处理(T2~T6)中,添加质量分数8%(T5)和10%(T6)牛粪的处理在蚯蚓生长量、繁殖率、产品质量指标和美丽竹芋生长指标上优于其他处理。可见,利用好氧堆肥-蚯蚓堆肥结合处理方式可以有效应用于绿化废弃物处理,其中以添加质量分数8%(T5)和10%(T6)牛粪的处理效果最佳。

English Abstract

蔡琳琳, 李素艳, 龚小强, 孙向阳, 张建伟, 于鑫, 魏乐. 好氧堆肥-蚯蚓堆肥结合法处理绿化废弃物与牛粪[J]. 浙江农林大学学报, 2018, 35(2): 261-267. doi: 10.11833/j.issn.2095-0756.2018.02.009
引用本文: 蔡琳琳, 李素艳, 龚小强, 孙向阳, 张建伟, 于鑫, 魏乐. 好氧堆肥-蚯蚓堆肥结合法处理绿化废弃物与牛粪[J]. 浙江农林大学学报, 2018, 35(2): 261-267. doi: 10.11833/j.issn.2095-0756.2018.02.009
CAI Linlin, LI Suyan, GONG Xiaoqiang, SUN Xiangyang, ZHANG Jianwei, YU Xin, WEI Le. Composting-vermicomposting of green waste processing spiked with cow dung[J]. Journal of Zhejiang A&F University, 2018, 35(2): 261-267. doi: 10.11833/j.issn.2095-0756.2018.02.009
Citation: CAI Linlin, LI Suyan, GONG Xiaoqiang, SUN Xiangyang, ZHANG Jianwei, YU Xin, WEI Le. Composting-vermicomposting of green waste processing spiked with cow dung[J]. Journal of Zhejiang A&F University, 2018, 35(2): 261-267. doi: 10.11833/j.issn.2095-0756.2018.02.009
  • 绿化废弃物是指城市绿化养护中产生的修剪枝条、落叶、草坪修剪物和残花等[1]。目前,广泛采用的绿化废弃物处理方法是好氧堆肥[2]。但由于绿化废弃物含有较高的木质素和纤维素,好氧堆肥往往降解不充分且降解周期过长,产品质量较差[3]。与此同时,现代畜牧业发展造成的牛粪产生量急剧加大[4],牛粪好氧堆置往往因为牛粪中丰富的营养物质(氮、磷及有机物质等)、微生物和虫卵等的存在,使得堆置过程容易滋生蚊虫,导致病原菌繁殖,并产生臭味,且浸出液进入河流也易使水体富营养化。因此,牛粪资源化处理及利用也是目前中国畜牧业发展亟待解决的问题之一。蚯蚓堆肥是指蚯蚓在常温有氧条件下吞食有机物,通过肠道物理破碎及肠道微生物的协同作用对有机固体废弃物进行生物氧化和转化,形成富含腐殖质和营养元素产物的生物处理工艺[5]。目前,蚯蚓堆肥处理技术已经广泛用于有机固体废弃物的处理,如周波等[6]利用蚯蚓处理城市污泥,相对于无蚯蚓处理可显著降低污泥总有机碳含量,增强微生物活性与重金属活化作用,提高土壤肥力从而促进植物生长。王清威等[7]研究表明,蚯蚓堆肥处理餐厨垃圾能够加速其有机物分解速率和蚯蚓生长繁殖率。于建光等[8]研究蚯蚓堆制处理水稻Oryza sativa秸秆与畜禽粪便混合物,发现相比无蚯蚓添加,材料中微生物代谢熵、脱氢酶和碱性磷酸酶活性与全氮、全磷、全钾等含量增加,表明利用蚯蚓堆制水稻秸秆等混合物可减少堆肥时间并提高堆肥质量。目前利用好氧堆肥和蚯蚓堆肥结合技术处理园林绿化废弃物的研究还较少。牛粪与绿化废弃物混合蚯蚓堆肥,一方面,绿化废弃物可提高堆肥物料的孔隙度,增加氧气含量,有利于蚯蚓和微生物进行呼吸作用[9];另一方面,牛粪的大量易降解的小分子有机物,可以为蚯蚓生长提供食物,有益微生物既能作为蚯蚓食物被摄食,又能自身参与降解活动,加速有机物的降解[10-11]。因此,本研究拟利用好氧堆肥-蚯蚓堆肥结合技术对绿化废弃物与牛粪进行处理,以期筛选出适宜的绿化废弃物与牛粪的配比处理,为加快绿化废弃物与牛粪资源化处理提供理论依据。

