留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

园林废弃物堆肥替代泥炭用于天竺葵和金盏菊栽培

魏乐 李素艳 李燕 龚小强 孙向阳

杨建飞, 宁莉萍, 杨了, 等. 黑壳楠木材构造特征及挥发性有机物成分[J]. 浙江农林大学学报, 2018, 35(5): 927-934. DOI: 10.11833/j.issn.2095-0756.2018.05.018
引用本文: 魏乐, 李素艳, 李燕, 等. 园林废弃物堆肥替代泥炭用于天竺葵和金盏菊栽培[J]. 浙江农林大学学报, 2016, 33(5): 849-854. DOI: 10.11833/j.issn.2095-0756.2016.05.017
YANG Jianfei, NING Liping, YANG Liao, et al. Structural characteristics of Lindera megaphylla wood and its volatile organic compounds[J]. Journal of Zhejiang A&F University, 2018, 35(5): 927-934. DOI: 10.11833/j.issn.2095-0756.2018.05.018
Citation: WEI Le, LI Suyan, LI Yan, et al. Growth of Pelargonium zonale and Calendula officinalise when utilizing green waste compost as a peat substitute[J]. Journal of Zhejiang A&F University, 2016, 33(5): 849-854. DOI: 10.11833/j.issn.2095-0756.2016.05.017

园林废弃物堆肥替代泥炭用于天竺葵和金盏菊栽培

DOI: 10.11833/j.issn.2095-0756.2016.05.017
基金项目: 

国家林业公益性行业科研专项 201504205

详细信息
    作者简介: 魏乐,从事固体废弃物资源化再利用研究。E-mail:weile@bjfu.edu.cn
    通信作者: 李素艳,副教授,博士,从事固体废弃物资源化再利用研究。E-mail:lisuyan@bjfu.edu.cn
  • 中图分类号: S725.71

Growth of Pelargonium zonale and Calendula officinalise when utilizing green waste compost as a peat substitute

  • 摘要: 为探索园林废弃物堆肥替代泥炭用于天竺葵Pelargonium zonale和金盏菊Calendula officinalise栽培基质的可能性,将改良后的园林废弃物堆肥分别以0%,25%,50%,75%和100%的比例替代泥炭进行试验。将天竺葵和金盏菊的种子分别播种在不同基质中进行育苗研究,当幼苗生长35 d后进行测定。将幼苗分别移栽到不同基质中,栽培6个月后进行测定。结果表明:随园林废弃物比例的增加,基质的容重增加,总孔隙度度、通气孔隙度和持水孔隙度呈下降趋势。园林废弃物比例的增加提高了基质pH值、电导率值、大量元素和微量元素质量分数。育苗试验显示:天竺葵幼苗在园林废弃物处理中的生长量显著(P < 0.05)低于对照组,即使在25%的低比例下也会对幼苗产生不良影响。金盏菊幼苗在添加25%和50%的园林废弃物处理中的生长量与对照组一致。盆栽试验显示:添加园林废弃物显著(P < 0.05)增加了天竺葵和金盏菊的地上部分干质量、株高、茎直径和叶面积以及金盏菊的根干质量和花蕾数。园林废弃物堆肥可以部分代替泥炭作为金盏菊育苗基质及天竺葵和金盏菊的栽培基质。表 5 参15
  • 木材构造特征是木材识别的主要依据[1], 包括宏观构造、微观构造和超微构造, 对木材化学、物理性质有重大影响, 也是木材分类的主要依据, 因此国内外木材研究学者对木材构造特征进行了广泛的研究, 如1992年出版的《中国木材志》收录了528种代表树种的木材构造特征。此后, 又对《中国木材志》未涉及到的部分树种的木材构造特征进行研究[2-3]。挥发性有机物成分是指植物通过次生代谢所产生的产物[4], 与植物对环境的适应能力[5]及其抵抗不利条件[6]密切相关, 其药用和生态价值极高。如萜类化合物[7-8]通常具有调节神经系统、镇静大脑、抗菌消炎和净化空气等作用。吴楚材等[9]从植物体中采集挥发性气体进行化学成分研究。近年来随着气相色谱-质谱联用(GC-MS)技术的发展, 对木材挥发物的研究逐渐增多, 如孙继平等[10]探讨了2种肤小蠹Phloeosinus对几种针叶树挥发物的行为反应; 徐磊等[11]分析了5种针叶树球果所含挥发性物质与丽江球果花蝇Strobilomyia lijiangensis危害关系; 李阳等[12]测定分析了4种樟科Lauraceae园林树种挥发性物质的有效成分及其杀菌能力。黑壳楠Lindera megaphylla为樟科山胡椒属Lindera多年生常绿乔木, 观赏性强, 抗逆性好, 分布范围广, 枝、果、叶所含芳香油具备杀菌、驱虫和净化空气等功效, 是一种集观赏、生态和药用于一体的优质园林树种[13-14]。中国民间用其抽提物抗肿瘤和愈合伤口, 用其根治风湿麻木、胃寒气滞, 用其树皮治疗咽喉肿痛、湿疹瘙痒、外伤出血等[15]。卞京军等[16]研究了黑壳楠树叶精油的有机物成分, 分离鉴定出有机物成分87种。国外日本学者从黑壳楠的根中提取出d-荷苞牡丹碱(d-dicentrine), 发现它具有抗肿瘤作用[17], 同时还从花和花梗中分离出6个阿朴菲型生物碱[18]和1个新异喹啉生物碱[19]。未检索到国内外关于其木质部挥发性有机物成分的研究报道。另外, 木材构造特征作为区分黑壳楠木材与其他木材的重要理论依据, 也未见报道。因此本研究拟通过研究黑壳楠木材的构造特征, 以期为区分黑壳楠与其他木材提供重要的理论依据, 并采用GC-MS技术分析黑壳楠木材挥发性有机物成分的主要组分, 为科学评定和深层次开发利用黑壳楠资源提供科学依据。

    所选黑壳楠活立木树龄约100 a, 胸径为1.79 m, 直径为0.54 m, 取样处离地高度1.3 m, 沿树干东、西、南、北4个方向用树木生长锥(长500 mm, 直径5.15 mm)钻取4根木芯样(钻取至树干髓心), 用密封袋密封处理(标记东、南、西、北方向)后, 带回实验室。取样点位于四川省雅安市云峰寺后山, 海拔为1 024.2 m, 29°76′N, 102°87′E; 东邻成都平原, 西接青藏高原, 地处高原东南麓陡峭坡地边缘; 气候类型是以亚热带季风气候为基带的山地气候, 气候温和, 雨量充沛; 1961-2010年雅安市年平均气温为16.2 ℃, 年平均降水量为1 270.9 mm[20]

    1.2.1   木材构造特征研究方法

    取南、北向木芯样, 砂纸打磨后, 分别在肉眼、放大镜和手持显微镜下观察黑壳楠木芯样生长轮、管孔、轴向薄壁组织、木射线、纹理、构造等宏观特征。标记南、北向木芯样的生长轮, 以每20轮龄为梯度截断木芯样, 取经过编号的5支试管, 分别盛少量蒸馏水, 加入5段截断后的木芯样, 置入水浴锅内蒸煮至木材软化, 软化后的木材用TU-231大型滑走式切片机切片, 参照《木材鉴别方法通则》[21]制片, 风干后放在OLYMPUS BX51光学显微镜下观察其微观构造并拍摄照片; 用冰醋酸-过氧化氢法进行离析, 并制备临时性试片, 在显微镜下拍摄图片, 利用计算机图像测量分析系统测量木材的构造特征参数和组织比量, 并利用JSM-6490LV扫描电子显微镜观察黑壳楠木材超微观构造特征, 补充完善其微观构造特征。

