留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

盐胁迫对望春玉兰幼苗形态和相关生理指标的影响

沈徐悦 张浪 陈蓉蓉 申亚梅 金荷仙

崔杨林, 高祥, 董斌, 等. 县域景观生态风险评价[J]. 浙江农林大学学报, 2021, 38(3): 541-551. DOI: 10.11833/j.issn.2095-0756.20200461
引用本文: 沈徐悦, 张浪, 陈蓉蓉, 等. 盐胁迫对望春玉兰幼苗形态和相关生理指标的影响[J]. 浙江农林大学学报, 2021, 38(2): 289-295. DOI: 10.11833/j.issn.2095-0756.20200449
CUI Yanglin, GAO Xiang, DONG Bin, et al. Landscape ecological risk assessment of county[J]. Journal of Zhejiang A&F University, 2021, 38(3): 541-551. DOI: 10.11833/j.issn.2095-0756.20200461
Citation: SHEN Xuyue, ZHANG Lang, CHEN Rongrong, et al. Effect of NaCl stress on the morphology and related physiological indexes of Magnolia biondii seedlings[J]. Journal of Zhejiang A&F University, 2021, 38(2): 289-295. DOI: 10.11833/j.issn.2095-0756.20200449

盐胁迫对望春玉兰幼苗形态和相关生理指标的影响

DOI: 10.11833/j.issn.2095-0756.20200449
基金项目: 上海市园林科学规划研究院合作课题(H20180177);上海城市困难立地绿化工程技术研究中心建设专项(16dz2251400);上海市科委科研计划项目(19DZ1203300);浙江省重点研发项目(2019C02023);浙江省“十三五”林木新品种选育资助项目(2016C02056-12)
详细信息
    作者简介: 沈徐悦(ORCID: 0000-0002-0004-1043),从事园林植物应用与育种研究。E-mail: 362241944@qq.com
    通信作者: 金荷仙(ORCID: 0000-0002-3752-3097),研究员,从事康复花园、寺观园林、植物景观规划设计研究。E-mail: lotusjhx@zafu.edu.cn
  • 中图分类号: S718.3

Effect of NaCl stress on the morphology and related physiological indexes of Magnolia biondii seedlings

  • 摘要:   目的  探讨盐胁迫对望春玉兰Magnolia biondii幼苗形态和相关生理指标的影响,并筛选盐胁迫下的指示性生理指标,为木兰科Magnoliaceae植物的耐盐性评价与筛选优质种质资源提供理论依据。  方法  以望春玉兰1年生实生苗为材料,采用水培法,测定200 mmol·L−1氯化钠胁迫下叶片的相对电导率、丙二醛质量摩尔浓度、叶绿素质量分数、渗透调节物质质量分数和抗氧化酶活性,通过主成分分析筛选关键生理指标。  结果  随着盐胁迫时间的延长,可溶性糖质量分数、相对电导率、丙二醛质量摩尔浓度和超氧化物歧化酶(SOD)活性总体呈上升趋势;可溶性蛋白质质量分数、脯氨酸质量分数、叶绿素质量分数和过氧化物酶(POD)活性总体呈先上升后下降的趋势。利用主成分分析法筛选出3个指示性指标,分别为丙二醛质量摩尔浓度、可溶性糖质量分数和SOD活性。  结论  氯化钠胁迫引起望春玉兰幼苗叶片丙二醛质量摩尔浓度、可溶性糖质量分数和SOD活性显著变化,可作为指示性生理指标用于评价氯化钠胁迫下望春玉兰等木兰科植物的耐盐性强弱。图4表2参19
  • 土地资源是人类社会赖以生存发展的基础,近年来,随着城市化进程不断加快,耕地流失和土地破碎化问题日益严重,区域景观生态风险评价已成为全球环境变化的研究热点[1-3]。日益频繁的人类活动及高强度的开发建设,使得土地景观趋于破碎化,结构趋于复杂化,威胁着人地关系的和谐[4]。景观生态风险评价方法主要分为景观指数法和基于风险源-汇的理论分析法。研究对象多集中在生态环境敏感脆弱和人为干扰剧烈的区域,如城镇[5-7]、流域[8]、海岸带[9]、矿区[10-11]、自然保护区[12]、道路沿线[13]、湿地[14]等,数据源多为人工解译方法获得的遥感解译数据或土地利用现状图矢量图[10-14]。如HAYES等[15]利用GIS技术对生境模型的空间数据进行编译和对比,直观评估出华盛顿西北部近海岸海洋环境的生态风险空间分布状况。张莹等[12]以扎龙自然保护区为研究对象,基于研究区景观格局变化特点构建景观生态风险指数,总结了1995−2010年保护区多尺度下景观生态风险的时空变化特征。刘炎序等[16]以深圳市社会-生态系统为评价研究对象,借助GIS空间分析手段,制作出“忽视风险情景”“正常风险情景”“重视风险情景”等景观生态风险图。王涛等[17]运用景观生态学理论,综合选取指数构建了景观生态风险评价模型,定量化总结1985−2015年杞麓湖流域的景观生态风险分布特征。景观具有高度空间异质性,存在一定的空间分布规律,在景观生态风险评价体系中引入景观指数法,不仅能增加景观异质性的关注度和空间定量描述,还能使风险评价摆脱传统方法中由于某一特定风险因子表征区域状态所造成的局限性[18]。宿松县地处大别山南麓,地理位置特殊,山区和湖泊面积占总面积的86%,生态环境敏感脆弱。人类活动的干扰导致该地区林地面积不断退化,农田城镇化明显,生态系统的基本结构和功能够遭到破坏,景观生态风险日益加剧。本研究从土地景观生态安全角度重新审视该区域的环境和发展问题,通过探究县域景观结构的变化动态,构建最佳粒度下景观指数的生态风险评价模型,进行景观生态风险评价研究,以期为县域尺度景观生态风险的管理提供理论和技术支持。

    宿松县(29°47′20′′~30°25′30′′N,115°52′52′′~116°34′40′′E)位于安徽省西南方向,是安徽、湖北、江西三省的交界处,也是八县结合部,地处长江下游北岸的顶端。全县东西宽约67 km,南北长约72 km,总面积达2 394 km2;东北接壤太湖县,西边紧邻湖北省的蕲春县和黄梅县,东南角连接望江县,南边隔江相望于江西省湖口县和彭泽县;属北亚热带湿润季风气候,四季分明,季风性明显;年平均气温16.6 ℃,由于地势原因,境内温度自西北方向至东南逐渐增高;季节性降水较明显,城区为暴雨多发地区;光照充足,年均无霜期254 d。

    标准采用2017年的GQJC 03−2017《基础性地理国情监测内容与指标》,与2015年标准不同的是,2017年新标准将耕地、园地合并为种植土地;林地、草地合并为了林草覆盖。本研究以2015、2017年的地理国情普查成果为依据,结合研究目标,参考GB/T 21010−2017《土地利用现状分类》,根据土地实际用途以及地物意义,将普查数据中的地表覆盖分类重新划分为耕地、园地、林地、草地、建筑用地(房屋建筑区、构筑物、人工堆掘地)、交通用地(道路)、水域、未利用地(荒漠与裸露地表)八大土地景观类型[19](图1)。通过ArcGIS对划分后的土地斑块类型进行分类、合并处理。选取宿松县景观格局变化研究的最佳粒度值100 m[20],利用Arc GIS重采样功能得出2015、2017年宿松县土地景观栅格分布图。

    图 1  2017年宿松县景观分布示意图
    Figure 1  Landscape distribution map of Susong County in 2017

