-
生物磁学(biomagnetism)是研究外磁场对生物体的影响以及生物磁性与生命活动关系的磁学和生物学相互渗透的新兴交叉学科,得到国内外各领域专家的重视,在农业、医学、环保、食品以及生物工程等领域均有广泛应用,其中磁化水处理技术在农业中应用成为研究的热点问题之一。磁化水是指灌溉水流经特定磁场后,受洛伦兹力的作用,水分子氢键断裂,液态水分子的缔结结构和理化性质发生改变,造成分子间作用力减弱、聚合度降低,水密度增大,水的黏度和表面张力减小,pH值升高,电导率升高,溶氧量提高等[1-3]。研究发现:磁化水能提高盐渍化土壤的脱盐效果,显著减轻盐害对植物的伤害;提高土壤矿质营养元素利用率、减少化肥使用量;提高水分利用效率、节约水资源;有效提高种子萌发率,加快生长发育速度,增加作物的产量和干物质积累量,提高碱消值等[4-7]。关于不同磁强度处理的磁化水对植物生理生化影响的研究报道较少。不同磁感应强度的磁场,可能对水的物理化学性质的影响程度不相同,与此同时,植物对不同磁感应强度的磁化水产生的生物学响应也有所不同。桑树Morus alba是中国重要的经济树种,是饲养家蚕的唯一优质饲料,具有很高的经济利用价值。桑树生产多采用扦插,或者播种育苗培育砧木,然后进行嫁接育苗技术繁育。扦插生产中多施加植物生长调节剂或生根粉提高生根成活率。由于扦插育苗在实际扦插过程中会受到桑树品种、扦插时间、扦插部位、外部环境条件以及扦插管理技术等影响,可能导致桑树育苗生产效率不稳定,育苗周期延长[8-9]。试验所选用桑树品种为山东省蚕业科学研究所通过杂交育种的三倍体桑树成苗‘鲁插1号’Morus alba‘Lucha-1’,该品种在扦插育苗生产中生根率偏低[10]。本研究采用磁处理技术对硬枝扦插育苗的喷淋水进行磁化处理,以探索不同磁感应强度处理对扦插苗生根生理的影响,为提高桑树扦插育苗效率提供更简洁有效的技术。
-
试验设置于山东农业大学林学实验站(36°11′N,117°08′E)进行,于3月下旬桑树芽膨大前,采集山东农业大学蚕学实验站‘鲁插1号’桑树母树外围生长健壮、无病虫害、粗度为(1.5±0.1) cm的1年生木质化枝条,剪截成长度为15.0 cm的扦插苗。剪截扦插苗时上、下切口平滑,不裂口,不撕皮,各扦插苗保留2~3个饱满芽。扦插前进行插床基质消毒,栽培基质为草炭土、蛭石和珍珠岩的混合基质,混合比例为V(泥炭土):V(蛭石):V(珍珠岩)=1:4:1。扦插前期不做生根药物处理,扦插后浇透水,保持棚内空气相对湿度为85%~95%,温度25~28 ℃。
试验采用内径25 mm的PP-25-ADS磁化器,在0.06,0.14和0.22 T等3种磁感应强度下磁化饮用自来水,以未磁化自来水为对照(ck)。设置2次喷淋间隔期为5 min,喷淋时长为10 s·次-1;采用随机区组试验设计,重复5次·处理-1;共20个扦插小区,扦插苗数量为200条·小区-1。
-
扦插后第10天和第20天,随机抽取扦插苗,5株·小区-1,采用苯酚法和考马斯亮蓝染色法[11]分别测定扦插苗扦插端以上3 cm皮部的可溶性糖和可溶性蛋白质质量分数。扦插后第10天采集植物样品并采用酶联免疫法(ELISA)测定吲哚乙酸(IAA),吲哚丁酸(IBA),玉米素(ZT)和脱落酸(ABA)4种内源激素质量分数。扦插后第30天随机抽取扦插苗,5株·小区-1,清洗干净后用于根系形态分析(WinRHIZO)。测定完毕后所有根系烘干(105 ℃杀青1 h,80 ℃烘干24 h),称取干质量,依据章家恩[12]的方法测定矿质养分。
-
数据分析采用单因素方差分析(one-way ANOVE),多重比较采用Duncan新复极差法(P<0.05)。图表中数据均为平均数±标准差,重复3次·处理-1。采用SPSS 22.0进行相关性分析。
-
由表 1可知:0.22 T处理的桑树扦插苗生根率最高,平均达66.00%,较对照高16.7%,0.06和0.14 T处理生根率则较对照高出7.0%和12.3%,各处理组与对照之间均呈显著差异(P<0.05)。扦插后第10天取样观察愈伤组织发生情况发现:0.22 T处理有部分出现愈伤组织,并能观察到不定根原基明显膨大,而对照没有出现愈伤组织;0.06和0.14 T处理则有少部分植株出现愈伤组织。从不定根发生时间来看,0.06,0.14和0.22 T处理分别较对照提前3,6和8 d;于第30天时取样观察一级根发生数量,0.14和0.22 T处理一级根发生数量显著高于对照(P<0.05)。通过对不同生根部位根系发生数量的观察结果发现:皮部生根根系发生数量都较对照呈现显著差异(P<0.05);愈伤组织根系发生数量较对照没有显著差异;对根系活力的测定发现,各磁化水处理都高于对照且呈显著差异(P<0.05),其中0.22 T处理根系活力水平最高。
表 1 不同磁感应强度处理对桑树扦插苗根系的影响
