-
短枝木麻黄Casuarina equisetifolia作为木麻黄科Casuarinaceae木麻黄属Casuarina的代表树种,是世界各国引种最早、人工栽培面积最大的木麻黄植物[1],也是中国东南沿海地区重要的防护林树种[2],发挥着巨大的生态效益和经济价值。木麻黄是典型的热带植物,生长适温为22.1~26.9 ℃,耐寒性较差[3]。引种的木麻黄常遭受较严重冻害,给沿海防护林建设造成较大损失。因此,研究木麻黄对低温的响应机制,开展耐寒品种的选育,对于扩大木麻黄种植范围和推进沿海防护林建设尤为重要。在低温诱导下,植物形成了其各自特有的生理生化特征,研究植物的耐寒生理机制,对于解析植物的耐寒性具有重要意义。目前,国内外对木麻黄耐寒生理研究大多集中在抗性生理指标的测定分析上[2, 4-6],但从全面或更深入揭示木麻黄的低温适应的机制还远远不够。本研究针对木麻黄生产实践中存在的低温冻害问题,在前期对短枝木麻黄耐寒性评价的基础上,以短枝木麻黄耐寒无性系ZS7和不耐寒无性系HN1幼苗为材料,通过测定这2种无性系幼苗在低温胁迫下的叶绿素、渗透调节物质、酶类和非酶类抗氧化剂等耐寒相关生理指标,比较分析耐寒性不同无性系生理指标变化的趋势与差异,为深入阐明短枝木麻黄耐寒机理,促进木麻黄耐寒品种选育奠定基础。
-
根据前期试验结果,选定2个耐寒性差异较大的短枝木麻黄无性系:耐寒无性系ZS7和不耐寒无性系HN1,采用盆栽方式,于2016年10月在浙江省林业科学研究院温室进行扦插繁殖。塑料盆尺寸为13 cm(高)× 20 cm(直径)。盆栽基质为泥炭和蛭石混合物(4:1),装盆前进行灭菌处理。培养条件为光照16 h/黑暗8 h,温度25 ℃,光合光子照度180 mol·m-2·s-1,相对湿度60%~70%。在温室中培养2个月后,扦插苗高度达到15~20 cm时,选取生长良好、长势较一致的植株,开始低温处理。低温梯度处理设计:将ZS7和HN1无性系置于低温人工气候箱(PRXD-300,上海乔跃)中,从常温预冷至10 ℃左右,之后逐步降温至-2,-5,-8,-11 ℃,在降至每个低温节点持续2 h后,各取出5株幼嫩枝条用锡箔纸包裹后迅速放入液氮中,置-80 ℃超低温冰箱中保存,用于生理指标测定。以在常温25 ℃下同步培养的ZS7和HN1无性系作为2种低温处理的对照(ck),取样方法同上。每处理均设3次重复。连续低温处理设计:将ZS7和HN1无性系各40株移入低温人工气候箱内,在-5 ℃下连续处理1,2,5,8,16,24,48,72 h,并于每个时间点分别取ZS7和HN1的5株幼嫩枝条,用锡箔纸包裹后迅速放入液氮中,置于-80 ℃超低温冰箱中保存备用。
-
叶绿素质量分数的测定采用分光光度计法[7],过氧化氢(H2O2)质量摩尔浓度测定按照高洪波等[8]的方法,丙二醛(MDA)质量摩尔浓度测定采用硫代巴比妥酸(TBA)法[9],可溶性蛋白质测定采用考马斯亮蓝法[10],脯氨酸(Pro)质量分数测定采用酸性茚三酮比色法[11],超氧化物歧化酶(SOD)活性测定采用氮蓝四唑(NBT)光化还原法测定[12],过氧化氢酶(CAT)活性测定采用紫外吸收法[13],过氧化物酶(POD)活性测定采用愈创木酚显色法[14],抗坏血酸过氧化物酶(APX)活性测定参照程玉静等[15]的方法,谷胱甘肽还原酶(GR)活性测定参照PINHEIRO等[16]方法。还原型谷胱甘肽(GSH)和氧化型谷胱甘肽(GSSG)质量摩尔浓度参照JIANG等[17]的方法。
-
采用Excel 2010和SPSS 18.0对数据进行统计分析,采用邓肯(Duncan)新复极差法进行5%水平的差异显著性分析。
-
耐寒无性系ZS7幼苗在低温梯度胁迫下叶绿素质量分数随着胁迫的加剧,先升高后下降并趋于平缓。在降至-2 ℃时,ZS7的叶绿素质量分数迅速升高并达到峰值,升幅达63.2%;降至-11 ℃时,虽有所下降,但和对照相比差异不显著。不耐寒无性系HN1幼苗的叶绿素质量分数则呈显著下降趋势(图 1A),至低温胁迫结束,叶绿素质量分数降幅达45.7%,受到低温胁迫的伤害相对较重。在各胁迫温度下,ZS7的叶绿素质量分数相对稳定,始终显著高于HN1。
图 1 低温梯度胁迫和连续低温胁迫对短枝木麻黄幼苗叶绿素质量分数的影响
Figure 1. Effect of successive low temperatures and low temperature (-5 ℃) conditions for 1-72 h on chlorophyll content in Casuarina equisetifolia
在-5 ℃持续低温胁迫下,ZS7和HN1的叶绿素质量分数变化趋势如图 1B所示。ZS7叶绿素质量分数在1~5 h内与常温对照没有明显差异,8 h后叶绿素质量分数开始显著升高。HN1在5~72 h内,叶绿素质量分数呈逐渐下降趋势,且始终显著低于ZS7,说明-5 ℃的持续低温胁迫对HN1的叶片产生了破坏作用,而在短期内对耐寒无性系ZS7叶片的叶绿体结构破坏不明显。
-
随着低温梯度胁迫的增强,ZS7和HN1幼苗叶片的H2O2质量摩尔浓度都呈现先升高后降低的变化趋势(图 2A)。在降至-5 ℃时,2种无性系的H2O2质量摩尔浓度均达到最高值,其中ZS7的H2O2质量摩尔浓度升高80.1%,HN1升高130.7%;在-5~-11 ℃,ZS7和HN1的H2O2质量摩尔浓度呈下降趋势,在低温梯度胁迫期间HN1的H2O2质量摩尔浓度一直较高。ZS7和HN1的MDA质量摩尔浓度呈升降升的趋势变化(图 2B),ZS7的MDA质量摩尔浓度在低温胁迫过程中始终显著低于HN1。至胁迫结束,ZS7的MDA质量摩尔浓度增幅为11.2%,HN1的增幅为23%,结果显示低温胁迫对耐寒性强的无性系ZS7的质膜损伤程度较低。在-5 ℃持续低温胁迫下,ZS7和HN1的H2O2,MDA质量摩尔浓度均随处理时间的延长呈现波动变化,且在胁迫结束时达到最高值(图 2C和2D)。从低温胁迫处理开始至结束,ZS7的H2O2和MDA质量摩尔浓度的增幅分别为142.4%和73.2%,HN1增幅分别为176.9%和84.7%。与不耐寒无性系相比,低温下耐寒无性系叶片中MDA质量摩尔浓度一直较低,且差异显著。
-
无论在常温条件下还是在低温梯度胁迫下,ZS7中可溶性蛋白质质量分数一直维持较高水平,并始终显著高于HN1(图 3A和3B)。至低温胁迫结束,ZS7和HN1的可溶性蛋白质质量分数的涨幅和降幅分别为13.9%和12.8%,和耐寒性强弱表现一致。在-5 ℃持续低温胁迫下,ZS7和HN1的可溶性蛋白质质量分数总体先升后降。-5 ℃处理24 h后,ZS7和HN1的可溶性蛋白质质量分数均达到最高,增幅分别为80.8%和43.2%;72 h后,都达到最低值,降幅分别为5.7%和57.5%。
图 3 低温梯度胁迫和连续低温胁迫对短枝木麻黄幼苗可溶性蛋白质和脯氨酸质量分数的影响
Figure 3. Effect of successive low temperatures and low temperature (-5 ℃) conditions for 1-72 h on protein and proline content of in C. equisetifolia