    • 绿化废弃物取自北京市海淀区香山植物园,试验前粉碎至粒径小于5 mm。风干牛粪取自北京市通州区漷县镇吉祥养牛场。赤子爱胜蚯蚓Eisenia fetida购自北京市顺义区北京大环顺鑫有机肥料厂。美丽竹芋Calathea veitchiana购自北京市丰台区花乡花木公司,为生长3个月的幼苗植株。绿化废弃物和牛粪的物理化学性质见表 1

      表 1  供试绿化废弃物和牛粪理化性质

      Table 1.  Initial physicochemical properties of the green waste and cow dung used for composting-vermicomposting

      项目 pH值 电导率/(dS·m-1) 有机碳/(g·kg-1) 全氮/(g·kg-1) 碳氮比 全磷/(g·kg-1) 全钾/(g·kg-1) 钙/(g·kg-1) 镁/(g·kg-1) 纤维素/% 木质素/%
      绿化废弃物 8.31 ± 0.01 1.55 ± 0.01 337.00 ± 0.41 14.36 ± 0.01 23.5 ± 0.03 2.04 ± 0.05 6.69 ± 0.01 119.00 ± 0.08 9.65 ± 0.00 30.30 ± 0.29 23.70 ± 0.10
      牛粪 8.74 ± 0.02 3.06 ± 0.07 290.00 ± 0.96 15.38 ± 0.05 18.9 ± 0.11 7.36 ± 0.54 9.07 ± 0.16 46.90 ± 0.67 10.40 ± 0.08 24.30 ± 0.47 12.00 ± 0.40
    • 试验于北京林业大学校内苗圃温室进行,控制温度25.4~28.7 ℃,湿度60%~80%,自然光照。

    • 取粉碎后的绿化废弃物,调节含水量至65%~70%,好氧堆肥60 d[12]。取未腐熟风干牛粪,按质量分数0(T1),2%(T2),4%(T3),6%(T4),8%(T5)和10%(T6)的比例与好氧堆肥产物混合。称取40 kg(干质量)混合材料置于塑料反应容器中(0.60 m × 0.80 m × 0.65 m,底部具有20个直径1 cm孔),加入带有生殖环的赤子爱胜蚯蚓,1 600条·容器-1,平均质量为202.2 mg·条-1,维持水分65%~70%。为防止蚯蚓逃逸,用1 mm孔径的塑料网覆盖容器。以无牛粪无蚯蚓的绿化废弃物为空白对照(T0)。蚯蚓堆肥60 d后,取混合均匀的产品(干质量)1 kg,记录成年蚯蚓数量,蚯蚓卵数量,幼小蚯蚓数量和成年蚯蚓质量,测量并分析起始材料和堆肥产物的理化性质及生物指标。试验样品的物理化学性质[pH值,电导率(EC),有机碳、全氮、全磷、全钾、钙、镁质量分数]参照鲍士旦[13]方法测定;木质素与纤维素质量分数参照刘书钗[14]方法测定;真菌、细菌、放线菌数量参照PRAKASH等[15]方法测定。

    • 取各处理堆肥产品作为基质,选取株高14~15 cm,叶片生长健壮、根系完整且无病害的美丽竹芋幼苗进行栽培,30株·处理-1,隔3 d浇水1次,整个栽培周期不施加其他营养。栽培180 d后,随机选取5株·处理-1,测定株高、冠幅、叶片数,并测量鲜质量。冠幅测定时先测量成株纵向和横向的冠幅直径(d),计算冠幅面积S=π×(d/2)2

