-
短枝木麻黄Casuarina equisetifolia作为木麻黄科Casuarinaceae木麻黄属Casuarina的代表树种,是世界各国引种最早、人工栽培面积最大的木麻黄植物[1],也是中国东南沿海地区重要的防护林树种[2],发挥着巨大的生态效益和经济价值。木麻黄是典型的热带植物,生长适温为22.1~26.9 ℃,耐寒性较差[3]。引种的木麻黄常遭受较严重冻害,给沿海防护林建设造成较大损失。因此,研究木麻黄对低温的响应机制,开展耐寒品种的选育,对于扩大木麻黄种植范围和推进沿海防护林建设尤为重要。在低温诱导下,植物形成了其各自特有的生理生化特征,研究植物的耐寒生理机制,对于解析植物的耐寒性具有重要意义。目前,国内外对木麻黄耐寒生理研究大多集中在抗性生理指标的测定分析上[2, 4-6],但从全面或更深入揭示木麻黄的低温适应的机制还远远不够。本研究针对木麻黄生产实践中存在的低温冻害问题,在前期对短枝木麻黄耐寒性评价的基础上,以短枝木麻黄耐寒无性系ZS7和不耐寒无性系HN1幼苗为材料,通过测定这2种无性系幼苗在低温胁迫下的叶绿素、渗透调节物质、酶类和非酶类抗氧化剂等耐寒相关生理指标,比较分析耐寒性不同无性系生理指标变化的趋势与差异,为深入阐明短枝木麻黄耐寒机理,促进木麻黄耐寒品种选育奠定基础。
Physiological response to low temperature stress in Casuarina equisetifolia seedlings
-
摘要: 以短枝木麻黄Casuarina equisetifolia耐寒无性系ZS7和不耐寒无性系HN1幼苗为供试材料,在人工气候箱内采用基质栽培方式,研究在-2,-5,-8,-11 ℃共4个温度梯度胁迫2 h以及-5 ℃持续胁迫1,2,5,8,16,24,48,72 h后2种无性系幼苗相关生理指标的变化趋势以及耐寒性差异,探讨短枝木麻黄适应低温环境的生理机制。结果表明:在低温梯度胁迫下,耐寒无性系的过氧化氢(H2O2)和丙二醛(MDA)质量摩尔浓度的增幅小于不耐寒无性系;叶绿素、脯氨酸(Pro)和可溶性蛋白质质量分数,超氧化物歧化酶(SOD),过氧化物酶(POD),过氧化氢酶(CAT),抗坏血酸过氧化物酶(APX)和谷胱甘肽还原酶(GR)活性,以及还原型谷胱甘肽(GSH)和氧化型谷胱甘肽(GSSG)质量摩尔浓度的降幅均小于不耐寒无性系。耐寒无性系的GSH/GSSG比值呈上升的趋势,而不耐寒无性系的呈先下降后上升趋势。在-5 ℃持续胁迫下,2种无性系各生理指标呈现波动变化,增幅(降幅)与到达峰值时间不同。无论是在低温梯度胁迫还是在低温持续胁迫处理过程中,耐寒无性系的SOD,POD,CAT,APX和GR活性以及叶绿素、可溶性蛋白质和Pro质量分数、GSH质量摩尔浓度都显著高于不耐寒无性系。耐寒性不同的2种短枝木麻黄无性系耐寒的生理机制明显不同,耐寒性强的无性系通过在低温胁迫下保持较高的可溶性蛋白质和Pro等渗透调节物质质量分数,增强抗氧化酶活性,提高非酶抗氧化剂水平,抑制叶绿素质量分数的下降及膜脂过氧化程度的加剧,进而提高抗寒性来抵御低温。Abstract: This study was conducted to explore changes in relevant physiological indexes of cold-tolerant and cold-intolerant Casuarina equisetifolia as well as physiological mechanisms to adapt to a low-temperature environment, and to provide a basis for further study of cold resistance in C. equisetifolia. Using a substrate culture, the related physiological indexes of cold-tolerant (ZS7) and cold-intolerant (HN1) clones of C. equisetifolia seedlings with successive low temperature stresses at -2, -5, -8, and -11 ℃ for 2 h, as well as precise expression patterns with low temperature stresses of -5 ℃ for 1, 2, 5, 8, 16, 24, 48, and 72 h in climate chambers were studied. Results showed that for successive low temperature stresses, the rising amplitude of H2O2 and malondialdehyde (MDA) content in the cold-tolerant clones were significantly lower (P < 0.05) than in the cold-tolerant clones. Basically, the decreased amplitude of total chlorophyll, soluble protein, proline contents, the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and ascorbate peroxidase (APX), as well as contents of glutathione reductase (GR), glutathione (GSH), and oxidized glutathione (GSSG) in ZS7 were significantly lower (P < 0.05) than in HN1. The GSH/GSSG ratio in ZS7 increased gradually; whereas, HN1 