-
夏蜡梅Sinocalycanthus chinensis是1963年发表的新种[1],1964年又被提升为新属[2]。该种是中国特有的第三纪古老孑遗植物,目前仅在浙江、安徽两省有少量分布,数量稀少,在分子上有保守的叶绿体基因组,在分类地位上与美国蜡梅属Calycanthus又有着很深的渊源,对阐明东亚—北美植物区系历史的发展和联系很有意义[3]。近年来,大量研究人员对它的种群分布、生理生化以及园林、药用价值等方面作了深入研究[4-9],但对种群结构和群落种间联结的研究未见报道。天台县境内的夏蜡梅则是1959年阙良寿在大雷山首次发现(阙良寿28677,浙江省自然博物院植物标本馆)。天台大雷山是夏蜡梅的第四纪冰期的避难所之一(另一个是临安大明山),与临安不共享一个单倍型(h3),且多样性较低,表明天台县夏蜡梅的种群是比较孤立的,是一个重要的种群分化中心[3]。本研究尝试通过调查天台县大雷山的夏蜡梅种群结构和群落学特征,研究群落组成树种之间的相关性,反映该种群数量动态,揭示群落的结构和功能,评价该种群与生境间的适合度,并预测群落的发展动态,为境内夏蜡梅种群的保护和发展提供科学依据[10-12]。
-
在天台县夏蜡梅分布区域内,选取有代表性的区域进行样地调查。样地面积为20 m×20 m,均匀分成16个5 m×5 m的样方调查乔木层,后在每个样方的右下角划出2 m×2 m的小样方调查灌木层和草本层。乔木层(胸径≥1 cm)进行每木调查,记录种名、高度、胸径、冠幅等;灌木层和草本层记录种名、高度、株数及盖度,并调查样地内的所有层间植物,同时记录样地环境资料(表1)。测量样地内全部夏蜡梅的树高、胸径、冠幅、年龄、分枝数。
表 1 大雷山夏蜡梅群落样地调查特征
Table 1. Survey characteristics of S. chinensis community plot in Dalei Mountain
样地编号 植被类型 地理坐标 海拔/m 坡向 坡度/(°) 坡位 群落郁闭度 人为干扰 Q1 化香树林 28°59′05.24″N,120°49′12.37″E 808 西坡 17 上坡 0.7 间接 Q2 山胡椒林 28°59′02.56″N,120°49′10.87″E 814 西北坡 28 上坡 0.6 间接 Q3 灯台树林 28°58′53.17″N,120°49′01.14″E 824 东坡 30 下坡 0.6 小 Q4 杉木林 28°58′55.71″N,120°49′01.34″E 827 西南坡 5 谷底 0.5 直接 Q5 毛竹林 28°59′18.20″N,120°48′43.84″E 736 西北 22 下坡 0.8 直接 说明:化香树Platycarya strobilacea,山胡椒Lindera glauca,灯台树Bothrocaryum controversum,杉木Cunninghamia lanceolata,毛竹 Phyllostachys edulis -
乔木层重要值(VI)=(相对密度+相对显著度+相对频度)/3×100%。灌木层、草本层种的重要值(VI)=(相对密度+相对盖度+相对频度)/3×100%。
-
Shannon-Wiener指数:H′=
$ -\sum\limits_{i=1}^{S}{p}_{i}\mathrm{l}\mathrm{n}{p}_{i} $ ;Pielou指数(均匀度指数):E=H′/lnS;Simpson指数(多样性指数):P=1−$ \sum\limits_{i=1}^{S}{{p}_{i}}^{2} $ ;Gleason指数(物种丰富度指数):D′=n/lnA。其中:S为种i所在样地的物种总数目,pi为种i的重要值(VI),n为群落中的总物种数,A为样地面积。 -
根据夏蜡梅1个生长季内只形成1次生长高峰,且9月中旬之后就不再生长的特性[18],本研究采用数节法计算夏蜡梅的种群结构。
-
总体关系检验RV=ST2/δT2=(1/N)
$\sum\limits_{j=1}^N(T_j-1)^2 /\sum\limits_{i=1}^{S}{{{P}_{i}(1-P}_{i})}^{} $ ,t=(T1+T2+$\cdots $ +TN)/N,Pi=ni/N。则:W=RVN。其中:N为总样方数,S为物种总数;Tj为样方j内出现的物种数,ni为种i出现的样方数;ST2为总数方差,δT2为总体样本方差。基于物种在样地中出现与不出现数据的方差比率来检验多物种间的总体关联性。如果RV=1,即种间无关联;RV>1,则种间为净的正关联; RV<1,种间为净的负关联。采用统计量W来检验RV偏离1的显著程度。若种间无关联,则W落入χ2分布界限内的概率为90%,χ20.92, N<W<χ20.05, N,否则种间总体相关。共同出现百分率:PC=a/(a+b+c)。PC的值域为[0,1],PC越接近于1,表明2个物种间正联结越紧密;若PC为0,表明该种对间无关联。联结系数:CA=2(ad−bc)/[(a+b)(b+d)+(a+c)(c+d)]。CA用来说明种间联结程度,其值域为[−1,1]。CA为0,说明2个物种间完全独立;CA越接近于1,说明2个物种间正联结越强;CA越接近于−1,说明2个物种间负连接越强。PC和CA计算公式中:a为种A和种B同时出现的样方数,b为只有种A出现的样方数,c为只有种B出现的样方数,d为种A和种B都不出现的样方数。
Pearson积矩相关系数和Spearman相关系数是反映2个物种种间协变线性关系的重要指标,可用来定量分析2个物种间的线性关系,其计算参照文献[21]。
-
根据重要值计算结果,参照《中国植被》的群落命名原则[23],夏蜡梅分布区的植被类型有落叶阔叶林(Q1化香树林、Q2山胡椒林、Q3灯台树林),针叶林(Q4杉木林),竹林(Q5毛竹林)3个类型。乔木层优势种是化香树、山胡椒、灯台树、杉木、毛竹;灌木层优势种是中国绣球Hydrangea chinensis、夏蜡梅、悬铃木叶苎麻 Boehmeria tricuspis;草本层优势种是金星蕨Parathelypteris glanduligera、辽宁堇菜Viola rossii、透茎冷水花Pilea pumila、虎杖Reynoutria japonica(相关重要值详见表2)。这与金则新等[9]调查时认为夏蜡梅主要分布在针阔混交林的结论略有不同,可能是夏蜡梅适应性广,适宜生境中植被类型多样导致。
表 2 大雷山夏蜡梅群落各层重要值前5的物种及重要值一览表
Table 2. List of species and importance values of the top 5 important values of each layer of S. chinensis community in Dalei Mountain
植物 层次 重要值/% Q1 Q2 Q3 Q4 Q5 灯台树Bothrocaryum controversum 乔木层 10.71 11.16 短柄枹Quercus serrata var. brevipetiolata 乔木层 9.62 化香树Platycarya strobilacea 乔木层 12.86 7.99 黄山松Pinus taiwanensis 乔木层 2.28 黄檀Dalbergia hupeana 乔木层 9.28 柳杉Cryptomeria japonica var. sinensis 乔木层 29.11 毛竹Phyllostachys edulis 乔木层 67.08 榕叶冬青Ilex ficoidea 乔木层 1.47 山胡椒Lindera glauca 乔木层 5.98 13.95 山樱花Cerasus serrulata 乔木层 7.41 杉木Cunninghamia lanceolata 乔木层 32.23 1.39 水马桑Weigela japonica var. sinica 乔木层 9.12 微毛柃Eurya hebeclados 乔木层 5.52 细枝柃Eurya loquaiana 乔木层 6.40 夏蜡梅Sinocalycanthus chinensis 乔木层 6.07 