    • 实验数据采用Microsoft Office Excel 2010和SPSS 20.0处理,进行方差分析和多重比较。

    • 表 2可以看出:绿化废弃物添加牛粪的处理(T2~T6)成年蚯蚓数量和单条蚯蚓质量均显著高于不添加牛粪处理(T1);就牛粪添加量而言,T2处理显著低于T3~T6处理。可见牛粪添加可以提高蚯蚓的存活率和生长量,其最优质量分数为4%~10%。

      表 2  牛粪添加对蚯蚓生长和繁殖的影响

      Table 2.  Effects of cow dung addition on growth and reproductive performance of earthworm

      组别 成年蚯蚓数量/(条·kg-1) 单条成熟蚯蚓质量/(g·条-1) 蚯蚓幼体数/
      (条·kg-1)
      卵数/(个·kg-1)
      T1 12.67 ± 0.67 c 0.25 ± 0.00 c 417.00 ± 14.18 c 40.67 ± 3.93 b
      T2 16.33±0.33 b 0.27 ± 0.00 b 672.33 ± 15.98 b 43.00 ± 2.31 b
      T3 19.33 ± 0.33 a 0.28 ± 0.00 a 780.67 ± 14.50 a 63.67 ± 2.40 a
      T4 19.33 ± 0.67 a 0.29 ± 0.00 a 793.00 ± 28.92 a 70.33 ± 3.93 a
      T5 20.00 ± 0.00 a 0.29 ± 0.00 a 780.67 ± 9.96 a 69.00 ± 1.00 a
      T6 19.67 ± 0.33 a 0.29 ± 0.00 a 821.67 ± 24.36 a 71.67 ± 2.40 a
        说明:同列不同字母表示各组间差异显著(P < 0.05)

      堆肥结束时各处理蚯蚓幼体数量、蚯蚓卵数量随着牛粪添加量的增加而增加,其中T3~T6处理显著高于T1和T2处理,但T3~T6处理间差异不显著。结果表明:牛粪添加促进了蚯蚓繁殖数量,以质量分数4%~10%最佳。

    • 表 3所示:堆肥初始原料pH值为pH 8.31~8.42,符合赤子爱胜蚯蚓生长范围(pH 5~9)[16];堆肥试验结束后,各产品pH值为pH 7.96~8.20,达到农业应用要求pH 7.0~8.5范围[17]。堆肥产品pH值降低,可能是堆肥后期氨氮化合物经过硝化、分解及微生物繁殖分泌有机酸类物质导致。

      表 3  添加牛粪对蚯蚓堆肥中pH值、电导率和有机碳的影响

      Table 3.  Effects of cow dung addition on pH, EC and organic carbon of vermicomposting

      处理 pH值 电导率/(dS·m-1) 有机碳/(g·kg-1)
      初始 结束 降率/% 初始 结束 增率/% 初始 结束 降率/%
      T0 8.31 ± 0.01 8.27 ± 0.01 0.48 ± 0.18 g 1.55 ± 0.01 1.73 ± 0.01 11.60 ± 0.70 f 337.78 ± 0.41 322.10 ± 1.77 4.64 ± 0.62 g
      T1 8.31 ± 0.01 8.20 ± 0.01 1.28 ± 0.22 f 1.55 ± 0.01 1.95 ± 0.01 25.76 ± 1.11 e 337.78 ± 0.41 306.44 ± 0.41 9.28 ± 0.13 f
      T2 8.33 ± 0.01 8.16 ± 0.00 2.04 ± 0.07 e 1.59 ± 0.01 2.09 ± 0.03 31.19 ± 2.24 d 336.19 ± 0.62 292.74 ± 1.44 12.93 ± 0.27 e
      T3 8.36 ± 0.01 8.12 ± 0.00 2.79 ± 0.08 d 1.66 ± 0.01 2.24 ± 0.02 35.14 ± 0.84 c 335.01 ± 0.43 280.55 ± 0.56 16.26 ± 0.11 d
      T4 8.38 ± 0.01 8.08 ± 0.01 3.58 ± 0.18 c 1.69 ± 0.01 2.36 ± 0.02 39.19 ± 1.64 b 333.58 ± 0.54 274.76 ± 0.69 17.63 ± 0.27 c
      T5 8.40 ± 0.01 8.04 ± 0.01 4.25 ± 0.18 b 1.76 ± 0.01 2.47 ± 0.01 40.61 ± 0.55 b 332.96 ± 0.36 270.15 ± 0.54 18.86 ± 0.09 b
      T6 8.42 ± 0.00 7.96 ± 0.01 5.54 ± 0.08 a 1.80 ± 0.00 2.62 ± 0.01 45.11 ± 0.75 a 331.25 ± 0.34 258.86 ± 0.97 21.85 ± 0.21 a
        说明:同列不同字母表示各组间差异显著(P < 0.05)

