留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

文冠果新梢发育过程中不同部位矿质元素的变化特性

梁芳 卫旭芳 白永超 侯智霞

梁芳, 卫旭芳, 白永超, 侯智霞. 文冠果新梢发育过程中不同部位矿质元素的变化特性[J]. 浙江农林大学学报, 2018, 35(4): 624-634. doi: 10.11833/j.issn.2095-0756.2018.04.007
引用本文: 梁芳, 卫旭芳, 白永超, 侯智霞. 文冠果新梢发育过程中不同部位矿质元素的变化特性[J]. 浙江农林大学学报, 2018, 35(4): 624-634. doi: 10.11833/j.issn.2095-0756.2018.04.007
LIANG Fang, WEI Xufang, BAI Yongchao, HOU Zhixia. Mineral elements for new shoot development in Xanthoceras sorbifolia new shoots[J]. Journal of Zhejiang A&F University, 2018, 35(4): 624-634. doi: 10.11833/j.issn.2095-0756.2018.04.007
Citation: LIANG Fang, WEI Xufang, BAI Yongchao, HOU Zhixia. Mineral elements for new shoot development in Xanthoceras sorbifolia new shoots[J]. Journal of Zhejiang A&F University, 2018, 35(4): 624-634. doi: 10.11833/j.issn.2095-0756.2018.04.007

文冠果新梢发育过程中不同部位矿质元素的变化特性

doi: 10.11833/j.issn.2095-0756.2018.04.007
基金项目: 

中央高校基本科研业务费专项资金资助项目 2015Z

详细信息
    作者简介: 梁芳, 从事经济林栽培与利用研究。E-mail:773763491@qq.com
    通信作者: 侯智霞, 副教授, 博士, 从事经济林栽培与利用研究。E-mail:hzxn2004@163.com
  • 中图分类号: S664.9;S718.3

Mineral elements for new shoot development in Xanthoceras sorbifolia new shoots

  • 摘要: 为探明文冠果Xanthoceras sorbifolia新梢发育过程中矿质元素的变化特性,找出新梢发育过程中影响各部位发育的关键营养元素,以文冠果为研究对象,通过连续流动分析仪和原子吸收仪测定了新梢生长发育过程中不同部位矿质元素(氮、磷、钾、铁、锰、铜、锌、钙、镁、钠)的质量分数,明确各元素在文冠果新梢内不同部位的分布规律与年动态变化趋势。结果显示:①文冠果新梢发育过程中不同部位氮、磷、钾、铜、铁、锌等质量分数下降,而钙、镁、锰、钠等质量分数则上升。②茎尖矿质元素质量分数接近于幼嫩叶片,并始终高于幼嫩叶片。③除了5月7日外,各时期叶片中的氮、磷、铁、锰等质量分数均高于茎段;各时期内茎尖、茎段、叶片中的钠质量分数差异均不显著。④在新梢生长初期叶片中的镁、锌、铜等质量分数高于茎段,生长后期叶片低于茎段;在新梢生长初期茎段中钾、钙元素质量分数高于叶片,生长后期茎段低于叶片。⑤因子分析结果显示:磷、氮、钾、铜、铁等质量分数对文冠果新梢的发育有重要影响;其中磷、氮、铜是影响茎尖发育的主要矿质元素,磷、氮、钾是影响茎段发育的主要矿质元素,磷、铜是影响叶片发育的主要矿质元素。⑥相关分析表明:氮、磷、钾、铜、锌这5种矿质营养元素之间的吸收与积累呈显著正相关(P < 0.05),而钙、镁、锰、钠等元素与氮、磷、钾、铜、锌等元素呈显著负相关(P < 0.05)。磷、氮、钾、铜、铁等对文冠果新梢的发育有着重要影响,在施肥时应该注意补充磷、氮、钾、铜、铁等影响较大的矿质元素。同时合理搭配其他必需的矿质元素,注意用量的协调,保证文冠果树体营养均衡、植株健康,使文冠果树施肥达到合理化和规范化。
  • 图  1  新梢生长期不同部位大量元素的变化特性

    Figure  1  Variation characteristics of major element in different parts of new shoots during the growing stages

    图  2  新梢生长期不同部位微量元素的变化特性

    Figure  2  Variation characteristics of trace element in different parts of new shoots during the growing stages

    表  1  文冠果新梢样品类型及取样情况

    Table  1.   Sample type and sampling situation of Xanthoceras sorbifolia new shoots

    样品类型 样品采集时间/(月-日)
    04-15 04-22 04-29 05-07 05-14 05-21 06-21 07-23 08-20 09-19
    茎尖 + + +
    嫩茎 + + + +
    半木质茎 + + + +
    木质茎 + + + + + + + +
    嫩叶 + + + +
    半木质叶 + + + +
    木质叶 + + + + + + + +
    说明:“+”代表该时期能取到的样品。“茎尖”为新梢茎尖生长点向下1.5 cm以内;“嫩茎”为幼嫩茎段;“半木质茎”为半木质化茎段;“木质茎”为木质化茎段;“嫩叶”为幼嫩茎段对应的叶片;“半木质叶”为半木质化茎段对应的叶片;“木质叶”为木质化茎段对应的叶片
    下载: 导出CSV

    表  2  文冠果茎尖、茎段、叶片方差最大化旋转后的因子载荷矩阵

    Table  2.   Rotated component matrix of shoot tip, stem and leaves of Xanthoceras sorbifolia

    矿质元素 茎尖成分 茎段成分 叶片成分
    1 2 1 2 3 1 2 3
    0.903 0.370 0.866 0.382 0.244 0.897 0.129 0.002
    0.740 0.659 0.809 0.460 0.299 0.833 0.518 0.060
    0.886 0.206 0.675 0.644 0.186 0.486 0.679 -0.250
    -0.266 0.910 0.900 -0.266 0.104 0.894 0.033 0.227
    0.691 0.630 0.161 0.130 0.903 0.576 0.324 0.631
    -0.892 0.202 0.142 0.433 0.633 -0.132 -0.074 0.936
    0.580 0.421 0.536 0.171 0.430 0.639 0.574 0.150
    -0.355 -0.869 -0.272 -0.108 -0.838 -0.330 -0.172 -0.841
    -0.788 0.030 0.008 -0.775 -0.273 -0.345 -0.790 -0.038
    0.134 0.904 -0.204 -0.854 -0.096 0.089 -0.780 -0.224
    说明:1, 2, 3分别表示公因子F1, F2F3
    下载: 导出CSV

    表  3  文冠果新梢不同部位矿质元素含量间的相关性

    Table  3.   Correlation among the contents of mineral elements in new shoots of Xanthoceras sorbifolia