decreased first and then increased. For low temperature stress at -5 ℃, the rising amplitude or decrease in amplitude of physiological indexes in the two clones were different as was the time to its peak for physiological indexes of SOD, POD, CAT, APX, and GR as well as contents of total chlorophyll, soluble protein, proline, and GSH with ZS7 being generally higher than HN1. Thus, different clones showed different physiological response mechanisms to low temperature stress with the cold-tolerant clone resisting low temperature and enhancing cold resistance by maintaining the content of soluble protein and proline, promoting antioxidant enzyme activities and antioxidant contents, decreasing the accumulation of H2O2 and MDA, and inhibiting chlorophyll deterioration.
-
-
[1] 仲崇禄, 白嘉雨, 张勇.我国木麻黄种质资源引种与保存[J].林业科学研究, 2005, 18(3):345-350. ZHONG Chonglu, BAI Jiayu, ZHANG Yong. Introduction and conservation of Casuarina trees in China[J]. For Res, 2005, 18(3):345-350. [2] 何贵平, 卓仁英, 陈雨春, 等.低温处理对耐寒粗枝木麻黄无性系生理指标的影响[J].林业科学研究, 2011, 24(4):523-526. HE Guiping, ZHUO Renying, CHEN Yuchun, et al. Effect of low temperature physiological index of cold-tolerant Casuarina glauca clones[J]. For Res, 2011, 24(4):523-526. [3] DUKE J A. Casuarina equisetifolia J.R. and G. Forst.[D]. West Lafayette: Purdue University, 1983. [4] 王泳, 高智慧, 彭华正, 等.几种按树、木麻黄苗期耐寒性研究初报[J].防护林科技, 2005(增刊1):1-3. WANG Yong, GAO Zhihui, PENG Huazheng, et al. Preliminary report on cold resistance of several species of Eucalyptus and Casuarina equisetifolia in their seedling stages[J]. Prot For Sci Tech, 2005(suppl 1):1-3. [5] 邬金, 温国胜, 王电杰, 等.低温胁迫下7种木麻黄变异类型抗寒性的比较[J].福建林学院学报, 2013, 33(1):34-37. WU Jin, WEN Guosheng, WANG Dianjie, et al. Comparision of cold resisitance characteristics in 7 variation of Casuarina equisetifolia[J]. J Fujian Coll For, 2013, 33(1):34-37. [6] 武冲, 张勇, 马妮, 等.接种菌根菌短枝木麻黄对低温胁迫的响应特征[J].西北植物学报, 2012, 32(10):2068-2074. WU Chong, ZHANG Yong, MA Ni, et al. Response characteristics of Casuarina equisetifolia inoculated with mycorrhizal fungi under low temperature stress[J]. Acta Bot Boreali-Occident Sin, 2012, 32(10):2068-2074. [7] 王晓峰, 陈建勋.植物生理学实验指导[M].广州:华南理工大学出版社, 2002. [8] 高洪波, 郭世荣.外源Γ-氨基丁酸对营养液低氧胁迫下网纹甜瓜幼苗抗氧化酶活性和活性氧含量的影响[J].植物生理与分子生物学学报, 2004, 30(6):651-659. GAO Hongbo, GUO Shirong. Effects of exogenous γ-aminobutyric acid on antioxidant enzyme activity and reactive oxygen content in muskmelon seedlings under nutrient solution hypoxia stress[J]. Plant Physiol J, 2004, 30(6):651-659. [9] XU Sheng, LI Jianlong, ZHANG Xinquan, et al. Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress[J]. Environ Exp Bot, 2006, 56(3):274-285. [10] 高俊风.