10.07 6.48 16.06 小叶白辛树Pterostyrax corymbosus 乔木层 10.58 窄基红褐柃Eurya rubiginosa var. attenuata 乔木层 2.32 浙闽樱桃Cerasus schneideriana 乔木层 7.94 臭辣树Evodia fargesii 灌木层 12.60 红果山胡椒Lindera erythrocarpa 灌木层 5.77 红脉钓樟Lindera rubronervia 灌木层 3.28 黄檀Dalbergia hupeana 灌木层 9.08 木荷Schima superba 灌木层 11.57 蓬蘽Rubus hirsutus 灌木层 14.81 山胡椒Lindera glauca 灌木层 7.47 4.00 山橿Lindera reflexa 灌木层 10.10 6.82 8.49 6.34 7.80 山莓Rubus corchorifolius 灌木层 7.67 太平莓Rubus pacificus 灌木层 5.84 细枝柃Eurya loquaiana 灌木层 4.97 夏蜡梅Sinocalycanthus chinensis 灌木层 13.42 22.21 30.79 50.65 悬铃木叶苎麻 Boehmeria tricuspis 灌木层 27.91 宜昌荚蒾Viburnum erosum 灌木层 3.65 中国绣球Hydrangea chinensis 灌木层 25.76 4.07 3.31 巴东过路黄Lysimachia patungensis 草本层 5.06 穿孔薹草Carex foraminata 草本层 8.11 丛枝蓼Polygonum posumbu 草本层 9.76 褐果薹草Carex brunnea 草本层 6.26 10.40 4.23 虎杖Reynoutria japonica 草本层 29.18 金星蕨Parathelypteris glanduligera 草本层 39.33 6.18 京鹤鳞毛蕨Dryopteris kinkiensis 草本层 5.91 犁头草Viola japonica 草本层 7.13 辽宁堇菜Viola rossii 草本层 30.43 13.94 芒尖薹草Carex doniana 草本层 5.33 南山堇菜Viola chaerophylloides 草本层 9.53 求米草Oplismenus undulatifolius 草本层 10.35 8.22 柔枝莠竹Microstegium vimineum 草本层 13.92 三脉紫菀Aster ageratoides 草本层 6.10 透茎冷水花Pilea pumila 草本层 18.34 长梗黄精Polygonatum filipes 草本层 8.87 长江蹄盖蕨Athyrium iseanum 草本层 9.76 长柱头薹草Carex teinogyna 草本层 9.60 紫花堇菜Viola grypoceras 草本层 6.47 7.94 从重要值看,在乔木层,夏蜡梅处在伴生种位置,而在灌木层夏蜡梅常处在优势种或常见种位置,尤其是在毛竹林下,夏蜡梅重要值为50.65%,达到最高。
-
通过上述3个多样性指数来分析样地物种多样性。计算(表3~5)表明:乔木层物种多样性指数从大到小依次为阔叶林、针叶林、毛竹林,除均匀度指数外,其余指数阔叶林约是毛竹林的2倍,差异明显,说明阔叶林物种丰富、多样性明显、均匀度高。灌木层物种丰富度指数从大到小依次为阔叶林、毛竹林、针叶林,物种多样性和均匀度指数为阔叶林≈针叶林>毛竹林,说明灌木层阔叶林物种多样性指数最高,毛竹林物种丰富度较高,但均匀度低。草本层物种多样性指数除均匀度指数外,均为针叶林>阔叶林≈毛竹林,说明针叶林物种丰富度高,但均匀度低。
表 3 夏蜡梅群落5个样地乔木层物种多样性指数
Table 3. Species diversity index of trees in 5 plots of S. chinensis community
样地号 优势种 VI/% S P H′ E D′ Q1 化香树 12.86 39 0.94 1.36 0.37 6.51 Q2 山胡椒 13.95 36 0.94 1.35 0.38 6.01 Q3 灯台树 11.16 43 0.94 1.39 0.37 7.18 Q4 杉木 32.23 25 0.80 0.93 0.29 4.17 Q5 毛竹 67.08 19 0.52 0.58 0.20 3.17 平均值 27.45 32 0.83 1.12 0.32 5.41 表 4 夏蜡梅群落5个样地灌木层物种多样性指数
Table 4. Species diversity index of shrubs in 5 plots of S. chinensis community
样地号 优势种 VI/% S P H′ E D′ Q1 中国绣球 25.76 34 0.89 1.22 0.34 8.18 Q2 夏蜡梅 22.21 40 0.91 1.27 0.34 9.62 Q3 夏蜡梅 30.79 36 0.87 1.18 0.33 8.66 Q4 悬铃木叶苎麻 27.91 24 0.88 1.12 0.35 5.77 Q5 夏蜡梅 50.65 33 0.73 0.98 0.28 7.93 平均值 31.46 33 0.86 1.15 0.33 8.03 表 5 夏蜡梅群落5个样地草本层物种多样性指数
Table 5. Species diversity index of herbs in 5 plots of S. schinensis community
样地号 优势种 VI/% S P H′ E D′ Q1 金星蕨 39.33 26 0.82 1.04 0.32 6.25 Q2 辽宁堇菜 30.43 22 0.88 1.14 0.37 5.29 Q3 辽宁堇菜 13.94 25 0.92 1.21 0.38 6.01 Q4 透茎冷水花 18.34 45 0.92 1.29 0.34 10.82 Q5 虎杖 29.18 25 0.88 1.16 0.36 6.01 平均值 26.24 29 0.88 1.17 0.35 6.88 夏蜡梅在群落内的优势度与均匀度指数呈负相关,表明夏蜡梅的种间竞争较弱,是一种集群分布的物种。
-
图1显示:5个样地中共有夏蜡梅453株,个体中节数最少的为1节,最多的为46节,平均16节,株数最多为1节,共177株,占39.07%。按10节为1级,共分5个级别,编制种群结构图,可见第Ⅰ级(1~10节)的个体比率最高,占56.51%,整体呈增长型中的“金字塔”型,Ⅰ级个体比较丰富,这与金则新等[9]的结论一致。说明天台大雷山的生境适宜夏蜡梅种群的生长与更新,同时也说明数节法在分析夏蜡梅的种群内部结构是可行的。
由图2显示:不同的样地中,Q1、Q2、Q3都是Ⅰ级个体较多,种群结构呈“金字塔”型,属增长型;在Q4中,Ⅰ级个体极少,种群结构呈“壶”型,属衰退型;Q5中,种群结构呈“钟”型,属稳定型。
-
根据夏蜡梅群落中乔木层和灌木层重要值大于5%的物种分别在5个样地中出现(1)和不出现(0)矩阵,计算出方差比率RV和统计量W。
乔木层中共选取了18个物种,RV=1.634>1,表明种间呈净的正关联;灌木层中共选取了12个物种,RV=1.250>1,表明种间呈净的正关联。由于N=5,乔木层和灌木层的统计量W分别为8.171和6.250。查表得:χ20.50,5=4.351,χ20.10,5=9.236,乔木层和灌木层的W值均落入χ20.50,5和χ20.10,5之间,即RV偏离1不显著。因此,乔木层18个物种和灌木层12个物种均在整体上表现出不显著的净的正关联。
通过共同出现百分率检测、Pearson相关系数检验、Spearman秩相关系数检验等方法分析种间联结和种间相关性,结果(图3~10)显示:乔木层和灌木层中夏蜡梅与大部分物种间均无关联,仅在乔木层中,夏蜡梅与红果山胡椒呈极显著负相关,与化香树和浙闽樱桃呈显著负相关;在灌木层中夏蜡梅与山莓呈显著负相关,与山橿间的联结性较强。
-