在低温梯度胁迫下,ZS7和HN1中脯氨酸质量分数先上升后下降(图 3C)。处理结束后,2种无性系的脯氨酸质量分数均有所降低,降幅分别为36.3%和16.5%。在-5 ℃持续低温胁迫下,ZS7和HN1的脯氨酸质量分数呈波动变化(图 3D)。低温处理72 h后,2种无性系中脯氨酸质量分数的涨幅分别为37.1%和37.3 %。ZS7的脯氨酸质量分数在低温梯度胁迫和连续低温胁迫下始终显著高于HN1。
-
由图 4可以看出:耐寒无性系ZS7和不耐寒无性系HN1幼苗在低温梯度处理下SOD,POD,CAT,GR活性变化规律基本一致,呈先上升后下降的变化趋势;ZS7的APX活性呈下降趋势,HN1的APX活性则先上升后下降。在常温条件下,除ZS7和HN1的GR活性没有显著差异外,ZS7的SOD,POD,CAT,APX活性均显著高于HN1,且在整个低温胁迫过程中ZS7的保护酶活性始终高于HN1,说明耐寒无性系ZS7对过氧化伤害有较高忍耐能力。低温梯度处理结束后,ZS7和HN1的SOD,POD,CAT,APX,GR活性的降幅分别为1.3%,12.6%,18.9%,51.5%,8.6%和14.3%,33.2%,43.5%,36.9%,47.4%。
图 4 低温梯度胁迫和连续低温胁迫对短枝木麻黄幼苗抗氧化酶活性的影响
Figure 4. Effect of successive low temperatures and low temperature (-5 ℃) conditions for 1-72 h on antioxidant enzyme activity in Casuarina equisetifolia
在-5 ℃持续低温胁迫下,与HN1相比,ZS7叶片中的保护酶活性在整个低温胁迫过程中始终较高,且两者达到了显著性差异(图 4)。ZS7中SOD活性的最高值集中在低温胁迫48~72 h,且达到常温对照的32.7%;HN1的最高值集中在2~16 h,并在第72小时降至对照的33.9%。ZS7中POD活性在整个胁迫期间始终维持较高水平;HN1的POD活性在第72小时达到最低,并降至对照的53.7%。ZS7和HN1的CAT活性的最高值都出现在第8小时,至胁迫结束,与常温对照相比,降幅分别为12.1%和30.9%。ZS7的APX活性在低温胁迫24~72 h时显著上升,并升至常温对照的110%;HN1的APX活性一直较低,在胁迫结束时降至对照的32.6%。此时,ZS7的APX活性是HN1的6倍。至胁迫结束,ZS7的GR活性与对照相比涨幅为28.9 %,HN1的降幅为42.7 %。说明耐寒无性系ZS7从保护酶活性水平增强了其低温下的适应能力。
-
低温梯度胁迫下,2种无性系幼苗的GSH质量摩尔浓度均呈先升后降的趋势(图 5A),且都在-5 ℃时达到最高值,涨幅分别为23.6%和12.3%,说明GSH在2种无性系中均大量累积。胁迫结束时,ZS7和HN1的GSH质量摩尔浓度均达到各自最低值,降幅分别为19.8%和20.7%。在-5 ℃持续低温胁迫下,2种无性系的GSH质量摩尔浓度也都呈现先升后降的趋势(图 5B),但达到峰值的时间不同。ZS7的GSH质量摩尔浓度在第24小时达到最大值,HN1的GSH质量摩尔浓度在第8小时达到最高,涨幅分别为52.7%和32.5%。ZS7中的GSH质量摩尔浓度从第8小时开始一直显著高于对照,而HN1仅在第5和第8小时时显著高于对照。72 h后,ZS7和HN1的GSH质量摩尔浓度分别上升9.4%和下降4.5%。低温处理下,耐寒无性系ZS7的GSH质量摩尔浓度始终显著高于不耐寒无性系HN1。由图 5C可知:ZS7和HN1幼苗中的GSSG质量摩尔浓度都在-2 ℃时达到最高值,分别为对照水平的1.4倍和1.9倍;至低温胁迫结束,GSSG质量摩尔浓度比对照分别降低64.2%和57.1%。在-5 ℃低温持续胁迫下,2种无性系中的GSSG质量摩尔浓度总体呈现先上升后下降的趋势,且HN1中的GSSG质量摩尔浓度在整个胁迫过程中始终显著高于ZS7。ZS7和HN1中的GSSG质量摩尔浓度,分别于第2小时和第16小时达到最高值,涨幅分别为79.0%和139.0%;至胁迫结束时,分别比对照下降20.1%和19.2%(图 5D)。低温梯度胁迫下,ZS7的GSH/GSSG比值呈上升的趋势,HN1则先下降后上升,至胁迫结束时,都显著高于常温对照(图 5E)。在-5 ℃持续低温胁迫下,ZS7的GSH/GSSG比值总体呈上升趋势,HN1则呈下降趋势(图 5F)。
-
随着低温胁迫程度的增强,叶绿素质量分数下降的幅度和速度也加大,可作为植物耐受低温的重要生理指标[18]。本研究中,低温梯度胁迫下,不耐寒短枝木麻黄无性系幼苗的叶绿素质量分数呈下降趋势。在低温梯度胁迫和-5 ℃持续低温胁迫下,耐寒无性系的叶绿素质量分数分别表现出先升高后降低和逐渐上升的趋势,这说明一定程度的低温对耐寒植物叶绿素的合成有一定程度的刺激作用,而耐寒植物较强的耐寒性减缓了叶绿素质量分数的下降,增强了适应低温环境的能力,使叶绿素始终维持较高水平。这在杨树Populus spp.,金叶女贞Ligustrum vicaryi,紫薇Lagerstroemia indica,福禄考属Phlox等植物对干旱、低温等胁迫的生理响应研究中得到相似的结果[19-21]。
H2O2水平升高是低温下氧化胁迫的标志。它一方面可引起脂质过氧化,对膜造成伤害,另一方面可引起光合系统各种酶的失活[22]。MDA作为膜脂过氧化产物,其质量摩尔浓度的高低与细胞膜受伤害的程度直接相关,与植物的抗寒性呈负相关,是鉴别低温胁迫对植物膜危害程度的重要指标之一[23]。本研究中,耐寒无性系和不耐寒无性系幼苗的H2O2和MDA质量摩尔浓度都显著升高,说明低温胁迫下,植物体内产生大量的活性氧(ROS),细胞膜的结构受到损伤,膜脂过氧化作用加强。但耐寒无性系的MDA和H2O2质量摩尔浓度都显著低于不耐寒无性系,说明耐寒性较强的无性系能保持细胞内的氧化还原平衡,降低了脂质过氧化程度。
逆境胁迫下,植物细胞能通过主动积累脯氨酸等渗透调节物质来调节渗透势,阻止细胞脱水,从而维持植物组织内各种酶活性和正常的细胞膜结构[24]。研究发现,脯氨酸在杠柳Peroploca sepium生境适应性上有重要作用,且脯氨酸代谢对植物维持组织细胞内ROS水平密切相关[25]。抗寒性强的油橄榄Olea europaea品种在低温胁迫下,累积的渗透调节物质含量,如脯氨酸和可溶性蛋白质,逐渐增加且显著高于其他不耐寒品种[26]。本研究中,耐寒无性系ZS7幼苗在常温下的脯氨酸和可溶性蛋白质质量分数就显著高于HN1,且随温度的降低或低温胁迫时间的延长,脯氨酸和可溶性蛋白质质量分数也始终显著高于HN1。说明在低温处理下,耐寒无性系通过增强渗透调节能力和降低膜脂过氧化作用,提高对外界环境变化的适应力。
SOD,POD,CAT,APX和GR是植物体内活性氧自由基清除系统的保护酶[27-29],通过协同作用抑制膜脂过氧化,防御活性氧自由基对细胞膜的损伤,缓解低温胁迫对膜系统的伤害[30]。GR活性和GSH质量分数大小被认为是有机体抗氧化状态的重要标志。在低温梯度胁迫下,耐寒无性系和不耐寒无性系的SOD,POD,CAT,GR活性以及GSH质量摩尔浓度均呈先上升后下降的趋势,表明植物通过调节酶和非酶类活性的高低来适应低温。GSH/GSSG的比值与蛋白质的生物合成有关,维持较高的比值可以增强植物对低温的抵抗力。在低温胁迫下,耐寒无性系中的GSH/GSSG比值呈上升趋势,不耐寒无性系中则呈下降趋势,说明GSH和GSSG对于短枝木麻黄耐寒性的提高具有重要作用。耐寒无性系中的APX活性在低温梯度胁迫下逐渐下降,但在-5 ℃持续低温胁迫下,表现出了强烈的诱导作用。这可能与适应低温的过程中,植物在代谢补偿性调节上发挥作用有关,某些代谢过程的增强抑制或降低了另外的代谢途径,暗示植物在适应低温环境时发生了积极的代谢调节[31]。低温胁迫处理下,耐寒无性系的酶类和非酶类抗氧化剂含量高,且始终显著高于不耐寒无性系,更有利于维持其细胞结构的稳定性。