    1.2.2   挥发性有机物成分研究方法

    取黑壳楠东、西向木芯样, 粉碎, 取≤30目的样品(4.0 ± 0.1) g置于萃取瓶中, 将固相微萃取手柄插入瓶中, 伸出萃取头, 在85 ℃下(能够最大限度检测其挥发性有机物成分化学成分的最佳温度)保温40 min; 退回萃取头, 拔出SPME手柄, 得其挥发性有机物成分样品。解析时间为3 min。将挥发性有机物成分经过GC-MS分析后, 把分离化合物质谱数据经计算机检索与质谱库相匹配, 并以人工解析为辅, 利用色谱峰面积归一化法计算各化学成分的相对百分含量。①色谱条件:HP-INNOWax毛细管色谱柱(柱长30 m, 内径0.25 mm, 膜厚0.25 um); 进样量为1 μL, 分流比50:1;进样口温度为250 ℃; 载气为高纯氦气; 柱温箱升温程序:120 ℃保持3 min, 以5 ℃·min-1速率升温到140 ℃保持4 min, 以2 ℃·min-1速率升温到160 ℃保持10 min; 流速:1 mL·min-1[22]。②质谱条件:离子源为EI, 电离能70 eV, 辅助加热区为280 ℃, 离子源230 ℃, 四级杆150 ℃, 采集模式为全扫描, 质量扫描范围50~550, 溶剂延迟3 min[22]

    黑壳楠树皮灰褐色至灰黑色, 木材呈黄白色或浅灰绿色, 心边材区分不明显; 木材表面有较弱光泽; 气微香, 味略辛; 木材纹理直至斜, 木材构造细腻且均匀; 生长轮不明显至略明显; 心材轮间细线颜色较边材轮间细线颜色深; 散生; 宽度较均匀, 3~8轮·cm-1; 横切面上管孔肉眼下略可见, 放大镜下明晰, 大小略一致, 分布均匀, 散生; 管孔内少见侵填体; 轴向薄壁组织放大镜下可见, 稀疏傍管状; 横切面上木射线在肉眼下可见至不可见, 在放大镜下明显, 比管孔小。在放大镜下弦切面木射线明显, 径切面上射线斑纹明显。波痕及胞间道缺如。

    图 1所示:导管横切面为圆形或卵圆形, 部分略具多角形轮廓; 管孔数少[23], 9~13个·mm-2, 平均为11个·mm-2; 管孔组合以单管孔和短径列(2~3个)复管孔为主, 偶见短弦列(2个)复管孔和管孔团; 散孔材; 管孔中[23], 最大弦径≥150 μm, 多数为90~110 μm, 平均为102 μm; 导管分子长255~596 μm, 平均446 μm, 导管长度属于中级别[23]; 导管细胞壁厚, 为7.5 μm; 导管细胞端部的穿孔类型为单穿孔, 穿孔板水平至略倾斜; 相邻导管间细胞壁上纹孔的排列形式为互列纹孔; 导管-射线间纹孔式为同管间纹孔式和大圆形; 纹孔口内含, 卵圆形及圆形; 轴向薄壁组织量少, 傍管形稀疏状为主, 可见环管状; 边材侵填体少见, 心材侵填体较边材多; 横切面上木纤维细胞壁较薄, 壁厚为3.7 μm, 直径多为20~26 μm, 平均23 μm, 长740~1 450 μm, 平均1 110 μm, 与邓恩桉Eucalyptus dunni木材纤维[24]同属中等木纤维[23]; 形状大多呈扁圆形、多角形; 弦向腔径略大于径向; 细胞沿径向排列整齐有序, 弦向上呈交错排列, 较松散; 木射线非叠生, 稀少[23], 5 mm内25~32条, 平均28条; 单列射线极少, 宽15~25 μm, 高36~312 μm(2~7个细胞); 多列射线宽度细至中[23], 宽32~68 μm(2~3个细胞), 高136~864 μm(3~31个细胞); 同一射线内间或出现2次多列部分; 射线组织异型Ⅲ型和Ⅱ型; 油细胞未见; 树胶及晶体未见; 螺纹加厚缺如; 胞间道缺如。

    图  1  黑壳楠木材的微观构造
    Figure  1.  Microscopic character of the Lindera megaphylla wood

    组织比量是衡量木材材性的重要参数, 与木材物理性质、力学性质和化学性质都有着密切的关系[24]。黑壳楠木纤维的组织比量为52.7%, 占整个组织的1/2以上; 木射线的组织比量为24.6%;导管的组织比量为13.2%;轴向薄壁组织的组织比量为9.5%。

    图 2可知:导管上的纹孔为互列纹孔, 射线与导管间纹孔式为同管间纹孔式和大圆形; 木射线细胞中可见球状物和块状物(图 2C), 通过能量色散分析仪(EDS)分析, 块状物的主要成分有钙、碳、氧, 球状物的主要成分为碳、氧(表 1), 初步预测木射线块状物可能是含钙有机物形成的结晶体, 木射线中球状物可能并非无机盐类, 而是树胶类物质, SCURFIELD等[25]将此类物质认定为淀粉颗粒。

    图  2  黑壳楠木材的扫描电子显微镜图
    Figure  2.  SEM picture of the Lindera megaphylla wood
    表  1  木射线中块状物和球状物成分分析
    Table  1.  Block and globular material composition in wood ray
    元素 块状物 球状物
    质量百分比/% 原子百分比/% 质量百分比/% 原子百分比/%
    16.61 32.55 57.26 64.09
    20.90 30.75 42.74 35.91
    62.49 36.70
    下载: 导出CSV 
    | 显示表格

    通过GC-MS分析, 得到黑壳楠木材挥发性有机物成分总离子流图(图 3), 共分离出39个峰, 参照质谱的裂解规律, 将质谱数据经计算机检索与质谱库检索和分析, 并以人工解析为辅, 共鉴定出23种化合物(表 2), 占总化学成分的87.11 %, 主要为烃类化合物及其含氧衍生物。