    本研究从类型和景观水平共选取5个景观指数(表1),从面积与结构、形状、多样性等3个方面对宿松县2015−2017年土地利用格局的动态变化进行研究,并利用FRAGSTATS软件计算出相关值。

    表 1  不同水平下选取的土地利用景观指数
    Table 1  Land use landscape index selected at different levels
    景观特征景观指数水平类型含义
    面积与结构斑块面积(CA)类型   描述某斑块类型的
    总面积     
    斑块类型面积比例指数(PLAND)类型   描述某斑块类型所占整个景观面积比例
    形状   景观形状指数(LSI)类型/景观描述斑块形状边界
    形状的复杂性  
    多样性  Simpson 多样性指数(SIDI)景观   描述斑块类型多样性程度     
    Simpson 均匀度指数(SIEI)景观   描述斑块类型均匀性程度       
    下载: 导出CSV 
    | 显示表格

    样方面积的大小需满足研究区景观斑块平均面积的2~5倍,样本才能综合反映采样地点周围综合景观格局信息[21]。2015和2017年景观斑块平均面积分别为1.872 7、1.862 6 km2,确定风险小区边长选择区间为1.930 0~3.064 5 km,考虑单元格划分既要保证足够多的单元数来反映研究区景观格局的分布规律,又要避免计算强度和精度等问题,因此本研究以3 km×3 km风险小区为评价单元,采用等间距采样方法,将研究区划分为308个风险小区,网格中心点为景观生态风险指数的采样点(图2)。

    图 2  景观生态风险空间采样图
    Figure 2  Landscape ecological risk spatial sampling grid

    生态风险是生态系统结构和功能在响应外界干扰时保持本身处在低能量平衡的一种可能性[22]。景观生态风险由外部的扰动强度和内部的脆弱性来衡量。本研究选取景观干扰度指数和景观脆弱度指数对景观生态风险进行定量分析,该方法能够快速有效识别土地资源异质性带来地干扰度和生态系统自身的脆弱程度[23]

    2.4.1   景观干扰度指数

    景观干扰度指数(Gi)表示i类土地景观抵抗外界的干扰能力和自我恢复能力,景观格局所受的人为和自然的干扰强度越大,则整个土地景观生态系统敏感性越强,其景观生态风险越大。选取景观破碎度指数(Pi)、景观分离度指数(Di)、景观分维度指数(Fi)来构建景观干扰度指数,计算公式为:

    $$G_i = W_1 \times P_i + W_2 \times D_i + W_3 \times F_i \text{。}$$ (1)

    式(1)中:W1W2W3分别为景观破碎度、景观分离度、景观分维度等3个景观指数的权重值,结合相关研究成果分别赋值0.5、0.3、0.2;i为特定的土地覆盖类型[24-25]

    2.4.2   景观脆弱度指数

    景观脆弱度数值大小与区域景观抵抗外界干扰能力的程度成反比。本研究依据各土地类型结构组成形成的土地利用稳定性,和自身的敏感性、脆弱性及分布集中性程度,参考相关研究成果[26-27],将各土地利用类型的脆弱度值进行赋值,并归一化处理,结果见表2

    表 2  景观脆弱度值归一化结果
    Table 2  Normalized results of landscape vulnerability values
    景观类型脆弱度值归一化值
    建设用地10.028
    交通用地20.056
    林地  30.083
    园地  40.111
    耕地  50.139
    水域  60.167
    草地  70.194
    未利用地80.222
    下载: 导出CSV 
    | 显示表格
    2.4.3   景观生态风险指数

    不同的土地利用方式对区域生态风险的贡献程度不同,为了定量分析土地景观结构变化带来的景观生态风险,将景观干扰度指数(外部)和景观脆弱度指数(内部)引入景观生态风险指数(ERI)概念能够使其更具针对性,能够结合采样方法将土地利用格局转化为空间化的生态风险变量。公式如下[28-29]

    $${E_{{\rm{RI}}k}} = \sum\limits_{i = 1}^n {\frac{{{A_{ki}}}}{{{A_k}}}} ({G_i} \times {R_i}) \text{。}$$ (2)

    式(2)中:ERIk为第k个风险小区景观生态风险指数,Aki为第k个风险小区i类景观类型面积的总和,Ak为第k个风险小区n类景观类型面积的总和。Gii类景观类型的景观干扰度指数,Rii类景观类型的景观脆弱度指数。

    最后用空间采样及普通克里金插值法进行分析,根据风险值的范围,采用自然间断法将生态风险程度划分为5个等级:低生态风险区、较低生态风险区、中等风险区、较高风险区、和高生态风险区。

    根据表3~4可见:2015−2017年景观结构发生了变化,景观形状呈复杂化趋势,多样化程度和均匀度不断加强。耕地、林地、水域、草地等优势景观类型面积有所减少,而与人类活动密切相关的建筑用地、园地、交通用地面积有所增加。优势景观类型面积的减少,弱势景观类型面积的增高造成斑块类型分布不断均匀化,同时多样指数的提高说明研究区景观类型的丰富度有所增高,破碎化程度进一步加深。其中林地面积减少的最多,为969 hm2,减少的林地面积与增加的建设用地面积几乎相等,建设用地景观形状指数增幅最大。且2017年比2015人口增长0.31%,城镇人口增长21.11%,建筑业生产总值增长11 000万元。说明宿松县的城市化进程,尤其是城镇建设和农房面积的扩张是导致大量林地面积减少和建设用地形状复杂化的主要原因;耕地主要分布于城镇村庄周围,随着农业科技自动化水平的提高和城镇面积进一步扩张,城镇村庄周围的农业用地都逐渐转化为非农业用地,导致耕地面积有所减少,园地面积有所增加;由于耕地为主体景观类型且分布广泛,交通用地主要贯穿于城镇村庄内部,随着建设用地的大幅度增加,交通用地呈现增加趋势,造成草地、未利用地面积有所减少,耕地斑块形状变得更加复杂。综上,经济发展在一定程度上加剧了景观格局的不稳定状态。

    表 3  2015和2017年类型水平上的格局指数
    Table 3  Pattern index values at the type level in 2015 and 2017
    景观类型年份CA/hm2PLAND/%LSI
    林地  201554 00722.785 672.819 4
    201753 03822.376 772.817 8
    耕地  201586 61436.542 581.321 4
    201786 36736.438 282.403 7
    建设用地201511 0004.640 973.838 1
    201712 0845.098 276.163 6
    园地  20152 3280.982 227.247 4
    20172 3801.004 127.479 6
    交通用地20151 9840.837 141.677 8
    20172 1640.913 043.414 9
    草地  201518 3247.730 987.638 4
    201718 2787.711 586.273 1
    水域  201562 61526.417 330.990 0
    201762 58026.402 531.503 0
    未利用地20151510.063 79.160 0
    20171320.055 79.869 6
      说明:CA为斑块类型面积,PLAND为斑块面积比例,LSI     为景观形状指数
    下载: 导出CSV 
    | 显示表格
    表 4  2015和2017年景观水平上的格局指数
    Table 4  Pattern index values at the landscape level in 2015 and 2017
    年份LSISIDISIEI
    201574.329 60.736 70.842 0
    201775.241 80.739 00.844 5
      说明:LSI为景观形状指数,SIDI为Simpson 多样性指数,     SIEI为Simpson 均匀度指数
    下载: 导出CSV 
    | 显示表格
    3.2.1   景观破碎度分析