本研究结果反映了耐寒性强的短枝木麻黄无性系通过在低温胁迫下保持较高的脯氨酸和可溶性蛋白质质量分数,增强SOD,CAT,POD,APX和GR等抗氧化酶的活性以及提高非酶抗氧剂质量摩尔浓度,抑制植物细胞中叶绿素质量分数的下降及膜脂过氧化程度的加剧,进而适应和抵御低温。
Physiological response to low temperature stress in Casuarina equisetifolia seedlings
-
摘要: 以短枝木麻黄Casuarina equisetifolia耐寒无性系ZS7和不耐寒无性系HN1幼苗为供试材料,在人工气候箱内采用基质栽培方式,研究在-2,-5,-8,-11 ℃共4个温度梯度胁迫2 h以及-5 ℃持续胁迫1,2,5,8,16,24,48,72 h后2种无性系幼苗相关生理指标的变化趋势以及耐寒性差异,探讨短枝木麻黄适应低温环境的生理机制。结果表明:在低温梯度胁迫下,耐寒无性系的过氧化氢(H2O2)和丙二醛(MDA)质量摩尔浓度的增幅小于不耐寒无性系;叶绿素、脯氨酸(Pro)和可溶性蛋白质质量分数,超氧化物歧化酶(SOD),过氧化物酶(POD),过氧化氢酶(CAT),抗坏血酸过氧化物酶(APX)和谷胱甘肽还原酶(GR)活性,以及还原型谷胱甘肽(GSH)和氧化型谷胱甘肽(GSSG)质量摩尔浓度的降幅均小于不耐寒无性系。耐寒无性系的GSH/GSSG比值呈上升的趋势,而不耐寒无性系的呈先下降后上升趋势。在-5 ℃持续胁迫下,2种无性系各生理指标呈现波动变化,增幅(降幅)与到达峰值时间不同。无论是在低温梯度胁迫还是在低温持续胁迫处理过程中,耐寒无性系的SOD,POD,CAT,APX和GR活性以及叶绿素、可溶性蛋白质和Pro质量分数、GSH质量摩尔浓度都显著高于不耐寒无性系。耐寒性不同的2种短枝木麻黄无性系耐寒的生理机制明显不同,耐寒性强的无性系通过在低温胁迫下保持较高的可溶性蛋白质和Pro等渗透调节物质质量分数,增强抗氧化酶活性,提高非酶抗氧化剂水平,抑制叶绿素质量分数的下降及膜脂过氧化程度的加剧,进而提高抗寒性来抵御低温。Abstract: This study was conducted to explore changes in relevant physiological indexes of cold-tolerant and cold-intolerant Casuarina equisetifolia as well as physiological mechanisms to adapt to a low-temperature environment, and to provide a basis for further study of cold resistance in C. equisetifolia. Using a substrate culture, the related physiological indexes of cold-tolerant (ZS7) and cold-intolerant (HN1) clones of C. equisetifolia seedlings with successive low temperature stresses at -2, -5, -8, and -11 ℃ for 2 h, as well as precise expression patterns with low temperature stresses of -5 ℃ for 1, 2, 5, 8, 16, 24, 48, and 72 h in climate chambers were studied. Results showed that for successive low temperature stresses, the rising amplitude of H2O2 and malondialdehyde (MDA) content in the cold-tolerant clones were significantly lower (P < 0.05) than in the cold-tolerant clones. Basically, the decreased amplitude of total chlorophyll, soluble protein, proline contents, the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and ascorbate peroxidase (APX), as well as contents of glutathione reductase (GR), glutathione (GSH), and oxidized glutathione (GSSG) in ZS7 were significantly lower (P < 0.05) than in HN1. The GSH/GSSG ratio in ZS7 increased gradually; whereas, HN1 decreased first and then increased. For low temperature stress at -5 ℃, the rising amplitude or decrease in amplitude of physiological indexes in the two clones were different as was the time to its peak for physiological indexes of SOD, POD, CAT, APX, and GR as well as contents of total chlorophyll, soluble protein, proline, and GSH with ZS7 being generally higher than HN1. Thus, different clones showed different physiological response mechanisms to low temperature stress with the cold-tolerant clone resisting low temperature and enhancing cold resistance by maintaining the content of soluble protein and proline, promoting antioxidant enzyme activities and antioxidant contents, decreasing the accumulation of H2O2 and MDA, and inhibiting chlorophyll deterioration.