    图  3  黑壳楠木材有机挥发性成分总离子流图
    Figure  3.  Total ion chromatogram(TIC) of volatile organic compounds in L.megaphylla wood
    表  2  黑壳楠木材挥发性有机物成分分析结果
    Table  2.  Volatile organic compounds of Lindera megaphylla wood
    序号 t/min 化合物 分子式 分子量 相对含量/% 类别
    1 8.97 α-荜澄茄油烯 .alpha.-cubebene C15H24 204 0.85 烯烃 alkenes *
    2 9.33 δ-榄香烯 .delta.-elemene C15H24 204 0.36 烯烃 alkenes *
    3 9.83 α-可巴烯 .alpha.-copaene C15H4 204 0.90 烯烃 alkenes *
    4 10.49 (1s,7r)-1,4, 4, 7-四甲基-1,4, 5, 6, 7, 8-六氢-2(3h)-萘酮 (1s,7r)-1,4, 4, 7-tetramethyl-1, 4, 5, 6, 7, 8-hexahydro-2(3h)-naphtalenone C14H22O 206 3.74 酮 ketone
    5 10.93 4, 7-二甲基-1-异丙基全氢萘 4, 7-dimethyl-1-isopropyl perhy-dronaphthalene C15H28 208 22.46 环院烃 cycloparaffin
    6 11.45 α-柏木烯 .alpha.-cedrene C15H24 204 2.04 烯烃 alkenes *
    7 12.44 3, 7愈创木二烯 3, 7-guaiadiene C15H24 204 20.11 烯烃 alkenes *
    8 12.74 香树烯 1h-cycloprop [e] azulene, decahydro-1, 1, 7-trimethyl-4-methylene-, [1ar-(1aa, 4ab, 7b, 7ab, 7ba)]- C15H24 204 1.00 烯烃 alkenes *
    9 14.21 α-紫穗槐烯 .alpha.-amorphene C15H24 204 5.89 烯烃 alkenes *
    10 15.68 δ-荜澄茄烯 .delta.-cadinene C15H24 204 0.80 烯烃 alkenes *
    11 16.06 芳-香姜黄烯 ar-curcumene C15H22 202 2.23 烯烃 alkenes *
    12 17.37 1s, 顺去氢白菖烯 1s, cis-calamenene C15H22 202 12.05 烯烃 alkenes *
    13 18.76 3-[(3e)-4, 8-二甲基-3, 7-壬二烯]呋喃3-[(3e)-4, 8-dimethylnona-3, 7-dienyl] furan C15H22O 218 0.84 呋喃 furan *
    14 19.30 去二氢菖蒲烯 calacorene C15H20 200 1.38 烯烃 alkenes
    15 20.32 α-二去氢菖蒲烯 .alpha.-calacorene C15H20 200 0.57 烯烃 alkenes
    16 20.87 石竹烯环氧化物 caryophyllene oxide C15H24 220 0.88 氧化物 oxide *
    17 23.58 异构吉马酮环氧化物 isogermacrone-epoxide C15H22O2 234 3.09 氧化物 oxide *
    18 23.89 γ-按叶醇 .gamma. - eudesmol C15H26O 222 0.53 醇类 alcohols *
    19 25.80 沉香螺旋醇 agaruspirol C15H26O 222 1.58 醇类 alcohols *
    20 26.79 呋喃,3-甲基-2-[3-甲基-4-(4-甲基-2-呋喃基)-2-丁烯基]-,(e)-furan, 3-methyl-2- [3-methyl-4-(4-methyl-2-furanyl)-2-butenyl] -, (e)- C15H18O2 230 1.39 呋喃 furan *
    21 27.04 愈创木奠1, 4-dimethyl-7 - (1 -methylethyl) -azulene C15H18 198 3.26 奠 azulene *
    22 31.75 愈创蓝油烃 guaiazulene C15H18 198 0.83 奠 azulene *
    23 34.67 亚油酸乙酷 ethyl linoleate C20H36O2 308 0.35 酯 ester
    说明:*表示倍半萜化合物
    下载: 导出CSV 
    | 显示表格

    黑壳楠木材挥发性有机物成分中相对含量超过1%的成分共有13种, 占总峰面积的80.22%, 其中相对含量最高的化合物为4, 7-二甲基-1-异丙基全氢萘(22.46%), 其次为3, 7-愈创木二烯(20.11%), 1s, 顺去氢白菖烯(12.05%), α-紫穗槐烯(5.89%), (1s, 7r)-1, 4, 4, 7-四甲基-1, 4, 5, 6, 7, 8-六氢-2(3H)-萘酮(3.74%), 愈创木薁(3.26%), 异构吉马酮环氧化物(3.09%), 芳-香姜黄烯(2.23%), α-柏木烯(2.04%), 沉香螺旋醇(1.58%), 呋喃, 3-甲基-2-[3-甲基-4-(4-甲基-2-呋喃基)-2-丁烯基]-, (E)-(1.39%), 去二氢菖蒲烯(1.38%)和(+)-香橙烯(1.00%)。由表 3可知:黑壳楠木材挥发性成分中相对含量最高的是烯烃类化合物(48.18%), 其化合物种类最多, 共12种。

    表  3  黑壳楠木材挥发性有机物成分统计
    Table  3.  Volatile organic compounds of L.megaphylla wood
    成分类别 数量/种 相对含量/%
    烯烃类 12 48.18
    环院烃 1 22.46
    奠类 2 4.09
    酮类 1 3.74
    氧化物 2 3.62
    呋喃类 2 2.23
    醇类 2 2.11
    酯类 1 0.35
    下载: 导出CSV 
    | 显示表格

    黑壳楠木材挥发性有机物成分主要含萜类化合物, 有18种萜类化合物, 均为倍半萜化合物, 累计相对含量高达58.63%。其中烯类化合物10种, 累计相对含量高达46.23%;醇类化合物2种, 累计相对含量达2.11%;酮类化合物有1种, 累计相对含量高达3.09%;呋喃类化合物有2种, 累计相对含量达2.23%;薁类衍生物2种, 累计相对含量达4.09%;倍半萜含氧衍生物2种, 累计相对含量达3.97%。相对含量超过1%的倍半萜类成分10种, 累计相对含量为52.64%, 包括3, 7-愈创木二烯(20.11%), 1s, 顺去氢白菖烯(12.05%), α-紫穗槐烯(5.89%), 愈创木薁(3.26%), 异构吉马酮环氧化物(3.09%), 芳-香姜黄烯(2.23%), α-柏木烯(2.04%), 沉香螺旋醇(1.58%), 呋喃, 3-甲基-2-[3-甲基-4-(4-甲基-2-呋喃基)-2-丁烯基]-, (E)-(1.39%)和(+)-香橙烯(1.00%)。

    黑壳楠木材构造特征为散孔材, 木射线及导管肉眼下可见; 木射线非叠生, 每5 mm内有25~32条, 平均28条; 单列射线极少, 宽15~25 μm, 高36~312 μm(2~7个细胞); 多列射线宽度细至中, 宽32~68 μm(2~3个细胞), 高136~864 μm(3~31个细胞); 同一射线内间或出现2次多列部分; 射线组织异型Ⅲ型和Ⅱ型。导管横切面为圆形或卵圆形, 部分略具多角形轮廓, 单位面积管孔数少, 管孔组合以单管孔和短径列(2~3个)复管孔为主, 偶见短弦列(2个)复管孔和管孔团, 最大弦径≥150 μm, 多数90~110 μm, 平均102 μm; 导管分子长255~596 μm, 平均446 μm; 横切面上木纤维细胞壁较薄, 壁厚为3.7 μm; 直径多为20~26 μm, 平均23 μm; 长740~1 450 μm, 平均1 110 μm; 轴向薄壁组织以傍管形稀疏状为主, 可见环管状; 导管细胞端部的穿孔类型为单穿孔, 穿孔板水平至倾斜; 相邻导管间细胞壁上纹孔的排列形式为互列纹孔, 导管-射线间纹孔式为同管间纹孔; 纹孔口内含, 卵圆形及圆形; 油细胞未见。木射线细胞中的球状物可能是含钙有机物形成的结晶体; 木射线中块状物可能并非无机盐类, 而是树胶类物质。黑壳楠木纤维的组织比量为52.7%, 占整个组织的1/2以上; 木射线的组织比量为24.6%;导管的组织比量为13.2%;轴向薄壁组织的组织比量为9.5%。黑壳楠木材的宏微观特征可作为区分于其他木种的理论依据之一。

    黑壳楠木材挥发性有机物成分中鉴定出的23种化合物, 其相对含量之和占总化学成分的87.11%, 主要为烃类化合物及其含氧衍生物; 挥发性有机物成分中相对含量超过1%的成分共有13种, 占总峰面积的80.22%;挥发性有机物成分主含萜类化合物, 有18种萜类化合物, 均为倍半萜化合物, 累计相对含量高达58.63%。