本研究表明:夏蜡梅所处的群落类型多样,有落叶阔叶林、针叶林、毛竹林,乔木层优势种有化香树、山胡椒、灯台树、杉木、毛竹;灌木层优势种有中国绣球、夏蜡梅、悬铃木叶苎麻;草本层优势种有金星蕨、辽宁堇菜、透茎冷水花等。夏蜡梅种群主要集中分布在落叶阔叶林和毛竹林中。生物多样性指数最高的是灯台树林,最低的是毛竹林;均匀度指数最高的是杉木林,最低的是毛竹林。
-
夏蜡梅的种群结构是增长型中的“金字塔”型,幼林个体丰富,与早期“天台县夏蜡梅产地由于植被破坏严重,夏蜡梅都呈散生状”的描述相比[6],种群得到了很好的保护。
除柳杉疏林外,落叶林、毛竹林下的夏蜡梅种群数量都比较多,特别是毛竹林下种群数量达到最高。这可能是夏蜡梅是喜荫植物,午间强光、高温会导致其叶肉细胞活性降低,进而引起光合能力的下降,直至幼苗、幼树死亡[24]。落叶林、毛竹林的林冠能为其遮光,减弱强烈的光照,降低土壤表明温度,减少土壤水分蒸发,从而促进幼苗的萌发和存活。这也为今后野外保护、繁育夏蜡梅提供了很好的指示。
-
3种检验结果表现出一致性,正负关联比均大于1,说明各树种联系紧密,群落的结构和功能趋于完善。夏蜡梅与大部分树种无相关关系,说明夏蜡梅在群落中可能处于一个相对独立的地位。群落中与夏蜡梅呈负相关关系的主要是红果山胡椒、山莓、浙闽樱桃、化香树等树种,说明这些种与夏蜡梅有竞争关系。建议在后期夏蜡梅野外保育过程中,对与夏蜡梅有竞争关系的物种,采取适当人为择伐、抚育,营造良好的生长环境。
-
人为干扰对夏蜡梅种群的影响不尽相同。在柳杉林等人工经营林,由于砍伐强度大,露出大量林窗,生境遭到破坏,夏蜡梅种群结构趋于衰退;在毛竹林中,虽然人工干预强烈,但对夏蜡梅的生境破坏不强,使得种群结构趋于稳定;在化香树林、山胡椒林等落叶阔叶林中,是先有人为干扰,后干扰逐渐减弱,群落进入自然演替,夏蜡梅种群则开始恢复,表现出种群增长的模型。
-
浙江农林大学赵宏波审阅全文并提出修改意见;浙江省森林资源监测中心钟建平,浙江中医药大学林王敏、董荧荧、金晓青、王志栋等参加野外调查;杭州师范大学陈伟杰帮助内业计算。在此一并致谢!
Community characteristics of Sinocalycanthus chinensis in Dalei Mountains of Tiantai County
-
摘要:
目的 探索浙江省天台县大雷山野生夏蜡梅Sinocalycanthus chinensis群落的物种组成、种群结构和种间联结,补充大雷山野生夏蜡梅资源分布情况。 方法 在实地踏查的基础上,结合以往研究资料,选取天台县大雷山夏蜡梅的典型群落,建立5个20 m×20 m样地,进行群落学调查。 结果 ①夏蜡梅所处的群落类型多样,主要有落叶阔叶林、针叶林和竹林,分层明显,乔木层优势种有化香树Platycarya strobilacea、山胡椒Lindera glauca、灯台树Bothrocaryum controversum、杉木Cunninghamia lanceolata、毛竹Phyllostachys edulis;灌木层优势种有中国绣球Hydrangea chinensis、夏蜡梅、悬铃木叶苎麻 Boehmeria tricuspis;草本层优势种有金星蕨Parathelypteris glanduligera、辽宁堇菜Viola rossii、透茎冷水花Pilea pumila。②夏蜡梅的种群结构为“金字塔”型,第Ⅰ级个体比率最高,占56.51%,说明种群正处在增长阶段。③对夏蜡梅群落内的乔木层和灌木层物种对进行种间关联与相关性分析显示,正负关联比均大于1,说明夏蜡梅与大部分树种无相关关系。 结论 大雷山野生夏蜡梅群落中各树种联系紧密,群落的结构和功能趋于完善,但夏蜡梅在群落中可能处于相对独立的地位。鉴于夏蜡梅与红果山胡椒Lindera erythrocarpa、山莓Rubus corchorifolius、浙闽樱桃Cerasus schneideriana、化香树等树种呈负相关关系,具有竞争关系,建议在后期夏蜡梅野外保育过程中,采取适当人为择伐和抚育措施,营造良好的生长环境。图10表5参24 Abstract:Objective This study aims to explore the species composition, population structure and interspecific association of wild Sinocalycanthus chinensis community, and to supplement the distribution of wild S. chinensis resources in Tiantai County, Zhejiang Province. Method On the basis of field survey and previous research data, five 20 m × 20 m sample plots of S. chinensis were established for community investigation. Result (1) The community types of S. chinensis were diverse, mainly including deciduous broad-leaved forest, coniferous forest and bamboo forest, with obvious stratification. The dominant species of tree layer were Platycarya strobilacea, Lindera glauca, Botrocarpyum contoversum, Cunninghamia lanceolata, and Phyllostachys edulis. The dominant species of shrub layer were Hydrangea chinensis, S. chinensis, and Boehmeria tricuspis. The dominant species of herb layer were Parathylyperis glandulgera, Viola rossii, and Pilea pumila. (2)The population structure of S. chinensis was “Pyramid” type, with the highest proportion of individuals in gradeⅠ, accounting for 56.51%, indicating that the population was in the growth stage. (3) The analysis of interspecific association and correlation of species pairs in tree layer and shrub layer showed that the positive and negative correlation ratios were both greater than 1, and there was no correlation between S. chinensis and most tree species. Conclusion The species of S. chinensis community are closely related, and the structure and function of the community tend to be perfect, but S. chinensis may be relatively independent in the community. In view of its negative correlation and competitive relationship with Lindera erythrocarpa, Rubus corchorifolius, Cerasus schneideriana, Platycarya strobilacea and other tree species, it is suggested that in the later stage of S. chinensis field conservation, appropriate artificial selective cutting and tending measures should be taken to create a good growth environment. [Ch, 10 fig. 5 tab. 24 ref.] -