    图3表明:西北部和东南部景观破碎程度较低,中部较高。由于宿松县地处大别山山脉,西北部主体景观类型为林地;东南部华阳河农场总场、汇口镇北部、洲头乡北部为主要的农业区,主体景观类型为耕地和水域,且均呈集聚状态分布,景观破碎程度较低;中部破碎化均较高且呈现由东向西的扩张趋势,其中程岭乡的破碎化程度最大,且高破碎度区域依然呈增加趋势,这与中部的景观类型为建筑用地、耕地、草地密切相关,虽然耕地依然为主体景观类型,但是由于受到错综复杂的交通用地、建设用地等其他土地类型的分割,造成中部耕地类型破碎化程度较大。

    图 3  2015和2017年景观破碎度空间分布示意图
    Figure 3  Spatial distribution map of landscape fragmentation in 2015 and 2017
    3.2.2   景观分离度分析

    图4表明:西北部山区景观分离度较低,东南部农业区次之,景观分布较简单,中部地区景观分离度较高,景观分布复杂。2015−2017年西北部北浴乡、陈汉乡、柳坪乡主体景观类型为林地且位于山区,景观分离度未发生明显改变,分离度低于0.602 4;东南部复兴镇、洲头乡南部景观分离度虽发生轻微变化,但变化范围不大;中部西侧二郎镇、孚玉镇,及程岭乡西北部分离度最高、变化最为剧烈,呈现自东向西的扩张趋势。

    图 4  2015和2017年景观分离度分布示意图
    Figure 4  Spatial distribution map of landscape separation in 2015 and 2017
    3.2.3   景观分维度分析

    图5表明:西北部分维度最低,景观形状简单,中部中等区域所占比例较大,且较高级有向中等和高级分离度转化的趋势,高区域集中于东南部,景观形状较复杂。西北部分维度较低,主要是由于该地位于大别山区,主体景观类型由斑块较大的乔木林地组成;与之相对应分维度高区域为中部九姑乡、孚玉镇及东南部华阳河农场地区,原因是由于九姑乡存在较多分散的草地面积,一条自然水系贯穿孚玉镇,且水系形状较复杂,华阳河农场主体景观类型农业用地耕地,其形状均较不规则。综上所述,分维度指数与地貌形态、人类活动的制约和影响有着密切的联系。

    图 5  2015和2017年景观分维度分布示意图
    Figure 5  Spatial distribution map of landscape by dimensions in 2015 and 2017
    3.3.1   景观生态风险的时空变化分析

    图6表明:宿松县景观生态风险空间分布呈明显区位性和异质性特征的景观结构分布规律。低风险区主要集中于西北部山地地带,受其他生态风险等级的胁迫,研究期间面积有所下降,优势景观类型为林地且连片集中分布,景观结构稳定,景观破碎度和分离度较低;较低生态风险区位于西北部林地边缘和黄湖、龙湖南部地带,2015−2017年较低生态风险区有边缘向中部萎缩的趋势,以集中连片的深水域、耕地、和破碎化林地为主,景观结构较为完善,但也是人类主要活动区域的边缘地带,存在一定程度的风险;中等风险区和较高生态风险区主要分布于中部,以及东南部湖泊、长江边缘地带,优势景观类型主要以耕地、水域、林地、草地为主,耕地主要位于山地丘陵地带,自身形状复杂,水网密布且草地、林地的破碎化程度较高造成景观的动态变化较大,生态风险进一步加剧;高生态风险区主要分布于西南和东部边缘地带,2017年中部九姑乡出现大片的高生态风险区,高岭乡高生态风险面积逐渐内部扩张,而其余边缘高生态风险区面积均有所降低,表明高生态风险区有从边缘向中部发展的趋势。综上所述,宿松县的生态风险分布呈现明显的阶梯状态,与研究区内的地势从西北到东南逐渐降低,山区、丘陵、湖泊、平原依次分布的地貌有密切关系。

    图 6  2015和2017年宿松县景观生态风险指数空间分布示意图
    Figure 6  Spatial distribution map of landscape ecological risk index in Susong County in 2015 and 2017

    利用ArcGIS对2015和2017年不同等级的土地景观生态风险面积统计(表5)表明:2015−2017年风险面积占比从高到低依次为较高生态风险区、中等生态风险区、较低生态风险区、低生态风险区、高生态风险区。研究区以较高生态风险区和中等生态风险区为主,2017年二者占比分别为31.22%、27.10%,合计超过总面积的一半。生态等级表现为低等级向相邻高等级转化,风险程度逐渐增加。低生态风险、较低生态风险区面积均有所降低,其中较低生态风险区面积主要由低生态风险区转入和转出为中等生态风险区的面积决定,面积减少了23.174 km2;中等生态风险面积降低幅度较明显,减少了45.605 km2,降幅占2015年中等风险区总面积的6.63%;较高生态风险区、高生态风险区的面积均有所增加,其中高生态风险面积在2 a间增加了65.326 km2,占2015年高风险区总面积的49.73%。根据各等级转化趋势可以得出,宿松县应进一步加大土地利用的治理,减少人为干扰强度,降低破碎化程度,避免较高生态风险区,进一步向高生态风险区转化。

    表 5  2015和2017年各级生态风险面积及其占比
    Table 5  Areas and percentages of ecological risks at all levels in 2015 and 2017
    生态风险等级2015年 2017年
    面积/km2占比/%面积/km2占比/%
    低 315.32913.31309.53713.06
    较低504.78621.30481.61220.32
    中 687.98129.02642.37627.10
    较高730.78830.83740.03331.22
    高 131.350 5.54196.676 8.30
    下载: 导出CSV 
    | 显示表格
    3.3.2   基于乡镇的景观生态风险变化分析

    为了进一步对宿松县的景观生态风险进行分析,依据地形地貌、社会经济条件等限制因素,将宿松县24个乡镇分为五大类,山地旅游区、交通枢纽镇、鱼米之乡、农业区、矿产资源区,统计出各类型地区的风险等级面积(表6)。图5表6表明:2015−2017年除矿产资源区外,各类地区低生态风险、较低生态风险、中等生态风险面积均呈降低趋势;鱼米之乡、矿产资源区的较高生态风险区面积,由于转化为高生态风险面积而有所降低。低生态风险区集中于西北部山地旅游地区,其中陈汉乡完全处于低生态风险区,风险程度最低,隘口乡旅游资源丰富,2017年出现中等生态风险区,面积为0.389 km2,表明旅游业在一定程度上促进了中等生态风险区从中部向西北部扩张;2015−2017年中部交通枢纽镇二郎镇、孚玉镇的较高生态风险面积增长6.316 km2,且邻乡破凉镇中三乡交界处出现较高生态风险区,表明以城镇为中心的城镇扩张进一步加剧了生态风险;中等生态风险区集中于农业区复兴镇、破凉镇等,2015−2017生态风险增加程度较大为复兴镇,增加面积为3.119 km2,这与复兴镇滨江依湖的地理位置有着密切的关系,表明水域的脆弱性比耕地大,更易受到人为干扰;高生态风险区主要位于有“鱼米之乡”之称的高岭乡和佐坝乡,2017年这2个乡镇的高生态风险面积占总高生态风险区面积的47%,与2个乡镇河网分布错综复杂,渔业活动频繁有着密切的关系;矿产资源区九姑乡含有丰富的石灰石资源,2017年高生态风险区出现,中等风险区面积消失,高生态风险面积为21.715 km2,占该乡总面积的42.6%,表明矿产资源区潜在生态风险程度最大。综上所述,宿松县的潜在生态风险由高到低依次为矿产资源区、鱼米之乡、交通枢纽镇、农业区、山地旅游区。