    从生源来看, 1s, 顺去氢白菖烯、去二氢菖蒲烯、α-二去氢菖蒲烯属菖蒲烷型来源于没药烷型倍半萜类; 3, 7-愈创木二烯、愈创木薁、愈创蓝油烃属愈创木烷型来源于吉马烷类的倍半萜。通常, 没药烷型倍半萜类衍生物具有显著抗乙肝病毒活性及抗肿瘤的功效[26]。研究表明:萜类化合物多有芳香气味, 通常具有提神、抗菌消炎和镇痛等作用, 具有多种生物活性, 是许多药物的有效成分, 可以治疗疾病, 如调节血糖浓度、降低血脂和血压; 杀虫、杀菌、活血化淤、消炎镇痛消肿、抗肿瘤、抗疟、抗人类免疫缺陷病毒(HIV); 强化免疫; 局部麻醉、止痒; 解热、祛痰、止咳等[27]。例如, 沉香螺旋醇具有镇静催眠作用[28]; 去氢白菖烯被认为是强效的抗菌和抗肿瘤剂[29]; 石竹烯环氧化物具有抗菌消炎和抗真菌等活性, 具有平喘作用, 乙酸己酯不仅能够镇痛抗炎, 还可以愉悦心情, 同时也是食用添加香料[30-31]; 榄香烯是一种广谱、高效的抗肿瘤药物, δ-榄香烯可诱导Hela细胞凋亡[32]; γ-桉叶醇是沉香的主要成分之一, 同时也是蜂胶的主要成分之一[33]; 《抗病毒中药学》提到荔枝核主治行气散结、散寒止痛, 水提物能完全抑制乙型肝炎病毒病毒的复制, 是乙型肝炎病毒复制的高效抑制剂, 其主要成分在黑壳楠木材挥发性有机物成分中有7种, 累计相对含量达22.13%。这表明黑壳楠木材有较高的医药利用价值。

    愈创木薁为美国化妆品协会(CTFA)认可的化妆品助剂, 具有抗炎, 抗过敏的作用, 在防晒制品中用于预防或治疗阳光灼伤, 缓解其他物质对皮肤的刺激和过敏反应, 为常见的外用抗过敏剂[34]。α-荜澄茄油烯是目前香料工业的重要原料, 也是柏木精油的3种主要成分之一[35]。这表明黑壳楠木材作为芳香理疗产品具有极大的应用潜力。

  • 表  1  不同基质的物理性质

    Table  1.   Physical properties of the different growing substrates

    栽培基质 容重/(g.cm-3) 总孔隙度/% 通气孔隙度/% 持水孔隙度/%
    对照组 0.11 e 90.04 a 22.60 a 2.09 a
    25GWC 0.15 d 86.60 b 22.13 a 1.90 a
    50GWC 0.19 c 83.28 c 20.77 a 1.54 b
    75GWC 0.24 b 80.12 d 20.21 a 1.22 c
    100GWC 0.27 a 79.59 d 20.73 a 1.04 c
    理想基质 <0.4 >85 20~30
      说明:同列不同英文字母代表差异显著(P<0.05)。
    下载: 导出CSV

    表  2  不同基质的化学性质

    Table  2.   Chemical properties of the different growing substrates

    栽培基质 pH值 电导率/ (dS·m-1) 有机质/ (g·kg-1) 氮/(g·kg-1) 磷/(g.kg-1) 钾/(g.kg-1) 钙/(g.kg-1) 镁/(g.kg-1) 钠/(g.kg-1) 铁/(mg.g-1) 铜/(mg.g-1) 锌/(mg.g-1) 猛/(mg.g-1)
    对照组 6.21 e 0.26 e 665.98 a 7.41 d 1.01 b 1.42 e 23.64 c 2.36 a 1.39 c 1 175 c 27.4 b 65.7 d 12.8 d
    25GWC 7.36 d 0.59 d 591.12 ab 12.60 d 1.20 ab 5.41 d 33.20 b 2.40 a 1.87 b 2 683 b 30.7 b 140.6 c 27.9 c
    50GWC 7.72 c 0.84 c 475.04 bc 15.42 c 1.26 a 7.56 c 77.74 a 2.33 a 2.24 ab 3 219 a 36.3 ab 168.5 bc 39.6 b
    75GWC 7.82 b 1.16 b 446.93 c 17.36 b 1.26 a 8.84 b 79.02 a 2.39 a 2.58 a 3 390 a 36.0 ab 186.8 ab 44.6 ab
    100GWC 8.05 a 1.40 a 421.30 c 18.93 a 1.16 ab 9.68 a 79.54 a 2.38 a 2.63 a 3 515 a 45.4 a 202.2 a 48.5 a
    理想范围 5.3~6.5 ≤0.5 >800
      说明:同列不同英文字母代表差异显著(P<0.05)。
    下载: 导出CSV

    表  3  不同处理对2种植物发芽率和生长的影响

    Table  3.   Effect of different growing substrates on seed germination and the growth of geranium and calendula

    植物 栽培基质 发芽率/% 地上部分干质量/(g·株-1) 根干质量/(g·株-1) 苗高/mm 茎直径/mm 叶片数
    对照组 94.44 a 0.18 a 0.024 a 82.26 a 3.29 a 3.9 a
    25GWC 94.44 a 0.13 b 0.015 b 71.75 b 3.06 b 3.8 ab
    天竺葵 50GWC 89.58 ab 0.09 c 0.013 bc 55.81 c 2.82 c 3.4 bc
    75GWC 82.64 b 0.06 d 0.011 c 41.85 d 2.47 d 2.9 c
    100GWC 65.28 c 0.03 e 0.005 d 29.99 e 2.11 e 2.3 d
    对照组 84.38 a 0.10 a 0.019 a 115.90 a 3.10 ab 5.3 a
    25GWC 87.85 a 0.10 a 0.019 a 114.93 a 3.22 a 5.4 a
    金盏菊 50GWC 93.75 a 0.09 ab 0.017 ab 112.85 a 3.14 ab 5.1 a
    75GWC 89.24 a 0.07 b 0.015 bc 101.11 b 2.83 ab 4.5 b
    100GWC 89.93 a 0.06 c 0.012 c 94.41 b 2.55 b 3.9 c
      说明:同列不同英文字母代表差异显著(P<0.05)。
    下载: 导出CSV

    表  4  不同处理对天竺葵生长的影响

    Table  4.   Effects of different growing substrates on the growth of geranium plants

    栽培基质 地上部分干质量/(g·株-1) 根干质量/(g·株-1) 株高/cm 茎直径/mm 叶面积/cm2 花数
    对照组 16.79 d 1.56 b 36.89 c 11.2 b 758 c 1.7 a
    25GWC 33.30 a 1.62 b 49.11 b 13.5 a 1 269 ab 1.9 a
    50GWC 31.10 ab 1.84 b 54.89 a 13.7 a 1 430 a 1.6 a
    75GWC 28.87 bc 1.98 ab 54.88 a 13.5 a 1 360 ab 1.4 a
    100GWC 26.06 c 2.33 a 50.33 b 13.2 a 1 130 b 1.8 a
      说明:同列不同英文字母代表差异显著(P<0.05)。
    下载: 导出CSV

    表  5  不同处理对金盏菊生长的影响

    Table  5.   Effects of different substrates on the growth of calendula plants

    栽培基质 地上部分干质量/(g·株-1) 根干质量/(g·株-1) 株高/cm 茎直径/mm 叶面积/cm2 花径/mm 花蕾数 花数
    对照组 6.94 c 1.75 b 23.78 c 6.7b 531 c 64.2 b 17.7 c 2.6a
    25GWC 20.21 a 2.18 a 30.94 b 10.3 a 875 b 69.1 ab 48.7 a 2.2a
    50GWC 18.06 ab 2.28 a 33.28 a 10.1 a 940 ab 73.2 a 45.7 ab 2.1 a
    75GWC 17.64 b 2.42 a 32.51 a 10.3 a 980 ab 67.2 ab 42.0 ab 2.7a
    100GWC 17.91 b 2.17 a 32.68 a 10.0 a 1 063 a 68.6 ab 37.3 b 2.0a
      说明:同列不同英文字母代表差异显著(P<5)。
    下载: 导出CSV
  • [1] 田赟, 王海燕, 孙向阳, 等.添加竹酢液和菌剂对园林废弃物堆肥理化性质的影响[J].农业工程学报, 2010, 26(8):272-278.