Table 1. Influence on taking roots of mulberry seedlings under different intensity of magnetic field treatments
磁感应强度/Т 生根时期/d 一级根数量/根 皮部根数量/根 愈伤组织根数量/根 第30天根系活力/(μg·g-1·h-1) 生根率/% 0(对照) 23 3.00 ± 0.71 с 2.80 ± 0.45 b 0.20 ± 0.45 а 67.77 ± 10.46 с 49.33 ± 1.53 d 0.06 20 4.40 ± 0.89 bc 4.00 ± 1.00 а 0.40 ± 0.89 а 120.26 ± 9.24 b 56.33 ± 1.53 с 0.14 17 5.20 ± 0.84 ab 4.60 ± 0.55 а 0.60 ± 0.55 а 167.02 ± 16.77 а 61.67 ± 1.53 b 0.22 15 5.60 ± 0.55 a 4.60 ± 1.14 а 0.75 ± 0.50 а 172.92 ± 9.91 а 66.00 ± 2.00 а 说明:数据为3次测定的平均值±标准差, 同列数值后不同字母表示处理间差异显著(P < 0.05) -
由表 2可知:氮、磷、钾在根系组织中的质量分数从大到小依次为氮,磷,钾。与对照相比,磁化水处理的氮、钾质量分数呈显著差异(P<0.05),其中0.06,0.14和0.22 T处理氮质量分数较对照分别提高23.2%,28.7%和36.5%;钾质量分数分别提高24.1%,25.0%和25.9%;磷质量分数差异不显著。
表 2 不同磁感应强度处理对桑树扦插苗根系矿质元素质量分数的影响
Table 2. Root parameters of mulbeny cutting under different intensities of magnetic field conditions
磁感应强度/Т w氮/(g·kg-1) w磷/(g·kg-1) w钾/(g·kg-1) w铁/(g·kg-1) w锰/(g·kg-1) w锌/(g·kg-1) w铜/(g·kg-1) 0(对照) 3.516 ± 0.133 b 1.130 ± 0.154 а 0.242 ± 0.027 b 2.847 ± 0.094 a 0.027 ± 0.002 a 0.166 ± 0.033 b 0.017 ± 0.001 а 0.06 4.351 ± 0.436 а 1.046 ± 0.047 а 0.300 ± 0.015 а 2.299 ± 0.322 b 0.031 ± 0.005 a 0.329 ± 0.036 а 0.018 ± 0.001 а 0.14 4.531 ± 0.195 а 1.235 ± 0.084 а 0.303 ± 0.006 а 1.672 ± 0.371 с 0.031 ± 0.002 a 0.317 ± 0.085 ab 0.018 ± 0.002 а 0.22 4.803 ± 0.689 а 1.144 ± 0.106 а 0.305 ± 0.005 а 1.103 ± 0.151 d 0.030 ± 0.004 a 0.426 ± 0.128 а 0.017 ± 0.001 а 说明:数据为3次重复平均值±标准差;同列数值后不同字母表示处理间差异显著(P < 0.05) 与对照相比,磁化水处理中微量元素铁、锌质量分数均有显著差异(P<0.05),其中0.06,0.14和0.22 T处理铁质量分数均低于对照,分别为对照的19.1%,41%和61.2%;锌质量分数处理组均高于对照,分别提高98.6%,97.3%和156.7%。而锰、铜2种微量元素差异不显著。
-
由表 3可知:磁化水处理桑树扦插苗总根长、总表面积、总体积、平均直径、根系生物量均高于对照,总根长、总表面积、总体积、平均直径、根系生物量等5项指标由高到低均为0.22 T,0.14 T,0.06 T处理,对照。其中,0.06,0.14和0.22 T磁化水处理总根长分别较对照提高13.4%,27.7%和103.8%,均呈显著差异(P<0.05);总表面积分别提高44.1%,72.8%和105.7%,均呈显著差异(P<0.05);根系总体积分别升高86.0%,108.3%和136.1%,均呈显著差异(P<0.05)。0.14和0.22 T处理根系平均直径分别较对照提高33.3%和27.8%,呈显著差异(P<0.05),0.06 T磁化水处理差异不显著。0.06,0.14和0.22 T处理中根系生物量较对照提高40.2%,64.6%和101.2%,均呈显著差异(P<0.05)。可以看出,磁化水处理的桑树扦插苗根系形态各指标均高于对照,特别是0.22 T中根系形态指标为对照2倍。
表 3 不同磁感应强度处理对桑树扦插苗根系形态特征的影响
