-
集约化水产养殖中饵料的大量投放使得养殖废水富含氮、磷有机物,这些有机物具有分散广和难以收集的特点,易造成水体富营养化,给农村生态环境甚至是饮水安全造成危害[1-2]。养殖废水微生物处理具有成本低、环境友好等优点,是削减污染水体氮、磷污染物的有效途径之一[3],其中以硝化/反硝化为主要机理的微生物净水技术已在养殖废水的原位修复中得到了广泛应用。PAN等[4]将复合微生物制剂在水体形成的菌丝球用于高效收获藻类净化富营养水体。DENG等[5]利用具有反硝化特性的施氏假单胞菌Pseudomonas stutzeri与蜡样芽孢杆菌Bacillus cereus净化草鱼Ctenopharyngodon idellus鱼塘水体,发现水中氮污染物最高降低了54.8%。杜聪等[6]研究发现:微生物菌剂可以改善黑臭水体水质及修复生物多样性。受环境因素影响,外源微生物进入修复水体环境后活性和稳定性往往受到抑制[7],利用载体对微生物进行固定可提升其适应能力,同时强化其对水体中氮、磷的去除效率[8]。常用的微生物固定化方法有包埋法、吸附法、交联法等,相较于吸附法,其他方法应用成本较高[9],难以在养殖废水处理中推广。吸附法操作简便,微生物可在吸附材料表面2周左右自然成膜,是快速制备固定化微生物的有效方法,应用于养殖废水净化前景广阔[10-11]。粉煤灰具有较高比表面积且表面富含铝、硅等氧化物,是一种廉价且吸附性能优异的微生物载体材料[12-13]。邵青等[14]在质量比m(粉煤灰)∶m(污泥)∶m(添加剂)=7∶2∶1,1 000 ℃条件下烧制的陶粒比表面积可达2.66,颗粒强度达143 N。此外,有效微生物群落(effective microorganisms,EM)是以光合菌为中心,与固氮菌并存、繁殖,混合后培养出的多功能微生物群落,已被广泛运用于富营养水体的修复。胡京等[15]发现EM可有效降低幼刺参Apostichopus japonicas养殖水体中化学需氧量(COD)、非离子氨等含量,水体净化效果显著。梅立永等[16]也发现:投加EM可有效降低水中溶解氧(DO)浓度,投加22 d后,水体中化学需氧量、氨氮、总氮、总磷的最大去除率分别可达52.4%、42.6%、41.6%和22.1%。笔者前期的研究结果表明:粉煤灰与活性底泥富含二氧化硅,制作陶粒易于成型并具有一定机械强度,且活性底泥与粉煤灰共同烧结可显著提升陶粒的比表面积和孔隙度,是吸附水体氮磷和固定EM的良好材料。此外,粉煤灰含有三氧化二铝、氧化镁、三氧化二铁等氧化物,可与污水中的磷酸盐生成沉淀,辅以EM的脱氮除磷功能,可强化水体营养盐污染物的去除。因此,本研究以粉煤灰与活性底泥为主要原料,与铁粉和碳酸钙粉末按不同材料配比制作粉煤灰陶粒,通过制作陶粒的性能和其对氮、磷的吸附效果确定最佳配比粉煤灰陶粒。通过粉煤灰陶粒固定化EM联合修复模拟水产养殖废水,分析其对水体中氮磷的去除率,讨论相关净化机理,为EM粉煤灰陶粒在水产养殖废水净化中的应用提供理论和实验依据。
-
粉煤灰取自某热电厂的干排粉煤灰。X射线荧光光谱(XRF)成分分析表明:粉煤灰中的主要成分(质量分数):二氧化硅56.42%、三氧化二铝24.33%、三氧化二铁4.28%、氧化钙3.36%、氧化镁1.44%、氧化钾1.37%、其他8.80%;池塘底泥,取自淮安白马湖水产养殖池塘,黑色,具臭味,自然风干后,105 ℃烘干,粉碎后过100目筛;还原铁粉、碳酸钙粉末、EM原液(南京爱睦乐生物技术有限公司生产,有效菌数量约1.0×1012个·L−1)、糖蜜。
-
将EM原液、糖蜜、去离子水、质量浓度为2%的钙离子(Ca2+)溶液按1∶1∶6∶2的体积比例混合,转入发酵瓶中,150~220 r·min−1恒温震荡发酵4~6 d(常温密闭条件),制得含螯合态钙成分的EM菌液。将粉煤灰、活性底泥、铁粉 (氧化铁和二氧化三铁)、碳酸钙按一定质量百分比均匀混合(表1),洗净、灭菌后烘干,将混合物放入造粒机中造粒,烘干,于1 100 ℃下烧结,制得粉煤灰陶粒。将粉煤灰陶粒与EM菌液混合浸泡2 d,使菌液均匀地吸附于粉煤灰陶粒表面,制成固定化EM粉煤灰陶粒(0.3~0.5 g·粒−1)。
表 1 粉煤灰陶粒各成分质量分数
Table 1. Percentage of each component of the fly ash ceramsite
处理 粉煤灰/% 铁粉/% 碳酸钙粉末/% 活性底泥/% T1 40 5 5 50 T2 50 5 5 40 T3 55 0 5 40 -
分别称取1.17 g氯化铵,0.13 g磷酸二氢钾溶于1 L水中,制得氨氮质量浓度为30 mg·L−1、磷酸根质量浓度为30 mg·L−1的氮、磷溶液。取250 mL氮、磷溶液,分别加入不同组分的粉煤灰陶粒,设置处理为T1、T2、T3,每个处理粉煤灰陶粒投放量为7个梯度(0.2、0.4、0.8、1.0、2.0、5.0 g)。将混合溶液在室温125 r·min−1条件下连续振荡24 h,分别在1、2、4、8、12、24 h取水样,离心、0.45 μm滤膜过滤后,比色测定上清液总氮和总磷。
-