    样品类型 元素
    茎尖 1
    0.903** 1
    0.825** 0.773* 1
    0.142 0.386 -0.102 1
    0.826** 0.948** 0.706* 0.369 1
    -0.715* -0.529 -0.707* 0.417 -0.465 1
    0.691 * 0.751* 0.437 0.146 0.797* -0.466 1
    -0.652 -0.826** -0.534 -0.750* -0.713* 0.139 -0.358 1
    -0.763* -0.526 -0.717* 0.111 -0.442 0.574 -0.133 0.401 1
    0.413 0.679* 0.407 0.699* 0.610 0.019 0.426 -0.818** 0.009 1
    茎段 1
    0.971** 1
    0.868** 0.911** 1
    0.653** 0.572** 0.376** 1
    0.406** 0.471** 0.387** 0.194 1
    0.401** 0.479** 0.508** 0.146 0.555** 1
    0.564** 0.587** 0.491** 0.435** 0.460** 0.366* 1
    -0.428** -0.429** -0.228 -0.200 -0.719** -0.497** -0.359* 1
    -0.384* -0.424** -0.458** 0.169 -0.325* -0.290 -0.316* 0.348* 1
    -0.445** -0.473** -0.678** -0.081 -0.235 -0.528** -0.272 -0.101 0.500** 1
    叶片 1
    0.819** 1
    0.472** 0.784** 1
    0.753** 0.765** 0.344* 1
    0.506** 0.664** 0.299* 0.696** 1
    -0.107 -0.090 -0.282 0.056 0.423** 1
    0.560** 0.799** 0.643** 0.627** 0.640** 0.043 1
    -0.233 -0.303* -0.022 -0.328* -0.702** _0.711** -0.380** 1
    -0.453** -0.679** -0.652** -0.267 -0.456** 0.029 -0.641** 0.305* 1
    -0.147 -0.398** -0.358* -0.175 -0.374* -0.082 -0.363* 0.008 0.419** 1
    说明:***分别表示在0.01水平(双侧)和0.05水平(双侧)上显著相关
    下载: 导出CSV
  • [1] 刘淑明, 孙丙寅, 贺安乾, 等.西部地区文冠果种群种子特征及主要化学成分的地理变化[J].林业科学, 2012, 48(4):43-48.

    LIU Shuming, SUN Bingyin, HE Anqian, et al. Geographical change of seed characteristic and the main chemical composition of Xanthoceras sorbifolia population in the west of China[J]. Sci Silv Sin, 2012, 48(4):43-48.
    [2] 王涛, 冯先桔, 林媚, 等.大棚栽培对翠冠梨叶片和果实矿质元素吸收与积累的影响[J].浙江农业学报, 2008, 20(3):190-194.

    WANG Tao, FENG Xianju, LIN Mei, et al. Effects of greenhouse cultivation on absorption and accumulation of mineral elements in leaves and fruits of Cuiguan pears[J]. Acta Agric Zhejiang, 2008, 20(3):190-194.
    [3] 夏国华, 黄坚钦, 解红恩, 等.山核桃不同器官矿质元素含量的动态变化[J].果树学报, 2014, 31(5):854-862.

    XIA Guohua, HUANG Jianqin, XIE Hongen, et al. Dynamic changes of mineral elements in different organs of hickory (Carya cathayensis)[J]. J Fruit Sci, 2014, 31(5):854-862.
    [4] DROSSOPOULOS B, KOUCHAJI G G, BOURANIS D L. Seasonal dynamics of mineral nutrients and carbohydrates by walnut tree leaves[J]. J Plant Nutr, 2008, 19(3/4):493-516.
    [5] SANTONIA F, PAOLINIB J, BARBONI T, et al. Relationships between the leaf and fruit mineral compositions of Actinidia deliciosa var. Hayward according to nitrogen and potassium fertilization[J]. Food Chem, 2014, 147(4):269-271.
    [6] ARZANI K, ROOSTA H R. Effects of paclobutrazol on vegetative and reproductive growth and leaf mineral content of mature apricot (Prunus armeniaca L.) trees[J]. J Agric Sci Technol, 2004, 6:43-55.
    [7] 侯岑, 张绍铃, 靳丛, 等. '翠冠'梨树苗不同部位矿质元素的分布与变化[J].中国农学通报, 2012, 28(22):173-178.

    HOU Cen, ZHANG Shaolin, JIN Cong, et al. Changing of mineral nutrition distribution in 'Cuguan Pear' tree[J]. Chin Agric Sci Bull, 2012, 28(22):173-178.
    [8] 唐将, 李勇, 付绍红, 等.奉节脐橙不同器官元素含量分布特征[J].生态学报, 2005, 25(1):31-36.

    TANG Jiang, LI Yong, FU Shaohong, et al. The distribution and abundance of chemical elements in different parts of Navel orange in Fengjie County, China[J]. Acta Ecol Sin, 2005, 25(1):31-36.
    [9] 严江勤, 曹永庆, 姚小华, 等.油茶春梢发育期叶片和果实中氮磷钾元素的动态变化[J].中南林科技大学学报, 2016, 32(2):50-55.

    YAN Jiangqin, CAO Yongqing, YAO Xiaohua, et al. Changes of nitrogen, phosphorous, potassium contents in leaves and fruits during spring shoots development phase of oil-tea Camellia[J]. J Centr South Univ For Technol, 2016, 32(2):50-55.
    [10] 阴黎明, 王力华, 刘波.文冠果叶片养分元素含量的动态变化及再吸收特性[J].植物研究, 2009, 29(6):685-691.

    YIN Liming, WANG Lihua, LIU Bo. Dynamic variation and resorption of nutrient elements in the leaves of Xanthoceras sorbifolia Bunge[J]. Bull Bot Res, 2009, 29(6):685-691.
    [11] 刘波, 王力华, 阴黎明, 等. 2种林龄文冠果叶N、P、K的季节变化及再吸收特征[J].生态学杂志, 2010, 29(7):1270-1276.

    LIU Bo, WANG Lihua, YIN Liming, et al. Seasonal variation and resorption characteristics of leaf N, P, and K in two aged Xanthoceras sorbifolia plantations[J]. Chin J Ecol, 2010, 29(7):1270-1276.
    [12] 张敏, 黄利斌, 周鹏, 等.榉树秋季转色期叶色变化的生理生化[J].林业科学, 2015, 51(8):44-51.

    ZHANG Min, HUANG Libin, ZHOU Peng, et al. Physiological and biochemical changes in Zelkova serrata leaves during leaf color transformation in autumn[J]. Sci Silv Sin, 2015, 51(8):44-51.
    [13] 郭秀珠, 陈巍, 潘君慧, 等.瓯柑果实发育过程中糖和矿质元素的积累[J].浙江农业学报, 2014, 26(4):892-895.

    GUO Xiuzhu, CHEN Wei, PAN Junhui, et al. Study on the accumulation of sugar and mineral elements in the development period of Ougan fruits[J]. Acta Agric Zhejiang, 2014, 26(4):892-895.
    [14] 范晓明, 袁德义, 段经华, 等.锥栗种仁发育期中叶片与果实矿质元素含量的变化[J].园艺学报, 2014, 41(1):44-52.

    FAN Xiaoming, YUAN Deyi, DUAN Jinghua, et al. Dynamic changes of main mineral elements content in developing fruits and leaves of Castanea henryi[J]. Acta Hortic Sin, 2014, 41(1):44-52.
    [15] 杨盛, 郝国伟, 张晓伟, 等. '玉露香梨'僵芽发生与矿质营养的关系[J].林业科学, 2016, 52(2):127-133.

    YANG Sheng, HAO Guowei, ZHANG Xiaowei, et al. Effects of mineral nutrition on formation of wizened bud in 'Yuluxiangli' pear[J]. Sci Silv Sin, 2016, 52(2):127-133.
    [16] FERNÁNDEZ-ESCOBAR R, MORENO R, GARCIÍA-CREUS M. Seasonal changes of mineral nutrients in olive leaves during the alternate-bearing cycle[J]. Sci Hortic, 1999, 82(1/2):25-45.
    [17] 樊红柱, 同延安, 吕世华.苹果树体不同部位元素含量与累积量季节性变化研究[J].西南农业学报, 2007, 20(6):1202-1206.

    FAN Hongzhu, TONG Yanan, LÜShihua. Studies on seasonal variation of nutrient elements concentration and accumulation in different organs of apple tree[J]. Southwest China J Agric Sci, 2007, 20(6):1202-1206.
    [18] 阎永齐, 刘磊, 刘吉祥, 等.中华猕猴桃叶果营养元素动态及其相关性[J].果树学报, 2016, 33(3):307-313.