植物生理学实验指导[M].北京:高等教育出版社, 2006:142-143. [11] 张殿忠, 汪沛洪, 赵会贤.测定小麦叶片游离脯氨酸含量的方法[J].植物生理学, 1990(4):62-65. ZHANG Dianzhong, WANG Peihong, ZHAO Huixian. Determination of the content of free proline in wheat leaves[J]. Plant Physiol Commum, 1990(4):62-65. [12] 李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社, 2000. [13] 李学孚, 倪智敏, 吴月燕, 等.盐胁迫对'鄞红'葡萄光合特性及叶片细胞结构的影响[J].生态学报, 2015, 35(13):4436-4444. LI Xuefu, NI Zhimin, WU Yueyan, et al. Effects of salt stress on photosynthetic characteristics and leaf cell structure of 'Yinhong' grape seedlings[J]. Acta Ecol Sin, 2015, 35(13):4436-4444. [14] 曾韶西, 王以柔, 李美如.不同胁迫预处理提高水稻幼苗抗寒性期间膜保护系统的变化比较[J].植物学报, 1997, 39(4):308-314. ZENG Shaoxi, WANG Yirou, LI Meiru. Comparison of the changes of membrane protective system in rice seedlings during enhancement of chilling resistance by different stress pretreatment[J]. Acta Bot Sin, 1997, 39(4):308-314. [15] 程玉静, 郭世荣, 刘书仁, 等.外源硝酸钙对盐胁迫下黄瓜幼苗叶片抗氧化系统及膜质子泵活性的影响[J].生态学杂志, 2010, 29(5):892-898. CHENG Yujing, GUO Shirong, LIU Shuren, et al. Effects of exogenous Ca on leaf antioxidant system and membrane proton pump activity of cucumber seedlings under salt stress[J]. Chin J Ecol, 2010, 29(5):892-898. [16] PINHEIRO H A, DAMATTA F M, CHAVES A R M, et al. Drought tolerance in relation to protection against oxidative stress in clones of Coffea canephora subjected to long-term drought[J]. Plant Sci, 2004, 167(6):1307-1314. [17] JIANG Mingyi, ZHANG Jianmin. Effect of abscisic acid on active oxygen species, antioxdative defence system and oxidative damage in leaves of maize seedlings[J]. Plant Cell Physiol, 2001, 42(11):1265-1273. [18] 张静, 朱为民.低温胁迫对番茄幼苗叶绿素和丙二醛的影响[J].上海农业学报, 2012, 28(3):74-77. ZHANG Jin, ZHU Weimin. Effects of chilling stress on contents of chlorophyll and malondialdehyde in tomato seedlings[J]. Acta Agric Shanghai, 2012, 28(3):74-77. [19] 江锡兵, 宋跃朋, 马开峰, 等.低温胁迫下美洲黑杨与大青杨杂种无性系若干生理指标变化研究[J].北京林业大学学报, 2012, 34(1):58-63. JIANG Xibing, SONG Yuepeng, MA Kaifeng, et al. Changes of several physiological indices in hybrid clones of Populus deltoides Bartr.×P. ussuriensis Kom. under low temperature stress[J]. J Beijing For Univ, 2012, 34(1):58-63. [20] 曲彦婷, 熊燕, 韩辉, 等.不同福禄考品种对低温胁迫的生理响应及抗寒性综合评价[J].植物生理学报, 2016, 52(4):487-496. QU Yanting, XIONG Yan, HAN Hui, et al. Physiological response to low temperature stress and comprehensive evaluation of cold resistance on different Phlox varieties[J]. Plant Physiol J, 2016, 52(4):487-496. [21] 张文婷, 谢福春, 王华田, 等. 3种园林灌木幼苗对干旱胁迫的生理响应[J].