Table 3. Morphological characteristics of mulberry seedlings under different intensity of magnetic field conditions
磁感应强度/T 根系生物量/g 总根长/cm 总表面积/cm2 总体积/cm3 平均直径/mm 0(对照) 0.082 ± 0.005 d 357.55 ± 23.17 c 40.28 ± 5.25 c 0.36 ± 0.07 b 0.36 ± 0.27 b 0.06 0.115 ± 0.006 c 405.57 ± 23.89 b 58.04 ± 1.27 b 0.67 ± 0.05 a 0.36 ± 0.03 b 0.14 0.135 ± 0.010 b 456.81 ± 64.04 b 69.60 ± 17.00 ab 0.75 ± 0.09 a 0.46 ± 0.03 a 0.22 0.165 ± 0.005 a 728.64 ± 32.28 a 82.87 ± 3.65 a 0.85 ± 0.29 a 0.48 ± 0.06 a 说明:数据为3次重复平均值±标准差; 同列数值后不同字母表示处理间差异显著(P < 0.05) -
由图 1A可知:各处理可溶性糖质量分数在喷淋过程中均呈上升趋势。在第10天时,与对照相比,0.22 T处理中可溶性糖质量分数最高,呈显著差异(P<0.05),较对照提高50.8%,0.06和0.14 T处理无显著差异;在第20天时,0.22 T处理中可溶性糖质量分数最高,高出对照约83.7%,呈显著差异(P<0.05),0.06和0.14 T处理较对照呈显著差异(P<0.05),并较对照分别高出41.4%和64.9%。由此看出,0.22 T磁化水处理的桑树扦插苗中可溶性糖质量分数最高,且差异显著(P<0.05)。
图 1 不同磁感应强度处理的桑树扦插苗可溶性糖和可溶性蛋白质质量分数
Figure 1. Contents of soluble sugar and soluble protein in mulberry cutting under different intensity of magnetic field conditions
从图 1B可知:各个处理中可溶蛋白质质量分数在喷淋过程中均呈上升趋势。在处理第10天时,0.06,0.14和0.22 T中可溶性蛋白质质量分数均高于对照,呈显著差异(P<0.05),其中0.22 T处理中可溶性蛋白质质量分数最高,较对照提高84.1%;0.06和0.14 T处理较对照分别高出31.8%和45.0%。处理第20天时,0.06,0.14和0.22 T处理较对照呈显著差异(P<0.05),0.22 T处理的扦插苗可溶性蛋白质质量分数最高,较对照高出83.7%;0.06和0.14 T处理分别高出32.5%和34.0%。因此,0.22 T磁化水处理对桑树扦插苗可溶性蛋白质质量分数影响最大。
-
从图 2A和2D可知:脱落酸(ABA)和玉米素(ZT)质量分数水平分别从对照、低磁感应强度到高磁感应强度依次减少,且各磁化水处理较对照都呈显著差异(P<0.05)。其中,0.22 T磁化水处理ABA和ZT质量分数最低,分别较对照降低37.9%和26.1%。可以看出,ABA和ZT质量分数与磁感应强度大小呈负相关。
图 2 磁化水处理对第10天桑树扦插苗内源激素的影响
Figure 2. Levels of abscisic acid, indolebutyric acid, indoleacetic acidand zeatinon the 10th under different intensity of magnetic field conditions
从图 2B和2C可知:吲哚丁酸(IBA)和吲哚乙酸(IAA)质量分数水平分别从对照,低磁感应强度到高磁感应强度依次增加,且与对照相比均呈显著差异(P<0.05)。其中,0.22 T磁化水处理中IBA和IAA质量分数最高,分别较对照高出46.3%和47.3%。可以看出,IBA和IAA质量分数与磁感应强度呈正相关。
-
水是植物细胞重要组成部分,是代谢过程的反应物质,参与植物体的各项生理反应和反应介质的运输。与对照相比,磁化水处理的桑树扦插苗维持了更高水平的可溶性糖和可溶性蛋白质质量分数,这是因为磁化水处理下水分子簇进入细胞壁的概率增加,蛋白质与水分子的相互作用增强,促使了植物体内淀粉的分解转运和蛋白质等大分子物质的积累;磁感应强度越高,灌溉植株可溶性糖和可溶性蛋白质质量分数增长越明显,这是由于不同磁感应强度对植物生物膜通透性的影响不同,同时磁感应改变了水的渗透力、溶解力与缔合度[13],提高了扦插苗根系活力、根系从外界吸收营养物质的能力,从而促进了愈伤根、不定根的生长,增加植株的生物量积累。这与张建民等[14]用磁化水浇灌番茄Lycopersicon esculentum及张新宇等[15]对绒毛白蜡Fraxinus velutina的研究结果相似。