    TIAN Yun, WANG Haiyan, SUN Xiangyang, et al. Effects of bamboo vinegar and bacterial reagent addition on physic-chemical properties of green wastes compost [J]. Trans CSAE, 2010, 26(8): 272-278.
    [2] 龚小强, 孙向阳, 李燕, 等.组配改良剂对园林废弃物堆肥基质理化性质及鸟巢蕨生长影响[J].西北林学院学报, 2015, 30(5):126-132.

    GONG Xiaoqiang, SUN Xiangyang, LI Yan, et al. Effects of combined amendments on physicochemical properties of green waste compost substrates and growth of Asplenium nidus [J]. J Northwest For Univ, 2015, 30(5): 126-132.
    [3] 龚小强, 孙向阳, 田赟, 等.复合型有机改良剂对园林废弃物堆肥基质改良研究[J].西北林学院学报, 2013, 28(2):196-201.

    GONG Xiaoqinag, SUN Xiangyang, TIAN Yun, et al. Application of organic composite ameliorants on the green wastes compost substrate [J]. J Northwest For Univ, 2013, 28(2): 196-201.
    [4] 张璐, 孙向阳, 田赟.园林废弃物堆肥用于青苹果竹芋栽培研究[J].北京林业大学学报, 2011, 33(5):109-114.

    ZHANG Lu, SUN Xiangyang, TIAN Yun. Application of green waste compost for Calathca rotundifola 'Fasciata' cultivation [J]. J Beijing For Univ, 2011, 33(5): 109-114.
    [5] 李燕, 孙向阳, 龚小强.园林废弃物堆肥替代泥炭用于红掌和鸟巢蕨栽培[J].浙江农林大学学报, 2015, 32(5):736-742.

    LI Yan, SUN Xiangyang, GONG Xiaoqiang. Use of green waste compost as a peat surrogate in substrates for Anthurium andraeanum and Asplenium nidus cultivation [J]. J Zhejiang A & F Univ, 2015, 32(5): 736-742.
    [6] 张强, 孙向阳, 任忠秀, 等.园林绿化废弃物堆肥用作花卉栽培基质的效果评价[J].中南林业科技大学学报:自然科学版, 2011, 31(9):7-13.

    ZHANG Qiang, SUN Xiangyang, REN Zhongxiu, et al. Effect evaluation of garden waste compost used as floriculture substrate [J]. J Cent South Univ For Technol, 2011, 31(9): 7-13.
    [7] 龚小强, 李素艳, 李燕, 等.绿化废弃物好氧堆肥和蚯蚓堆肥作为蔬菜育苗基质研究[J].浙江农林大学学报, 2016, 33(2):280-287.

    GONG Xiaoqiang, LI Suyan, LI Yan, et al. Compost and vermicompost from green wastes as substrates for vegetable seedlings cultivation [J]. J Zhejiang A & F Univ, 201, 33(2): 280-287.
    [8] 龚小强.园林绿化废弃物堆肥产品改良及用作花卉栽培代用基质研究[D].北京:北京林业大学, 2013.

    GONG Xiaoqiang. Green Waste Compost Products Improvement and the Products as the Peat Substitutes for the Planting of Flowers [D]. Beijing: Beijing Forestry University, 2013.
    [9] 鲍士旦.土壤农化分析[M].北京:中国农业出版社, 2000.
    [10] ABAD M, NOGUERA P, BURÉS S. National inventory of organic wastes for use as growing substrate for ornamental potted plant production: cause study in Spain [J]. Bioresour Technol, 2001, 77(2): 197-200.
    [11] de BOOTDT M, VERDONCK O. The physical properties of the substrates in horticulture [J]. Acta Hortic, 1972, 26: 37-44.
    [12] MOLDES A, CENDON Y, BARRAL M T. Evaluation of municipal solid waste compost as a plant growing media component, by applying mixture design [J]. Bioresour Technol, 2007, 98(16): 3069-3075.
    [13] BUSTAMANTE M A, PAREDES C, MORAL R E, et al. Composts from distillery wastes as peat substitutes for transplant production [J]. Resour Conserv Recycl, 2008, 52(2): 792-799.
    [14] COSTELLO L R, PERRY E J, MATHENY N P, et al. Abiotic Disorders of Landscape Plant: A Diagnostic Guide [M]. Oakland: UCANR Publications, 2003.
    [15] BELAL E B, EI-MAHROUK M E. Solid-state fermentation of rice straw residues for its use as growing medium in ornamental nurseries [J]. Acta Astronaut, 2010, 67(9/10): 1081-1089.
    [16] MEDINA E, PAREDE C, PÉREZ-MURCIA M D, et al. Spent mushroom substrates as component of growing media for germination and growth of horticultural plants [J]. Bioresour Technol, 2009, 100(8): 4227-4232.
  • [1] 殷泽欣, 张璐, 白一帆.  园林绿化废弃物堆肥替代泥炭用于波斯菊的栽培 . 浙江农林大学学报, 2022, 39(5): 1045-1051. doi: 10.11833/j.issn.2095-0756.20210829
    [2] 肖超群, 郭小平, 刘玲, 罗超, 李若愚, 刘冠宏.  绿化废弃物堆肥配制屋顶绿化新型基质的研究 . 浙江农林大学学报, 2019, 36(3): 598-604. doi: 10.11833/j.issn.2095-0756.2019.03.022
    [3] 王琳, 李素艳, 孙向阳, 龚小强, 余克非, 蔡琳琳.  不同配比园林绿化废弃物和蘑菇渣混合蚯蚓堆肥的效果 . 浙江农林大学学报, 2019, 36(2): 326-334. doi: 10.11833/j.issn.2095-0756.2019.02.014
    [4] 蔡琳琳, 李素艳, 龚小强, 孙向阳, 张建伟, 于鑫, 魏乐.  好氧堆肥-蚯蚓堆肥结合法处理绿化废弃物与牛粪 . 浙江农林大学学报, 2018, 35(2): 261-267. doi: 10.11833/j.issn.2095-0756.2018.02.009
    [5] 朱咪咪, 张迟, 常爱玲, 党婉誉, 周彩红, 俞狄虎, 吴莹莹, 张敏.  ‘无籽’瓯柑小孢子母细胞减数分裂特性基因RAD51和MS1的表达差异分析 . 浙江农林大学学报, 2016, 33(6): 921-927. doi: 10.11833/j.issn.2095-0756.2016.06.001
    [6] 龚小强, 李素艳, 李燕, 孙向阳.  绿化废弃物好氧堆肥和蚯蚓堆肥作为蔬菜育苗基质研究 . 浙江农林大学学报, 2016, 33(2): 280-287. doi: 10.11833/j.issn.2095-0756.2016.02.013
    [7] 王文鹏, 周莉花, 赵宏波, 包志毅.  蜡梅与光叶红蜡梅和夏蜡梅属间杂交亲和性初步研究 . 浙江农林大学学报, 2015, 32(5): 756-762. doi: 10.11833/j.issn.2095-0756.2015.05.015
    [8] 雷燕, 李庆卫, 李文广, 景珊, 陈俊愉.  2个地被菊品种对不同遮光处理的生理适应性 . 浙江农林大学学报, 2015, 32(5): 708-715. doi: 10.11833/j.issn.2095-0756.2015.05.008
    [9] 李燕, 孙向阳, 龚小强.  园林废弃物堆肥替代泥炭用于红掌和鸟巢蕨栽培 . 浙江农林大学学报, 2015, 32(5): 736-742. doi: 10.11833/j.issn.2095-0756.2015.05.012
    [10] 施旭丽, 王筠竹, 王萃铂, 房伟民, 陈发棣, 陈素梅.  4个国庆盆菊品种扦插繁殖 . 浙江农林大学学报, 2013, 30(1): 141-147. doi: 10.11833/j.issn.2095-0756.2013.01.021
    [11] 王旭艳, 林夏珍, 李琳, 阮颖, 邢小明.  几种农林废弃物复合基质的理化特性及对浙江楠容器育苗的效果 . 浙江农林大学学报, 2013, 30(5): 674-680. doi: 10.11833/j.issn.2095-0756.2013.05.007
    [12] 秦巧平, 林飞凡, 张岚岚.  枇杷果实糖酸积累的分子生理机制 . 浙江农林大学学报, 2012, 29(3): 453-457. doi: 10.11833/j.issn.2095-0756.2012.03.021
    [13] 郭运雪, 蒋文伟, 戴锋, 黄建荣.  3种金鸡菊的光合特性比较 . 浙江农林大学学报, 2012, 29(5): 755-761. doi: 10.11833/j.issn.2095-0756.2012.05.019
    [14] 李玉发, 房伟民, 陈发棣, 石常磊.  日光温室多头切花菊品质模拟 . 浙江农林大学学报, 2010, 27(3): 404-409. doi: 10.11833/j.issn.2095-0756.2010.03.014
    [15] 宁惠娟, 邵锋, 戴思兰, 包志毅.  40个品种菊的切花用途评价 . 浙江农林大学学报, 2009, 26(3): 389-394.
    [16] 孟赐福, 曹志洪, 姜培坤, 徐秋芳, 周国模.  叶面施硼矫正杨梅缺硼的研究 . 浙江农林大学学报, 2008, 25(5): 543-547.
    [17] 姜贝贝, 房伟民, 陈发棣, 顾俊杰.  氮磷钾配比对切花菊‘神马’生长发育的影响 . 浙江农林大学学报, 2008, 25(6): 692-697.
    [18] 周建, 袁德义, 张琳, 李佑武.  黄金梨叶片营养诊断及施肥标准 . 浙江农林大学学报, 2007, 24(1): 39-43.
    [19] 贺文婷, 安晓芹, 郭维明.  超声波与复合保鲜剂预处理对素心蜡梅离体小花和花枝储鲜效应的影响 . 浙江农林大学学报, 2007, 24(6): 661-665.
    [20] 王齐瑞, 谭晓风, 张琳.  覆草栽培对甜樱桃生长及光合速率的影响 . 浙江农林大学学报, 2006, 23(1): 24-28.
  • 期刊类型引用(5)