    YAN Yongqi, LIU Lei, LIU Jixiang, et al. Dynamics of mineral elements in leaf and fruit of Actinidia chinensis and correlation analysis[J]. J Fruit Sci, 2016, 33(3):307-313.
    [19] 刘萌萌, 曾燕如, 江建斌, 等.香榧生长期叶片和种子中矿质元素动态变化研究[J].浙江农林大学学报, 2014, 31(5):724-729.

    LIU Mengmeng, ZENG Yanru, JIANG Jianbin, et al. Mineral elements in leaves and seeds of Torreya grandis 'Merrillii' during seed development[J]. J Zhejiang A&F Univ, 2014, 31(5):724-729.
    [20] 陈巍, 郭秀珠, 黄品湖, 等.四季柚生育期叶片和果实中矿质元素含量变化的研究[J].植物营养与肥料学报, 2013, 19(3):664-669.

    CHEN Wei, GUO Xiuzhu, HUANG Pinhu, et al. Variations of mineral elements contents in Sijiyou pummel leaves and fruits during the development period[J]. Plant Nutr Fert, 2013, 19(3):664-669.
    [21] 郑瑞杰, 王德永, 雷鸣.日本栗叶片矿质营养元素含量年动态变化的研究[J].西北林学院学报, 2008, 23(4):14-17.

    ZHENG Ruijie, WANG Deyong, LEI Ming. Annual dynamic changes of the mineral nutrition contents in leaves of Castanea crenata Sieb. et Zucc.[J]. J Northwest For Univ, 2008, 23(4):14-17.
    [22] JIMÉNEZ S, PINOCHET J, GOGORCENA Y, et al. Influence of different vigour cherry rootstocks on leaves and shoots mineral composition[J]. Sci Hortic, 2007, 112(1):73-79.
    [23] 秦玉芝, 陈军, 李朝阳, 等.米良1号猕猴桃营养期主要矿质元素分配、吸收特性研究[J].果树学报, 2004, 21(3):212-215.

    QIN Yuzhi, CHEN Jun, LI Chaoyang, et al. Study on dietribution and absorption property of the main mineral elements in Actinidia deliciosa 'Miliang-1'[J]. J Fruit Sci, 2004, 21(3):212-215.
    [24] 刘兴良, 宿以明, 刘世荣, 等.四川西部川西云杉人工林非同化器官营养元素含量与分布[J].生态学报, 2003, 23(12):2573-2578.

    LIU Xingliang, SU Yiming, LIU Shirong, et al. Macronutrients and their allocations in non-photosynthetic organs in the Picea balfouriana in western Sichuan[J]. Acta Ecol Sin, 2003, 23(12):2573-2578.
    [25] MILLALEO R, REYES-DIAZ M, IVANOV A G, et al. Manganese as essential and toxic element for plants:transport, accumulation and resistance mechanisms[J]. J Soil Sci Plant Nutr, 2010, 10(4):476-494.
    [26] CONN S, GILLIHAM M. Comparative physiology of elemental distributions in plants[J]. Ann Bot, 2010, 105(7):1081-1102.
    [27] 李焕忠, 张吉立. 5种微量元素对紫叶矮樱叶绿素a含量影响的研究[J].中国农学通报, 2010, 26(16):242-245.

    LI Huanzhong, ZHANG Jili. Studies on the impact of Prunus×Cistena pissardii chlorophyll a concentration in five kinds of trace elements[J]. Chin Agric Sci Bull, 2010, 26(16):242-245.
    [28] VERA-ESTRELLA R, MIRANDA-VERGARA M C, BARKLA B J. Zinc tolerance and accumulation in stable cell suspension culture sand in vitro regenerated plants of the emerging model plant Arabidopsi shalleri (Brassicaceae)[J]. Planta, 2009, 229(4):977-986.
    [29] 袁紫倩, 杨先裕, 凌骅, 等.薄壳山核桃'马汉'叶片主要矿质营养元素生育期动态变化特征[J].西北植物学报, 2014, 34(7):1443-1449.

    YUAN Ziqian, YANG Xianyu, LING Hua, et al. Dynamic changes of leaves' main mineral elements nutrients in pecan 'Mahhan's growth period[J]. Acta Bot Boreal-Occident Sin, 2014, 34(7):1443-1449.
    [30] 杨鹏, 胥晓.青杨雌雄幼苗对主要矿质元素的吸收与分配差异[J].植物研究, 2011, 31(2):188-192.

    YANG Peng, XU Xiao. Differences in absorption and distribution of main mineral elements between male and female Populus cathayana seedlings[J]. Bull Bot Res, 2011, 31(2):188-192.
    [31] BENITO B, HARO R, AMTMANN A, et al. The twins K+ and Na+ in plants[J]. J Plant Physiol, 2014, 171(9):723-731.
  • [1] 朱洪盛, 赵炯昌, 池金洺, 王子涵, 王丽平, 王正泽, 于洋.  晋西黄土区典型造林整地措施对土壤水分动态的影响 . 浙江农林大学学报, 2024, 41(5): 996-1004. doi: 10.11833/j.issn.2095-0756.20240114
    [2] 叶淑媛, 曾燕如, 曹永庆, 田苏奎, 喻卫武.  香榧种实生长早期枝叶和种实矿质元素质量分数及积累量动态分析 . 浙江农林大学学报, 2024, 41(5): 1047-1055. doi: 10.11833/j.issn.2095-0756.20230583
    [3] 许慧慧, 刘肖娟, 王孟珂, 毕泉鑫, 王利兵, 于海燕.  文冠果不同种质资源的叶片解剖结构分析及抗旱性评价 . 浙江农林大学学报, 2023, 40(2): 348-355. doi: 10.11833/j.issn.2095-0756.20220202
    [4] 叶淑媛, 曾燕如, 胡渊渊, 龙伟, 汪舍平, 喻卫武.  香榧初结果母枝性状变化规律与结实能力的关系 . 浙江农林大学学报, 2022, 39(1): 41-49. doi: 10.11833/j.issn.2095-0756.20200622
    [5] 徐桠楠, 宋程威, 张利霞, 郭丽丽, 段祥光, 刘曙光, 侯小改.  油用牡丹‘凤丹’不同生育期矿质元素的动态变化 . 浙江农林大学学报, 2021, 38(1): 128-137. doi: 10.11833/j.issn.2095-0756.20200303
    [6] 龚翔宇, 饶帅琦, 吕晓菡, 杨静, 祝彪.  杭椒采收期内辣椒素类物质和维生素C的动态变化 . 浙江农林大学学报, 2020, 37(5): 950-956. doi: 10.11833/j.issn.2095-0756.20190577
    [7] 牛媛, 敖妍, 李云, 田秀铭, 杨长文, 刘小天, 李志虹.  文冠果优良无性系授粉组合选择及结实性状分析 . 浙江农林大学学报, 2020, 37(2): 209-219. doi: 10.11833/j.issn.2095-0756.2020.02.003
    [8] 陈圣贤, 董莲春, 伊力塔, 俞飞, 陈景锋.  秃瓣杜英幼苗对模拟酸雨的荧光响应及养分元素分配特征 . 浙江农林大学学报, 2019, 36(3): 451-458. doi: 10.11833/j.issn.2095-0756.2019.03.004
    [9] 张毅, 敖妍, 刘觉非, 赵磊磊, 由海德.  不同群体文冠果种实性状变异特征 . 浙江农林大学学报, 2019, 36(5): 1037-1043. doi: 10.11833/j.issn.2095-0756.2019.05.025
    [10] 何国庆, 俞春莲, 饶盈, 章富阳, 沈晓飞, 黄坚钦, 刘力, 夏国华.  山核桃果实成熟过程中矿质元素及脂肪酸组分变化 . 浙江农林大学学报, 2019, 36(6): 1208-1216. doi: 10.11833/j.issn.2095-0756.2019.06.019
    [11] 谢明明, 郭素娟, 宋影, 张丽, 孙慧娟.  板栗细根的空间分布格局及季节动态 . 浙江农林大学学报, 2018, 35(1): 60-67. doi: 10.11833/j.issn.2095-0756.2018.01.008
    [12] 黎祖尧, 张艳华, 张雷, 李苑, 孙娅东.  厚竹孕笋成竹过程中内源激素动态变化 . 浙江农林大学学报, 2018, 35(6): 1107-1114. doi: 10.11833/j.issn.2095-0756.2018.06.014
    [13] 蔡宙霏, 陈雅奇, 许馨露, 王小东, 汪俊宇, 张汝民, 高岩.  4个桂花品种开花进程释放VOCs动态变化分析 . 浙江农林大学学报, 2017, 34(4): 608-619. doi: 10.11833/j.issn.2095-0756.2017.04.006
    [14] 李广会, 郭素娟, 谢鹏.  不同林龄板栗叶片矿质营养的季节变化及差异分析 . 浙江农林大学学报, 2014, 31(1): 37-43. doi: 10.11833/j.issn.2095-0756.2014.01.006
    [15] 刘萌萌, 曾燕如, 江建斌, 韩炯, 喻卫武.  香榧生长期叶片和种子中矿质元素动态变化研究 . 浙江农林大学学报, 2014, 31(5): 724-729. doi: 10.11833/j.issn.2095-0756.2014.05.010
    [16] 钭培明, 孙淑芳, 张新凤, 斯金平, 刘京晶.  采收时期对杭白菊4个新品种矿质元素的影响 . 浙江农林大学学报, 2013, 30(6): 858-862. doi: 10.11833/j.issn.2095-0756.2013.06.009
    [17] 陆国富, 杜华强, 周国模, 吕玉龙, 谷成燕, 商珍珍.  毛竹笋快速生长过程中冠层参数动态及其与光合有效辐射的关系 . 浙江农林大学学报, 2012, 29(6): 844-850. doi: 10.11833/j.issn.2095-0756.2012.06.007
    [18] 王斌, 杨效生, 张彪, 刘某承.  1973 - 2003年中国森林生态系统服务功能变化研究 . 浙江农林大学学报, 2009, 26(5): 714-721.
    [19] 王荣萍, 李淑仪, 伍涛, 覃醒华, 廖新荣, 蓝佩玲.  无核黄皮叶片中矿质元素质量分数的年动态变化 . 浙江农林大学学报, 2008, 25(2): 200-205.
    [20] 金雅琴, 黄雪芳, 李冬林, 向其柏.  中国石蒜花期前后鳞茎内源多胺的动态变化 . 浙江农林大学学报, 2007, 24(4): 419-423.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2018.04.007