植物激素IAA和IBA在不定根形成中起关键作用。ABA一般被认为是植物体内的抑制性植物激素,低浓度的ABA和细胞分裂素(CTK)有促进植物生根的作用,高浓度ABA抑制IAA的运输和离体器官的生长,抑制愈伤组织的形成[16]。研究发现:较对照而言,磁化水处理明显降低了扦插苗不定根诱导期的ABA和ZT水平,提高了IAA和IBA的水平,这与植物生根数量测定表现一致,即磁化作用对桑树扦插苗根系形成有明显的促进效果。不同磁场强度对植物影响不同,磁场对于植物的效应与磁场的分布及频率有关,所以磁场作用对植物生长的影响是有多种机制共同决定[17-18]。本研究发现:不同磁感应强度磁化水喷淋处理均可提高桑树扦插苗可溶性蛋白质和可溶性糖质量分数,影响内源激素(如ABA,IAA,IBA,ZT等)的质量分数水平,即磁感应强度越高扦插苗生根作用越明显,更能增强细胞代谢活动,促进愈伤组织的形成及不定根的产生,使根系发生提前、皮部生根数量增多。
-
磁化水处理显著提高了根系中氮、钾和锌的质量分数,说明磁化效应可以促进扦插苗根系对氮、钾、锌的吸收积累,这跟张凤娟等[19]对磁化水处理番茄后氮、钾吸收量增加的研究结果一致。铁质量分数从对照、低磁感应强度到高磁感应强度依次降低,这是因为铁元素的吸收和运输与植物质外体调节pH值相关。磁化水处理通过影响扦插苗质外体对pH值调节从而影响铁元素在植物体内的跨膜运输[20],并且磁感应强度越高对铁积累的抑制作用越明显。磁场效应下,磷、锰、铜的质量分数没有发生显著变化,说明短期磁场效应对磷、锰、铜等元素影响不明显,其质量分数变化可能是一个长期而缓慢的过程;也可能是因为磷、锰、铜等元素与其他矿质元素之间存在交互作用;因此,磁场效应对磷、锰、铜等矿质元素的作用机制有待进一步研究。
根系形态特征反映了根系吸收营养物质的能力[21],研究发现磁化水处理导致根系形态各项指标均高于对照,可能是由于磁化水处理提高了氮、钾的质量分数,而后者能提高分生组织、薄壁细胞的活跃程度,使根尖分生区长度加长,侧根形成数目增多,使根系总体积、平均直径、总长度和总表面积增大,促进根系生长。与赵黎明等[22]用磁化水处理作物生根的研究结果相似。磁化水处理通过影响矿物质吸收,继而影响了扦插苗根系分化与形态建成,促进不定根发生。
磁化水处理强度与扦插苗形成愈伤组织时间、生根时间以及提升根系质量和扦插成活率呈正比,高磁感应强度的磁化水处理技术在扦插繁育中起到有效的促进作用,能够加强植物根系对外界营养物质的吸收与利用,同时影响了内源激素成分,提高了对矿质元素吸收效率,对根系形态发育,矿物质元素积累也有一定的促进作用。这与之前的一些磁化水处理植物研究成果相一致[23-24]。也有研究发现:磁化水处理后亚麻Linum usitatissimum的细胞增殖活性减弱,增殖周期减缓[25]。这需要对磁感应的作用机理做进一步研究,以期促进该技术在农林业领域的应用。
Physiological characteristics of hardwood cuttings from mulberry trees with magnetic field conditions
-
摘要: 以非磁化自来水为对照(ck),以0.06,0.14和0.22 T等3种磁感应强度磁化水处理器处理自来水对桑树品种‘鲁插1号’Morus alba ‘Lucha-1’扦插苗进行喷淋。通过测定插条基部可溶性蛋白质和可溶性糖质量分数、内源激素质量分数、生根数量、根系形态及根系矿物质元素质量分数,分析不同磁感应强度对‘鲁插1号’桑树硬枝扦插生根生理特性的影响。结果表明:①磁化水处理使扦插苗根系生物量、总根长、总表面积、总体积、平均直径及根系形态特征值等显著提高(P < 0.05);扦插苗根系氮、钾、锌质量分数均显著高于对照(P < 0.05),铁质量分数显著降低(P < 0.05)。②磁化水处理显著提高桑树扦插苗可溶性糖和可溶性蛋白质质量分数(P < 0.05),磁感应强度越高效果越明显,显著增加了吲哚丁酸(IBA)和吲哚乙酸(IAA)质量分数(P < 0.05),显著降低了脱落酸(ABA)和玉米素(ZT)质量分数(P < 0.05),显著提升了扦插苗生根数量、根系活力水平和生根率(P < 0.05)。综上所述,磁化水处理不仅影响桑树品种‘鲁插1号’的扦插苗不定根形成,且随着喷淋时间的延长,对根系生长及发育有明显的促进作用。