黄河流域作为具有复杂内部结构的整体系统,兼有黄土高原、青藏高原等生态屏障的综合优势,发挥着水土保持、涵养水源等功能[1]。但黄土高原生态环境脆弱,水土流失严重[2],是黄河流域需要解决的重要问题之一。晋西黄土区因其水土流失、植被恢复困难,成为了黄土高原水土保持与植被建设工程的重点区域。为恢复和改善生态环境、控制水土流失,晋西黄土区营造了大量以刺槐Robinia pseudoacacia、油松Pinus tabulaeformis纯林为主的人工林[3−4],在改善林下灌草植物多样性方面发挥关键作用。但是由于造林密度或树种选择不合理,造成树木生长缓慢和林下植被匮乏等问题[5−6],进而影响植被稳定以及林地灌草植物多样性。
林下灌草作为森林生态系统的重要组成部分,在提高生物多样性、改善立地环境、提升水土保持功能、维持森林生态系统功能稳定等方面发挥着至关重要的作用[7−8]。林分密度是林分结构的重要指标之一,影响着林内光照、湿度以及土壤等条件,进而对林下植物种类与多样性产生影响[9]。林分密度可操作性较强[10],合理的林分密度对改善林下灌草植物多样性、提高林地水土保持功能具有重要作用,因此,已有较多关于林分密度对云杉Picea[11]、杉木Cunninghamia lanceolata [12]、马尾松Pinus massoniana[13]、油松[14]等人工纯林林下植物多样性影响方面的研究,并探寻合理的造林密度。当林分密度相同,林分类型不同,同样会对植物多样性产生影响。闫玮明等[15]对亚热带地区深山含笑Michelia maudiae、乐昌含笑M. chapensis、红锥Castanopsis hystrix等人工林和天然次生林植物多样性进行研究,得出科红锥与含笑人工林林下灌木Shannon-Wiener 指数低于天然次生林,其林下草本Shannon-Wiener 指数高于天然次生林的结论;宋霞等[16]对广东化州3种不同林龄人工林植物多样性的研究表明:营造人工混交林对提高林下植物多样性更加有利;赵耀等[17]、张桐等[18]在晋西黄土区对人工林、天然林的灌草植物多样性也进行了相关研究。然而以上研究是基于相同的密度条件,并未考虑各林分类型在不同林分密度条件下灌草植物多样性特点,缺乏关于晋西黄土区不同林分类型在不同密度下林下灌草组成和植物多样性的深入研究。本研究以晋西黄土区刺槐林人工林、油松林人工林、刺槐-油松人工混交林以及山杨Populus davidiana-栎类Quercus spp.天然次生林为研究对象,研究4种林分在低密度(800~1 200株·hm−2)、中密度(1 200~1 600株·hm−2)以及高密度(1 600~2 000株·hm−2)条件下灌草组成和植物多样性特征,以期为晋西黄土区植被建设和水土保持功能提升提供理论基础。
1. 材料与方法
1.1 研究区概况
研究区位于山西省吉县蔡家川流域(36°14′27″~36°18′23″N,110°39′45″~110°47′45″E),面积约40.15 km2,海拔为897~1 515 m。属于温带大陆性季风气候,该流域年均降水量约579.2 mm,且降水集中在6—9月,约占全年降水的80.6%。具有典型黄土残塬沟壑地貌,水土流失严重,主要土壤类型为褐土,黄土母质,呈弱碱性。该地区乔木以刺槐、油松、侧柏Platycladus orientalis等人工林和山杨-辽东栎Quercus wutaishansea等天然次生林为主。灌木以黄刺玫Rosa xanthine、杠柳Periploca sepium和丁香Syringa oblata等为主。草本主要有薹草Carex spp.、茜草Rubia cordifolia等。
1.2 样地选择与调查方法
于2020年7—8月在山西省吉县蔡家川流域进行全面的野外调查,以不同林分类型和林分密度为依据,选择具有典型性和代表性的刺槐人工林、油松人工林、刺槐-油松人工混交林、山杨-栎类天然次生林。4种林分均为22~25年生的中幼龄林,将每种林分划分为低密度(800~1 200株·hm−2)、中密度(1 200~1 600株·hm−2)、高密度(1 600~2 000株·hm−2)等3种密度,每种密度设置3块20 m × 20 m的样地,共计36块(表1)。每个样地四角及中心设置5个灌木样方(5 m × 5 m)和5个草本样方(1 m × 1 m),调查每个样方内植物种类、株数、盖度等,将藤本植物及树高<2 m的乔木幼苗记录在灌木层。
表 1 样地基本情况Table 1 Basic information of the sample plot林分类型 海拔/m 坡度/(°) 胸径/cm 树高/m 郁闭度 林分密度/(株·hm−2) 林分密度 样地1 样地2 样地3 刺槐人工林 1 210 24 9.85±2.68 7.79±1.86 0.38 975 1 000 1 125 低密度 1 150 25 9.98±3.45 7.49±2.34 0.56 1 500 1 550 1 600 中密度 1 150 30 8.15±3.93 7.67±2.86 0.35 1 775 1 850 2 000 高密度 油松人工林 1 130 29 13.04±2.91 6.96±0.85 0.57 900 950 1 050 低密度 1 140 37 13.82±2.38 8.25±0.75 0.62 1 500 1 550 1 550 中密度 1 120 14 10.11±3.63 8.93±2.08 0.43 1 750 1 800 1 875 高密度 刺槐-油松人工混交林 1 120 27 10.36±3.45 7.42±1.25 0.54 1 050 1 150 1 200 低密度 1 140 15 9.93±4.04 9.10±1.89 0.52 1 550 1 550 1 600 中密度 1 140 18 9.61±4.33 7.40±1.72 0.62 1 800 1 850 2 000 高密度 山杨-栎类天然次生林 1 040 20 11.24±4.12 9.46±2.42 0.38 950 1 050 1 150 低密度 1 070 22 10.20±3.77 9.68±2.37 0.41 1 550 1 600 1 600 中密度 1 060 24 10.42±3.14 9.64±2.34 0.68 1 825 1 875 1 950 高密度 说明:胸径和树高数值为平均值±标准误。 1.3 植物多样性分析方法
采用丰富度指数[Patrick丰富度指数(S′)]、多样性指数[Simpson指数(D)、Shannon-Wiener指数(H′)]以及均匀度指数[Pielou均匀度指数(JSW)]表征各林分类型林下灌草的植物多样性[19]。
1.4 数据处理与分析
采用Excel 2019统计数据,采用SPSS 25.0中的单因素方差分析(one-way ANOVA)和最小显著性差异法(LSD)对不同林分类型在不同密度条件下灌草植物多样性进行显著性检验(P<0.05),采用双因素方差分析(two-way ANOVA)分析林分类型、林分密度及其交互作用下的林下灌草植物多样性特征。利用Origin 2021软件绘图。
2. 结果与分析
2.1 不同林分类型和密度条件下林下灌草植物组成及优势种