    1. 李素欣,姜清彬,张晖,李永泉,郭微,王涛,郭朗. 醉香含笑不同树高处心边材挥发性成分的差异. 东北林业大学学报. 2024(01): 128-136 . 百度学术
    2. 刘柯珍,何诚. 微观视角下防火树种特征研究动态. 西南林业大学学报(自然科学). 2024(03): 212-220 . 百度学术
    3. 詹施施,王世彤,周本庚,杨腾,周刚,江明喜. 湖北竹溪黑壳楠的种群结构与群落特征. 长江流域资源与环境. 2023(01): 113-122 . 百度学术
    4. 逯久幸,刘燕,许朵朵,陈鹏,李永华,刘红利. 黑壳楠染色体核型分析及基因组Survey预测. 河南农业大学学报. 2023(06): 967-974 . 百度学术
    5. 董姬秀,朱舒翼,赵辉,王晶. 黑壳楠研究进展. 河南林业科技. 2021(04): 12-15 . 百度学术

    其他类型引用(6)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2016.05.017

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2016/5/849

计量
  • 文章访问数:  3024
  • HTML全文浏览量:  668
  • PDF下载量:  432
  • 被引次数: 11
出版历程
  • 收稿日期:  2015-10-19
  • 修回日期:  2016-01-06
  • 刊出日期:  2016-10-20

园林废弃物堆肥替代泥炭用于天竺葵和金盏菊栽培

doi: 10.11833/j.issn.2095-0756.2016.05.017
    基金项目:

    国家林业公益性行业科研专项 201504205

    作者简介:

    魏乐,从事固体废弃物资源化再利用研究。E-mail:weile@bjfu.edu.cn

    通信作者: 李素艳,副教授,博士,从事固体废弃物资源化再利用研究。E-mail:lisuyan@bjfu.edu.cn
  • 中图分类号: S725.71

摘要: 为探索园林废弃物堆肥替代泥炭用于天竺葵Pelargonium zonale和金盏菊Calendula officinalise栽培基质的可能性,将改良后的园林废弃物堆肥分别以0%,25%,50%,75%和100%的比例替代泥炭进行试验。将天竺葵和金盏菊的种子分别播种在不同基质中进行育苗研究,当幼苗生长35 d后进行测定。将幼苗分别移栽到不同基质中,栽培6个月后进行测定。结果表明:随园林废弃物比例的增加,基质的容重增加,总孔隙度度、通气孔隙度和持水孔隙度呈下降趋势。园林废弃物比例的增加提高了基质pH值、电导率值、大量元素和微量元素质量分数。育苗试验显示:天竺葵幼苗在园林废弃物处理中的生长量显著(P < 0.05)低于对照组,即使在25%的低比例下也会对幼苗产生不良影响。金盏菊幼苗在添加25%和50%的园林废弃物处理中的生长量与对照组一致。盆栽试验显示:添加园林废弃物显著(P < 0.05)增加了天竺葵和金盏菊的地上部分干质量、株高、茎直径和叶面积以及金盏菊的根干质量和花蕾数。园林废弃物堆肥可以部分代替泥炭作为金盏菊育苗基质及天竺葵和金盏菊的栽培基质。表 5 参15

English Abstract

杨建飞, 宁莉萍, 杨了, 等. 黑壳楠木材构造特征及挥发性有机物成分[J]. 浙江农林大学学报, 2018, 35(5): 927-934. DOI: 10.11833/j.issn.2095-0756.2018.05.018
引用本文: 魏乐, 李素艳, 李燕, 等. 园林废弃物堆肥替代泥炭用于天竺葵和金盏菊栽培[J]. 浙江农林大学学报, 2016, 33(5): 849-854. DOI: 10.11833/j.issn.2095-0756.2016.05.017
YANG Jianfei, NING Liping, YANG Liao, et al. Structural characteristics of Lindera megaphylla wood and its volatile organic compounds[J]. Journal of Zhejiang A&F University, 2018, 35(5): 927-934. DOI: 10.11833/j.issn.2095-0756.2018.05.018
Citation: WEI Le, LI Suyan, LI Yan, et al. Growth of Pelargonium zonale and Calendula officinalise when utilizing green waste compost as a peat substitute[J]. Journal of Zhejiang A&F University, 2016, 33(5): 849-854. DOI: 10.11833/j.issn.2095-0756.2016.05.017
  • 近年来,随着城市绿化在中国各大城市中的快速发展,园林绿化废弃物如枯枝落叶(植物凋落物)、树枝修剪物、草坪修剪物、杂草、种子和残花等的产生量也越来越大[1]。传统的处理方式主要是填埋或焚烧,这样做不仅造成了环境的污染也带来资源的浪费[2]。中国作为设施园艺大国,固体基质特别是泥炭需求量巨大,然而泥炭属不可再生资源,大量开采会造成资源破坏、湿地减少等生态环境问题,因此急需寻找一种有效的替代品[3]。园林绿化废弃物经堆肥处理后能够代替泥炭作为花卉栽培基质。如张璐等[4]研究园林废弃物堆肥作为青苹果竹芋Calathca rotundifola ‘Fasciata’替代基质,发现可替代50%泥炭;李燕等[5]研究园林废弃物堆肥替代泥炭用于鸟巢蕨Anthurium anaraeanum和红掌Asplenium nidus栽培,发现可分别替代60%~80%和60%的泥炭;张强等[6]研究园林废弃物堆肥用于马齿苋Portulaca oleracea,矮牵牛Petunia hybrida和彩叶草Coleus blumei的栽培基质,发现可替代50%泥炭。龚小强等[7]研究发现园林废弃物蚯蚓堆肥可部分替代泥炭用作甘蓝Brassica oleracea,莴苣Lactuca sativa,西葫芦Cucurbita pepo var. ovifera育苗代用基质。天竺葵Pelargonium zonale和金盏菊Calendula officinalis是北京市绿地常见花卉,花色鲜艳,花期长,市场需求量大,栽培广泛。传统栽培方式主要选择泥炭作为栽培基质,这种栽培方式会消耗大量泥炭资源。本研究将园林废弃物堆肥产品添加到泥炭中作为天竺葵和金盏菊的栽培基质,从而探索园林废弃物堆肥产品代替泥炭用作2种花卉栽培基质的可能性。