称取氯化铵1.19 g,硝酸钾0.04 g,磷酸二氢钾0.09 g,葡萄糖0.47 g,加入到1 L的水中,配制氨氮、总氮、总磷及化学需氧量质量浓度分别为50、55、20、500 mg·L−1的水产养殖污水。取250 mL配制水样,通过以上实验确定合适投加量,分别加入不同组分的粉煤灰固定化EM陶粒,常温条件下曝气培养6 d,隔1 d采集水样,测定氨氮、总氮、总磷质量浓度。
-
总氮采用碱性过硫酸钾消解紫外分光光度计法测定;氨氮采用纳氏试剂分光光度法测定;总磷采用钼酸铵分光光度法测定;电镜采用Hitach S-480型扫描电子显微镜(日本Hitach公司)。数据取3次重复的平均值,用SPSS 18.0 软件进行单因素方差分析(one-way ANOVA),各因素不同水平的差异采用LSD法进行多重比较,P<0.05表示差异显著。
-
由15 000倍下的扫描电子显微镜图(图1)可知:T1与T2相较于T3处理的表面孔隙较多,相对粗糙,其中T2表面最为粗糙,表面沟壑结构明显。根据表2粉煤灰陶粒性能可知,T3粉煤灰陶粒磨损率为1.78%,比表面积为1.42 m2·g−1,说明粉煤灰陶粒具有一定的耐久度以及较高的比表面积。进一步分析各组粉煤灰陶粒的元素组成,T1和T2的铁质量分数远高于T3。结合李亮等[17]的研究与表3可以判断,T1、T2表面的颗粒物质可能为铁氧化物,为粉煤灰陶粒吸附氮磷提供强化效果。
图 1 不同配比粉煤灰陶粒扫描电子显微镜照片(15 000倍)
Figure 1. SEM photo of fly ash ceramsite with different proportions (×15 000)
表 2 不同配比的粉煤灰陶粒性能
Table 2. Properties of fly ash ceramsite with different proportions
处理 孔隙率/
%磨损率/
%比表面积/
(m2·g−1)堆积密度/
(g·cm−3)体积密度/
(g·cm−3)T1 54.32 1.48 2.21 0.66 1.38 T2 56.86 1.43 2.83 0.74 1.42 T3 52.26 1.78 1.42 0.68 1.33 表 3 各组粉煤灰陶粒元素质量分数
Table 3. Percentage of element composition of fly ash ceramsite in different groups
处理 元素质量分数/% 碳 氧 钠 钙 硅 镁 铝 钾 铁 T1 8.86 45.79 0.92 0.53 32.37 0.56 6.75 1.75 4.72 T2 7.04 43.07 1.19 0.89 29.48 0.93 10.77 2.58 6.69 T3 7.35 47.33 0.96 0.58 30.59 0.62 7.35 1.28 3.01 T1和T2在硅、镁、铝、钾等元素的质量分数也有明显差异,这应该是由于制作时添加的粉煤灰与池塘底泥配比不同造成的。粉煤灰陶粒含有硅、铝、铁、镁等金属氧化物,且富含羟基、羧基等含氧官能团,有效提高陶粒表面的亲水性,也促进了陶粒对氮、磷的吸附[18]。相较于T1与T2,T3的陶粒没有加入铁粉,而T1与T2的孔隙率高于T3,并且具有较大的比表面积,证明铁粉可改变粉煤灰陶粒表面的孔隙结构,缓解固液相间的阻力,促进毛细管作用对氮、磷的吸附,并通过表面张力将其束缚,强化粉煤灰陶粒对氮、磷理化吸附效果。
-
如图2所示:粉煤灰组分含量较低时,所制备陶粒对氮、磷具有一定吸附作用,但效果并不理想,吸附前2 h,氮、磷吸附速率最大,随后吸附趋于稳定。T1和T2中氮、磷的吸附效果远高于T3,表明陶粒中粉煤灰与氧化铁发生化学反应生成的结合体可强化对氮、磷的吸附。这与鲍腾等[19]、茹菁宇等[20]的研究结论一致。
图 2 投加5 g不同配比粉煤灰陶粒吸附氮磷随时间变化曲线
Figure 2. Curve of nitrogen and phosphorus adsorbed by fly ash ceramsite on 5 g with different proportions under untreated conditions
进一步采用Langmuir和Freundlich吸附方程对实验数据进行拟合。Langmuir等温线是单层吸附,假设表面上有均匀的能量位点,其线性形式由以下方程表示[21]:
$$ \frac{{{C_{\rm{e}}}}}{{{Q_{\rm{e}}}}} = \frac{1}{{{Q_{\rm{m}}}{k_{\rm{L}}}}} - \frac{{{C_{\rm{e}}}}}{{{Q_{\rm{m}}}}}\text{。} $$ 式(1)中:Qe(mg·kg−1)是粉煤灰陶粒上的平衡氮磷质量分数,Ce (mg·L−1)是溶液中的平衡氮磷质量浓度,Qm (mg·kg−1)是最大单层氮磷吸附容量,kL (L·mg−1)是吸附常数。
Freundlich等温线是用于描述非均质系统的经验吸附方程,其线性化形式写成[22]:
$$ \log{Q_{\rm{e}}} = \log{K_{\rm{F}}} - \frac{1}{n}\log{C_{\rm{e}}}\text{。} $$ 式(2)中:KF[(mg·kg−1)·(mg·L−1)−1/n]和1/n是Freundlich常数,分别与吸附容量和吸附强度有关。