经调查,4种林分中共有灌草植物87种,隶属36科69属,其中灌木层植物46种,隶属22科36属(图1A),草本层植物41种,隶属17科33属(图1B)。从整体上看,山杨-栎类天然次生林中灌木层和草本层植物种数最多,油松人工林最少,且刺槐-油松人工混交林的灌木层植物种数处于较高水平,刺槐人工林草本层植物种数较刺槐-油松人工混交林丰富。不同林分类型林下灌草组成随密度变化呈现一定规律,均在中密度时植物种数最多。综合来看,4种林分灌草植物组成表现为山杨-栎类天然次生林和刺槐-油松人工混交林在中密度时较为丰富。
4种林分灌木层主要优势种具有相似性,但也存在一定差别。由表2可知:在灌木层中,黄刺玫在3种人工林中均占较大优势,连翘Forsythia suspensa在山杨-栎类天然次生林中优势较大。可以看出:刺槐人工林在低密度时,杠柳Periploca sepium、沙棘Hippophae rhamnoides占有较大优势;在中密度时,山莓Rubus corchorifolius、杠柳优势较大;在高密度时,茅莓R. parvifolius、乌头叶蛇葡萄Ampelopsis aconitifolia比中密度林占有较大优势。油松人工林在低密度时,黄刺玫占有绝对优势,重要值达到71.87,且杠柳优势较大;在中密度时,沙棘Hippophae rhamnoides、杠柳占有较大优势,有暴马丁香Syringa reticulata var. amurensis零星分布;在高密度时,暴马丁香已占有较大优势。刺槐-油松人工混交林在低密度时,茅莓、杠柳的优势较大;在中密度时茅莓、山莓占有较大优势,此时乌头叶蛇葡萄稍占优势;高密度时,乌头叶蛇葡萄、茅莓成为主要优势种。山杨-栎类天然次生林在低密度时,榆叶梅Amygdalus triloba和黄栌Cotinus coggygria占有较大优势,有辽东栎零星分布;在中密度时,六道木Abelia biflora和鼠李Rhamnus davurica占有较大优势;在高密度时,出现了胡颓子Elaeagnus pungens等耐阴性植物。可见,不同林分类型在不同密度条件下灌木层植物呈现阳生—中生—阴生的变化规律。
表 2 主要灌草植物重要值Table 2 Important values of main shrub and grass plants林分类型 林分密度 植物种数/种 主要植物及重要值 灌木层 草本层 灌木层 草本层 刺槐人工林 低密度 9 15 黄刺玫(42.96)、杠柳(19.64)、沙棘(14.07)、 丁香(4.09) 铁杆蒿(19.88)、马唐(19.20)、风毛菊 (10.77)、益母草(0.39) 中密度 12 13 黄刺玫(34.89)、山莓(24.85)、杠柳(15.05)、 茅莓(9.45)、乌头叶蛇葡萄(4.33) 虉草(27.52)、沿阶草(13.88)、铁杆蒿 (12.34)、薹草(9.21) 高密度 7 7 黄刺玫(30.95)、茅莓(20.87)、乌头叶蛇葡 萄(16.20)、杠柳(13.97)、沙棘(7.04) 沿阶草(34.99)、虉草(30.03)、薹草 (14.43)、茜草(1.75) 油松人工林 低密度 6 7 黄刺玫(71.87)、杠柳(14.12)、沙棘(2.72) 败酱(33.78)、麻花头(29.94)、白莲蒿 (18.82)、薹草(6.68) 中密度 7 8 黄刺玫(39.83)、沙棘(15.36)、杠柳(14.37)、 暴马丁香(12.45) 败酱(34.49)、薹草(18.91)、白莲蒿 (14.23)、茜草(1.48) 高密度 3 5 暴马丁香(58.78)、黄刺玫(29.17)、沙棘 (12.05) 薹草(45.38)、败酱(31.33)、沿阶草(14.23)、 艾蒿(6.64) 刺槐-油松人工混交林 低密度 13 16 黄刺玫(34.54)、茅莓(18.96)、杠柳(17.93)、 乌头叶蛇葡萄(3.83)、丁香(0.44) 白莲蒿 (26.95)、风毛菊(14.34)、麻花头 (10.02)、黑麦草(9.91) 中密度 15 14 黄刺玫(33.10)、茅莓(17.03)、山莓(12.24)、 乌头叶蛇葡萄(11.24) 败酱(27.84)、马唐(19.40)、沿阶草(15.95)、 薹草(15.15) 高密度 11 8 乌头叶蛇葡萄(26.60)、黄刺玫(25.41)、茅 莓(13.39)、连翘(5.31)、酸枣(0.51) 败酱(35.95)、沿阶草(28.71)、薹草(14.30)、 铁杆蒿(4.00) 山杨-栎类天然次生林 低密度 19 13 连翘(30.90)、榆叶梅(14.95)、黄栌(13.09)、 辽东栎(1.70) 薹草(33.68)、天名精(15.13)、龙芽草 (14.25)、山罗花(7.86) 中密度 20 14 连翘(20.80)、六道木(10.16)、鼠李(9.57)、 乌头叶蛇葡萄(5.51) 薹草(39.47)、山罗花(15.20)、假地豆 (9.80)、泥胡菜(6.35) 高密度 12 11 连翘(38.12)、榆叶梅(17.06)、六道木(8.60)、 胡颓子(3.55) 薹草(30.91)、茜草(16.66)、蜻蜓兰(11.35)、 龙芽草(7.01)、川续断(2.12) 说明:括号中数值为重要值。灌木层酸枣Ziziphus jujuba var. spinosa。草本层艾蒿Artemisia argyi,黑麦草Lolium perenne、泥胡菜Hemisteptia lyrata、益母草Leonurus japonicus。 4种林分草本层主要优势种具有一定规律并存在一定差异。由表2可知:在草本层中,刺槐人工林在低密度时,以铁杆蒿Artemisia gmelinii、马唐Digitaria sanguinalis和风毛菊Saussurea japonica为主;中密度时,铁杆蒿较低密度林的优势有所减小,虉草Phalaris arundinacea、沿阶草Ophiopogon bodinieri占有较大优势;高密度时,沿阶草、虉草所占优势增大,薹草成为优势种之一。油松人工林在低、中、高密度时,败酱Patrinia scabiosifolia均占有较大优势,且随密度增大出现了薹草、沿阶草等优势种;刺槐-油松混交林在低密度时,以白莲蒿Artemisia stechmanniana、风毛菊和麻花头Aristolochia debilis为主;中密度时,败酱、马唐、沿阶草所占优势较大;高密度时,败酱、沿阶草较中密度林时重要值增大,且薹草也占较大优势。山杨-栎类天然次生林在不同密度时,薹草均占有较大优势。低密度山杨-栎类天然次生林中天名精Carpesium abrotanoides和龙芽草Agrimonia pilosa优势较大;中密度时,山罗花Melampyrum roseum和假地豆Desmodium heterocarpon占有较大优势;高密度时,蜻蜓兰Tulotis fuscescens成为主要优势种之一,且零星分布川续断Dipsacus asper、龙芽草等喜湿耐阴性植物。可见,不同林分类型在低密度时草本层主要优势种以阳生植物为主,中密度和高密度时,草本层主要优势种以对生长环境没有较高要求、耐阴及喜湿的植物为主。
2.2 不同林分类型和密度条件下林下灌草植物多样性特征
对不同林分类型和不同密度条件下的林下灌草植物多样性进行双因素方差分析,在林分类型和密度的单一因素作用下,林下灌木层和草本层的S′、D、H′有极显著差异(P<0.01),灌木层 Jsw在林分类型作用下有显著差异(P<0.05),在林分密度作用下差异极显著(P<0.01)。在林分类型与密度条件的交互作用下,林下灌草的D、H′有极显著差异(P<0.01),灌木层的S′有极显著差异(P<0.01),该指数在草本层有显著差异(P<0.05)。草本层Jsw在林分类型、林分密度及其交互作用下均不显著(表3)。