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2018/4/624

图(2) / 表(3)
计量
  • 文章访问数:  2723
  • HTML全文浏览量:  700
  • PDF下载量:  474
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-23
  • 修回日期:  2017-10-09
  • 刊出日期:  2018-08-20

文冠果新梢发育过程中不同部位矿质元素的变化特性

doi: 10.11833/j.issn.2095-0756.2018.04.007
    基金项目:

    中央高校基本科研业务费专项资金资助项目 2015Z

    作者简介:

    梁芳, 从事经济林栽培与利用研究。E-mail:773763491@qq.com

    通信作者: 侯智霞, 副教授, 博士, 从事经济林栽培与利用研究。E-mail:hzxn2004@163.com
  • 中图分类号: S664.9;S718.3

摘要: 为探明文冠果Xanthoceras sorbifolia新梢发育过程中矿质元素的变化特性,找出新梢发育过程中影响各部位发育的关键营养元素,以文冠果为研究对象,通过连续流动分析仪和原子吸收仪测定了新梢生长发育过程中不同部位矿质元素(氮、磷、钾、铁、锰、铜、锌、钙、镁、钠)的质量分数,明确各元素在文冠果新梢内不同部位的分布规律与年动态变化趋势。结果显示:①文冠果新梢发育过程中不同部位氮、磷、钾、铜、铁、锌等质量分数下降,而钙、镁、锰、钠等质量分数则上升。②茎尖矿质元素质量分数接近于幼嫩叶片,并始终高于幼嫩叶片。③除了5月7日外,各时期叶片中的氮、磷、铁、锰等质量分数均高于茎段;各时期内茎尖、茎段、叶片中的钠质量分数差异均不显著。④在新梢生长初期叶片中的镁、锌、铜等质量分数高于茎段,生长后期叶片低于茎段;在新梢生长初期茎段中钾、钙元素质量分数高于叶片,生长后期茎段低于叶片。⑤因子分析结果显示:磷、氮、钾、铜、铁等质量分数对文冠果新梢的发育有重要影响;其中磷、氮、铜是影响茎尖发育的主要矿质元素,磷、氮、钾是影响茎段发育的主要矿质元素,磷、铜是影响叶片发育的主要矿质元素。⑥相关分析表明:氮、磷、钾、铜、锌这5种矿质营养元素之间的吸收与积累呈显著正相关(P < 0.05),而钙、镁、锰、钠等元素与氮、磷、钾、铜、锌等元素呈显著负相关(P < 0.05)。磷、氮、钾、铜、铁等对文冠果新梢的发育有着重要影响,在施肥时应该注意补充磷、氮、钾、铜、铁等影响较大的矿质元素。同时合理搭配其他必需的矿质元素,注意用量的协调,保证文冠果树体营养均衡、植株健康,使文冠果树施肥达到合理化和规范化。

English Abstract

梁芳, 卫旭芳, 白永超, 侯智霞. 文冠果新梢发育过程中不同部位矿质元素的变化特性[J]. 浙江农林大学学报, 2018, 35(4): 624-634. doi: 10.11833/j.issn.2095-0756.2018.04.007
引用本文: 梁芳, 卫旭芳, 白永超, 侯智霞. 文冠果新梢发育过程中不同部位矿质元素的变化特性[J]. 浙江农林大学学报, 2018, 35(4): 624-634. doi: 10.11833/j.issn.2095-0756.2018.04.007
LIANG Fang, WEI Xufang, BAI Yongchao, HOU Zhixia. Mineral elements for new shoot development in Xanthoceras sorbifolia new shoots[J]. Journal of Zhejiang A&F University, 2018, 35(4): 624-634. doi: 10.11833/j.issn.2095-0756.2018.04.007
Citation: LIANG Fang, WEI Xufang, BAI Yongchao, HOU Zhixia. Mineral elements for new shoot development in Xanthoceras sorbifolia new shoots[J]. Journal of Zhejiang A&F University, 2018, 35(4): 624-634. doi: 10.11833/j.issn.2095-0756.2018.04.007
  • 文冠果Xanthoceras sorbifolia是中国特有的木本药食两用油料植物及生物质能源植物[1],抗逆性强,具有较高的生态效益、经济效益、食用价值、药用价值和观赏价值等,是一种极具应用价值和发展潜力的生物能源树种。矿质营养是果树生长发育、产量形成和品质提高的基础[2]。了解果树矿质营养元素的动态变化,对于明确树体对营养元素的需求动态、吸收能力和养分调控具有重要意义[3]。新梢的生长状况直接影响到果树的树体生长、发育和开花结果。核桃Juglans regia[4],猕猴桃Actinidia chinensis[5],杏Armeniaca vulgaris[6]等果树矿质营养动态变化的研究对象主要集中在发育过程中的叶片,梨Pyrus pyrifolia[7]和脐橙Citrus sinensis[8]等果树不同器官矿质元素的研究主要针对根、干、枝、梢、叶、果等器官之间的分布特征进行分析。严江勤等[9]对油茶Camellia oleifera春梢发育期叶片的动态变化研究表明,在春梢发育期新叶中氮、磷、钾元素高于老叶,并且随着春梢的生长发育,新叶中氮、磷、钾呈现出明显的下降趋势。对于文冠果矿质营养元素的动态变化,阴黎明等[10]和刘波等[11]主要针对叶片进行了研究,而文冠果新梢发育过程中的矿质元素变化特性尚不清楚。并且,果树新梢矿质营养的研究多是针对发育过程中的新梢叶片或整个新梢的变化趋势,而在此期间新梢的茎尖、叶片、茎段等不同部位的养分变化特性及其可能存在的相互作用尚不清楚。本研究对文冠果新梢发育过程中不同部位的矿质元素质量分数及变化规律进行分析,旨在明确文冠果新梢发育过程中各种元素的时(发育过程)空(不同器官组织)变化规律,找出新梢发育过程中影响各部位发育的关键营养元素,探寻各元素之间可能存在的相互关系,为了解文冠果新梢发育过程中关键器官和组织部位的矿质营养特性提供参考。