模型拟合的结果及相关参数如图3和表4所示。结果显示:不同组分粉煤灰陶粒对氮磷的吸附特征均符合Langmuir(R2>0.982)和Freundlich (R2>0.971) 等温方程,表明吸附前期陶粒主要通过物理吸附方式吸附水体氮、磷,T2的粉煤灰陶粒最大单层氮磷吸附容量可分别达到1 652.0和1 113.7 mg·kg−1。
图 3 各梯度不同配比粉煤灰陶粒吸附氮磷的Langmuir和Freundlich拟合曲线
Figure 3. Langmuir and Freundlich fitting curves for adsorption of nitrogen and phosphorus by fly ash ceramsite with different proportions under untreated conditions
表 4 不同配比粉煤灰陶粒吸附氮磷的Langmuir和Freundlich数
Table 4. Langmuir and Freundlich constants for adsorption of nitrogen and phosphorus by fly ash ceramsite with different proportions
处理 Langmuir 总氮 磷酸盐 Qm/(mg·kg−1) kL/(L·mg−1) R2 Qm/(mg·kg−1) kL/(L·mg−1) R2 T1 1 510.6 0.139 0.990 1 055.2 0.205 0.982 T2 1 652.0 0.176 0.995 1 113.7 0.230 0.991 T3 1 535.2 0.161 0.992 888.5 0.264 0.989 处理 Freundlich 总氮 磷酸盐 KF/[(mg·kg−1)·(mg·L−1) −1/n] n R2 KF/[(mg·kg−1)·(mg·L−1) −1/n] n R2 T1 177.5 1.275 0.979 169.6 1.278 0.971 T2 227.8 1.416 0.974 181.5 1.353 0.984 T3 206.2 1.342 0.976 177.6 1.361 0.974 -
根据等温吸附试验确定了粉煤灰陶粒的投加量5 g净化效果较好,加入5 g不同配比粉煤灰EM陶粒对模拟水产养殖废水的氨氮及总氮去除效果进行研究,结果如图4所示。处理6 d后,T1、T2和T3的氨氮去除率分别为90.50%、98.67%和83.81%,总氮去除率分别为92.18%、93.80%和70.91%。由此认为:EM可以提升粉煤灰陶粒对氨氮及总氮的去除效果,提升程度受粉煤灰陶粒中粉煤灰与铁粉的比例影响。T1较T2的粉煤灰陶粒的粉煤灰含量低10%,陶粒的孔隙较少,且生物相容性较差,吸附的微生物量较少,导致T1氨氮及总氮去除效果相对较差。此外,当铁粉比例较低时,陶粒表面铁氧化物质量分数减少,比表面积和含氧官能团含量下降,也会导致微生物负载量下降,因此,T3中的氨氮及总氮去除效果受到了一定影响。各处理氨氮质量浓度在3 d时大幅下降,氨氮去除率高达78.89% ~85.55%。这是由于实验初期分解氨氮的硝化细菌并未活化,随着时间推移,硝化细菌经过扩繁逐渐适应水体环境,进而开始发挥作用,大量分解氨氮。各处理总氮质量浓度在5 d后维持相对稳定,可能是由于微生物所需碳源匮乏,抑制了其脱氮功效,这与唐海芳[23]的研究结果一致。T2中氨氮及总氮的去除效果最好,说明添加铁粉并调节好其与粉煤灰的配比有利于提升粉煤灰EM菌陶粒的氮素净化效果。
图 4 不同配比的5 g粉煤灰陶粒固定化EM菌处理下氨氮及总氮质量浓度随时间变化曲线
Figure 4. Curves of NH4+ and TN Concentrations with time under immobilization of EM bacteria on 5 g fly ash ceramsite with different proportions
不同配比EM粉煤灰陶粒对总磷的去除效果如图5所示。各处理总磷质量浓度随处理时间呈降低—升高—降低的变化规律。实验结束后,T1、T2和T3总磷去除率分别为37.35%、45.35%和29.00%。各时段T2的总磷去除效果最好,这主要与EM去除总磷的机理有关。EM中的聚磷菌在厌氧条件下可将聚磷酸盐以
${\rm{PO}}_4^{3-} $ -P等形式释放,并在好氧条件下通过氧化分解反应将其脱除[24]。相比T1和T3,T2处理陶粒表面附着的有效微生物较多,因此总磷的去除效果最优。此外,由于在T2陶粒中添加了铁粉,其表面的氧化铁、三氧化二铁在水中的水解产物氢氧化铁可与游离态的磷酸根相结合形成沉淀,因而也促进了总磷的去除。本研究中,相较于氮,总磷去除率并不高。一方面由于微生物新陈代谢的持续进行大量消耗了水中的溶解氧导致被聚磷菌吸收的磷二次释放,另一方面微生物细胞的衰老破裂也会导致磷的二次释放。图 5 不同配比的5 g粉煤灰陶粒固定化EM菌处理下总磷质量浓度随时间变化曲线
Figure 5. Curves of TP concentrations with time under immobilization of EM bacteria on 5 g fly ash ceramsite with different proportions