      堆肥初始原料电导率为1.55~1.80,堆肥结束后,各产品的电导率为1.73~2.62 dS·m-1,符合农业生产中堆肥产品应用植物栽培基质范围。电导率增率在不同处理间差异显著,其中,蚯蚓堆肥产品(T1~T6)增率显著高于好氧堆肥处理(T0);不同蚯蚓堆肥处理,电导率增率随着牛粪添加比例提高而增加,其中T6处理的电导率增率显著高于其他处理。与初始材料相比,堆肥产品电导率均增大,可能由于堆肥使有机物降解释放大量可溶性矿质元素[18]所致,添加牛粪可提高蚯蚓活性,促进蚯蚓取食和消化有机物,使可溶性物质释放量增大,电导率显著增加。

      相比于初始材料有机碳质量分数为331.25~337.78 g·kg-1,堆肥结束后各堆肥产品有机碳质量分数均降低,有机碳质量分数介于258.86~322.1 g·kg-1。其中,蚯蚓堆肥产品(T1~T6)有机碳降解率显著高于好氧堆肥处理(T0)。不同蚯蚓堆肥处理中,产品有机碳降率顺序为T6>T5>T4>T3>T2>T1,可见,有机碳降解量随着牛粪添加比例提高而增加。有机碳质量分数降率与牛粪添加量的正比例关系,可能是牛粪促进了蚯蚓和微生物生长繁殖,加速了有机物的分解[11]

      表 4所示:初始材料全氮质量分数为14.36~14.52 g·kg-1,堆肥结束时全氮质量分数为12.62~20.75 g·kg-1,可见堆肥产品全氮质量分数增加,增率达8.07%~41.29%,其中蚯蚓堆肥处理全氮增率显著高于好氧堆肥处理。研究认为,好氧堆肥全氮质量分数提高是有机物降解、堆肥体积降低造成的,而蚯蚓堆肥中蚯蚓排泄物、黏液分泌等还会增加全氮质量分数[19]。蚯蚓堆肥处理中,T6产品全氮质量分数增率显著高于T1~T4处理,可能是牛粪添加提高了蚯蚓存活率和繁殖率,同时牛粪含有的大量氮元素和固氮微生物,也使得产物全氮质量分数增加。碳氮比(C/N)反映堆肥过程中材料有机物的降解程度。本试验中,堆肥结束后,各组产物C/N均下降,其中蚯蚓堆肥处理(T1~T6)C/N降率显著高于好氧处理(T0);不同蚯蚓堆肥处理中,T2~T6处理C/N降率显著高于T1处理。Van HEERDEN等[20]提出,堆肥C/N低于20表明堆肥腐熟,低于15适宜于农业应用。本研究中,除T0处理外,其他处理的最终C/N均小于20,T4~T6处理C/N小于15。表明在绿化废弃物中添加质量分数6%~10%牛粪可提高堆肥质量,并应用于农业生产。最终堆肥产品的全磷质量分数为2.25~4.32 g·kg-1,与初始产品相比,增率达10.56%~59.51%;全钾质量分数为7.14~8.97 g·kg-1,增率达6.77%~28.65%;钙质量分数为124.61~129.63 g·kg-1,增率达3.92%~16.87%。其中,蚯蚓处理(T1~T6)全磷、全钾及钙质量分数增率显著高于好氧堆肥处理(T0)。蚯蚓堆肥处理中,T4~T6处理全磷、全钾及钙的增率显著高于T1~T3,但T4,T5,T6处理间差异不显著。姜宇蛟等[21]研究亦表明,添加牛粪能增加蚯蚓处理污泥中全磷质量分数,污泥中全磷量随着牛粪添加量的增加而增大。张振都[22]研究发现,牛粪添加苜蓿Medecago sativa等堆肥,可加速有机物分解,并使全钾质量分数增加15%以上。堆肥产品镁质量分数为9.73~10.54 g·kg-1,相对于初始产品增率为0.87%~7.10%,其中,T2~T6蚯蚓处理镁质量分数增率显著高于好氧堆肥处理T0。蚯蚓堆肥处理T3~T6增率显著高于T1和T2处理,但T3~T6处理间差异不显著。FERNÁNDEZ-GÓMEZ等[23]提出,堆肥养分含量的提高,可能由于有机物的分解造成最终堆肥产品质量和体积的减少造成,而牛粪的添加有利于提高有机物的降解率,因此牛粪处理产品含有更高的营养元素含量。