    • 试材为文冠果新梢,采自北京市昌平苗圃5年生的文冠果树,取材于2016年4月15日萌芽抽梢起,至2016年9月19日主要生长期结束(开始落叶)止。根据文冠果枝梢的生长特性,4月15日至5月21日为新梢速生期,取样品1次·周-1;5月中旬速生期结束,顶芽逐渐形成,从5月21日开始取样品1次·月-1。每次取样随机选取长势一致无病虫害的文冠果植株5株为1个小区,选取东南西北4个方向外围健壮新梢5~10条·株-1,混合为1份样品,3次重复。根据文冠果新梢枝条的发育程度不同,将新梢样品分为茎尖(新梢茎尖生长点向下1.5 cm以内)、幼嫩茎段(茎尖下组织幼嫩未木质化的茎段)、幼嫩叶片、半木质化茎段(幼嫩茎段下柔韧性好的茎段)、半木质化茎段对应的叶片、木质化茎段(半木质化茎段下的茎段)、木质化茎段对应的叶片,总共7个部位,取各个部位的材料为1份样品,鲜质量约取20 g·样品-1,用于矿质元素的测定。枝条不同发育时期取样类型有所不同。具体样品情况见表 1

      表 1  文冠果新梢样品类型及取样情况

      Table 1.  Sample type and sampling situation of Xanthoceras sorbifolia new shoots

      样品类型 样品采集时间/(月-日)
      04-15 04-22 04-29 05-07 05-14 05-21 06-21 07-23 08-20 09-19
      茎尖 + + +
      嫩茎 + + + +
      半木质茎 + + + +
      木质茎 + + + + + + + +
      嫩叶 + + + +
      半木质叶 + + + +
      木质叶 + + + + + + + +
      说明:“+”代表该时期能取到的样品。“茎尖”为新梢茎尖生长点向下1.5 cm以内;“嫩茎”为幼嫩茎段;“半木质茎”为半木质化茎段;“木质茎”为木质化茎段;“嫩叶”为幼嫩茎段对应的叶片;“半木质叶”为半木质化茎段对应的叶片;“木质叶”为木质化茎段对应的叶片
    • 将各不同部位的鲜样品置于105 ℃烘箱中杀青30 min,然后80 ℃下烘干至恒量[12],将样品粉碎后置于干燥处存放备测。精确称取烘干样品0.2 g,经硫酸-过氧化氢(H2SO4-H2O2)消煮[13]后,用连续流动分析仪测定全氮、全磷。再精确称取样品0.2 g,经硝酸-高氯酸(HNO3-HClO4)消煮[14]后,用原子吸收光谱仪分别测定钾、铁、铜、锰、锌、钙、镁、钠等。

    • 采用SPSS 19.0对数据进行分析。分别对茎尖、茎段(茎段前未加限定词即表示包括幼嫩、半木质化和木质化茎段等3部分)、叶片(叶片前未加限定词即表示包括分别与幼嫩、半木质化和木质化茎段相对应的叶片等3部分)的各矿质元素质量分数进行因子分析和相关性分析。因子分析由相关系数矩阵计算得到特征值、方差贡献率和累积贡献率;采用主成分法计算因子载荷矩阵,对初始因子载荷矩阵进行方差最大化旋转,经过方差最大化旋转后的旋转因子矩阵得到有意义的因子。相关性分析采用Pearson相关系数法。新梢不同部位的各个元素质量分数均先由3次重复求得平均值,再采用Excel 2013对每个元素的平均值作图。

    • 新梢不同部位氮质量分数(图 1A)总体呈现先下降后上升最后趋于平稳的趋势;茎段中氮质量分数均低于其相对应的叶片中(除了5月7日幼嫩枝梢)。幼嫩新梢生长初期(4月15日),幼嫩茎段氮质量分数为33.048 mg·g-1,同时期的茎尖和幼嫩茎段对应的叶片氮质量分数分别是幼嫩茎段的1.73倍和1.30倍;随着新梢生长发育,幼嫩茎段及其叶片的氮质量分数明显下降。半木质化茎段的氮质量分数低于其对应叶片,并且低于幼嫩枝梢;随着枝梢发育,至顶芽逐渐形成(5月7日)半木质化与木质化部位的茎和叶氮质量分数均降至谷底,随后上升;5月上旬(5月7日)可能是氮元素作用方式的关键转折点;随着木质化程度加深,半木质化枝梢茎和叶的氮质量分数分别接近同期木质化枝梢中的茎和叶。5月中旬(5月14日)后新梢枝条发育完全木质化,氮质量分数逐渐趋于平稳状态;其中木质化茎段中的氮质量分数低于其相对应的叶片中。

      图  1  新梢生长期不同部位大量元素的变化特性

      Figure 1.  Variation characteristics of major element in different parts of new shoots during the growing stages

    • 新梢不同部位磷质量分数(图 1B)均呈现下降趋势,茎段中磷质量分数均低于其相对应的叶片中(除了5月7日幼嫩茎段及其叶片磷质量分数相似外)。新梢生长初期(4月15日),幼嫩茎段磷质量分数为6.129 mg·g-1,茎尖和幼嫩茎段对应的叶片磷质量分数分别是幼嫩茎段的1.66倍和1.32倍;随着新梢的生长发育,磷质量分数明显下降,至顶芽形成时(5月7日)嫩茎及其对应的叶片中磷质量分数相似。半木质化的茎段磷低于其对应的叶片,并低于幼嫩枝梢。随着枝梢发育,木质化逐渐加深,半木质化与木质化部分的茎段磷质量分数趋于接近并逐渐降低,半木质化与木质化部分相对应的叶片磷趋于接近并逐渐降低。木质化枝梢中,茎段中的磷始终低于相对应的叶片;随着新梢木质化逐渐加深,5月中旬(5月14日)至6月下旬(6月21日)磷质量分数变化趋势平稳;随后磷呈下降趋势,叶片到7月中下旬(7月23日)磷质量分数降至谷值(1.115 mg·g-1)随后升高,茎段到8月下旬(8月20日)磷降至谷值(0.272 mg·g-1)时叶片出现小峰值;其中茎段中的磷质量分数始终低于相对应的叶片。