由图4和图5还可看出:实验结束后,较空白处理,T2中的氨氮、总氮和总磷去除率分别提高了约70%、60%和25%,表明EM菌强化粉煤灰陶粒去除氮、磷的效果显著。尽管多孔结构,陶粒对氮、磷有一定吸附作用,但由于得不到降解,这部分被吸附的氮、磷依旧存在二次污染的风险,而通过将微生物固定化在粉煤灰陶粒中,可提高微生物对水体环境的适应能力,充分发挥其对氮磷污染物的降解作用,更加有效地提升对水质的净化效果。
Purification effect of immobilized effective microorganism community of fly ash ceramsite on aquaculture wastewater
-
摘要:
目的 以粉煤灰与池塘底泥为主要原材料,通过固定化有效微生物群落(effective microorganisms,EM)的方式制备具有高效去氮除磷的生物陶粒,用于处理污染的养殖水体。 方法 利用等温吸附试验确定最佳粉煤灰陶粒的配比,将粉煤灰陶粒与EM固定,在氨氮、总氮、总磷质量浓度分别为50、55、20 mg·L−1的模拟水产养殖废水中处理6 d。 结果 在预热温度300 ℃,烧制温度1 100 ℃条件下,当粉煤灰陶粒中质量比为m(粉煤灰)∶m(活性底泥)∶m(石灰石粉末)∶m(铁粉)=50∶40∶5∶5时,改性粉煤灰陶粒固定化EM对模拟水产养殖污水中氮磷的净化效果最好。6 d后,氨氮、总氮和总磷的最大去除率分别为98.67%、93.80%和45.35%。 结论 粉煤灰陶粒本身具有一定氮磷吸附净化能力,EM固定化陶粒可强化净水效果。图5表4参24 Abstract:Objective With ash and pond sediment as main raw material, the purpose of this research is to prepare biological ceramics with efficient nitrogen and phosphorus removal for treatment of polluted aquaculture water by immobilizing effective microorganism (EM) community. Method The optimal proportion of fly ash ceramsite was determined by isothermal adsorption test. The fly ash ceramsite was fixed with EM and treated for 6 days in simulated aquaculture wastewater with ammonia nitrogen, total nitrogen and total phosphorus concentrations of 50, 55 and 20 mg·L−1. Result Under the preheating temperature of 300 ℃ and the firing temperature of 1 100 ℃, when the mass ratio of fly ash ceramsite was m (fly ash)∶m (active sediment)∶m (limestone powder)∶m (iron powder)=50∶40∶5∶5, the modified fly ash ceramsite immobilized EM had the best purification effect on nitrogen and phosphorus in the simulated aquaculture wastewater. After 6 days, the maximum removal rates of ammonia nitrogen, total nitrogen and total phosphorus were 98.67%, 93.80% and 45.35%, respectively. Conclusion Fly ash ceramsite itself has a certain adsorption and purification capacity of nitrogen and phosphorus. After the immobilization of ceramsite with EM, water purification effect can be enhanced. [Ch, 5 fig. 4 tab. 24 ref.] -
表 1 粉煤灰陶粒各成分质量分数
Table 1. Percentage of each component of the fly ash ceramsite
处理 粉煤灰/% 铁粉/% 碳酸钙粉末/% 活性底泥/% T1 40 5 5 50 T2 50 5 5 40 T3 55 0 5 40 表 2 不同配比的粉煤灰陶粒性能
Table 2. Properties of fly ash ceramsite with different proportions