      表 4  牛粪添加对蚯蚓堆肥中无机元素的影响

      Table 4.  Effects of cow dung addition on mineral elements of vermicomposting

      处理 全氮/(g·kg-1) 碳氮比 全磷/(g·kg-1) 全钾/(g·kg-1) 钙/(g·kg-1) 镁/(g·kg-1)
      初始 结束 增率/% 初始 结束 降率/% 初始 结束 增率/% 初始 结束 增率/% 初始 结束 增率/% 初始 结束 增率/%
      T0 14.36 ± 0.01 15.52 ± 0.41 8.07 ± 0.33 e 23.52 ± 0.03 20.75 ± 0.17 11.75 ± 0.84 f 2.04 ± 0.05 2.25 ± 0.01 10.56 ± 2.66 c 6.69 ± 0.01 7.14 ± 0.01 6.77 ± 0.04 e 119.91 ± 0.08 124.61 ± 0.79 3.92 ± 0.60 e 9.65 ± 0.00 9.73 ± 0.01 0.87 ± 0.11 c
      T1 14.36 ± 0.01 16.63 ± 0.02 15.79 ± 0.18 d 23.52 ± 0.03 18.43 ± 0.04 21.65 ± 0.23 e 2.04 ± 0.05 2.67 ± 0.01 31.38 ± 3.15 b 6.69 ± 0.01 7.44 ± 0.08 11.26 ± 1.13 cd 119.91 ± 0.08 129.46 ± 0.63 7.9 ± 0.58 d 9.65 ± 0.00 9.85 ± 0.00 2.11 ± 0.77 bc
      T2 14.40 ± 0.00 17.55 ± 0.15 21.88 ± 1.05c 23.35 ± 0.04 16.68 ± 0.06 28.55 ± 0.40 d 2.16 ± 0.02 2.86 ± 0.06 32.57 ± 3.40 b 6.74 ± 0.00 7.62 ± 0.09 13.16 ± 1.32cd 118.88 ± 0.32 131.57 ± 0.52 10.68 ± 0.60 c 9.70 ± 0.00 9.97 ± 0.04 2.78 ± 0.43 b
      T3 14.44 ± 0.00 17.83 ± 0.15 23.46 ± 1.00c 23.20 ± 0.03 15.74 ± 0.11 32.16 ± 0.55 /d 2.30 ± 0.01 3.17 ± 0.07 37.70 ± 3.69 b 6.80 ± 0.01 7.91 ± 0.05 16.39 ± 0.55 bc 117.83 ± 0.12 134.53 ± 0.21 14.17 ± 0.25 b 9.72 ± 0.01 10.34 ± 0.07 6.32 ± 0.78 a
      T4 14.46 ± 0.00 18.92 ± 0.76 30.82 ± 5.29 bc 23.07 ± 0.04 14.57 ± 0.60 36.83 ± 2.64 bc 2.51 ± 0.02 3.91 ± 0.15 55.92 ± 4.69 a 6.85 ± 0.01 8.47 ± 0.15 23.59 ± 2.18 a 116.70 ± 0.12 135.86 ± 0.92 16.42 ± 0.84 a 9.75 ± 0.00 10.36 ± 0.05 6.18 ± 0.52 a
      T5 14.50 ± 0.01 19.63 ± 0.94 35.35 ± 6.39 ab 22.96 ± 0.03 13.83 ± 0.65 39.79 ± 2.80 ab 2.65 ± 0.02 4.32 ± 0.08 59.51 ± 2.75 a 6.89 ± 0.01 8.45 ± 0.08 22.57 ± 1.15ab 115.02 ± 0.39 133.66 ± 0.50 16.20 ± 0.61 a 9.79 ± 0.01 10.41 ± 0.05 6.31 ± 0.56 a
      T6 14.52 ± 0.01 20.52 ± 0.19 41.29 ± 1.24 a 22.81 ± 0.02 12.62 ± 0.12 44.68 ± 0.50 a 2.75 ± 0.01 4.13 ± 0.04 50.33 ± 1.69 a 6.97 ± 0.02 8.97 ± 0.34 28.65 ± 5.08a 110.92 ± 0.36 129.63 ± 0.64 16.87 ± 0.36 a 9.84 ± 0.01 10.54 ± 0.03 7.10 ± 0.19 a
        说明:同列不同字母表示各组间差异显著(P < 0.05)