    • 新梢不同部位钾质量分数(图 1C)总体呈现下降趋势,与磷元素的变化趋势类似。新梢生长初期(4月15日),茎尖与幼嫩茎段中钾质量分数相似并高于幼嫩茎段对应的叶片(18.422 mg·g-1);幼嫩新梢中,钾质量分数在茎段中高于其相对应的叶片;至顶芽形成时,嫩茎及其对应的叶片中钾质量分数相似(5月7日)。半木质化枝梢中,茎段及其相对应的叶片中的钾质量分数相似,并且低于幼嫩枝梢;前期(4月29日至5月7日)钾质量分数高于木质化枝梢;随着枝梢发育,钾质量分数逐渐降低,至5月中旬,木质化程度加深,半木质化枝梢中的钾质量分数接近木质化枝梢中。木质化枝梢中,枝梢旺盛生长期间(4月底至5月底)钾逐渐下降,其中茎段中的钾高于其相对应的叶片中,至6月下旬(6月21日)出现转折并且茎叶均降至谷底,随后钾逐渐升高,茎段中钾质量分数在7月中下旬出现小峰值,叶片中钾质量分数在8月中下旬出现小峰值。推测枝梢生长旺盛发育期间钾元素的代谢和利用活跃,6月中下旬是茎叶中钾质量分数变化的关键转折点。

    • 新梢发育过程中,幼嫩部位中的钙质量分数(图 1D)较低,不同部位钙质量分数总体呈现上升趋势。幼嫩新梢生长初期(4月15日),茎尖钙质量分数(0.048 mg·g-1)最低,幼嫩茎段及其对应的叶钙质量分数分别为茎尖的25.57倍和9.78倍;随着新梢的生长发育,茎尖钙质量分数仍稳定在较低水平,幼嫩茎段及其叶片中钙呈上升趋势,其中幼嫩茎段中钙高于其对应的叶片。半木质化枝梢(4月中旬至5月上旬)中,在4月29日前半木质化茎段中钙高于其对应的叶片,随着木质化逐渐加深,于4月29日出现转折,并且半木质化枝梢中钙高于幼嫩枝梢;之后,半木质化部分枝梢叶片中的钙继续升高,而相对应的茎段中的钙大幅度降低至木质化茎段中相当水平。木质化部分枝梢中,叶片中的钙高于茎段中;随着枝梢的发育,叶片和茎段中的钙都大幅度升高;至7月下旬(7月23日)叶片中钙质量分数达到峰值[生长初期(4月15日)茎尖的378.40倍],随后叶片钙小幅度下降;而该时期(7月23日)木质化茎段出现拐点,钙明显低于前后的时期,随后钙质量分数大幅度升高。

    • 新梢不同部位镁(图 1E)呈波浪状上升的变化;总体上叶片中的镁高于茎段中(除了4月22日和5月14日的半木质化枝梢与5月7日和9月19日的木质化枝梢)。幼嫩新梢生长初期(4月15日)茎段镁质量分数(0.854 mg·g-1)与其叶片质量分数相似;随着枝梢的生长发育,幼嫩茎段中镁质量分数低于其相对应的叶片,茎尖和幼嫩茎段中镁质量分数相似。半木质化枝梢镁质量分数介于幼嫩新梢的茎叶之间,随着新梢的发育,在5月中旬(5月14日)半木质化与木质化茎段镁质量分数相似。木质化枝梢中,4月29日到5月7日茎段中镁质量分数高于其对应的叶片,5月14日出现转折,8月20日再次出现转折;到生长末期(9月19日)木质化茎段及其对应的叶片镁质量分数均达到最高[分别为幼嫩茎段(4月15日)的2.56倍和2.11倍]。

    • 新梢不同部位铜(图 2A)总体呈现先下降后上升再下降的趋势。幼嫩新梢中生长初期(4月15日),茎尖铜质量分数(0.016 mg·g-1)高于茎段及其相对应的叶片;幼嫩新梢生长前期,幼嫩茎段铜质量分数低于其对应叶片,至4月底,嫩茎及其对应的叶片中铜质量分数相似(4月29日),随后出现转折。半木质化茎段及其相对应的叶片中铜质量分数在前期(4月22日至4月29日)相似,后期(5月7日至5月14日)半木质化茎段中铜低于叶片。随着枝梢的发育,木质化枝梢中,茎段中铜于5月14日降至低谷,叶片在茎段降至低谷后1周也降至低谷;随后明显上升,茎和叶中铜均于7月23日达到峰值;5月初为木质化枝梢茎和叶中铜质量分数变化的转折点(由木质化茎段中铜低于其对应叶片转变为茎段中铜高于其对应叶片)。

      图  2  新梢生长期不同部位微量元素的变化特性

      Figure 2.  Variation characteristics of trace element in different parts of new shoots during the growing stages

    • 新梢不同部位铁(图 2B)总体呈现下降趋势,其中生长初期下降趋势较显著,顶芽形成后趋于平稳;各时期茎段中铁均明显低于叶片中(除了5月7日的幼嫩枝梢外)。幼嫩新梢生长初期(4月15日)叶片中铁质量分数(0.397 mg·g-1)最高,高于幼嫩茎段;至顶芽形成时(5月7日),嫩茎及其对应的叶片中铁质量分数相似。半木质化枝梢,前期(4月22日至4月29日)半木质化与幼嫩茎段中,以及其所对应的叶片中铁质量分数相似;半木质化茎段铁质量分数低于其相对应的叶片;随着新梢的生长发育,至顶芽逐渐形成(5月7日)时半木质化茎段及其叶片均降至低谷。木质化枝梢,顶芽形成(5月7日)时茎段铁质量分数降至低谷(幼嫩茎段生长初期的10.08%),在5月21日叶片中铁质量分数也降至最低;随着枝梢木质化逐渐加深,茎和叶铁质量分数均于6月21日达到峰值;随着新梢的发育,7月23日至9月19日茎段先出现低谷后又出现峰值,叶片于7月23日降低后小幅度上升;期间,木质化枝梢茎段中铁质量分数始终低于其叶片中。

    • 新梢不同部位锌(图 2C)总体呈现先下降后趋于平稳的趋势。新梢生长初期(4月15日),幼嫩茎段中锌质量分数为0.075 mg·g-1,茎尖和幼嫩茎段对应的叶锌质量分数分别为幼嫩茎段的1.51倍和1.23倍;随着新梢的发育,幼嫩枝梢各部位锌明显下降;至顶芽形成时(5月7日),嫩茎及其对应的叶片中锌质量分数相似。半木质化枝梢,生长前期(4月22日)茎及其对应的叶中锌质量分数相似,随着新梢的生长发育,茎段中锌逐渐下降,叶片中锌质量分数于4月29日达到峰值后下降;于5月14日茎及其对应的叶片中锌质量分数再次相似。木质化枝梢,于5月14日茎段及其叶片的锌均降至低谷;随着木质化逐渐加深,茎段及其叶片中锌逐渐上升,并于7月中下旬出现小峰值随后下降;其中顶芽形成后(5月14日)木质化茎段中的锌质量分数高于其相对应的叶片。

    • 新梢木质化茎段对应的叶中锰(图 2D)总体呈现上升趋势,其他部位锰变化趋势较平稳;各时期茎段中锰质量分数均明显低于叶片中(除了5月7日的幼嫩枝梢外)。幼嫩新梢中,茎段中锰质量分数低于其相对应的叶片;至顶芽形成时(5月7日),嫩茎及其对应的叶片中锰质量分数相似;幼嫩枝梢锰质量分数介于半木质化茎段及其相对应的叶片之间。半木质化枝梢发育过程中,叶片于4月29日降至低谷,茎段于5月7日达到峰值;其中半木质化茎段中锰质量分数低于其叶片。木质化枝梢中,随着枝梢木质化逐渐加深,茎段中锰质量分数小幅度变化,其中顶芽形成时(5月14日)茎段降至低谷,7月23日茎段出现小峰值;随着枝梢发育,叶片中锰逐渐升高,其中顶芽形成时(5月14日)出现第1个小峰值,并于7月23日锰质量分数(0.043 mg·g-1)到达最高;其中茎段中的锰质量分数明显低于其相应的叶片。