表 3 不同林分类型和密度条件下林下灌草植物多样性的双因素方差分析Table 3 Two-factor variance analysis of stand type and stand density on understory shrub and grass plant diversity变异来源 S′ D H′ Jsw 自由度 F P 自由度 F P 自由度 F P 自由度 F P 灌木层 林分类型 3 232.838 <0.01 3 89.562 <0.01 3 128.906 <0.01 3 3.362 <0.05 林分密度 2 48.091 <0.01 2 18.603 <0.01 2 20.530 <0.01 2 27.792 <0.01 林分类型×林分密度 6 14.232 <0.01 6 6.181 <0.01 6 5.370 <0.01 6 11.824 <0.01 草本层 林分类型 3 71.152 <0.01 3 25.589 <0.01 3 42.011 <0.01 3 0.370 0.775 林分密度 2 45.818 <0.01 2 20.084 <0.01 2 32.356 <0.01 2 0.428 0.657 林分类型×林分密度 6 2.970 <0.05 6 6.613 <0.01 6 4.382 <0.01 6 2.477 0.052 不同林分类型在相同密度条件下的S′、D、H′以及 Jsw表现出相似的变化规律,但也有所不同(表4)。不同林分类型灌木层S′、H′从大到小依次为山杨-栎类天然次生林、刺槐-油松人工混交林、刺槐人工林、油松人工林,且山杨-栎类天然次生林与人工纯林均存在显著差异(P<0.05),不同林分类型草本层S′、H′最高的均为山杨-栎类天然次生林,最低的均为油松人工林。不同林分类型灌木层和草本层的D、Jsw不存在明显规律,且3种人工林草本层的Jsw差异均不显著。不同林分类型灌木层与草本层多样性指数具有明显差异,人工纯林灌木层多样性指数低于草本层,而山杨-栎类天然次生林灌木层多样性指数高于草本层。
表 4 典型林分类型灌草植物多样性Table 4 Bush-grass plant diversity index of typical stand types林分类型 密度类型 灌木层 草本层 S′ D H′ Jsw S′ D H′ Jsw 刺槐人工林 低密度 5.67±0.33 BCb 0.69±0.04 Ba 1.38±0.10 Ba 0.79±0.04 Ab 9.67±0.33 Aa 0.81±0.03 Aa 1.91±0.10 Aa 0.84±0.03 Aab 中密度 9.00±0.33 Ba 0.76±0.01 Ba 1.68±0.04 Ba 0.75±0.01 Bb 8.00±0.58 BCa 0.82±0.01 ABa 1.84±0.08 ABa 0.89±0.01 Aa 高密度 5.00±0.58 Bb 0.74±0.04 Aa 1.45±0.15 Ba 0.91±0.03 ABa 6.67±0.33 Bb 0.74±0.01 ABb 1.56±0.04 Bb 0.82±0.00 Ac 油松人工林 低密度 4.00±0.00 Ca 0.45±0.02 Cb 0.88±0.03 Cb 0.63±0.02 Bb 5.00±0.00 Cb 0.71±0.01 Ba 1.38±0.03 Bb 0.86±0.02 Aa 中密度 4.33±0.33 Ca 0.69±0.04 Ca 1.29±0.11 Ca 0.88±0.03 Aa 6.67±0.33 Ca 0.77±0.01 Ba 1.64±0.05 Ba 0.87±0.01 Aa 高密度 2.00±0.00 Cb 0.48±0.01 Bb 0.67±0.01 Cb 0.96±0.02 Aa 3.00±0.00 Cc 0.56±0.03 Cb 0.89±0.07 Cc 0.81±0.07 Aa 刺槐-油松人工混交林 低密度 7.67±0.33 Ba 0.74±0.02 Ba 1.54±0.08 Ba 0.76±0.03 Aa 7.67±0.88 Ba 0.77±0.03 ABab 1.63±0.12 Bab 0.81±0.05 Aa 中密度 9.33±0.58 Aa 0.80±0.02 Aa 1.81±0.11 Aa 0.82±0.03 Ca 9.00±0.00 Ba 0.84±0.01 Aa 1.97±0.03 Aa 0.90±0.01 Aa 高密度 9.21±0.00 Ba 0.77±0.03 Ba 1.71±0.08 Ba 0.78±0.04 Ba 6.00±0.58 Ba 0.75±0.00 Bc 1.48±0.04 Bc 0.84±0.03 Aa 山杨-栎类天然次生林 低密度 16.33±1.33 Aa 0.85±0.01 Ab 2.30±0.08 Ab 0.83±0.01 Ab 9.67±0.33 Ab 0.81±0.00 Aa 1.91±0.03 Aa 0.84±0.00 Aa 中密度 18.67±0.67 Aa 0.90±0.00 Aa 2.58±0.03 Aa 0.88±0.01 Aa 12.33±0.67 Aa 0.78±0.02 ABa 1.93±0.10 Aa 0.77±0.03 Bb 高密度 10.00±0.58 Ab 0.80±0.01 Ac 1.92±0.04 Ac 0.83±0.01 BCb 8.33±0.33 Ab 0.81±0.02 Aa 1.86±0.08 Aa 0.88±0.02 Aa 说明:大写字母代表相同密度下不同林分类型间差异显著(P<0.05);小写字母代表同一林分类型不同林分密度间差异显著(P<0.05)。 同一林分类型不同密度条件下,随着密度增大,4种林分林下灌木层和草本层植物多样性指数大多呈现先增大后减小的趋势。其中刺槐人工林灌木层D、H′在中密度最大,其次为高密度、低密度,其Jsw在高密度时最大;而刺槐人工林草本层各指数随密度的增大不存在明显规律,但D、Jsw在中密度时最大。油松人工林灌木层D、H′与刺槐人工林表现规律一致,且Jsw在高密度时最大;油松人工林草本层S′、H′从大到小依次为中密度、低密度、高密度,且在不同密度间差异显著(P<0.05)。刺槐-油松人工混交林灌木层S′、D、H′从大到小依次为中密度、高密度、低密度,且在中密度时均匀度指数
$ {J}_{{\rm{SW}}} $ 最大;草本层多样性指数从大到小依次为中密度、低密度、高密度,在中密度时均匀度最好。山杨-栎类天然次生林灌木层和草本层D、H′均表现为中密度最大,低密度次之,高密度最小。综上所述,山杨-栎类天然次生林和刺槐-油松人工混交林在中密度时的植物多样性较好。3. 讨论
3.1 林分类型对其林下灌草植物组成、结构及多样性的影响
植物组成和结构是植物群落的基本特征,并反映灌木层及草本层的植物种类和分布情况。不同林分类型林下植物组成存在一定规律。本研究中,4种林分灌木层植物种数在不同密度下整体表现为山杨-栎类天然次生林多于人工林,刺槐-油松人工混交林较人工纯林丰富。可能与山杨-栎类天然次生林及刺槐-油松人工混交林的生态位较宽有关,其林内环境复杂,具有较高的空间异质性,更适于不同需求植物的生长。这与赵耀等[17]对晋西黄土区不同林地植物多样性的研究结果近似。本研究中,草本层植物数量表现为山杨-栎类天然次生林处于较高水平,油松人工林草本植物种数最少,说明天然林较人工纯林更有利于草本植物的发育。这与张桐等[18]得出的人工纯林的植物种数高于天然林的研究结果有所差别,可能与立地条件、气候等因素有关。可见,山杨-栎类天然次生林、刺槐-油松人工混交林在各密度下植物组成和结构较好,灌木和草本植物种数量充足。在因地制宜的原则下,可通过相应的林草措施,提升林地植被稳定性[20],对控制水土流失具有较好的效果。
植物多样性可以通过植物丰富度与植物分布均匀度进行体现,在维持生态系统稳定方面发挥基础性作用[21]。本研究中不同林分类型灌木层的S′、H′在不同密度条件下从大到小均依次为山杨-栎类天然次生林、刺槐-油松人工混交林、刺槐人工林、油松人工林,究其原因是天然次生林是自然封育生长,灌木层受外界条件影响较小。刺槐-油松人工混交林植物组成较人工纯林丰富,与武文娟等[22]的研究结果一致。油松人工林不仅在各密度下灌木层多样性指数最低,在草本层也是如此,可能是油松人工林下难以分解的油性枯枝落叶较多,降低了土壤结构稳定性,造成林下植物多样性较小,不利于发挥水土保持功能[23]。综合来看,在造林时,刺槐-油松人工混交林较人工纯林更具优势。