处理 孔隙率/
%磨损率/
%比表面积/
(m2·g−1)堆积密度/
(g·cm−3)体积密度/
(g·cm−3)T1 54.32 1.48 2.21 0.66 1.38 T2 56.86 1.43 2.83 0.74 1.42 T3 52.26 1.78 1.42 0.68 1.33 表 3 各组粉煤灰陶粒元素质量分数
Table 3. Percentage of element composition of fly ash ceramsite in different groups
处理 元素质量分数/% 碳 氧 钠 钙 硅 镁 铝 钾 铁 T1 8.86 45.79 0.92 0.53 32.37 0.56 6.75 1.75 4.72 T2 7.04 43.07 1.19 0.89 29.48 0.93 10.77 2.58 6.69 T3 7.35 47.33 0.96 0.58 30.59 0.62 7.35 1.28 3.01 表 4 不同配比粉煤灰陶粒吸附氮磷的Langmuir和Freundlich数
Table 4. Langmuir and Freundlich constants for adsorption of nitrogen and phosphorus by fly ash ceramsite with different proportions
处理 Langmuir 总氮 磷酸盐 Qm/(mg·kg−1) kL/(L·mg−1) R2 Qm/(mg·kg−1) kL/(L·mg−1) R2 T1 1 510.6 0.139 0.990 1 055.2 0.205 0.982 T2 1 652.0 0.176 0.995 1 113.7 0.230 0.991 T3 1 535.2 0.161 0.992 888.5 0.264 0.989 处理 Freundlich 总氮 磷酸盐 KF/[(mg·kg−1)·(mg·L−1) −1/n] n R2 KF/[(mg·kg−1)·(mg·L−1) −1/n] n R2 T1 177.5 1.275 0.979 169.6 1.278 0.971 T2 227.8 1.416 0.974 181.5 1.353 0.984 T3 206.2 1.342 0.976 177.6 1.361 0.974 -
[1] 刘国锋, 徐跑, 吴霆, 等. 中国水产养殖环境氮磷污染现状及未来发展思路[J]. 江苏农业学报, 2018, 34(1): 225 − 233. LIU Guofeng, XU Pao, WU Ting, et al. Present condition of aquaculture nitrogen and phosphorus environmental pollution and future development strategy [J]. Jiangsu J Agric Sci, 2018, 34(1): 225 − 233. [2] 王军霞, 李莉娜, 陈敏敏, 等. 中国重点污染源总磷、总氮排放状况研究[J]. 环境污染与防治, 2015, 37(10): 98 − 103. WANG Junxia, LI Lina, CHEN Minmin, et al. Research on total phosphorus and total nitrogen emission status of main pollution sources in China [J]. Environ Poll Control, 2015, 37(10): 98 − 103. [3] 白瑞, 胡阳, 雷振宇, 等. 复合微生物制剂在环保领域中的应用[J]. 应用化工, 2017, 46(5): 1002 − 1006. BAI Rui, HU Yang, LEI Zhenyu, et al. Application of compound microbial preparation in environmental protection [J]. Appl Chem Ind, 2017, 46(5): 1002 − 1006. [4] PAN Dawei, SHAN Mingjun, WANG Yanqiu, et al. Study on purification of eutrophic lake using biological agents [J]. Mech Eng Mater Sci, 2012, 108: 269 − 273. [5] DENG Bin, FU Luoqin, ZHANG Xiaoping, et al. The denitrification characteristics of Pseudomonas stutzeri SC221-M and its application to water quality control in grass carp aquaculture[J]. PLoS One, 2014, 9(12): e114886. doi: 10. 1371/journal.pone. 0114886. [6] 杜聪, 冯胜, 张毅敏, 等. 