    表 6  2015和2017年宿松县各类乡镇不同等级的生态风险区面积
    Table 6  Ecological risk area of different grades in various township of Susong County in 2015 and 2017
    类别乡镇年份不同等级生态风险区面积/ km2
    较低中等较高
    山地旅游区北浴乡、柳坪乡、陈汉乡、隘口乡、趾凤乡、凉亭镇2015249.104 69.701 43.759 8.108 0.016
    2017247.286 68.742 41.539 11.401 1.720
    农业区  河塌乡、五里乡、复兴镇、下仓镇、破凉镇、华阳河农场、长铺镇2015 7.043155.911323.446187.567 35.868
    2017 6.904147.139299.386221.214 35.192
    交通枢纽镇二郎镇、孚玉镇、九成监狱2015 0.731 36.072 98.160 50.707 9.616
    2017 0.057 33.934 90.754 59.559 10.982
    鱼米之乡 高岭乡、程岭乡、千岭乡、佐坝乡、
    许岭镇、洲头乡、汇口镇
    2015 58.451243.102222.531433.498 85.850
    2017 55.290231.797210.697418.581127.067
    矿产资源区九姑乡2015 0 0 0.085 50.908 0
    2017 0 0 0 29.278 21.715
    下载: 导出CSV 
    | 显示表格

    景观生态风险评价是研究区域生态环境的有效手段。本研究表明:由于经济的发展,人类活动强度的增加,城镇用地的扩张,土地利用的景观生态风险等级有明显的变化趋势,呈低等级向高等级转变,这与张双双等[5]、白舒婷[29]、闻国静等[30]、王涛等[31]的结论类似。目前相关研究多集中于大区域[6-9]的生态风险讨论。县域为中国主要的行政单元,更是连接城市与乡村的节点[32],利用高分影像下采集的地理国情数据具有精度高、尺度细的优点,更能进一步提高生态风险评价结果的精度。本研究表明:乡镇经济的发展程度与景观生态风险的等级大小为正相关关系,即发展程度越高,景观生态风险越大,这与傅微等[23]的研究结果相似。通过对单一景观指数的生态风险分析及乡镇角度的生态风险评价,能进一步针对研究区的地貌、经济特征提出合理化的建议和对策。因此,本研究针对宿松县经济发展中带来的景观生态风险问题,为防止由于建设用地、交通用地的盲目扩张,造成林地、耕地流失,景观生态系统结构遭到破坏等现象的继续发生,提出了以下建议:①低生态风险区和较低生态风险主要位于西北部山区和黄湖、龙湖的中心等区域,景观类型以林地、和水域为主,是生物生长最优栖息地和水源涵养区,景观生态风险指数虽然低,但依然是重点保护对象。因此该区域应充分利用山地景观资源和水源资源,在现有自然保护区和旅游景区的基础上,划出一定的保护区域,扩大相邻林地和水域的面积,使其集中连片,保证生态环境的质量,降低景观破碎度,提高生态系统抗风险能力。②中等生态风险区主要位于宿松县中部的农业大乡,景观类型以耕地为主。由于宿松县是农业大县,耕地资源的保护和利用十分重要,建议对耕地质量等级划分,在保证耕地质量的基础上对质量差的耕地实施退耕还林政策。针对山区耕地,大力推广高效节水灌溉技术,适量推广种植经济价值高、耗水少的药材,减少水资源的浪费,保证区域农业用水。③较高生态风险区主要位于河网密布的鱼米之乡以及交通运输的枢纽镇。区域内存在大量生态稳定性脆弱的湿地,应建立湿地公园等自然保护区,并在河道周围加强林草工程维护,减少土地流失,降低水系破碎度,提高生态系统稳定性。此外还需控制该区域的人口数量,减少建设用地的扩张对耕地资源的占用。④高生态风险区主要位于矿产资源开发区等地。应严格控制对矿产资源的开采,减少矿山企业数量。充分利用遥感技术手段对矿山环境数据进行调查和监测,建立档案,编制相应的矿山环境治理方案,提高矿山修复效率,减少水土流失滑坡等自然灾害的发生。尤其是九姑山,需对矿产资源开采进行严格的管理和控制,降低人类活动的干扰强度。

    2015−2017年宿松县土地景观结构存在一定变化,景观形状呈复杂化趋势,多样化程度和均匀度不断增强,生态风险结果与地貌特征、经济发展存在明显关联性,呈阶梯状分布,经济发展一定程度上造成了景观格局的不稳定。西北部以林地为主的山地旅游区景观,景观破碎度、分离度、分维度均较低,景观多样化水平低,景观生态风险较低。中部和东南部以耕地、建设用地、河网为主的农业区、交通枢纽镇、鱼米之乡景观,景观破碎度、分离度、分维度较高,景观分布结构较为复杂,景观生态风险较高,其中矿产资源区九姑乡的潜在生态风险程度最大。宿松县以较高生态风险区和中等风险区为主,2015−2017年低生态风险区、较低生态风险区、中等生态风险区面积呈降低趋势,而较高生态风险区和高生态风险区面积呈增加趋势,生态等级表现为低等级向相邻高等级转化。

  • 图  1  盐胁迫下望春玉兰受害症状调查

    Figure  1  Survey on the symptoms of salt damage of M. biondii under NaCl stress

    图  2  盐胁迫下叶片可溶性糖、可溶性蛋白质和脯氨酸的变化

    Figure  2  Changes of soluble sugar content, soluble protein content and Pro content in leaves under NaCl stress

    图  3  盐胁迫下叶片叶绿素、相对电导率和丙二醛的变化

    Figure  3  Changes of chlorophyll content, relative conductivity and MDA content in leaves under NaCl stress

    图  4  盐胁迫下叶片SOD和POD活性的变化

    Figure  4  Changes of SOD activity and POD activity in leaves under NaCl stress

    表  1  盐胁迫下望春玉兰叶片生理指标的相关系数

    Table  1.   Correlation matrix of physiological indexes of M. biondii under NaCl stress

    相对电导率丙二醛叶绿素可溶性糖可溶性蛋白脯氨酸SODPOD
    相对电导率1
    丙二醛  0.8681
    叶绿素  −0.0710.2971
    可溶性糖 0.906*0.966**0.1001
    可溶性蛋白0.2600.139−0.0900.0021
    脯氨酸  0.0060.2550.4840.305−0.8731
    SOD   0.5020.8180.4600.6800.3560.0471
    POD   0.0190.4070.982**0.238−0.2050.6100.5121
      说明:*表示差异显著(P<0.05),**表示差异极显著(P<0.01)
    下载: 导出CSV

    表  2  盐胁迫下望春玉兰叶片生理指标的主成分分析

    Table  2.   Principal component analysis of physiological indexes of M. biondii under NaCl stress

    指标主成分1主成分2指标主成分1主成分2
    相对电导率0.7210.549脯氨酸    0.425−0.793
    丙二醛  0.9580.260超氧化物歧化酶0.8370.207
    叶绿素  0.549−0.616过氧化物酶  0.651−0.640
    可溶性糖 0.8820.292特征值    3.8212.491
    可溶性蛋白0.0230.759贡献率/%   47.75831.134
    下载: 导出CSV
  • [1] 张蓉蓉. 陕西渭北农田土壤盐碱化空间分布及影响因素[D]. 杨凌: 西北农林科技大学, 2017.