-
土壤呼吸是陆地生态系统向大气排放二氧化碳(CO2)的主要途径,在调节生态系统碳循环中发挥着重要作用[1−2]。作为陆地生态系统的主体,森林土壤汇集了全球土壤碳库的73%[3],森林土壤呼吸研究成为陆地生态系统碳循环的研究热点。森林间伐是森林经营的重要措施之一,对促进人工林生长,改善碳固存能力有积极作用,通过改变林地土壤微气候、微生物群落以及根系生长等因子引起森林土壤呼吸变化[4−6]。因此,研究森林间伐对土壤呼吸及其影响机制对评估区域土壤碳循环有重要意义。杉木Cunninghamia lanceolata是中国特有速生丰产的优质树种,其人工林面积高达1 096万 hm2,在缓解木材需求压力、支持天然林保护等生态工程实施方面作用突出[7−9]。杉木人工林因其巨大的固碳潜力,在缓解气候变化上的作用不容忽视[10−11]。然而,由于杉木人工林长期多代连作,引起林地生产力下降、土壤退化,形成了大面积的低质低效杉木林[12]。森林间伐对杉木林土壤呼吸速率的响应结果差异较大。TIAN等[13]研究表明:杉木林土壤呼吸速率随间伐后恢复年限的增加先升高后降低,最终恢复到采伐前水平。LI等[14]研究发现:间伐后第1年杉木林土壤呼吸速率升高,其中异养呼吸增加是土壤呼吸增加的主要原因,但间伐对土壤呼吸的影响随时间推移而减弱。WANG等[15]研究表明:土壤呼吸随间伐强度的增加而增加。丁驰等[16]研究发现:杉木林轻度间伐的土壤呼吸速率显著高于中度和重度间伐处理。然而,探讨间伐对杉木林土壤呼吸的响应时多考虑土壤温湿度的影响,而其他环境因子对土壤呼吸速率的影响仍有待进一步研究。此外,间伐作业对高密度萌生杉木林的土壤呼吸速率影响的研究较少。综上所述,本研究以浙北杉木人工林为研究对象,比较不同间伐强度下森林土壤呼吸速率及其主要影响因子,为杉木林经营及碳汇管理提供科学依据。
1. 研究地区与研究方法
1.1 研究区概况
研究区位于浙江省临安市於潜镇泗州村(30°14′N,119°25′E),该区为典型亚热带季风气候,年均气温为16.2 ℃,最高气温在7—8月,最低气温在1月,年均降水量为1 470.2 mm,降水天数为182.0 d。海拔为40~100 m,样地主要土壤类型为黄壤。杉木林下灌木主要有山茶Camellia japonica、土茯苓Camellia oleifera、菝葜Smilax china等;草本主要有山莓Rubus corchorifolius、金毛耳草Hedyotis Chrysotricha、芒属Miscanthus类植物等。
1.2 试验设计
试验地为杉木萌生纯林,该林分是2006年遭受火灾后采伐形成的萌生林,截至2017年12月未进行经营活动。该样地林分密度为4 200株·hm−2,林龄为11 a,林分平均胸径为7.3 cm,平均树高为5.2 m。于2017年12月进行采伐和每木检尺,采用随机区组设计在坡度和坡位相近的杉木纯林设置3种间伐处理,分别为对照(间伐0%)、中度间伐(间伐45%)和重度间伐(间伐70%),每种处理设置3个重复,共设置了9块20 m×20 m的标准样地,样地基本情况见表1。样地0~20 cm土层土壤理化性质:土壤容重为1.07 g·cm−3,土壤有机碳为36.40 g·kg−1,土壤全氮为1.31 g·kg−1,土壤碱解氮为39.51 mg·kg−1,土壤有效磷为1.14 mg·kg−1,土壤速效钾为64.52 mg·kg−1,pH 5.03。
表 1 杉木林样地基本情况Table 1 Basic conditions of the plots间伐处理 林分密度/(株·hm−2) 平均胸径/cm 平均树高/m 郁闭度/% 伐前 伐后 伐前 伐后 伐前 伐后 伐前 伐后 对照 4 188±45 4 188±45 7.6±0.1 7.6±0.1 5.0±0.1 5.0±0.1 95 95 中度 4 140±225 1 833±55 7.3±0.1 7.8±0.4 5.1±0.1 5.3±0.2 95 62 重度 4 317±114 1 103±48 7.1±0.1 7.4±0.2 4.8±0.2 5.0±0.3 95 38 于2018年2月至2020年1月,采用静态箱-气象色谱法进行土壤呼吸速率监测,每个样地安置2个30 cm×30 cm×30 cm的PVC静态箱(下坡处静态箱基座没入土壤5 cm),共18个静态箱。每月中旬9:00—11:00采集气体样品。用25 mL注射器分别于密封后的0、10、20、30 min采集气体样品,注入密封的真空气瓶中,带回实验室,48 h内用Agilent 7890气相色谱仪完成测定。
每月采气时,测定静态箱附近土壤5 cm处温度,并采集5 cm处土壤样品使用烘干法测定土壤含水率[16]。每季度采集0~20 cm土层土壤样品,过2 mm筛后,分别风干后置于4 ℃冰箱保存。土壤水溶性有机碳采用水浸提法测定[17],土壤易氧化有机碳采用高锰酸钾氧化法测定[18],土壤微生物生物量碳采用氯仿熏蒸浸提法测定[19],土壤pH采用电位法测定[20]。
1.3 数据处理
使用模型拟合土壤呼吸和土壤温湿度的关系,同时估计温度敏感性系数(Q10)。
$$ \begin{array}{l} {R}_{\mathrm{s}}=a{{\rm{e}}}^{bT} \text{;} \\ {R}_{\mathrm{s}}=a{M}^{2}+bM+c \text{;}\\ {Q}_{10}={{\rm{e}}}^{10b} 。 \end{array} $$ 其中:Rs为土壤呼吸速率(mg·m−2·h−1),T为土壤5 cm土层处温度(℃),M为土壤表层含水率(%),a、b和c为系数参数。
采用SPSS 22.0进行数据统计分析。采用重复观测方差分析(repeated measures ANOVA)检验杉木林土壤呼吸速率与土壤温湿度的差异性,采用单因素方差分析(one-way ANOVA)探讨不同间伐处理下土壤呼吸速率和土壤环境因子差异。利用线性回归分析土壤呼吸速率与土壤环境因子的关系。
2. 结果与分析
2.1 土壤呼吸速率变化
由图1可知:不同间伐处理的杉木林土壤呼吸速率均呈现明显的季节动态,最高值出现在7—8月,最低值出现在1—2月。从月动态来看,5月开始各间伐处理土壤呼吸速率出现较大差异。对照、中度、重度间伐样地土壤呼吸速率分别为29.09~297.00、38.66~338.31、48.36~387.87 mg·m−2·h−1。间伐显著增加了杉木林土壤呼吸速率(P<0.05),且随着间伐强度的增加而增加。与对照相比,中度和重度间伐土壤呼吸速率分别增加了23.30%、44.94%(表2)。从年际变化看,各间伐处理对土壤呼吸速率无明显差异。
表 2 不同处理杉木林土壤呼吸速率及环境因子的年平均值Table 2 Annual average values of soil respiration rate and environmental factors in C. lanceolata plantation under different thinning treatments时间 间伐处理 土壤呼吸速率/
(mg·m−2·h−1)土壤温度/℃ 含水率/% 水溶性有机碳/
(mg·kg−1)微生物生物量碳/
(mg·kg−1)易氧化有机碳/