Abstract: To explore the influence of magnetized water (MW) on roots architecture of Morus alba, magnetizers of a PP-25-ADS with different magnetic intensities (0.06, 0.14 and 0.22 T) were used to irrigate one-year-old hardwood mulberry cuttings, and the non-magnetized tap (0 T) was set as the control (ck). The contents of soluble proteins, soluble sugars and endogenous hormones, parameters of root morphology, rooting rates, and rooting activities were measured. A randomized block experiment design was used with 5 replicates of each treatment. After irrigating with different magnetic field strength for 10 days, Ten cuttings with uniform growth were selected for every ten days, and there were three replications in per treatment. The cuttings were rinsed with distilled water and used to measure the important physiological and biochemical indexes. Enzyme-linked immunsorbent assay (ELISA) was used to determine the phytohormones level (IAA, IBA, ZT and ABA); phenol method was adopted to determine the content of soluble sugar; coomassie brilliant blue staining was applied to measure the content of soluble protein, and the WinRHIZO system was adapted to analyse the root morphology. The results showed that (1) Biomass, total length, total surface area, volume, and average root diameter, as well as the morphological characteristics were significantly improved (P < 0.05) by MW treatment. Contents of the mineral elements nitrogen (N), potassium (K), and zinc (Zn) were remarkably increased (P < 0.05) in MW compared to ck, but the iron (Fe) significantly decreased (P < 0.05). Phosphorus (P), manganese (Mn), and copper (Cu) was no marked differences (P > 0.05). (2) The levels of soluble sugar, soluble protein, indole butyric acid (IBA), and indoleacetic acid (IAA) were significantly promoted by MW (P < 0.05); whereas, levels of abscisic acid (ABA) and zeatin (ZT) were markedly decreased (P < 0.05). Moreover, root number, root vigor, and rooting rates were a bit higher in the treament than that of in the control (P < 0.05). In conclusion, MW could positively influence the formation of adventitious roots with mulberry seedlings and could improve the growth and development of roots with prolonged spraying time.