    • 供试堆肥材料来源于北京市朝阳区园林绿化废弃物消纳中心,主要是2013年北京市春季园林绿化养护所产生的树枝修剪物、植物凋落物和草坪修剪物。将绿化废弃物原材料粉碎至粒径1~2 cm,再将粉碎后的材料装入长宽高分别为48.0 m × 4.0 m × 2.5 m的堆肥槽。堆肥初始调节碳氮比(C/N)至25,含水率约60%,再加入购于中国普通微生物菌种保藏管理中心的黄孢原毛平革菌Phanerochaete chrysosporium。应用前,接种于液体马铃薯葡萄糖琼脂(PDA)综合培养基(未加琼脂),在28 ℃,170 r·min-1转速的振荡培养箱里扩展培养7 d,之后按20 mL·kg-1接种于堆体。堆肥时间为50 d,隔7 d翻堆1次,整个堆肥过程含水量控制在60%~70%。

      供试泥炭为丹麦进口的品氏泥炭,购于北林科技股份有限公司。

    • 试验于2013年9月至2014年4月在北京市北林科技股份有限公司苗圃内进行。供试植物为天竺葵和金盏菊。共设5种基质处理:100%泥炭(对照组),75%泥炭+25%绿化废弃物(25GWC),50%泥炭+50%绿化废弃物(50GWC),25%泥炭+75%绿化废弃物(75GWC),100%绿化废弃物(100GWC)。

      育苗试验将5种基质分别装入72穴的塑料播种盘中,再将天竺葵和金盏菊的种子播于穴中(1粒·穴-1)。完全随机区组设计,重复4次。播种后将播种盘置于温室中,其温度为18~28 ℃,相对湿度为70%~80%,并置于自然光照下。隔2 d浇水1次,整个过程不施肥。试验周期为35 d。试验结束时测定以下指标:苗高(从基质表面到植物顶端)、幼苗叶片数(不包括子叶)、茎直径(从子叶节点测量)。再将幼苗从盘中取出,用蒸馏水洗掉残留基质,将幼苗用剪刀分成根与地上部分,放入烘箱75 ℃烘至恒量测定地上部分干质量与根干质量。此外,单独设置2个泥炭处理为之后的盆栽试验做准备。

      盆栽试验:从泥炭处理中选择长势一致的天竺葵和金盏菊幼苗移栽到14 cm × 10 cm的塑料花盆中,加入各种基质,重复20盆·处理-1。各处理栽培管理措施均匀一致,并用含氮、磷、钾质量分数均为20%的花多多1号稀释1 000倍后1周施肥1次。试验周期6个月,试验结束时从各个处理随机选取9株植物进行测定。采用与上述相同的方法测定植物的地上部分干质量、根干质量、株高、茎直径。此外,对每株天竺葵测定叶面积和花数,对每株金盏菊测定花径、叶面积、花蕾数和花数。

    • 基质容重、总孔隙度、通气孔隙度、持水孔隙度的测定参照龚小强[8]的方法。基质的化学性质参照鲍士旦[9]的方法测定。

    • 试验数据采用Microsoft Office Excel 2003和SPSS 18.0数据处理软件进行方差分析和多重比较。

    • 表 1可见:100GWC处理的容重是对照组容重的2倍以上,随绿化废弃物比例的增加混合基质的容重显著增加(P<0.05)。所有基质的容重都在ABAD等[10]提出的理想基质范围内(<0.4 g·cm-3)。总孔隙度度、通气孔隙度和持水孔隙度在对照组中最高,并随绿化废弃物的增加而降低。对照组和25GWC处理的总孔隙度处于理想范围内(>85%),其余处理的总孔隙度则低于理想范围[9]。BOOTAT等[11]提出理想基质的通气孔隙度范围应当为20%~30%,所有处理的通气孔隙度符合这一标准。50GWC,75GWC和100GWC处理的持水孔隙度显著低于对照组和25GWC处理(P<0.05),因此需要定期补水[12]

      表 1  不同基质的物理性质

      Table 1.  Physical properties of the different growing substrates

      栽培基质 容重/(g.cm-3) 总孔隙度/% 通气孔隙度/% 持水孔隙度/%
      对照组 0.11 e 90.04 a 22.60 a 2.09 a
      25GWC 0.15 d 86.60 b 22.13 a 1.90 a
      50GWC 0.19 c 83.28 c 20.77 a 1.54 b
      75GWC 0.24 b 80.12 d 20.21 a 1.22 c
      100GWC 0.27 a 79.59 d 20.73 a 1.04 c
      理想基质 <0.4 >85 20~30
        说明:同列不同英文字母代表差异显著(P<0.05)。
    • 不同处理基质的主要化学性质见表 2。与对照组相比,添加绿化废弃物的处理导致pH值和电导率值上升。同时,绿化废弃物比例的增加导致基质有机质质量分数下降。所有基质的pH值范围在6.21~8.05,对照组最低,为6.21,100GWC处理最高,为8.05。除对照组,其余处理pH值都高于理想基质范围[10]。所有堆肥处理基质的电导率值都高于理想基质范围(≤0.5 dS·m-1),有机质质量分数均低于理想基质所推荐的最低水平[10]

      表 2  不同基质的化学性质

      Table 2.  Chemical properties of the different growing substrates

      栽培基质 pH值 电导率/ (dS·m-1) 有机质/ (g·kg-1) 氮/(g·kg-1) 磷/(g.kg-1) 钾/(g.kg-1) 钙/(g.kg-1) 镁/(g.kg-1) 钠/(g.kg-1) 铁/(mg.g-1) 铜/(mg.g-1) 锌/(mg.g-1) 猛/(mg.g-1)
      对照组 6.21 e 0.26 e 665.98 a 7.41 d 1.01 b 1.42 e 23.64 c 2.36 a 1.39 c 1 175 c 27.4 b 65.7 d 12.8 d
      25GWC 7.36 d 0.59 d 591.12 ab 12.60 d 1.20 ab 5.41 d 33.20 b 2.40 a 1.87 b 2 683 b 30.7 b 140.6 c 27.9 c
      50GWC 7.72 c 0.84 c 475.04 bc 15.42 c 1.26 a 7.56 c 77.74 a 2.33 a 2.24 ab 3 219 a 36.3 ab 168.5 bc 39.6 b
      75GWC 7.82 b 1.16 b 446.93 c 17.36 b 1.26 a 8.84 b 79.02 a 2.39 a 2.58 a 3 390 a 36.0 ab 186.8 ab 44.6 ab
      100GWC 8.05 a 1.40 a 421.30 c 18.93 a 1.16 ab 9.68 a 79.54 a 2.38 a 2.63 a 3 515 a 45.4 a 202.2 a 48.5 a
      理想范围 5.3~6.5 ≤0.5 >800
        说明:同列不同英文字母代表差异显著(P<0.05)。