    ZHANG Rongrong. Spatial Distribution and Influencing Factors of Farm and Soil Salinization in Weibei Area of Shaanxi Province[D]. Yangling: Northwest A&F University, 2017.
    [2] 陈阳, 王贺, 张福锁, 等. 硅盐互作下小獐毛植物体内元素分布及生理特性的研究[J]. 植物生态学报, 2003, 27(2): 189 − 195.

    CHEN Yang, WANG He, ZHANG Fusuo, et al. The effects of silicon on ionic distribution and physiological characteristic of Aeluropus pungens under salinity conditions [J]. Chin J Plant Ecol, 2003, 27(2): 189 − 195.
    [3] 孙玉芳, 宋福强, 常伟, 等. 盐碱胁迫下AM真菌对沙枣苗木生长和生理的影响[J]. 林业科学, 2016, 52(6): 18 − 27.

    SUN Yufang, SONG Fuqiang, CHANG Wei, et al. Effect of arbuscular mycorrhizal fungi on growth and physiology of Elaeagnus angustifolia seedlings subjected to salinity stress [J]. Sci Silv Sin, 2016, 52(6): 18 − 27.
    [4] 薛腾笑. 3种连翘苗木抗盐性评价及生理生化特性研究[D]. 保定: 河北农业大学, 2018.

    XUE Tengxiao. Evaluation of Salt Tolerance and Physiological-biochemical Characteristics of Three Forsythia Seedlings[D]. Baoding: Hebei Agricultural University, 2018.
    [5] 赵名彦. 滨海盐碱地造林技术与效果研究[D]. 北京: 北京林业大学, 2011.

    ZHAO Mingyan. Study on Afforestation and its Effects in Coastal Saline-alkaline Land[D]. Beijing: Beijing Forestry University, 2011.
    [6] 张建锋, 张德顺, 陈光才, 等. 上海滨海滩涂盐生植物分布及其生物量调查研究[J]. 江西农业学报, 2015, 27(2): 26 − 29, 36.

    ZHANG Jianfeng, ZHANG Deshun, CHEN Guangcai, et al. Investigation on distribution and biomass of halophytes at beach in Shanghai [J]. Acta Agric Jiangxi, 2015, 27(2): 26 − 29, 36.
    [7] 魏凤巢, 夏瑞妹, 沈哲东. 上海市滨海盐渍土改良技术的研究与实践[J]. 中国园林, 2008, 24(2): 85 − 89.

    WEI Fengchao, XIA Ruimei, SHEN Zhedong. Research and practice on amelioration technologies of coastal saline soil in Shanghai [J]. Chin Landscape Archit, 2008, 24(2): 85 − 89.
    [8] 梁大伟, 马履一, 贾忠奎, 等. 自然降温对红花玉兰抗寒生理指标的影响[J]. 林业科技开发, 2010, 24(2): 23 − 26.

    LIANG Dawei, MA Lüyi, JIA Zhongkui, et al. Study on the influences of naturel cooling on the cold tolerance physiological indicators of Magnolia wufengensis [J]. China For Sci Technol, 2010, 24(2): 23 − 26.
    [9] 王宁杭. 望春玉兰花瓣类黄酮组成及转录组分析[D]. 杭州: 浙江农林大学, 2019.

    WANG Ninghang. The Flavonoid Components and Transcriptome Analysis of Magnolia biondii[D]. Hangzhou: Zhejiang A&F University, 2019.
    [10] 刘星, 单杨. 辛夷的提取、应用及其品质评价研究进展[J]. 食品工业科技, 2011, 32(11): 506 − 510.

    LIU Xing, SHAN Yang. Research of magnolia extraction, application and quality assessment [J]. Sci Technol Food Ind, 2011, 32(11): 506 − 510.
    [11] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000.
    [12] 罗娅, 汤浩茹, 张勇. 低温胁迫对草莓叶片SOD和AsA-GSH循环酶系统的影响[J]. 园艺学报, 2007, 34(6): 1405 − 1410.

    LUO Ya, TANG Haoru, ZHANG Yong. Effect of low temperature stress on activities of SOD and enzymes of ascorbate-glutathione cycle [J]. Acta Hortic Sin, 2007, 34(6): 1405 − 1410.
    [13] 王玉萍, 于丹, 李成, 等. 壳聚糖对盐胁迫下小麦种子萌发及幼苗生理特性的影响[J]. 干旱地区农业研究, 2016, 34(1): 180 − 185.

    WANG Yuping, YU Dan, LI Cheng, et al. Effect of chitosan on seed germination and seedling physiological characters of wheat under salt stress [J]. Agric Res Arid Areas, 2016, 34(1): 180 − 185.
    [14] 陈闻, 王晶, 吴海平, 等. 5种海岛典型园林绿化植物的耐盐性[J]. 浙江农林大学学报, 2017, 34(2): 283 − 293.

    CHEN Wen, WANG Jing, WU Haiping, et al. Salt tolerance of 5 typical landscape plant species in Zhoushan Islands [J]. J Zhejiang A&F Univ, 2017, 34(2): 283 − 293.
    [15] 杨升, 张华新, 刘涛. 16个树种盐胁迫下的生长表现和生理特性[J]. 浙江农林大学学报, 2012, 29(5): 744 − 754.

    YANG Sheng, ZHANG Huaxin, LIU Tao. Morphological changes and physiological characteristics of seedlings from 16 tree species with salt stress [J]. J Zhejiang A&F Univ, 2012, 29(5): 744 − 754.
    [16] 朱金方, 刘京涛, 陆兆华, 等. 盐胁迫对中国柽柳幼苗生理特性的影响[J]. 生态学报, 2015, 35(15): 5140 − 5146.

    ZHU Jinfang, LIU Jingtao, LU Zhaohua, et al. Effects of salt stress on physiological characteristics of Tamarix chinensis Lour. seedlings [J]. Acta Ecol Sin, 2015, 35(15): 5140 − 5146.
    [17] 罗秋香, 管清杰, 金淑梅, 等. 植物耐盐性分子生物学研究进展[J]. 分子植物育种, 2006(增刊 2): 57 − 64.

    LUO Qiuxiang, GUAN Qingjie, JIN Shumei, et al. Advances on application of molecular biology on plant salt tolerance research [J]. Mol Plant Breed, 2006(suppl 2): 57 − 64.
    [18] 刘政, 胡孙田, 沈晓飞, 等. 外源褪黑素处理对月季幼苗盐胁迫的缓解效应[J]. 浙江农林大学学报, 2020, 37(5): 957 − 962.

    LIU Zheng, HU Suntian, SHEN Xiaofei, et al. Alleviation of exogenous melatonin on rose seedlings under salt stress [J]. J Zhejiang A&F Univ, 2020, 37(5): 957 − 962.
    [19] 刘翠玉, 闫明, 黄贤斌, 等. 石榴耐盐性研究与指标筛选[J]. 浙江农林大学学报, 2018, 35(5): 853 − 860.