3.2 林分密度对其林下灌草植物组成、结构及多样性的影响
本研究结果表明:4种林分的灌草植物随林分密度增大呈现由阳生向中生、阴生植物过渡的变化规律,且山杨-栎类天然次生林与人工林的植物种类差别较大。黄刺玫在3种人工林不同密度条件下均有分布,并且是主要优势种,表明黄刺玫是研究区林分灌草的主要适生种,对干旱少雨、土壤瘠薄的环境适应性较强。连翘在山杨-栎类天然次生林不同密度条件下均占有较大优势,不仅喜光,同时具有耐阴性,能更好地适应天然次生林的林下环境,由于低密度时有辽东栎零星分布,说明该林分可能存在自然更新的现象。薹草、沿阶草在各林分中均有分布,说明它们对不同林分类型生态环境适应性较强,是研究区的重要组成植物。山杨-栎类天然次生林在高密度时的优势种出现了蜻蜓兰,该植物对生长环境要求非常严格[18],说明山杨-栎类天然次生林的生长环境优良。因此,今后的植被建设应当加强对天然林的保护,充分发挥其水土保持功能。
本研究中不同林分类型灌木层和草本层在不同密度条件下存在差异性和规律性,由低密度到中密度时S′及H′增大,而由中密度到高密度时丰富度指数和多样性指数变小。可见,中密度林分的林下灌草种类更加丰富,多样性更高,并且分布较为均匀。这与丁继伟等[24]的研究结果近似。原因可能是林分密度过低或者过高可能都会对林下灌草的植物多样性产生抑制作用。当林分密度较低时,若光照充足,对阳生、耐旱植物的萌发有促进作用,但是阳光照射至土地上导致土壤内水分蒸发限制了林下其他类型植物的生长,导致植物多样性水平较低;随着密度的增加,中生和阴生植物逐渐增多,丰富了林下灌草组成,植物多样性处于较高水平;但密度达到一定峰值,林木直接竞争愈发激烈,且郁闭度随之也会增加,从而破坏了林下植被的生长条件,造成植物多样性降低[25]。这可能是导致刺槐人工林和油松人工林灌木层在高密度时均匀度指数最高,其丰富度指数与多样性指数处于较低水平的原因。不同林分类型灌木层与草本层多样性指数也具有明显差异。王芸等[26]研究表明:人工林和天然次生林林下植物多样性从大到小均为灌木层、草本层,但是本研究得出在人工纯林中林下植物多样性从小到大为灌木层、草本层,而山杨-栎类天然次生林中植物多样性从大到小为灌木层、草本层,与赵耀等[17]的研究结果一致。这可能与海拔、坡向、林分类型、林分密度等因素有关。综合来看,中等密度的刺槐-油松人工混交林林下植物种类较为丰富,植物多样性更高且分布较为均匀,有利于改善土壤质地,控制水土流失,可以将刺槐人工林、油松人工林向混交模式改进,扩大中等密度刺槐-油松人工混交林的造林面积。然而,人工造林与土壤条件、立地条件、混交比例等关系密切,因此有必要研究不同林分类型在不同密度下植物多样性的影响因子,制定合理的刺槐-油松混交林造林方式,以充分发挥林地的水土保持功能。
4. 结论
①不同林分类型中灌草植物组成存在一定差异。4种林分灌草植物共87种,隶属36科69属,其中灌木植物46种,隶属22科36属,草本植物41种,隶属17科33属。4种林分灌草植物组成表现为中密度山杨-栎类天然次生林和刺槐-油松人工混交林较为丰富。②4种林分灌草植物随密度增大呈现由阳生向中生、阴生植物过渡的变化规律。人工林、山杨-栎类天然次生林灌木层主要优势种分别为黄刺玫、连翘,草本层主要优势种是薹草、沿阶草等植物。③不同林分类型灌木层和草本层植物多样性指数存在一定差异。山杨-栎类天然次生林和刺槐-油松人工混交林在中密度时的植物多样性优于人工纯林,且随林分密度的增加,灌木层和草本层植物多样性指数大多呈现先增大后减小的变化趋势。研究区中密度林分更有利于林下植物多样性的维持和改善。
建议通过人工抚育调整林分密度,并向中密度刺槐-油松人工混交林或近自然林进行改造,为黄刺玫、连翘等灌木植物及薹草、沿阶草等草本植物建立良好生长条件,同时保护研究区的山杨-栎类天然次生林,以促进植被恢复建设和强化其水土保持功能。
-
表 1 大雷山夏蜡梅群落样地调查特征
Table 1. Survey characteristics of S. chinensis community plot in Dalei Mountain
样地编号 植被类型 地理坐标 海拔/m 坡向 坡度/(°) 坡位 群落郁闭度 人为干扰 Q1 化香树林 28°59′05.24″N,120°49′12.37″E 808 西坡 17 上坡 0.7 间接 Q2 山胡椒林 28°59′02.56″N,120°49′10.87″E 814 西北坡 28 上坡 0.6 间接 Q3 灯台树林 28°58′53.17″N,120°49′01.14″E 824 东坡 30 下坡 0.6 小 Q4 杉木林 28°58′55.71″N,120°49′01.34″E 827 西南坡 5 谷底 0.5 直接 Q5 毛竹林 28°59′18.20″N,120°48′43.84″E 736 西北 22 下坡 0.8 直接 说明:化香树Platycarya strobilacea,山胡椒Lindera glauca,灯台树Bothrocaryum controversum,杉木Cunninghamia lanceolata,毛竹 Phyllostachys edulis 表 2 大雷山夏蜡梅群落各层重要值前5的物种及重要值一览表
Table 2. List of species and importance values of the top 5 important values of each layer of S. chinensis community in Dalei Mountain
植物 层次 重要值/% Q1 Q2 Q3 Q4 Q5 灯台树Bothrocaryum controversum 乔木层 10.71 11.16 短柄枹Quercus serrata var. brevipetiolata 乔木层 9.62 化香树Platycarya strobilacea 乔木层 12.86 7.99 黄山松Pinus taiwanensis 乔木层 2.28 黄檀Dalbergia hupeana 乔木层 9.28 柳杉Cryptomeria japonica var. sinensis 乔木层 29.11 毛竹Phyllostachys edulis 乔木层 67.08 榕叶冬青Ilex ficoidea 乔木层 1.47 山胡椒Lindera glauca 乔木层 5.98 13.95 山樱花Cerasus serrulata 乔木层 7.41 杉木Cunninghamia lanceolata 乔木层 32.23 1.39 水马桑Weigela japonica var. sinica 乔木层 9.12 微毛柃Eurya hebeclados 乔木层 5.52 细枝柃Eurya loquaiana 乔木层 6.40 夏蜡梅Sinocalycanthus chinensis 乔木层 6.07 10.07 6.48 16.06 小叶白辛树Pterostyrax corymbosus 乔木层 10.58 窄基红褐柃Eurya rubiginosa var. attenuata 乔木层 2.32 浙闽樱桃Cerasus schneideriana 乔木层 7.94 臭辣树Evodia fargesii 灌木层 12.60 红果山胡椒Lindera erythrocarpa 灌木层 5.77 红脉钓樟Lindera rubronervia 灌木层 3.28 黄檀Dalbergia hupeana 灌木层 9.08 木荷Schima superba 灌木层 11.57 蓬蘽Rubus hirsutus 灌木层 14.81 山胡椒Lindera glauca 灌木层 7.47 4.00 山橿Lindera reflexa 灌木层 10.10 6.82 8.49 6.34 7.80 山莓Rubus corchorifolius 灌木层 7.67 太平莓Rubus pacificus 灌木层 5.84 细枝柃Eurya loquaiana 灌木层 4.97 夏蜡梅Sinocalycanthus chinensis 