(mg·g−1)间伐后第1年 对照 149.32±2.92 c 15.00±0.19 b 27.54±0.89 a 96.80±2.18 b 266.21±6.84 c 10.74±0.66 b 中度 183.89±5.95 b 15.96±0.10 a 30.49±1.37 a 109.14±4.85 a 295.60±8.19 b 13.30±.0.81 a 重度 217.15±1.79 a 16.16±0.23 a 29.74±1.52 a 119.51±6.16 a 331.07±8.96 a 14.34±0.45 a 间伐后第2年 对照 151.61±6.01 c 15.67±0.23 b 21.47±0.73 a 101.83±1.57 c 244.72±9.71 b 9.28±0.32 b 中度 187.13±6.10 b 16.65±0.22 a 24.85±1.61 a 112.92±3.10 b 282.76±7.20 a 11.69±0.21 a 重度 219.02±2.18 a 16.91±0.29 a 23.39±2.31 a 122.21±2.94 a 307.12±14.35 a 11.73±0.36 a 平均 对照 150.46±1.61 c 15.34±0.15 b 24.51±0.62 a 99.31±1.05 c 255.47±7.01 c 10.01±0.31 b 中度 185.51±5.51 b 16.30±0.15 a 27.67±1.49 a 111.03±3.95 b 289.18±7.29 b 12.49±0.32 a 重度 218.09±1.44 a 16.53±0.26 a 26.56±1.91 a 120.86±3.80 a 319.09±9.62 a 13.04±0.40 a 说明:数值为平均值±标准误。不同字母表示不同处理间差异显著(P<0.05)。间伐后第1年为2018年2月至2019年1月,间伐后第2年为2019年2月至2020年1月。 2.2 土壤温湿度
各间伐处理的土壤温度表现为春冬季低,夏季高的单峰曲线(图2),间伐处理样地均显著高于对照(P<0.05),与对照相比,中度和重度间伐处理的土壤温度分别增加了6.31%和7.81%(表2)。土壤含水率在间伐第1年(2018年2月至2019年1月)呈现降低趋势,第2年(2019年2月至2020年1月)呈先升高后下降的波动趋势,但各处理土壤含水量差异不显著(P>0.05)。
2.3 土壤活性有机碳
由图3可知:各处理土壤水溶性有机碳质量分数7月最高,1月最低。与对照相比,除间伐第2年的4和10月外,中度和重度间伐处理下土壤水溶性有机碳质量分数均显著增加(P<0.05),分别增加了11.80%和21.70%(表2),间伐处理之间差异不显著。
除间伐第2年的4月外,重度间伐处理的土壤易氧化有机碳显著增加(P<0.05);除间伐第1年的4和10月、第2年的4月外,中度间伐处理的土壤易氧化有机碳显著增加(P<0.05)。整体上表现为间伐增加土壤易氧化有机碳质量分数,且与间伐强度无关。与对照相比,中度和重度间伐的土壤易氧化有机碳质量分数分别增加了24.83%和30.27%。
间伐后第1年,与对照相比,随着间伐强度的增加,微生物生物量碳质量分数显著增加(P<0.05)。间伐后第2年除4月外,间伐处理显著增加了微生物生物量碳质量分数(P<0.05)。整体上看,间伐增加了土壤微生物生物量碳,且不同间伐处理间差异显著(P<0.05),中度和重度间伐分别增加了14.01%和24.91%(表2)。
2.4 环境因子对土壤呼吸速率的影响
从表3可见:间伐后第1年和第2年各处理土壤呼吸速率与土壤温度均呈显著指数相关(P<0.01)。对照的土壤呼吸速率仅间伐第2年与土壤含水率呈正相关(R2=0.268,P<0.01),而间伐处理的土壤呼吸速率与土壤含水率无显著关系。因此,杉木林土壤呼吸速率随着土壤温度的升高而增加,几乎不受土壤含水率的影响。Q10反映土壤呼吸速率对土壤温度变化的敏感性。研究期间,对照、中度、重度间伐的Q10分别为2.10、1.86、1.84,间伐降低了杉木林土壤呼吸的敏感性。
表 3 土壤呼吸速率与土壤温湿度回归模型以及温度敏感性系数(Q10)Table 3 Regression models of soil respiration rate with soil temperature, moisture and temperature sensitivity (Q10)时间 间伐处理 土壤温度 土壤湿度 Q10 a b R2 a b c R2 间伐后第1年 对照 0.252 0.077 0.934** −32.151 18.368 −1.481 0.151 2.16±0.09 中度 0.405 0.059 0.941** 1.251 −1.168 1.393 0.004 1.80±0.05 重度 0.491 0.057 0.882** −23.721 13.159 −0.322 0.034 1.77±0.07 间伐后第2年 对照 0.263 0.072 0.858** 16.971 0.095 0.129 0.268** 2.05±0.12 中度 0.351 0.066 0.884** −56.700 30.036 −2.710 0.067 1.93±0.10 重度 0.408 0.066 0.904** −41.085 21.324 −1.283 0.046 1.93±0.08 总 对照 0.262 0.074 0.904** −35.500 20.339 −1.730 0.192 2.10±0.08 中度 0.377 0.062 0.907** −11.228 6.651 0.238 0.011 1.86±0.06 重度 0.448 0.061 0.891** −26.646 14.972 −0.598 0.040 1.84±0.06 说明:间伐后第1年为2018年2月至2019年1月,间伐后第2年为2019年2月至2020年1月,总表示2018年2月到2020年1月总计。**表示相关极显著(P<0.01)。 各处理杉木林土壤呼吸速率与土壤温度、土壤水溶性有机碳、土壤微生物生物量碳和土壤易氧化有机碳均呈极显著正相关(P<0.01),而与土壤含水率不相关(表4)。由表5可知:土壤温度是影响杉木林土壤呼吸速率的最主要因子。除中度间伐外,土壤易氧化有机碳是影响土壤呼吸速率的次要因子。土壤水溶性有机碳是中度间伐处理下影响土壤呼吸速率的次要因子。
表 4 土壤呼吸速率与环境因子的相关性Table 4 Correlation between soil respiration rate and environmental factors间伐处理 水溶性有机碳 易氧化有机碳 微生物生物量碳 土壤温度 土壤含水率 对照 0.838** 0.903** 0.860** 0.944** 0.201 中度 0.895** 0.850** 0.915** 0.957** 0.028 重度 0.864** 0.897** 0.881** 0.960** 0.014 总计 0.874** 0.885** 0.880** 0.924** 0.106 说明:双尾检验。**表示极显著相关(P<0.01)。 表 5 土壤呼吸速率与环境因子的多元回归模型Table 5 Multiple regression model of soil respiration rate with environmental factors间伐处理 模型 n F R2 P 对照 Rs=0.947xT 24 192.818 0.893 <0.001 Rs=0.689 xT +0.291 xPOXC 24 113.839 0.908 <0.001 Rs =0.890 xT +0.486 xPOXC +0.406 xMBC 24 92.408 0.923 <0.001 中度 Rs =0.967 xT 24 321.305 0.933 <0.001 Rs =0.724 xT +0.293 xWSOC 24 268.603 0.959 <0.001 重度 Rs =0.960 xT 24 261.820 0.919 <0.001 Rs =0.681 xT +0.343 xPOXC 24 267.618 0.959 <0.001 总计 Rs =0.935 xT 72 489.252 0.875 <0.001 Rs =0.630 xT +0.383 xPOXC 72 447.716 0.928 <0.001 Rs =0.580 xT +0.278 xPOXC +0.167 xWSOC 72 322.352 0.934 <0.001 说明:Rs为土壤呼吸速率;xT为土壤温度;xPOXC为土壤易氧化有机碳;xWSOC为土壤水溶性有机碳;xMBC为土壤微生物生物量碳。 3. 讨论