    • 在整个发育过程中,新梢同一发育时期不同部位(茎尖、幼嫩、半木质化、木质化茎段及其相对应的叶片)的钠质量分数(图 2E)均无明显差异,变化趋势基本一致。新梢生长初期(4月15日)幼嫩枝梢的茎尖钠质量分数(0.317 mg·g-1)较低;随着新梢的生长发育,幼嫩枝梢与半木质化枝梢的钠明显上升,至4月底(4月29日)出现小峰值[约为生长初期(4月15日)茎尖钠质量分数的1.80倍],随后平缓下降。随着枝梢发育木质化程度加深,6月中下旬钠(6月21日)降至低谷,至7月中下旬(7月23日)钠(是初期茎尖的2.52倍)显著升高,7-8月钠维持较高水平,9月钠迅速降至最低(是初期茎尖的70.97%)。

    • 从茎尖、茎段、叶片的综合因子表达式(表 2)可以看出:磷、氮、钾、铜等对文冠果新梢发育有着重要影响。其中茎尖、茎段与叶片的第一因子的方差占所有因子方差均大于50%。因此,第一因子中的主成分对新梢发育也有较大的影响,从茎尖、茎段、叶片的第一因子表达式可以看出:氮、磷、铁、钾、锰等对文冠果新梢发育也有着较大的影响。

      表 2  文冠果茎尖、茎段、叶片方差最大化旋转后的因子载荷矩阵

      Table 2.  Rotated component matrix of shoot tip, stem and leaves of Xanthoceras sorbifolia

      矿质元素 茎尖成分 茎段成分 叶片成分
      1 2 1 2 3 1 2 3
      0.903 0.370 0.866 0.382 0.244 0.897 0.129 0.002
      0.740 0.659 0.809 0.460 0.299 0.833 0.518 0.060
      0.886 0.206 0.675 0.644 0.186 0.486 0.679 -0.250
      -0.266 0.910 0.900 -0.266 0.104 0.894 0.033 0.227
      0.691 0.630 0.161 0.130 0.903 0.576 0.324 0.631
      -0.892 0.202 0.142 0.433 0.633 -0.132 -0.074 0.936
      0.580 0.421 0.536 0.171 0.430 0.639 0.574 0.150
      -0.355 -0.869 -0.272 -0.108 -0.838 -0.330 -0.172 -0.841
      -0.788 0.030 0.008 -0.775 -0.273 -0.345 -0.790 -0.038
      0.134 0.904 -0.204 -0.854 -0.096 0.089 -0.780 -0.224
      说明:1, 2, 3分别表示公因子F1, F2F3
    • 在文冠果新梢生长期,新梢的茎尖、茎段、叶片矿质元素的相关性分析结果见表 3。茎尖中氮、磷、钾、铜、锌等之间显著正相关(P<0.05),铁与镁显著正相关(P<0.05),氮、钾分别与锰、钙显著负相关(P<0.05),磷、铁、铜、镁等分别与钠显著负相关(P<0.05)。茎段中氮、磷、钾、铜、锰、锌等之间极显著正相关(P<0.01),铁与氮、磷、钾、锌等均极显著正相关(P<0.01),镁、钠均与钙显著正相关(P<0.05),钠、钙分别与氮、磷、铜、锌等极显著负相关(P<0.01),镁与氮、磷、钾、锰等均极显著负相关(P<0.01)。叶片中氮、磷、钾、铁、铜、锌等之间极显著或显著正相关,钠、镁分别与钙显著正相关(P<0.05),钠与磷、铁、铜、锰、锌等均显著负相关(P<0.05),钙与氮、磷、钾、铜、锌等均极显著负相关(P<0.01),镁与磷、钾、铜、锌等均显著负相关(P<0.05)。

      表 3  文冠果新梢不同部位矿质元素含量间的相关性

      Table 3.  Correlation among the contents of mineral elements in new shoots of Xanthoceras sorbifolia

      样品类型 元素
      茎尖 1
      0.903** 1
      0.825** 0.773* 1
      0.142 0.386 -0.102 1
      0.826** 0.948** 0.706* 0.369 1
      -0.715* -0.529 -0.707* 0.417 -0.465 1
      0.691 * 0.751* 0.437 0.146 0.797* -0.466 1
      -0.652 -0.826** -0.534 -0.750* -0.713* 0.139 -0.358 1
      -0.763* -0.526 -0.717* 0.111 -0.442 0.574 -0.133 0.401 1
      0.413 0.679* 0.407 0.699* 0.610 0.019 0.426 -0.818** 0.009 1
      茎段 1
      0.971** 1
      0.868** 0.911** 1
      0.653** 0.572** 0.376** 1
      0.406** 0.471** 0.387** 0.194 1
      0.401** 0.479** 0.508** 0.146 0.555** 1
      0.564** 0.587** 0.491** 0.435** 0.460** 0.366* 1
      -0.428** -0.429** -0.228 -0.200 -0.719** -0.497** -0.359* 1
      -0.384* -0.424** -0.458** 0.169 -0.325* -0.290 -0.316* 0.348* 1
      -0.445** -0.473** -0.678** -0.081 -0.235 -0.528** -0.272 -0.101 0.500** 1
      叶片 1
      0.819** 1
      0.472** 0.784** 1
      0.753** 0.765** 0.344* 1
      0.506** 0.664** 0.299* 0.696** 1
      -0.107 -0.090 -0.282 0.056 0.423** 1
      0.560** 0.799** 0.643** 0.627** 0.640** 0.043 1
      -0.233 -0.303* -0.022 -0.328* -0.702** _0.711** -0.380** 1
      -0.453** -0.679** -0.652** -0.267 -0.456** 0.029 -0.641** 0.305* 1
      -0.147 -0.398** -0.358* -0.175 -0.374* -0.082 -0.363* 0.008 0.419** 1
      说明:***分别表示在0.01水平(双侧)和0.05水平(双侧)上显著相关

      综上所述,在文冠果新梢生长期,新梢氮、磷、钾、铜、锌这5种矿质营养元素彼此间均呈显著正相关(P<0.05),钙、镁、锰、钠这类元素与氮、磷、钾、铜、锌这类元素之间呈显著负相关(P<0.05)。

    • 矿质元素为植物的重要组成部分,是许多重要生理生化过程的调控者,在树体内具有十分重要的调节作用[15]。文冠果新梢对矿质元素的需求随着树体发育阶段的不同而变化,同时矿质元素在树体各部位的分布也有显著差异。叶片是制造养分供果树生长发育的主要部位,叶片与茎段不同部位不同发育阶段的元素含量有着密切的转化关系。明确茎段及其相对应叶片的矿质元素含量变化规律,对了解新梢不同部位矿质元素的吸收与转化有重要意义。