    LIU Cuiyu, YAN Ming, HUANG Xianbin, et al. Salt tolerance and screening for identification indexes with pomegranate cuttings [J]. J Zhejiang A&F Univ, 2018, 35(5): 853 − 860.
  • [1] 宋云静, 金净, 赵冰.  铅胁迫对八仙花生理及主要根际特征的影响 . 浙江农林大学学报, 2025, 42(1): 133-142. doi: 10.11833/j.issn.2095-0756.20240301
    [2] 火艳, 招雪晴, 黄厚毅, 黄贤斌, 许云方, 祝遵凌, 苑兆和.  观赏石榴表型遗传多样性分析 . 浙江农林大学学报, 2020, 37(5): 939-949. doi: 10.11833/j.issn.2095-0756.20190619
    [3] 牛媛, 敖妍, 李云, 田秀铭, 杨长文, 刘小天, 李志虹.  文冠果优良无性系授粉组合选择及结实性状分析 . 浙江农林大学学报, 2020, 37(2): 209-219. doi: 10.11833/j.issn.2095-0756.2020.02.003
    [4] 谢德志, 魏子璐, 朱峻熠, 杜莹, 金水虎, 岳春雷.  水禾对镉胁迫的生理响应 . 浙江农林大学学报, 2020, 37(4): 683-692. doi: 10.11833/j.issn.2095-0756.20190407
    [5] 蒋冬月, 沈鑫, 陈雅静, 邹宜含, 吴帆, 李因刚, 柳新红.  浙江野生樱花枝干及叶片形态变异分析 . 浙江农林大学学报, 2019, 36(4): 723-732. doi: 10.11833/j.issn.2095-0756.2019.04.012
    [6] 李楠, 李贺鹏, 江波, 叶碧欢, 陈友吾, 李海波.  短枝木麻黄幼苗对低温胁迫的生理响应 . 浙江农林大学学报, 2019, 36(4): 678-686. doi: 10.11833/j.issn.2095-0756.2019.04.007
    [7] 刘翠玉, 闫明, 黄贤斌, 苑兆和.  石榴耐盐性研究与指标筛选 . 浙江农林大学学报, 2018, 35(5): 853-860. doi: 10.11833/j.issn.2095-0756.2018.05.009
    [8] 高帆, 谢玥, 沈妍秋, 雷芝, 王秀, 夏惠, 梁东.  外源褪黑素对氯化钠胁迫下美味猕猴桃实生苗抗氧化物酶和渗透调节物质的影响 . 浙江农林大学学报, 2018, 35(2): 291-297. doi: 10.11833/j.issn.2095-0756.2018.02.013
    [9] 张广来, 李璐, 廖文梅.  基于主成分分析法的中国林业产业竞争力水平评价 . 浙江农林大学学报, 2016, 33(6): 1078-1084. doi: 10.11833/j.issn.2095-0756.2016.06.022
    [10] 张永福, 莫丽玲, 牛燕芬, 夏体渊, 王定康, 耿开友.  常春藤对甲醛和弱光胁迫的解剖结构及生理特征响应 . 浙江农林大学学报, 2016, 33(6): 1017-1024. doi: 10.11833/j.issn.2095-0756.2016.06.013
    [11] 洪震, 练发良, 刘术新, 胡有金.  3种乡土园林地被植物对干旱胁迫的生理响应 . 浙江农林大学学报, 2016, 33(4): 636-642. doi: 10.11833/j.issn.2095-0756.2016.04.012
    [12] 何奇江, 李楠, 傅懋毅, 周文伟, 王波.  氯化钠胁迫对雷竹根系活力和细胞膜透性的影响 . 浙江农林大学学报, 2013, 30(6): 944-949. doi: 10.11833/j.issn.2095-0756.2013.06.021
    [13] 汪荣.  福建滨海水鸟栖息地主成分分析与评价 . 浙江农林大学学报, 2011, 28(3): 472-478. doi: 10.11833/j.issn.2095-0756.2011.03.020
    [14] 杨建华, 李淑芳, 范志远, 习学良, 邹伟烈, 刘娇, 潘莉.  美国山核桃主要经济性状的主成分分析及良种选择 . 浙江农林大学学报, 2011, 28(6): 907-910. doi: 10.11833/j.issn.2095-0756.2011.06.011
    [15] 沈俊岭, 倪慧群, 陈晓阳, 黄少伟.  麻疯树遗传多样性的相关序列扩增多态性(SRAP)分析 . 浙江农林大学学报, 2010, 27(3): 347-353. doi: 10.11833/j.issn.2095-0756.2010.03.005
    [16] 陈国良, 蒋晶, 乔桂荣, 金梁, 孙月华, 杨晔, 周婧, 卓仁英.  青杨双向电泳实验体系的建立 . 浙江农林大学学报, 2009, 26(5): 644-651.
    [17] 赵志新, 乔瑞芳, 季孔庶.  镉胁迫对不同家系杂交鹅掌楸生长及抗性的影响 . 浙江农林大学学报, 2009, 26(5): 667-673.
    [18] 马海燕, 林松明, 徐迎春, 李永荣, 陈永辉.  氯化钠胁迫对2个中山杉无性系生长及离子吸收运输的影响 . 浙江农林大学学报, 2008, 25(3): 319-323.
    [19] 袁小凤, 施积炎, 丁贵杰.  不同种源马尾松幼苗对水分胁迫的生理响应 . 浙江农林大学学报, 2008, 25(1): 42-47.
    [20] 向佐湘, 许桂芳, 蒋文君.  干旱胁迫对4种刺篱植物抗性生理生化指标的影响 . 浙江农林大学学报, 2007, 24(1): 7-11.
  • 期刊类型引用(4)

    1. 李俊鹏. 厌氧氨氧化相关工艺处理垃圾渗滤液脱氮研究现状. 辽宁化工. 2023(04): 554-556+560 . 百度学术
    2. 宋慧赟,王莹,陈虎,吕永康. 盐度对新型生物脱氮技术影响的研究进展. 化工进展. 2021(04): 2298-2307 . 百度学术
    3. 孙明珠,任婧,徐爱玲,宋志文. 丙酮酸盐对硝化微生物复合培养过程的影响. 环境科学与技术. 2021(06): 58-66 . 百度学术
    4. 李剑宇,王少坡,邱春生,王栋,于静洁,赵明. PN/A技术应用于城市污水主流处理的挑战与实践. 水处理技术. 2020(11): 24-30 . 百度学术

    其他类型引用(4)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200449

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2021/2/289

图(4) / 表(2)
计量
  • 文章访问数:  1331
  • HTML全文浏览量:  330
  • PDF下载量:  69
  • 被引次数: 8
出版历程
  • 收稿日期:  2020-07-17
  • 修回日期:  2020-11-03
  • 网络出版日期:  2020-11-30
  • 刊出日期:  2021-04-01

盐胁迫对望春玉兰幼苗形态和相关生理指标的影响

doi: 10.11833/j.issn.2095-0756.20200449
    基金项目:  上海市园林科学规划研究院合作课题(H20180177);上海城市困难立地绿化工程技术研究中心建设专项(16dz2251400);上海市科委科研计划项目(19DZ1203300);浙江省重点研发项目(2019C02023);浙江省“十三五”林木新品种选育资助项目(2016C02056-12)
    作者简介:

    沈徐悦(ORCID: 0000-0002-0004-1043),从事园林植物应用与育种研究。E-mail: 362241944@qq.com

    通信作者: 金荷仙(ORCID: 0000-0002-3752-3097),研究员,从事康复花园、寺观园林、植物景观规划设计研究。E-mail: lotusjhx@zafu.edu.cn
  • 中图分类号: S718.3