      表 2可以看出:除镁元素外,其余大量元素的质量分数都随绿化废弃物的增加而显著升高(P<0.05)。除了25GWC处理外,所有其他添加绿化废弃物的处理的氮的质量分数均显著高于对照组(P<0.05)。磷质量分数在50GWC和75GWC处理中显著高于对照组,但在25GWC和100GWC处理中差异不显著(P>0.05)。钾、钙和钠的质量分数在所有堆肥处理中都显著高于对照组(P<0.05)。

      微量元素的质量分数随基质中绿化废弃物比例的增大而升高。与对照组相比,铁、锌的质量分数在所有堆肥基质中显著升高(P<0.05)。铜的质量分数只在100GWC处理中显著升高(P<0.05),其他处理与对照组相比差异不显著(P>0.05)。

    • 不同基质处理对于2种植物种子发芽率和幼苗生长的影响见表 3。75GWC和100GWC处理的天竺葵种子的发芽率显著低于对照组(P<0.05),而25GWC和50GWC处理与对照组差异不显著。栽培基质中高比例园林废弃物对天竺葵种子发芽率产生了不良影响,可能是由于园林废弃物导致了基质中电导率值升高所引起。高比例废弃物的添加导致发芽率下降的情况其他研究者也曾报道过[13]。金盏菊发芽率在5种基质中差异不显著(P>0.05),表明基质中园林废弃物的比例对金盏菊的发芽率无不良影响。

      表 3  不同处理对2种植物发芽率和生长的影响

      Table 3.  Effect of different growing substrates on seed germination and the growth of geranium and calendula

      植物 栽培基质 发芽率/% 地上部分干质量/(g·株-1) 根干质量/(g·株-1) 苗高/mm 茎直径/mm 叶片数
      对照组 94.44 a 0.18 a 0.024 a 82.26 a 3.29 a 3.9 a
      25GWC 94.44 a 0.13 b 0.015 b 71.75 b 3.06 b 3.8 ab
      天竺葵 50GWC 89.58 ab 0.09 c 0.013 bc 55.81 c 2.82 c 3.4 bc
      75GWC 82.64 b 0.06 d 0.011 c 41.85 d 2.47 d 2.9 c
      100GWC 65.28 c 0.03 e 0.005 d 29.99 e 2.11 e 2.3 d
      对照组 84.38 a 0.10 a 0.019 a 115.90 a 3.10 ab 5.3 a
      25GWC 87.85 a 0.10 a 0.019 a 114.93 a 3.22 a 5.4 a
      金盏菊 50GWC 93.75 a 0.09 ab 0.017 ab 112.85 a 3.14 ab 5.1 a
      75GWC 89.24 a 0.07 b 0.015 bc 101.11 b 2.83 ab 4.5 b
      100GWC 89.93 a 0.06 c 0.012 c 94.41 b 2.55 b 3.9 c
        说明:同列不同英文字母代表差异显著(P<0.05)。

      天竺葵育苗试验中,所有添加园林废弃物处理的生长指标与对照组相比显著降低,并随园林废弃物比例的增加而降低,甚至在25%的低比例替代下也会对幼苗生长产生不良影响。

      金盏菊育苗试验中,与对照组相比,75GWC和100GWC处理的地上部分干质量、根干质量及苗高指标显著降低,但在25GWC和50GWC处理中差异不显著(P>0.05)。与对照组相比,茎直径在25%~100%处理中均差异不显著。75GWC和100GWC处理的每株叶片数与对照组相比显著减少,但在25GWC和50GWC处理中差异不显著。以上分析表明:金盏菊的生长只在高比例(50%以上)添加园林废弃物时受到不良影响,在添加25%~50%园林废弃物时,金盏菊的生长指标与对照组差异不显著。2种植物生长指标的下降可能由于基质中pH值和电导率值的升高以及总孔隙度及持水孔隙度的下降。天竺葵在所有园林废弃物处理中的生长指标都显著低于对照组,而金盏菊的生长指标只在高比例园林废弃物添加下才显著降低,这种植物表现可能是由于金盏菊幼苗比天竺葵幼苗更耐盐[14]。其他研究者的研究结果也显示:不同植物的幼苗在同种堆肥基质中的生长状况不同[15-16]

    • 在6个月的栽培后,植物生长量见表 4表 5

      表 4  不同处理对天竺葵生长的影响

      Table 4.  Effects of different growing substrates on the growth of geranium plants

      栽培基质 地上部分干质量/(g·株-1) 根干质量/(g·株-1) 株高/cm 茎直径/mm 叶面积/cm2 花数
      对照组 16.79 d 1.56 b 36.89 c 11.2 b 758 c 1.7 a
      25GWC 33.30 a 1.62 b 49.11 b 13.5 a 1 269 ab 1.9 a
      50GWC 31.10 ab 1.84 b 54.89 a 13.7 a 1 430 a 1.6 a
      75GWC 28.87 bc 1.98 ab 54.88 a 13.5 a 1 360 ab 1.4 a
      100GWC 26.06 c 2.33 a 50.33 b 13.2 a 1 130 b 1.8 a
        说明:同列不同英文字母代表差异显著(P<0.05)。

      表 5  不同处理对金盏菊生长的影响

      Table 5.  Effects of different substrates on the growth of calendula plants

      栽培基质 地上部分干质量/(g·株-1) 根干质量/(g·株-1) 株高/cm 茎直径/mm 叶面积/cm2 花径/mm 花蕾数 花数
      对照组 6.94 c 1.75 b 23.78 c 6.7b 531 c 64.2 b 17.7 c 2.6a
      25GWC 20.21 a 2.18 a 30.94 b 10.3 a 875 b 69.1 ab 48.7 a 2.2a
      50GWC 18.06 ab 2.28 a 33.28 a 10.1 a 940 ab 73.2 a 45.7 ab 2.1 a
      75GWC 17.64 b 2.42 a 32.51 a 10.3 a 980 ab 67.2 ab 42.0 ab 2.7a
      100GWC 17.91 b 2.17 a 32.68 a 10.0 a 1 063 a 68.6 ab 37.3 b 2.0a
        说明:同列不同英文字母代表差异显著(P<5)。

      天竺葵盆栽试验中,添加园林废弃物处理的地上部分干质量、株高、茎直径、叶面积与对照组相比显著增加。100GWC处理的根干质量显著高于对照组,但在其余处理中差异不显著(P>0.05)。添加25%~100%园林废弃物处理的花数与对照组相比无显著差异(P>0.05)。

      金盏菊盆栽试验中,与对照组相比,除花径和花数外,添加园林废弃物处理的其他生长指标都显著增加。50GWC处理的花径显著高于对照组,但其余处理与对照组相比差异不显著。金盏菊的花数未受到园林废弃物添加比例不同的影响。

      以上数据表明:天竺葵和金盏菊的生长量在添加园林废弃物的处理中效果较对照组效果好。这是由于生长基质中堆肥的添加提供了充足的营养,且成熟的苗木通常比幼苗更耐盐。另外,在添加堆肥的基质中由高pH值和高电导率值所造成的植物性毒素在浇灌过程中可通过淋洗被稀释。

    • 育苗试验表明:园林废弃物对于天竺葵不是一个合适的育苗基质,即使在生长基质中替代25%的泥炭都会对天竺葵育苗产生不良影响。在金盏菊育苗试验中,基质中添加25%和50%园林废弃物的处理与对照组全泥炭的处理育苗效果相似,因此园林废弃物可以部分替代泥炭用于金盏菊育苗基质。

      盆栽试验表明在天竺葵和金盏菊的所有添加堆肥的处理中,植株生长量与纯泥炭处理相比效果相近或优于泥炭。因此,园林废弃物可以部分代替泥炭用于天竺葵和金盏菊的栽培基质。

参考文献 (16)

目录

/

返回文章
返回