      表 5所示,各处理纤维素、木质素的初始质量分数为29.70%~30.32%和22.58%~23.75%,堆肥结束时都出现显著下降,质量分数为9.15%~25.36%和14.09%~17.67%。蚯蚓处理(T1~T6)木质素、纤维素降解率显著高于好氧堆肥处理T0。蚯蚓堆肥中,添加牛粪处理(T2~T6)的纤维素和木质素的降解率显著高于未添加处理(T1),且T5和T6处理效果显著高于T2~T4处理,但T5和T6处理间差异不显著。本结果与KUMAR等[24]的研究结果相似,可能是牛粪含有大量的营养元素,促进了蚯蚓和微生物活动,因此加快了纤维素和木质素的分解[11]

      表 5  牛粪添加对蚯蚓堆肥中纤维素和木质素的影响

      Table 5.  Effects of cow dung addition on cellulose and lignin of vermicomposting

      处理 纤维素 木质素
      初始/% 结束/% 降解率/% 初始/% 结束/% 降解率/%
      T0 30.32 ± 0.29 27.54 ± 0.06 9.15 ± 0.88 e 23.75 ± 0.10 17.67 ± 0.05 25.60 ± 0.37 d
      T1 30.32 ± 0.29 24.66 ± 0.16 18.66 ± 0.41 d 23.75 ± 0.10 15.77 ± 0.05 33.60 ± 0.34 c
      T2 30.19 ± 0.26 23.97 ± 0.06 20.57 ± 0.85 c 23.50 ± 0.02 15.30 ± 0.08 34.90 ± 0.36 b
      T3 30.10 ± 0.04 23.65 ± 0.06 21.43 ± 0.22 bc 23.26 ± 0.04 15.18 ± 0.05 34.72 ± 0.15 b
      T4 29.91 ± 0.02 23.17 ± 0.02 22.55 ± 0.13 bc 22.95 ± 0.06 14.83 ± 0.06 35.39 ± 0.40 b
      T5 29.81 ± 0.07 22.26 ± 0.16 25.33 ± 0.39 a 22.82 ± 0.03 14.09 ± 0.04 38.25 ± 0.23 a
      T6 29.70 ± 0.02 22.17 ± 0.06 25.36 ± 0.18 a 22.58 ± 0.03 14.10 ± 0.04 37.58 ± 0.20 a
        说明:同列不同字母表示各组间差异显著(P < 0.05)
    • 堆肥后微生物富集是堆肥材料腐熟的质量指标。李碧洁[25]研究蚯蚓堆肥处理城市污泥结果发现,蚯蚓的活动提高了微生物活性,细菌、放线菌、真菌数量均增加。如图 1所示,堆肥结束后,堆肥产品中细菌、放线菌、真菌数量均高于初始材料;同时,蚯蚓堆肥处理(T1~T6)的细菌、放线菌、真菌数量均高于好氧堆肥(T0)。添加牛粪的蚯蚓堆肥处理中,细菌、放线菌、真菌数量在T2~T6处理中显著高于无牛粪处理T1。牛粪添加处理(T2~T6)之间,T6处理产品中细菌数量和真菌数量显著高于其他处理,但与T5处理差异不显著;放线菌数量在T6处理时显著高于其他处理,但与T5和T4处理差异不显著。由此认为,添加牛粪能提高蚯蚓的活性,促进有机物质分解,使堆肥材料营养物质增加,从而促进微生物生长繁殖。