摘要:   目的  探讨盐胁迫对望春玉兰Magnolia biondii幼苗形态和相关生理指标的影响,并筛选盐胁迫下的指示性生理指标,为木兰科Magnoliaceae植物的耐盐性评价与筛选优质种质资源提供理论依据。  方法  以望春玉兰1年生实生苗为材料,采用水培法,测定200 mmol·L−1氯化钠胁迫下叶片的相对电导率、丙二醛质量摩尔浓度、叶绿素质量分数、渗透调节物质质量分数和抗氧化酶活性,通过主成分分析筛选关键生理指标。  结果  随着盐胁迫时间的延长,可溶性糖质量分数、相对电导率、丙二醛质量摩尔浓度和超氧化物歧化酶(SOD)活性总体呈上升趋势;可溶性蛋白质质量分数、脯氨酸质量分数、叶绿素质量分数和过氧化物酶(POD)活性总体呈先上升后下降的趋势。利用主成分分析法筛选出3个指示性指标,分别为丙二醛质量摩尔浓度、可溶性糖质量分数和SOD活性。  结论  氯化钠胁迫引起望春玉兰幼苗叶片丙二醛质量摩尔浓度、可溶性糖质量分数和SOD活性显著变化,可作为指示性生理指标用于评价氯化钠胁迫下望春玉兰等木兰科植物的耐盐性强弱。图4表2参19

English Abstract

崔杨林, 高祥, 董斌, 等. 县域景观生态风险评价[J]. 浙江农林大学学报, 2021, 38(3): 541-551. DOI: 10.11833/j.issn.2095-0756.20200461
引用本文: 沈徐悦, 张浪, 陈蓉蓉, 等. 盐胁迫对望春玉兰幼苗形态和相关生理指标的影响[J]. 浙江农林大学学报, 2021, 38(2): 289-295. DOI: 10.11833/j.issn.2095-0756.20200449
CUI Yanglin, GAO Xiang, DONG Bin, et al. Landscape ecological risk assessment of county[J]. Journal of Zhejiang A&F University, 2021, 38(3): 541-551. DOI: 10.11833/j.issn.2095-0756.20200461
Citation: SHEN Xuyue, ZHANG Lang, CHEN Rongrong, et al. Effect of NaCl stress on the morphology and related physiological indexes of Magnolia biondii seedlings[J]. Journal of Zhejiang A&F University, 2021, 38(2): 289-295. DOI: 10.11833/j.issn.2095-0756.20200449
  • 土壤盐碱化是当今世界性的资源和生态问题[1],是限制农林业发展的主要因素之一[2]。中国现有盐碱土面积3 600 万hm2,主要分为滨海盐碱土区、黄淮海平原盐碱土区、西北半干旱盐碱土区和干旱盐碱土区以及东北盐碱土区[3],其中滨海盐碱土区是中国重要的盐碱地土地类型,涵盖大部分沿海地区,分布范围较广[4]。滨海盐碱地土壤含盐量过高,盐分组成以氯化物为主[5],能够适应生存的植物种类较少,常选用木麻黄Casuarina equisetifolia、乌桕Sapium sebiferum等耐盐人工植被[6]和柽柳属Tamarix先锋树种[7]绿化造林,而深根、肉质根系、喜酸性土壤的木兰科Magnoliaceae植物较少应用。望春玉兰Magnolia biondii系木兰科木兰属Magnolia多年生落叶乔木,为木兰科植物中典型的春花乔木,园林绿化效果好,应用前景广阔。目前,对望春玉兰的研究主要侧重于抗寒性[8]、花色[9]及其花蕾“辛夷”的应用研究[10]上,而其耐盐性方面研究极少。为明确木兰科植物在滨海盐碱土种植的可能性,根据预试验的结果,选择望春玉兰为对象,采用水培法研究了氯化钠胁迫对1年生实生苗形态和生理指标的影响,并探讨了对氯化钠胁迫具有指示性的生理指标,为木兰科植物的耐盐性评价及耐盐树种或品种的筛选提供理论依据。

    • 以望春玉兰1年生实生苗为材料,于2019年4月定植于上口径6 cm、下口径5 cm、高8 cm的塑料盆中,栽培基质为泥炭土、珍珠岩、蛭石(体积比1∶1∶1),每盆1株。定植后的苗木置于浙江农林大学平山基地温室中,进行常规管理。待幼苗高生长约10 cm时,挑选生长一致的幼苗转移至浙江农林大学风景园林与建筑学院智能温室中,温室培养条件为光照强度2 200~3 000 lx,光照14 h·d−1,白天温度28 ℃,夜间温度25 ℃,空气相对湿度68%~75%。幼苗经去土洗净根系后置于上口径6 cm、下口径6 cm、高14 cm的玻璃培养瓶中,每瓶1株,采用1/2 Hoagland营养液进行水培,水培过程中隔3 d更换1次1/2 Hoagland营养液,不通气。

    • 待幼苗恢复正常生长后,选取叶片数为7~8片的幼苗,于2019年7月开始进行盐胁迫处理。根据预试验结果,选取盐胁迫下苗木有明显胁迫反应,又不至于生长明显受到抑制的临界浓度作为试验浓度,设置0(对照组)和200 mmol·L−1(试验组)2个氯化钠浓度处理,每处理5株,重复3次。在处理期间以设定的氯化钠浓度隔3 d更换1次培养液,于盐胁迫后的第1、3、5、7、9天清晨,采集各处理植株从下至上的第3位至第7位叶片,每处理5株植株的叶片混合后进行相应生理指标测定。

    • 分别于盐胁迫后第1、3、5、7、9天观察植株叶片的受害程度,将盐害症状分为5个级别。①0级:叶片颜色和生长正常;②1级:少量叶尖、叶缘变黄;③2级:部分叶尖变黄萎蔫,少量叶片脱落;④3级:大部分叶片变黄,萎蔫干枯,有明显落叶;⑤4级:叶片脱落较(极)严重。

    • 生理指标的测定参照李合生[11]的方法,叶绿素采用乙醇提取法测定,质膜相对透性采用电导率法测定,丙二醛采用硫代巴比妥酸法测定,可溶性糖采用蒽酮比色法测定,可溶性蛋白质采用考马斯亮蓝G-250染色法测定,脯氨酸采用酸性茚三酮法测定,超氧化物歧化酶(SOD)活性采用氮蓝四唑法测定,过氧化物酶(POD)活性采用愈创木酚法测定。

    • 采用Excel 2010处理数据、绘图,利用SPSS 22.0进行单因素方差分析、相关性分析和主成分分析。

    • 观察望春玉兰幼苗叶片受伤害程度(图1)可知:随着盐胁迫时间的延长,望春玉兰的受害症状加重。在胁迫的第1天,叶片颜色和生长正常,在胁迫第3、5、7天时受害症状为1级,少量叶尖、叶缘变黄;在胁迫的第9天受害症状为2级,部分叶尖变黄萎蔫,少量叶片脱落。

      图  1  盐胁迫下望春玉兰受害症状调查

      Figure 1.  Survey on the symptoms of salt damage of M. biondii under NaCl stress

    • 可溶性糖、可溶性蛋白质和脯氨酸等物质是植物体内重要的渗透调节物质,能减轻植物在胁迫条件下受到的伤害。由图2可以看出:盐胁迫下,望春玉兰叶片的可溶性糖质量分数呈逐渐上升趋势;可溶性蛋白质质量分数随着盐胁迫时间的延长,总体呈先上升后下降的趋势,在盐胁迫处理的第3、9天,与对照组相比,差异显著(P<0.05);脯氨酸质量分数随着胁迫时间的延长,总体呈先上升后下降的趋势,且在胁迫处理的时间范围内始终与对照组差异显著(P<0.05)。

      图  2  盐胁迫下叶片可溶性糖、可溶性蛋白质和脯氨酸的变化

      Figure 2.  Changes of soluble sugar content, soluble protein content and Pro content in leaves under NaCl stress