浙江林学院学报, 2009, 26(2):182-187. ZHANG Wenting, XIE Fuchun, WANG Huatian, et al. Physiological response of three garden plants to drought stress[J]. J Zhejiang For Coll, 2009, 26(2):182-187. [22] TJUS S E, MØLLER B L, SCHELLER H V. Photosystem I is an early target of photoinhibition in barley illuminated at chilling temperatures[J]. Plant Physiol, 1998, 116(2):755-764. [23] 邓仁菊, 范建新, 王永清, 等.火龙果幼苗对低温胁迫的生理响应及其抗寒性综合评价[J].植物生理学报, 2014, 50(10):1529-1534. DENG Renju, FAN Jianxin, WANG Yongqing, et al. Physiological responses of pitaya (Hylocereus spp.) seedlings to chilling stress and comprehensive evaluation of their cold resistance[J]. Plant Physiol J, 2014, 50(10):1529-1534. [24] WU Songwei, HU Chengxiao, TAN Qan, et al. Drought stress tolerance mediated by zinc-induced antioxidative defense and osmotic adjustment in cotton (Gossypium hirsutum)[J]. Acta Physiol Plant, 2015, 37(8):167-175. [25] AN Yuyan, LIANG Zongsuo. Drought tolerance of Periploca sepium during seed germination:antioxidant defense and compatible solutes accumulation[J]. Acta Physiol Plant, 2013, 35(3):959-967. [26] 令凡, 焦健, 李朝周, 等.不同油橄榄品种对低温胁迫的生理响应及抗寒性综合评价[J].西北植物学报, 2015, 35(3):508-515. LING Fan, JIAO Jian, LI Chaozhou, et al. Physiological response and comprehensive evaluation of cold resistance under cold stress for different varieties of Olea europaea[J]. Acta Bot Boreal-Occident Sin, 2015, 35(3):508-515. [27] 李凯龙, 王艺潼, 韩晓雪, 等.低钾胁迫对番茄叶片活性氧及抗氧化酶系的影响[J].西北植物学报, 2013, 33(1):66-73. LI Kailong, WANG Yitong, HAN Xiaoxue, et al. Changes in reactive oxygen species and antioxidative defense mechanism in tomato leaves under low potassium stress[J]. Acta Bot Boreal-Occident Sin, 2013, 33(1):66-73. [28] 杨美森, 王雅芳, 干秀霞, 等.外源一氧化氮对冷害胁迫下棉花幼苗生长、抗氧化系统和光合特性的影响[J].中国农业科学, 2012, 45(15):3058-3067. YANG Meisen, WANG Yafang, GAN Xiuxia, et al. Effects of exogenous nitric oxide on growth, antioxidant system and photosynthetic characteristics in seedling of cotton cultivar under chilling injury stress[J]. Sci Agric Sin, 2012, 45(15):3058-3067. [29] 李高志, 朱亚军, 周生财, 等. 2种叶型桢楠对低温胁迫的生理响应及耐寒性分析[J].浙江农林大学学报, 2017, 34(2):310-318. LI Gaozhi, ZHU Yajun, ZHOU Shengcai, et al. Physiological indices at low temperature stress for two types of Phoebe zhennan[J]. J Zhejiang A & F Univ, 2017, 34(2):310-318. [30] LIMÓN-PACHECO J, GONSEBATT M E. The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress[J]. Environ Mutagen, 2009, 674:137-147. [31] 罗军武, 唐和平, 黄意欢, 等.茶树不同抗寒性品种间保护酶类活性的差异[J].湖南农业大学学报(自然科学版), 2001, 27(2):94-96. LUO Junwu, TANG Heping, HUANG Yihuan, et al. Differences of activities of protective enzymes of tea plant varieties with different cold resistant abilities[J]. J Hunan Agri Univ Nat Sci, 2001, 27(2):94-96. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.2019.04.007