-
Key words:
- silviculture /
- magnetized water /
- mulberry /
- hardwood cutting /
- physiological characteristics /
- root development
-
表 1 不同磁感应强度处理对桑树扦插苗根系的影响
Table 1. Influence on taking roots of mulberry seedlings under different intensity of magnetic field treatments
磁感应强度/Т 生根时期/d 一级根数量/根 皮部根数量/根 愈伤组织根数量/根 第30天根系活力/(μg·g-1·h-1) 生根率/% 0(对照) 23 3.00 ± 0.71 с 2.80 ± 0.45 b 0.20 ± 0.45 а 67.77 ± 10.46 с 49.33 ± 1.53 d 0.06 20 4.40 ± 0.89 bc 4.00 ± 1.00 а 0.40 ± 0.89 а 120.26 ± 9.24 b 56.33 ± 1.53 с 0.14 17 5.20 ± 0.84 ab 4.60 ± 0.55 а 0.60 ± 0.55 а 167.02 ± 16.77 а 61.67 ± 1.53 b 0.22 15 5.60 ± 0.55 a 4.60 ± 1.14 а 0.75 ± 0.50 а 172.92 ± 9.91 а 66.00 ± 2.00 а 说明:数据为3次测定的平均值±标准差, 同列数值后不同字母表示处理间差异显著(P < 0.05) 表 2 不同磁感应强度处理对桑树扦插苗根系矿质元素质量分数的影响
Table 2. Root parameters of mulbeny cutting under different intensities of magnetic field conditions
磁感应强度/Т w氮/(g·kg-1) w磷/(g·kg-1) w钾/(g·kg-1) w铁/(g·kg-1) w锰/(g·kg-1) w锌/(g·kg-1) w铜/(g·kg-1) 0(对照) 3.516 ± 0.133 b 1.130 ± 0.154 а 0.242 ± 0.027 b 2.847 ± 0.094 a 0.027 ± 0.002 a 0.166 ± 0.033 b 0.017 ± 0.001 а 0.06 4.351 ± 0.436 а 1.046 ± 0.047 а 0.300 ± 0.015 а 2.299 ± 0.322 b 0.031 ± 0.005 a 0.329 ± 0.036 а 0.018 ± 0.001 а 0.14 4.531 ± 0.195 а 1.235 ± 0.084 а 0.303 ± 0.006 а 1.672 ± 0.371 с 0.031 ± 0.002 a 0.317 ± 0.085 ab 0.018 ± 0.002 а 0.22 4.803 ± 0.689 а 1.144 ± 0.106 а 0.305 ± 0.005 а 1.103 ± 0.151 d 0.030 ± 0.004 a 0.426 ± 0.128 а 0.017 ± 0.001 а 说明:数据为3次重复平均值±标准差;同列数值后不同字母表示处理间差异显著(P < 0.05) 表 3 不同磁感应强度处理对桑树扦插苗根系形态特征的影响
Table 3. Morphological characteristics of mulberry seedlings under different intensity of magnetic field conditions
磁感应强度/T 根系生物量/g 总根长/cm 总表面积/cm2 总体积/cm3 平均直径/mm 0(对照) 0.082 ± 0.005 d 357.55 ± 23.17 c 40.28 ± 5.25 c 0.36 ± 0.07 b 0.36 ± 0.27 b 0.06 0.115 ± 0.006 c 405.57 ± 23.89 b 58.04 ± 1.27 b 0.67 ± 0.05 a 0.36 ± 0.03 b 0.14 0.135 ± 0.010 b 456.81 ± 64.04 b 69.60 ± 17.00 ab 0.75 ± 0.09 a 0.46 ± 0.03 a 0.22 0.165 ± 0.005 a 728.64 ± 32.28 a 82.87 ± 3.65 a 0.85 ± 0.29 a 0.48 ± 0.06 a 说明:数据为3次重复平均值±标准差; 同列数值后不同字母表示处理间差异显著(P < 0.05) -
[1] 熊瑞生.磁化水的活性及其与磁感应强度的相关性分析[J].江西理工大学学报, 2013, 34(5):11-16. http://d.old.wanfangdata.com.cn/Periodical/nfyjxyxb201305003 XIONG Ruisheng. The correlation analysis about the vigor of magnetizing water and magnetic displacement[J]. J Jiangxi Univ Sci Technol, 2013, 34(5):11-16. http://d.old.wanfangdata.com.cn/Periodical/nfyjxyxb201305003 [2] 丁振瑞, 赵亚军, 陈凤玲, 等.磁化水的磁化机理研究[J].物理学报, 2011, 60(6):432-439. http://d.old.wanfangdata.com.cn/Thesis/Y1174117 DING Zhenrui, ZHAO Yajun, CHEN Fengling, et al. Magnetization mechanism of magnetized water[J]. Acta Phys Sin, 2011, 60(6):432-439. http://d.old.wanfangdata.com.cn/Thesis/Y1174117 [3] CAI Ren, YANG Hongwei, HE Jingsong, et al. The effects of magnetic fields on water molecular hydrogen bonds[J]. J Mol Struct, 2009, 938(1/3):15-19. http://www.sciencedirect.com/science/article/pii/S0022286009005559 [4] 万晓, 王华田.磁化水处理技术在农林业中的应用进展[J].