微生物菌剂对黑臭水体水质改善及生物多样性修复效果研究[J]. 环境工程, 2018, 36(8): 1 − 7. DU Cong, FENG Sheng, ZHANG Yimin, et al. Study on the impovement of water quality and biological diversity of black and odorous water by microbial inoculants [J]. Environ Eng, 2018, 36(8): 1 − 7. [7] LIU Junzhuo, WU Yonghong, WU Chenxi, et al. Advanced nutrient removal from surface water by a consortium of attached microalgae and bacteria: a review [J]. Bioresour Technol, 2017, 241: 1127 − 1137. [8] 秦胜东, 郭嘉昒, 刘玉存, 等. 固定化微生物技术研究进展及其在水处理中的应用[J]. 水处理技术, 2014, 40(10): 6 − 11. QIN Shengdong, GUO Jiahu, LIU Yucun, et al. Research progress in immobilized microorganism technology and its application in water treatment [J]. Technol Water Treat, 2014, 40(10): 6 − 11. [9] 黄真真, 陈桂秋, 曾光明, 等. 固定化微生物技术及其处理废水机制的研究进展[J]. 环境污染与防治, 2015, 37(10): 77 − 85. HUANG Zhenzhen, CHEN Guiqiu, ZENG Guangming, et al. Research progress of immobilized microorganism technology and its mechanisms in wastewater treatment [J]. Environ Poll Control, 2015, 37(10): 77 − 85. [10] 安永真, 王春华, 苗朋, 等. 炭纤维作为EM生物膜载体优化除污效果的应用研究[J]. 新型炭材料, 2018, 33(2): 188 − 192. AN Yongzhen, WANG Chunhua, MIAO Peng, et al. Improved decontamination performance of biofilm systems using carbon fibers as carriers for microorganisms [J]. New Carbon Mater, 2018, 33(2): 188 − 192. [11] 杨威, 王里奥, 陈大勇, 等. EM生物膜强化处理垃圾渗滤液[J]. 环境工程学报, 2013, 7(1): 149 − 153. YANG Wei, WANG Li’ao, CHEN Dayong, et al. Enhanced treatment of landfill leachate by EM biofilm [J]. Chin J Environ Eng, 2013, 7(1): 149 − 153. [12] YAO Zhitong, JI Xiaosheng, SARKER P K, et al. A comprehensive review on the applications of coal fly ash [J]. Earth-Sci Rev, 2015, 141: 105 − 121. [13] OJUMU T V, du PLESSIS P W, PETRIK L F. Synthesis of zeolite A from coal fly ash using ultrasonic treatment-A replacement for fusion step [J]. Ultrason Sonochem, 2016, 31: 342 − 349. [14] 邵青, 周靖淳, 王俊陆, 等. 粉煤灰与污泥制备陶粒工艺研究[J]. 中国农村水利水电, 2015(4): 138 − 141. SHAO Qing, ZHOU Jingchun, WANG Junlu, et al. Research on preparation technology of ceramsite with fly ash and sewage sludge [J]. China Rural Water Hydropower, 2015(4): 138 − 141. [15] 胡京, 董琦, 张春岩, 等. 2种EM菌剂对养殖水体水质及幼刺参生长性能的影响[J]. 