    • 图3可见:盐胁迫下,望春玉兰叶片的叶绿素质量分数呈先上升后下降的趋势,在盐胁迫的第3天与对照组相比,差异显著(P<0.05)。望春玉兰叶片的相对电导率在盐胁迫下呈波动上升的趋势,在胁迫末期保持稳定,且在盐胁迫处理的时间范围内均与对照组差异显著(P<0.05)。望春玉兰叶片的丙二醛质量摩尔浓度随着盐胁迫时间的延长呈上升趋势,在盐胁迫的第9天与对照组差异显著(P<0.05)。

      图  3  盐胁迫下叶片叶绿素、相对电导率和丙二醛的变化

      Figure 3.  Changes of chlorophyll content, relative conductivity and MDA content in leaves under NaCl stress

    • SOD是植物体内防御氧化逆境下自由基形成的关键酶,是植物防御体系的第1道防线[12],POD是植物体内酶促防御系统的重要保护酶类,用于清除植株体内过多的活性氧[13]图4结果显示:望春玉兰叶片的SOD活性随着盐胁迫时间的延长呈逐渐上升的趋势,且在胁迫处理的第3、5、7、9天均与对照组差异显著(P<0.05);POD活性随着盐胁迫时间的延长呈先上升后下降的趋势,且在胁迫处理的时间范围内均与对照组差异显著(P<0.05)。

      图  4  盐胁迫下叶片SOD和POD活性的变化

      Figure 4.  Changes of SOD activity and POD activity in leaves under NaCl stress

    • 对望春玉兰的8个生理指标进行相关性分析(表1)表明:可溶性糖与相对电导率呈显著相关(P<0.05),与丙二醛呈极显著相关(P<0.01);叶绿素与POD活性呈极显著相关(P<0.01)。

      表 1  盐胁迫下望春玉兰叶片生理指标的相关系数

      Table 1.  Correlation matrix of physiological indexes of M. biondii under NaCl stress

      相对电导率丙二醛叶绿素可溶性糖可溶性蛋白脯氨酸SODPOD
      相对电导率1
      丙二醛  0.8681
      叶绿素  −0.0710.2971
      可溶性糖 0.906*0.966**0.1001
      可溶性蛋白0.2600.139−0.0900.0021
      脯氨酸  0.0060.2550.4840.305−0.8731
      SOD   0.5020.8180.4600.6800.3560.0471
      POD   0.0190.4070.982**0.238−0.2050.6100.5121
        说明:*表示差异显著(P<0.05),**表示差异极显著(P<0.01)

      对望春玉兰8个生理指标进行主成分分析(表2)可知:前2个主成分的累计贡献率达78.892%,可以概括原指标的绝大多数数据信息。望春玉兰的第1主成分主要为丙二醛、可溶性糖和超氧化物歧化酶,第2主成分主要为可溶性蛋白质和脯氨酸。

      表 2  盐胁迫下望春玉兰叶片生理指标的主成分分析

      Table 2.  Principal component analysis of physiological indexes of M. biondii under NaCl stress

      指标主成分1主成分2指标主成分1主成分2
      相对电导率0.7210.549脯氨酸    0.425−0.793
      丙二醛  0.9580.260超氧化物歧化酶0.8370.207
      叶绿素  0.549−0.616过氧化物酶  0.651−0.640
      可溶性糖 0.8820.292特征值    3.8212.491
      可溶性蛋白0.0230.759贡献率/%   47.75831.134
    • 盐胁迫环境中盐分离子的浓度过高会导致植物根系吸收水分困难,引发渗透胁迫[14]。植物通过可溶性蛋白质、可溶性糖和脯氨酸等小分子有机物的合成和积累以降低水势,维持水分平衡。本研究中,望春玉兰叶片的可溶性糖质量分数随盐胁迫时间的延长呈逐渐上升的趋势,而可溶性蛋白质和脯氨酸质量分数总体呈先上升后下降的趋势,但始终高于对照。不同植物选择的主要有机渗透调节物质存在差异[15],本研究表明:盐胁迫后期望春玉兰主要是通过提高可溶性糖质量分数进行渗透调节的。

      当盐胁迫超出细胞渗透调节作用的上限时,细胞膜会受到损伤。本研究中,随着胁迫时间的延长,望春玉兰叶片的叶绿素质量分数先升高后降低,说明胁迫初期植物通过促进自身叶绿素的合成以适应盐胁迫环境,但在长时间的盐胁迫下,过量的盐进入植物细胞,使叶绿素分解[16],这可能与细胞渗透调节能力下降有关。而叶片的相对电导率和丙二醛质量摩尔浓度均呈上升趋势,在胁迫结束时均较对照有显著的提高。说明在盐胁迫条件下,植物体膜结构不断膜脂过氧化,加剧细胞膜受损伤的程度。

      盐胁迫下植物体内氧化还原体系的平衡被破坏,诱导产生对植物的生理功能具有破坏作用的活性氧,植物体通过提高超氧化物歧化酶、过氧化物酶等活性氧清除剂的活性以维持植物体内活性氧代谢平衡,维护膜结构完整性。本研究中,望春玉兰叶片的超氧化物歧化酶活性随胁迫时间的延长呈逐渐上升的趋势,过氧化物酶活性呈先升高后下降的趋势。表明在胁迫前期2种酶共同参与清除活性氧,缓解氧化伤害的活动,而到胁迫后期植物体主要通过增加超氧化物歧化酶活性以增强细胞内活性氧的清除能力,保护膜系统。

      盐胁迫对植物叶片生理指标的伤害表现在形态上为叶形叶色的变化。在胁迫的第1天,望春玉兰正常生长,各项生理指标均呈上升趋势;在胁迫的第3天后,望春玉兰叶片开始变黄;在胁迫的第9天,即胁迫结束时,叶片开始脱落,此时叶绿素、可溶性蛋白质、脯氨酸、过氧化物酶较前期均有所下降。

      植物的耐盐性是复杂的生理生化过程,其耐盐机制涉及多种生理生化的协调作用[17-19]。本研究主成分分析得出:盐胁迫下望春玉兰的丙二醛质量摩尔浓度、可溶性糖质量分数和超氧化物歧化酶活性具有绝对值较大的负荷系数。说明这3个指标可能是望春玉兰受到盐胁迫时起关键作用的生理指标,这3个指标在盐胁迫下的生理表现也一致。

      由于植物耐盐性受多基因控制,不同生长发育阶段及生态环境条件下,基因表达存在差异,耐盐性强弱表现也不同。而本研究采用水培法对1年生幼苗进行盐胁迫处理,所用望春玉兰植株偏小,未进行不同大小植株的比较,因此结果不能完全代替成株期的抗盐性情况。且本研究选用的氯化钠浓度为望春玉兰的耐盐临界浓度,与各地滨海盐渍土的实际含盐量存在一定的差异。因此,还需在植物的各个生长阶段采用大田试验进一步验证,以获得更加客观的耐盐性评价结果。

    • 望春玉兰体内的各项生理指标对盐胁迫均有一定的响应。盐胁迫下望春玉兰幼苗的相对电导率和丙二醛质量摩尔浓度持续增加,可溶性蛋白质、脯氨酸、叶绿素质量分数与过氧化物酶活性在短期胁迫下能有所上升以减缓盐害,而可溶性糖质量分数和超氧化物歧化酶活性在长时间的胁迫下仍能保持较高水平以进行渗透保护和清除活性氧等活动,从而减弱细胞膜损伤程度。对耐盐性生理指标的主成分分析发现:丙二醛质量摩尔浓度、可溶性糖质量分数、超氧化物歧化酶活性对望春玉兰的指示性最强,可以作为望春玉兰等木兰科植物盐胁迫耐性强弱的主要生理指标。

参考文献 (19)

目录

/

返回文章
返回