中国农学通报, 2014, 30(6):52-55. http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201406008 WAN Xiao, WANG Huatian. The application progress of magnetic technology in agriculture and forestry[J]. Chin Agric Sci Bull, 2014, 30(6):52-55. http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201406008 [5] 朱练峰, 张均华, 禹盛苗, 等.磁化水灌溉促进水稻生长发育提高产量和品质[J].农业工程学报, 2014, 30(19):107-114. doi: 10.3969/j.issn.1002-6819.2014.19.013 ZHU Lianfeng, ZHANG Junhua, YU Shengmiao, et al. Magnetized water irrigation enhanced rice growth and development, improved yield and quality[J]. Trans Chin Soc Agric Eng, 2014, 30(19):107-114. doi: 10.3969/j.issn.1002-6819.2014.19.013 [6] HOZAYN M, QADOS A M S A. Irrigation with magnetized water enhances growth, chemical constituent and yield of chickpea (Cicerarietinum L.)[J]. Agric Biol J North Am, 2010, 1(4):671-676. http://www.cabdirect.org/abstracts/20103236575.html [7] 陆宝祖.磁化水灌溉对棉花增产的效应研究[J].安徽农学通报, 2007, 13(7):132, 92. http://d.old.wanfangdata.com.cn/Periodical/ahnxtb200707060 LU Baozu. The study of effects of increasing cotton production for irrigate magnetic water[J]. Anhui Agric Sci Bull, 2007, 13(7):132, 92. http://d.old.wanfangdata.com.cn/Periodical/ahnxtb200707060 [8] 刘斌, 郭涛, 陈瑞, 等.用不同配方菇渣复合基质培育桑树容器苗的试验[J].蚕业科学, 2014, 40(2):195-201. http://www.cnki.com.cn/Article/CJFDTOTAL-CYKE201402008.htm LIU Bin, GUO Tao, CHEN Rui, et al. An experiment on raising mulberry seedlings in containers using mushroom residue composite media of different formulae[J]. Sci Seric, 2014, 40(2):195-201. http://www.cnki.com.cn/Article/CJFDTOTAL-CYKE201402008.htm [9] 杜伟.桑树硬枝扦插生根的生理生化与分子机理研究[D].镇江: 江苏科技大学, 2016. DU Wei. Study on Physiological, Biochemical and Molecular Mechanism of Rooting in of Mulberry Hardwood Cutting[D]. Zhenjiang: Jiangsu University of Science and Technology, 2016. [10] 杜建勋, 陈传杰, 赵东晓, 等.桑树新品种鲁插1号不同催根时间和不同物候期扦插成活率试验[J].山东农业科学, 2015, 47(1):112-114. http://d.old.wanfangdata.com.cn/Periodical/shandnykx201501027 DU Jianxun, CHEN Chuanjie, ZHAO Dongxiao, et al. Study on cutting survival rate of new mulberry variety Lucha 1 at different root induction times and different phenological periods[J]. Shandong Agric Sci, 2015, 47(1):112-114. http://d.old.wanfangdata.com.cn/Periodical/shandnykx201501027 [11] 赵世杰.植物生理学实验指导[M].北京:中国农业科学技术出版社, 2002. [12] 章家恩.生态学常用实验研究方法与技术[M].北京:化学工业出版社, 2007. [13] 王渌, 郭建曜, 刘秀梅, 等.磁化水灌溉对冬枣生长及品质的影响[J].园艺学报, 2016, 43(4):653-662. http://d.old.wanfangdata.com.cn/Periodical/yyxb201604005 WANG Lu, GUO Jianyao, LIU Xiumei, et al. Effects of magnetized water irrigation on growth and quality of Ziziphus jujuba 'Dongzao'[J]. Acta Hortic Sin, 2016, 43(4):653-662. http://d.old.wanfangdata.com.cn/Periodical/yyxb201604005 [14] 张建民, 韩晓弟, 王刚, 等.不同浓度的磁化水浇灌番茄幼苗生理指标的研究[J].中国农学通报, 2002, 18(3):52-54. doi: 10.3969/j.issn.1000-6850.2002.03.018 ZHANG Jianmin, HAN Xiaodi, WANG Gang, et al. The study of physiologic norm of tomato seedling irrigated with different concentration magnetized water[J]. Chin Agric Sci Bull, 2002, 18(3):52-54. doi: 10.3969/j.issn.1000-6850.2002.03.018 [15] 张新宇, 董玉峰, 刘佩迎, 等.磁压处理对绒毛白蜡嫩枝扦插生根的影响[J].