森林间伐降低了林分密度,对土壤产生强烈扰动,改变了林分结构和土壤理化性质,进而影响土壤呼吸速率[21]。因间伐强度、森林类型、地表植被恢复和气候条件的不同对土壤呼吸影响差异较大,间伐对土壤呼吸速率可能增加、抑制或无影响[22−24]。本研究表明:间伐增加土壤呼吸速率,且随着间伐强度的增加而增加,这与前人在美洲黑杨Populus deltoides林、杉木人工林以及油松Pinus tabuliformis人工林的研究结果一致[15, 25−26]。这是因为间伐降低了林分郁闭度,更多的太阳辐射通过林窗到达地面,林地土壤温度升高,促进土壤有机质的分解和土壤微生物异养呼吸[27]。本研究中,中度和重度间伐处理的土壤温度显著高于对照样地,且各处理土壤温度均与土壤呼吸速率呈显著正相关,这与前人在亚热带杉木林和落叶云杉Picea asperata林的研究结果一致[28−29]。土壤温度作为土壤呼吸速率的主导因子,与土壤呼吸速率呈显著指数关系。随着间伐时间的推移,土壤温度呈现季节性升高和降低,影响林地植物生长代谢的周期性变化,土壤呼吸速率表现为夏季高冬季低的单峰曲线[30]。多元逐步回归结果也表明:土壤温度是影响土壤呼吸的主要因素。本研究中土壤含水率对土壤呼吸速率无显著影响。可能是本研究区降水充沛,土壤水分在整个试验过程变化有限,土壤温度对土壤呼吸变化的强烈影响可能掩盖土壤含水率的影响[31]。另外,林木移除虽然减少了植物的蒸腾散失,但间伐后林地太阳辐射和土壤温度的增加可能促进土壤水分蒸发,减弱土壤水分对土壤呼吸的响应[32]。与对照林分相比,间伐区郁闭度减小,促进了林下植被的恢复进而增加林地土壤根系的自养呼吸[26]。土壤活性有机碳是土壤有机碳中易被生物直接利用转化、最活跃、易氧化的组分,土壤CO2的排放依赖于土壤有机化合物的转化[33]。本研究中,间伐后土壤水溶性有机碳、微生物生物量碳和易氧化有机碳显著增加,且杉木林土壤呼吸速率与土壤各活性有机碳组分均呈显著正相关,这与在杉木林和云南松Pinus yunnanensis林的研究结果一致[34−35]。不同间伐强度的土壤活性有机碳差异是影响土壤呼吸速率的重要原因,间伐初期采伐剩余物输入和死根分解增加了微生物可分解的碳源,林下植被的快速恢复导致植物根系分泌物增多,进而增加了土壤水溶性有机碳质量分数[36−37]。另外,随着采伐后土壤温度的升高,土壤微生物活性提高,加快土壤有机质的矿化,土壤活性有机碳质量分数增加,进而促进土壤呼吸速率增加[38]。土壤呼吸是一系列酶促反应的过程体现,夏季林下适宜的水热环境以及丰富的碳源刺激了土壤微生物活性,这可能是本研究中土壤活性有机碳质量分数夏季较高的原因[39−40]。多元逐步回归分析表明:土壤水溶性有机碳和易氧化有机碳分别是中度和重度间伐的次要影响因子,表明随着间伐对林地干扰程度的增加,影响土壤CO2排放的因子重要性可能发生改变。
Q10作为评估土壤呼吸对全球变暖响应的重要参数,因地理位置、生态系统类型和土壤微生物等不同而不同[16]。在本研究中,与对照相比,间伐处理明显降低了Q10,这与人工油松林和杉阔混交林的研究结果一致[41−42]。研究表明:根系自养呼吸的Q10显著高于异养呼吸[43],Q10的降低可能是间伐后土壤保留的根系减少,自养呼吸减弱导致的[44]。
4. 结论
本研究表明:间伐处理显著增加了杉木人工林土壤呼吸速率,且随着间伐强度的增加而增加。间伐处理显著降低土壤Q10。土壤温度是影响土壤呼吸速率的主导因子,土壤活性有机碳是影响土壤呼吸速率的重要因子。
-
-
[1] 仲崇禄, 白嘉雨, 张勇.我国木麻黄种质资源引种与保存[J].林业科学研究, 2005, 18(3):345-350. ZHONG Chonglu, BAI Jiayu, ZHANG Yong. Introduction and conservation of Casuarina trees in China[J]. For Res, 2005, 18(3):345-350. [2] 何贵平, 卓仁英, 陈雨春, 等.低温处理对耐寒粗枝木麻黄无性系生理指标的影响[J].林业科学研究, 2011, 24(4):523-526. HE Guiping, ZHUO Renying, CHEN Yuchun, et al. Effect of low temperature physiological index of cold-tolerant Casuarina glauca clones[J]. For Res, 2011, 24(4):523-526. [3] DUKE J A. Casuarina equisetifolia J.R. and G. Forst.[D]. West Lafayette: Purdue University, 1983. [4] 王泳, 高智慧, 彭华正, 等.几种按树、木麻黄苗期耐寒性研究初报[J].防护林科技, 2005(增刊1):1-3. WANG Yong, GAO Zhihui, PENG Huazheng, et al. Preliminary report on cold resistance of several species of Eucalyptus and Casuarina equisetifolia in their seedling stages[J]. Prot For Sci Tech, 2005(suppl 1):1-3. [5] 邬金, 温国胜, 王电杰, 等.低温胁迫下7种木麻黄变异类型抗寒性的比较[J].福建林学院学报, 2013, 33(1):34-37. WU Jin, WEN Guosheng, WANG Dianjie, et al. Comparision of cold resisitance characteristics in 7 variation of Casuarina equisetifolia[J]. J Fujian Coll For, 2013, 33(1):34-37. [6] 武冲, 张勇, 马妮, 等.接种菌根菌短枝木麻黄对低温胁迫的响应特征[J].西北植物学报, 2012, 32(10):2068-2074. WU Chong, ZHANG Yong, MA Ni, et al. Response characteristics of Casuarina equisetifolia inoculated with mycorrhizal fungi under low temperature stress[J]. Acta Bot Boreali-Occident Sin, 2012, 32(10):2068-2074. [7] 王晓峰, 陈建勋.