大连工业大学学报, 2016, 35(2): 79 − 83. HU Jing, DONG Qi, ZHANG Chunyan, et al. Effects of two EM probiotics on cultural water quality and growth performance of sea cucumber Apostichopus japonicus [J]. J Dalian Polytech Univ, 2016, 35(2): 79 − 83. [16] 梅立永, 李彬辉, 骆灵喜, 等. EM菌剂对河道污水的去除效果研究[J]. 工业用水与废水, 2017, 48(3): 40 − 42. MEI Liyong, LI Binhui, LUO Lingxi, et al. Treatment of river sewage by EM bacteria agent [J]. Ind Water Wastewater, 2017, 48(3): 40 − 42. [17] 李亮. 粉煤灰陶粒制备试验研究[J]. 硅酸盐通报, 2017, 36(5): 1577 − 1581. LI Liang. Experimental study on preparation of fly ash ceramsite [J]. Bull Chin Ceram Soci, 2017, 36(5): 1577 − 1581. [18] 成雪君, 王学江, 王浩, 等. 载镁天然沸石复合材料对污水中氮磷的同步回收[J]. 环境科学, 2017, 38(12): 5139 − 5145. CHENG Xuejun, WANG Xuejiang, WANG Hao, et al. Simultaneous recovery of nutrients from wastewater by mesoporous MgO-loaded natural zeolital [J]. Environ Sci, 2017, 38(12): 5139 − 5145. [19] 鲍腾, 陈冬, 陈天虎, 等. 铁氧化物生物多孔陶粒的制备工艺及性能[J]. 复合材料学报, 2014, 31(2): 408 − 415. BAO Teng, CHEN Dong, CHEN Tianhu, et al. Preparation and characterization of iron oxide-based porous ceramsite [J]. Acta Mater Compos Sin, 2014, 31(2): 408 − 415. [20] 茹菁宇, 尹雯, 王家强. 改性陶粒处理含磷废水研究[J]. 环境科学导刊, 2013, 32(6): 66 − 69. RU Jingyu, YIN Wen, WANG Jiaqiang. Removal of phosphorus in wastewater by modified ceramisite [J]. Environ Sci Survey, 2013, 32(6): 66 − 69. [21] JIANG Cheng, JIA Liyue, ZHANG Bo, et al. Comparison of quartz sand, anthracite, shale and biological ceramsite for adsorptive removal of phosphorus from aqueous solution [J]. J Environ Sci, 2014, 26(2): 466 − 477. [22] WAHAB MOHAMED, JELLALI SALAH, JEDIDI NACEUR. Ammonium biosorption onto sawdust: FTIR analysis, kinetics and adsorption isotherms modeling [J]. Bioresour Technol, 2010, 101(14): 5070 − 5075. [23] 唐海芳. 湖塘底泥污染影响及固定化微生物技术原位修复的应用研究[D]. 南宁: 广西大学, 2017. TANG Haifang. Effects of Sediment Pollution and Applied Study on the In-situ Remediation of Sediment by Immobilized Microbe Technology[D]. Naning: Guangxi University, 2017. [24] 余鸿婷, 李敏. 反硝化聚磷菌的脱氮除磷机制及其在废水处理中的应用[J]. 微生物学报, 2015, 55(3): 264 − 272. YU Hongting, LI Min. Denitrifying and phosphorus accumulating mechanisms of denitrifying phosphorus accumulating organisms (DPAOs) for wastewater treatment: a review [J]. Acta Microbiol Sin, 2015, 55(3): 264 − 272. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20190443