      图  1  牛粪添加对蚯蚓堆肥微生物数量的影响

      Figure 1.  Effects of cow dung addition on numbers of bacteria, fungi and actinomyces of vermicomposts

    • 以堆肥产品作为基质栽培美丽竹芋,其生长状况如表 6所示。蚯蚓堆肥处理(T1~T6)植株在株高、冠幅、叶片数、鲜质量上均显著高于好氧堆肥处理(T0)。这一结果的产生可以解释为,相对于好氧堆肥,蚯蚓堆肥腐熟后基质pH值较低,有利于植物对必须营养元素的吸收;同时,蚯蚓堆肥产品中有效营养元素含量更高,且含有植物生长调节剂[26];龚小强等[27]研究表明,蚯蚓堆肥与好氧堆肥产品可作为蔬菜育苗基质,且在蚯蚓堆肥基质中生长的甘蓝Brassica oleracea株高、叶片数、鲜质量等显著优于好氧堆肥栽培基质。本试验发现,不同蚯蚓堆肥处理(T1~T6)产品对美丽竹芋植株生长影响不同。T2~T6处理下的植株株高显著高于T1处理;T5和T6处理显著高于其他处理,但T5和T6之间差异不显著。除T2处理外,其他牛粪添加处理(T3~T6)植株冠幅均显著高于无牛粪添加处理(T1)。T2~T6处理下的植株鲜质量显著高于T1处理,T2~T4处理显著低于T6处理。T4~T6处理下植株叶片数显著高于T1。以上结果表明:在绿化废弃物中添加质量分数8%~10%牛粪进行蚯蚓堆肥,其产物中木质素、纤维素等有机物质降解较完全,释放更高含量的有效营养元素,因此促进了植物生长[1]

      表 6  添加牛粪的蚯蚓堆肥产品对美丽竹芋的生长影响

      Table 6.  Effects of cow dung addition on the growth of Calathea veitchiana

      组别 株高/cm 冠幅/cm2 叶片数/(片·株-1) 鲜质量/(g·株-1)
      T0 11.06 ± 0.33 e 172.30 ± 6.10 e 2.80 ± 0.20 d 7.25 ± 0.83 e
      T1 12.56 ± 0.12 d 242.40 ± 3.70 d 4.80 ± 0.20 c 10.32 ± 0.54 d
      T2 13.34 ± 0.22 c 274.76 ± 4.68 cd 5.06 ± 0.40b c 12.32 ± 0.76 c
      T3 13.54 ± 0.07 c 300.67 ± 14.78 bc 5.60 ± 0.40 bc 12.93 ± 0.57 c
      T4 14.32 ± 0.16 b 322.37 ± 22.55 abc 7.00 ± 0.30 a 13.91 ± 0.50 bc
      T5 15.50 ± 0.40 a 336.18 ± 21.59 ab 6.60 ± 0.50 ab 15.64 ± 0.66 ab
      T6 16.08 ± 0.24 a 360.12 ± 26.41 a 7.20 ± 0.40 a 17.17 ± 0.53 a
        说明:同列不同字母表示各组间差异显著(P < 0.05)
    • 蚯蚓堆肥产品的营养元素质量分数及美丽竹芋生长指标均显著高于无蚯蚓添加好氧堆肥,说明好氧堆肥-蚯蚓堆肥结合处理方式优于单独好氧堆肥。

      牛粪添加可促进堆肥过程中蚯蚓的生长和繁殖,加速堆肥过程中有机物的降解,提高堆肥产品质量,并且能够促进美丽竹芋的生长,其中以m(绿化废弃物):m(牛粪)=92:8或90:10为最优配比。

参考文献 (27)

目录

    /

    返回文章
    返回