植物生理学实验指导[M].广州:华南理工大学出版社, 2002. [8] 高洪波, 郭世荣.外源Γ-氨基丁酸对营养液低氧胁迫下网纹甜瓜幼苗抗氧化酶活性和活性氧含量的影响[J].植物生理与分子生物学学报, 2004, 30(6):651-659. GAO Hongbo, GUO Shirong. Effects of exogenous γ-aminobutyric acid on antioxidant enzyme activity and reactive oxygen content in muskmelon seedlings under nutrient solution hypoxia stress[J]. Plant Physiol J, 2004, 30(6):651-659. [9] XU Sheng, LI Jianlong, ZHANG Xinquan, et al. Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress[J]. Environ Exp Bot, 2006, 56(3):274-285. [10] 高俊风.植物生理学实验指导[M].北京:高等教育出版社, 2006:142-143. [11] 张殿忠, 汪沛洪, 赵会贤.测定小麦叶片游离脯氨酸含量的方法[J].植物生理学, 1990(4):62-65. ZHANG Dianzhong, WANG Peihong, ZHAO Huixian. Determination of the content of free proline in wheat leaves[J]. Plant Physiol Commum, 1990(4):62-65. [12] 李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社, 2000. [13] 李学孚, 倪智敏, 吴月燕, 等.盐胁迫对'鄞红'葡萄光合特性及叶片细胞结构的影响[J].生态学报, 2015, 35(13):4436-4444. LI Xuefu, NI Zhimin, WU Yueyan, et al. Effects of salt stress on photosynthetic characteristics and leaf cell structure of 'Yinhong' grape seedlings[J]. Acta Ecol Sin, 2015, 35(13):4436-4444. [14] 曾韶西, 王以柔, 李美如.不同胁迫预处理提高水稻幼苗抗寒性期间膜保护系统的变化比较[J].植物学报, 1997, 39(4):308-314. ZENG Shaoxi, WANG Yirou, LI Meiru. Comparison of the changes of membrane protective system in rice seedlings during enhancement of chilling resistance by different stress pretreatment[J]. Acta Bot Sin, 1997, 39(4):308-314. [15] 程玉静, 郭世荣, 刘书仁, 等.外源硝酸钙对盐胁迫下黄瓜幼苗叶片抗氧化系统及膜质子泵活性的影响[J].生态学杂志, 2010, 29(5):892-898. CHENG Yujing, GUO Shirong, LIU Shuren, et al. Effects of exogenous Ca on leaf antioxidant system and membrane proton pump activity of cucumber seedlings under salt stress[J]. Chin J Ecol, 2010, 29(5):892-898. [16] PINHEIRO H A, DAMATTA F M, CHAVES A R M, et al. Drought tolerance in relation to protection against oxidative stress in clones of Coffea canephora subjected to long-term drought[J]. Plant Sci, 2004, 167(6):1307-1314. [17] JIANG Mingyi, ZHANG Jianmin. Effect of abscisic acid on active oxygen species, antioxdative defence system and oxidative damage in leaves of maize seedlings[J]. Plant Cell Physiol, 2001, 42(11):1265-1273. [18] 张静, 朱为民.低温胁迫对番茄幼苗叶绿素和丙二醛的影响[J].上海农业学报, 2012, 28(3):74-77. ZHANG Jin, ZHU Weimin. Effects of chilling stress on contents of chlorophyll and malondialdehyde in tomato seedlings[J]. Acta Agric Shanghai, 2012, 28(3):74-77. [19] 江锡兵, 宋跃朋, 马开峰, 等.低温胁迫下美洲黑杨与大青杨杂种无性系若干生理指标变化研究[J].北京林业大学学报, 2012, 34(1):58-63. JIANG Xibing, SONG Yuepeng, MA Kaifeng, et al. Changes of several physiological indices in hybrid clones of Populus deltoides Bartr.×P. ussuriensis Kom. under low temperature stress[J]. J Beijing For Univ, 2012, 34(1):58-63. [20] 曲彦婷, 熊燕, 韩辉, 等.不同福禄考品种对低温胁迫的生理响应及抗寒性综合评价[J].植物生理学报, 2016, 52(4):487-496. QU Yanting, XIONG Yan, HAN Hui, et al. Physiological response to low temperature stress and comprehensive evaluation of cold resistance on different Phlox varieties[J]. Plant Physiol J, 2016, 52(4):487-496. [21] 张文婷, 谢福春, 王华田, 等. 3种园林灌木幼苗对干旱胁迫的生理响应[J].