      文冠果新梢发育过程中各种元素的动态变化显示:大量元素氮、磷、钾与微量元素铁、锌在新梢生长初期迅速下降,生长后期趋于平稳;微量元素铜随着新梢发育进程总体呈现先下降后上升再下降的趋势;大量元素钙、镁与微量元素钠随着新梢发育进程总体呈上升趋势;新梢木质化茎段对应的叶中锰总体呈现上升趋势,其他部位锰变化趋势较平稳。其中氮、磷、钾、铁、锌等在新梢生长初期迅速下降,生长后期趋于平稳,说明新梢生长初期文冠果树体需要消耗大量的氮、磷、钾、铁、锌元素,此时期新梢迅速生长、花芽分化均需要消耗大量营养,叶幕尚未完全建成,消耗多积累少;生长后期,新梢停止生长,加之树体地上地下吸收能力加强,吸收养分可以供文冠果果实生长,养分竞争的矛盾缓和,因此,该时期氮、磷、钾、铁、锌等维持在相对稳定状态。橄榄Olea europaea叶片[16]矿质营养的季节性变化表明:幼嫩叶片中氮、磷、钾、锌和硼质量分数较高,而老叶中钙、镁、锰、铜和铁质量分数较高。苹果Malus pumila[17]树体新梢氮、磷、钙在生长前期最高,并随着新梢的发育,中后期呈较低的消长变化;新梢钾、镁、铁随着新梢的发育逐渐降低。‘红阳’猕猴桃Actinidia chinensis ‘Hongyang’[18]叶片中钙、磷、镁、锌、锰、硼、铜等在生长期内总体呈上升趋势,氮和铁为波状变化但总体为下降趋势。香榧Torreya grandis ‘Merrillii’[19]叶片中钙、锰、铜等在生长期内均呈上升趋势,镁则呈下降趋势。四季柚Citrus maxima ‘Szechipaw’[20]在生长期内,叶片中氮、磷呈逐渐下降趋势,钾、钙、镁、硼、锌等呈先增后降趋势,铁呈先降后稳再上升趋势,铜总体较稳定,锰呈先上升后下降再上升趋势。日本栗Castanea crenata[21]叶片氮、磷、钾、镁在生长初期呈明显下降趋势,随后维持在相对稳定状态;钙在生长期内呈上升趋势。综上所述,文冠果新梢发育过程中氮、磷、钾、铁、钙、镁等的变化趋势和大多数植物相似,氮、磷、钾、铁等在生长前期质量分数最高随后下降,钙、镁、锰等随着新梢发育进程总体呈上升趋势。然而文冠果新梢发育过程中锌、铜的变化趋势和大多数植物相反,在新梢生长初期迅速下降。

      所有矿质元素在文冠果茎尖中均有着类似的分布规律,即矿质元素含量接近于幼嫩叶片并始终高于幼嫩叶片。文冠果新梢发育过程中各种元素的分布规律主要有3种情况:①氮、磷、铁、锰等在各时期叶片中均明显高于其所着生的茎段中(除了5月7日幼嫩茎段及其叶片含量相似以外);②新梢生长初期,镁、锌、铜等在叶片中高于其所着生的茎段中;生长后期,叶片中的质量分数低于其所着生的茎段中;③钾、钙在新梢生长初期茎段中的质量分数高于其所对应的叶片中,生长后期茎段中的质量分数低于对应的叶片中。镁在茎段和其对应的叶中质量分数大小的转变时期出现在枝梢由半木质化向木质化程度加深过程中;锌、铜和钙在茎和叶中质量分数大小的转变点都出现在4月底至5月中旬的木质化程度逐渐加深过程中(4月29日至5月14日之间);钾在茎和叶中质量分数大小的转变点出现在6月中下旬(6月21日)。樱桃Cerasus pseudocerasus[22]在花开120 d后,氮、磷、钾、镁、铁、锰等6种元素均是叶片高于枝条,锌、铜质量分数是叶片低于枝条,钠在枝条和叶片中质量分数相似,与本研究结果类似。猕猴桃[23]中,钾、锰、钙、镁等4种元素在整个生长季内均是叶中质量分数高于茎中,铜和钠均是叶中低于茎中,锌在茎和叶中质量分数趋于相同。奉节脐橙Citrus sinensis ‘Fengjie’[8]不同部位氮、磷、钾、钙、镁、铁、锰、铜等的分布特征是叶中质量分数高于树干,叶片中略低于树干中。云杉Picea asperata[24]各器官氮、钙、镁等的分配规律为叶高于枝条,磷、钾的分配规律为叶低于枝条。锰元素主要集中在植物叶片中[25]。CONN等[26]认为钙在植物韧皮部具有不动性,在低蒸发性器官中含量较低,一旦沉积在枝条中就不容易再分布。综上,矿质元素将优先运向叶片,这与文冠果新梢发育过程中部分矿质元素的分布规律结果类似,即文冠果氮、磷、铁、锰等在各时期叶片中均明显高于其所着生的茎段,镁、锌、铜与钾、钙分别在新梢生长初期和新梢生长后期叶片中高于其所着生的茎段中。然而文冠果镁、锌、铜与钾、钙分别在新梢生长后初期和新梢生长初期,叶片中质量分数低于其所着生的茎段中。

      本研究中,氮、磷、钾在4月中旬到5月中旬迅速下降,可能与此期间处于文冠果植株生长初期,主要依靠体内储藏营养物质来提供生长发育所需要的矿质元素有关。根系当年吸收的养分尚未能及时补充,致使氮、磷、钾在新梢生长初期迅速下降。铜是植物体内多种氧化酶的组成成分,在氧化还原反应中起重要作用;它不仅参与植物的呼吸作用,还影响到作物对铁的利用;在叶绿体中含有较多的铜,因此,铜与叶绿素的形成有关[27];铜还具有提高叶绿素稳定性的能力,避免叶绿素过早遭受破坏,有利于叶片更好地进行光合作用。锌影响植物的许多生理过程,如光合作用、呼吸作用以及生长素的合成[28];锌主要参与生长素的合成,是某些酶(如谷氨酸脱氢酶、乙醇脱氢酶)的活化剂;色氨酸合成需要锌,而色氨酸是合成生长素的前体;锌参与叶绿素生成、防止叶绿素的降解和形成碳水化合物。铁是叶绿素前体形成的重要元素[29],对叶绿体蛋白合成起重要作用,叶绿素本身不含铁,但叶绿素生物合成中的一些酶需要铁的参与。镁是叶绿素的组成成分,锰元素是叶绿体的结构成分;镁和锰在植物的光合作用中都起到重要作用[7],因而随着新梢的发育叶片逐渐成熟、叶面积逐渐增大,镁、锰逐渐上升。钙是质膜的重要组成成分,主要存在于叶子和一些较老的部位中,有维持膜结构的稳定性、防止细胞液外渗和早衰的作用,也是细胞壁构成的必需物质[30],因此,随着枝梢的老化,钙逐渐上升。BENITO等[31]研究表明:钠离子可以满足钾离子作为渗压剂的生物物理功能,条件是植物具有摄取钠离子的能力,将它移位到枝条并在其液泡中螯合它。

      文冠果矿质元素的相关分析说明:氮、磷、钾、铜、锌这5种矿质营养元素彼此间的吸收与积累显著正相关,而钙、镁、锰、钠这类元素与氮、磷、钾、铜、锌这类元素之间显著负相关。其中叶片中铁、铜、锌之间极显著正相关。铜与叶绿素的形成有关,锌参与叶绿素生成,铁是叶绿素前体形成的重要元素,铁、铜、锌均对植物的光合作用有重要影响。本研究结果显示:文冠果叶片中铁、铜、锌之间极显著正相关,因此,在文冠果的光合作用上铁、铜、锌之间可能存在协同作用。因子分析结果显示:磷、氮、铜和磷、氮、钾分别是影响茎尖和茎段发育的主要矿质营养;磷、铜对叶片发育的影响最为关键。由此表明:磷、氮、钾、铜、铁等对文冠果新梢的发育有着重要影响。在施肥时应该注意磷、氮、钾、铜、铁等影响较大的矿质元素的补充,同时合理搭配其他必需的矿质元素,注意用量的协调,保证文冠果树体营养均衡、植株健康,使文冠果树施肥达到合理化和规范化。

参考文献 (31)

目录

    /

    返回文章
    返回