浙江农林大学学报, 2017, 34(5):949-954. http://zlxb.zafu.edu.cn/CN/abstract/abstract2355.shtml ZHANG Xinyu, DONG Yufeng, LIU Peiying, et al. Magnetic treatment on rootings of semi lignified twigs of Fraxinus velutina[J]. Zhejiang A & F Univ, 2017, 34(5):949-954. http://zlxb.zafu.edu.cn/CN/abstract/abstract2355.shtml [16] 冯健, 齐力旺, 张守攻.植物生根的分子机理研究进展[J].生物技术通报, 2006(增刊):38-44. http://d.old.wanfangdata.com.cn/Periodical/swjstb2006z1008 FENG Jian, QI Liwang, ZHANG Gongshou. Review of molecular mechanism of plant rooting[J]. Biotech Bull, 2006(suppl):38-44. http://d.old.wanfangdata.com.cn/Periodical/swjstb2006z1008 [17] MAHESHWARI B L, GREWAL H S. Magnetic treatment of irrigation water:its effects on vegetable crop yield and water productivity[J]. Agric Water Manage, 2009, 96(8):1229-1236. doi: 10.1016/j.agwat.2009.03.016 [18] 朱杰.磁场的生物学效应及其机理的研究[J].生物磁学, 2005, 5(1):26-29. doi: 10.3969/j.issn.1673-6273.2005.01.011 ZHU Jie. Study on the biological effects of magnetic fields and its possible mechanisms[J]. Biomagnetism, 2005, 5(1):26-29. doi: 10.3969/j.issn.1673-6273.2005.01.011 [19] 张凤娟, 胡艳飞, 张瑞喜, 等.加工番茄生长、NPK营养及产量对磁化水滴灌的响应[J].农业工程, 2014, 4(3):140-144. doi: 10.3969/j.issn.2095-1795.2014.03.045 ZHANG Fengjuan, HU Yanfei, ZHANG Ruixi, et al. Response of processing tomato growth, NPK nutrition and yield to magnetized water in drip irrigation system[J]. Agric Eng, 2014, 4(3):140-144. doi: 10.3969/j.issn.2095-1795.2014.03.045 [20] KOTB A. Magnetized water and memory meter[J]. Energy Power Eng, 2013, 5(6):422-426. doi: 10.4236/epe.2013.56045 [21] 陈海英, 余海英, 陈光登, 等.低磷胁迫下磷高效基因型大麦的根系形态特征[J].应用生态学报, 2015, 26(10):3020-3026. http://d.old.wanfangdata.com.cn/Periodical/yystxb201510013 CHEN Haiying, YU Haiying, CHEN Guangdeng, et al. Root morphological characteristics of barley genotype with high phosphorus efficiency under phosphorus stress[J]. Chin J Appl Ecol, 2015, 26(10):3020-3026. http://d.old.wanfangdata.com.cn/Periodical/yystxb201510013 [22] 赵黎明, 顾春梅, 王士强, 等.日光温室下磁化水对水稻秧苗生长发育的影响[J].灌溉排水学报, 2016, 35(12):34-38. http://d.old.wanfangdata.com.cn/Periodical/ggps201612007 ZHAO Liming, GU Chunmei, WANG Shiqiang, et al. Effects of magnetized water on growth of rice seedlings in solar greenhouse[J]. J Irrig Drain, 2016, 35(12):34-38. http://d.old.wanfangdata.com.cn/Periodical/ggps201612007 [23] 王艳红, 杨小刚.磁化水处理技术及其在农业上的应用[J].农业工程, 2014, 4(5):74-77. doi: 10.3969/j.issn.2095-1795.2014.05.023 WANG Yanhong, YANG Xiaogang. Magnetized water treatment technology and its application in agriculture[J]. Agric Eng, 2014, 4(5):74-77 doi: 10.3969/j.issn.2095-1795.2014.05.023 [24] 刘秀梅, 王渌, 王华田, 等.磁化微咸水灌溉对土壤交换性盐基离子组成的影响[J].水土保持学报, 2016, 30(2):266-271. http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201602046 LIU Xiumei, WANG Lu, WANG Huatian, et al. Effects of magnetic brackish water irrigation on composition of soil exchangeable base ions[J]. J Soil Water Conserv, 2016, 30(2):266-271. http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201602046 [25] BELYAVSKAYA N A. Biological effects due to weak magnetic field on plants[J]. Adv Space Res, 2004, 34(7):1566-1574. doi: 10.1016/j.asr.2004.01.021 -
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2018.06.024