浙江林学院学报, 2009, 26(2):182-187. ZHANG Wenting, XIE Fuchun, WANG Huatian, et al. Physiological response of three garden plants to drought stress[J]. J Zhejiang For Coll, 2009, 26(2):182-187. [22] TJUS S E, MØLLER B L, SCHELLER H V. Photosystem I is an early target of photoinhibition in barley illuminated at chilling temperatures[J]. Plant Physiol, 1998, 116(2):755-764. [23] 邓仁菊, 范建新, 王永清, 等.火龙果幼苗对低温胁迫的生理响应及其抗寒性综合评价[J].植物生理学报, 2014, 50(10):1529-1534. DENG Renju, FAN Jianxin, WANG Yongqing, et al. Physiological responses of pitaya (Hylocereus spp.) seedlings to chilling stress and comprehensive evaluation of their cold resistance[J]. Plant Physiol J, 2014, 50(10):1529-1534. [24] WU Songwei, HU Chengxiao, TAN Qan, et al. Drought stress tolerance mediated by zinc-induced antioxidative defense and osmotic adjustment in cotton (Gossypium hirsutum)[J]. Acta Physiol Plant, 2015, 37(8):167-175. [25] AN Yuyan, LIANG Zongsuo. Drought tolerance of Periploca sepium during seed germination:antioxidant defense and compatible solutes accumulation[J]. Acta Physiol Plant, 2013, 35(3):959-967. [26] 令凡, 焦健, 李朝周, 等.不同油橄榄品种对低温胁迫的生理响应及抗寒性综合评价[J].西北植物学报, 2015, 35(3):508-515. LING Fan, JIAO Jian, LI Chaozhou, et al. Physiological response and comprehensive evaluation of cold resistance under cold stress for different varieties of Olea europaea[J]. Acta Bot Boreal-Occident Sin, 2015, 35(3):508-515. [27] 李凯龙, 王艺潼, 韩晓雪, 等.低钾胁迫对番茄叶片活性氧及抗氧化酶系的影响[J].西北植物学报, 2013, 33(1):66-73. LI Kailong, WANG Yitong, HAN Xiaoxue, et al. Changes in reactive oxygen species and antioxidative defense mechanism in tomato leaves under low potassium stress[J]. Acta Bot Boreal-Occident Sin, 2013, 33(1):66-73. [28] 杨美森, 王雅芳, 干秀霞, 等.外源一氧化氮对冷害胁迫下棉花幼苗生长、抗氧化系统和光合特性的影响[J].中国农业科学, 2012, 45(15):3058-3067. YANG Meisen, WANG Yafang, GAN Xiuxia, et al. Effects of exogenous nitric oxide on growth, antioxidant system and photosynthetic characteristics in seedling of cotton cultivar under chilling injury stress[J]. Sci Agric Sin, 2012, 45(15):3058-3067. [29] 李高志, 朱亚军, 周生财, 等. 2种叶型桢楠对低温胁迫的生理响应及耐寒性分析[J].浙江农林大学学报, 2017, 34(2):310-318. LI Gaozhi, ZHU Yajun, ZHOU Shengcai, et al. Physiological indices at low temperature stress for two types of Phoebe zhennan[J]. J Zhejiang A & F Univ, 2017, 34(2):310-318. [30] LIMÓN-PACHECO J, GONSEBATT M E. The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress[J]. Environ Mutagen, 2009, 674:137-147. [31] 罗军武, 唐和平, 黄意欢, 等.茶树不同抗寒性品种间保护酶类活性的差异[J].湖南农业大学学报(自然科学版), 2001, 27(2):94-96. LUO Junwu, TANG Heping, HUANG Yihuan, et al. Differences of activities of protective enzymes of tea plant varieties with different cold resistant abilities[J]. J Hunan Agri Univ Nat Sci, 2001, 27(2):94-96. 期刊类型引用(7)
1. 岑思. 抚育间伐强度对杉木林生长的影响. 绿色科技. 2024(03): 173-176 . 百度学术
2. 曾润娟,杨小波,李东海,王群,王豪,夏丹. 桉树林和马占相思林的林下植物多样性及其与环境因子的关系. 海南大学学报(自然科学版). 2024(02): 155-163 . 百度学术
3. 曾伟,罗栋,史正军,包江桥,张小凤. 不同经营措施对马占相思人工林土壤呼吸的影响. 东北林业大学学报. 2024(07): 58-63 . 百度学术
4. 竹万宽,王志超,黄润霞,许宇星. 桉树人工林土壤呼吸昼夜变化及其对环境因子的响应. 桉树科技. 2024(02): 32-38 . 百度学术
5. 黄斌. 抚育间伐强度对杉木林生长的影响. 绿色科技. 2024(09): 159-162 . 百度学术
6. 吕文强,董天燕,白富文. 喀斯特农田土壤呼吸对干湿交替的响应特征. 浙江农林大学学报. 2024(04): 760-768 . 本站查看
7. 付小斌,陈琦,刘苑秋,段天择,王力行,潘颜乐,康王朝,邓文平. 降水格局变化对杉木幼苗不同器官非结构性碳水化合物的影响. 浙江农林大学学报. 2024(06): 1114-1123 . 本站查看
其他类型引用(1)
-
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2019.04.007