灌木层 13.42 22.21 30.79 50.65 悬铃木叶苎麻 Boehmeria tricuspis 灌木层 27.91 宜昌荚蒾Viburnum erosum 灌木层 3.65 中国绣球Hydrangea chinensis 灌木层 25.76 4.07 3.31 巴东过路黄Lysimachia patungensis 草本层 5.06 穿孔薹草Carex foraminata 草本层 8.11 丛枝蓼Polygonum posumbu 草本层 9.76 褐果薹草Carex brunnea 草本层 6.26 10.40 4.23 虎杖Reynoutria japonica 草本层 29.18 金星蕨Parathelypteris glanduligera 草本层 39.33 6.18 京鹤鳞毛蕨Dryopteris kinkiensis 草本层 5.91 犁头草Viola japonica 草本层 7.13 辽宁堇菜Viola rossii 草本层 30.43 13.94 芒尖薹草Carex doniana 草本层 5.33 南山堇菜Viola chaerophylloides 草本层 9.53 求米草Oplismenus undulatifolius 草本层 10.35 8.22 柔枝莠竹Microstegium vimineum 草本层 13.92 三脉紫菀Aster ageratoides 草本层 6.10 透茎冷水花Pilea pumila 草本层 18.34 长梗黄精Polygonatum filipes 草本层 8.87 长江蹄盖蕨Athyrium iseanum 草本层 9.76 长柱头薹草Carex teinogyna 草本层 9.60 紫花堇菜Viola grypoceras 草本层 6.47 7.94 表 3 夏蜡梅群落5个样地乔木层物种多样性指数
Table 3. Species diversity index of trees in 5 plots of S. chinensis community
样地号 优势种 VI/% S P H′ E D′ Q1 化香树 12.86 39 0.94 1.36 0.37 6.51 Q2 山胡椒 13.95 36 0.94 1.35 0.38 6.01 Q3 灯台树 11.16 43 0.94 1.39 0.37 7.18 Q4 杉木 32.23 25 0.80 0.93 0.29 4.17 Q5 毛竹 67.08 19 0.52 0.58 0.20 3.17 平均值 27.45 32 0.83 1.12 0.32 5.41 表 4 夏蜡梅群落5个样地灌木层物种多样性指数
Table 4. Species diversity index of shrubs in 5 plots of S. chinensis community
样地号 优势种 VI/% S P H′ E D′ Q1 中国绣球 25.76 34 0.89 1.22 0.34 8.18 Q2 夏蜡梅 22.21 40 0.91 1.27 0.34 9.62 Q3 夏蜡梅 30.79 36 0.87 1.18 0.33 8.66 Q4 悬铃木叶苎麻 27.91 24 0.88 1.12 0.35 5.77 Q5 夏蜡梅 50.65 33 0.73 0.98 0.28 7.93 平均值 31.46 33 0.86 1.15 0.33 8.03 表 5 夏蜡梅群落5个样地草本层物种多样性指数
Table 5. Species diversity index of herbs in 5 plots of S. schinensis community
样地号 优势种 VI/% S P H′ E D′ Q1 金星蕨 39.33 26 0.82 1.04 0.32 6.25 Q2 辽宁堇菜 30.43 22 0.88 1.14 0.37 5.29 Q3 辽宁堇菜 13.94 25 0.92 1.21 0.38 6.01 Q4 透茎冷水花 18.34 45 0.92 1.29 0.34 10.82 Q5 虎杖 29.18 25 0.88 1.16 0.36 6.01 平均值 26.24 29 0.88 1.17 0.35 6.88 -
[1] 郑万钧, 章绍尧, 洪涛, 等. 中国经济树木新种及学名订正[J]. 林业科学, 1963, 8(1): 1 − 14. CHENG Wanchun, CHANG Shaoyao, HONG Tao, et al. Species novae et nomines emendata arborum utilium Chinae [J]. Sci Silv Sin, 1963, 8(1): 1 − 14. [2] 郑万钧, 章绍尧. 蜡梅科的新属: 夏蜡梅属[J]. 植物分类学报, 1964, 9(2): 135 − 138. CHENG Wanchun, CHANG Shaoyao. Genus novum Calycanthacearum Chinae orientalis [J]. J Syst Evol, 1964, 9(2): 135 − 138. [3] 谈探. 濒危植物夏蜡梅种群遗传多样性与分子系统地理学研究[D]. 北京: 北京林业大学, 2008. TAN Tan. Genetic Diversity and Molecular Phylogeography of Sinocalycanthus chinensis, an Endangered Plant Endemic to China[D]. Beijing: Beijing Forestry University, 2008. [4] 刘华红, 周莉花, 黄耀辉, 等. 群落演替对夏蜡梅种群分布和数量的影响[J]. 生态学报, 2016, 36(3): 620 − 628. LIU Huahong, ZHOU Lihua, HUANG Yaohui, et al. Effects of community succession on population distribution and size of Sinocalycanthus chinensis (Cheng et S. Y. Chang) Cheng et S. Y. Chang [J]. Acta Ecol Sin, 2016, 36(3): 620 − 628. [5] 李林初. 夏蜡梅属起源的探讨[J]. 西北植物学报, 1988, 8(2): 67 − 72. LI Linchu. Critical note on the origin of Calycanthus L. [J]. Acta Bot Boreali-Occident Sin, 1988, 8(2): 67 − 72. [6] 徐耀良, 张若蕙, 周骋. 夏蜡梅的群落学研究[J]. 浙江林学院学报, 1997, 14(4): 355 − 362. XU Yaoliang, ZHANG Ruohui, ZHOU Cheng. Study on communities of Calycanthus chinensis [J]. J Zhejiang For Coll, 1997, 14(4): 355 − 362. [7] 金则新, 李钧敏, 朱小燕. 夏蜡梅总黄酮、总绿原酸含量及其环境因子相关性分析[J]. 浙江大学学报(理学版), 2007, 34(4): 459 − 464. JIN Zexin, LI Junmin, ZHU Xiaoyan. Content of total flavonoids and total chlorogenic acid in the endangered plant Sinocalycanthus chinensis and their correlations with the environmental factors [J]. J Zhejiang Univ Sci Ed, 2007, 34(4): 459 − 464. [8] 刘丽丽, 金则新, 李建辉. 浙江大雷山夏蜡梅群落植物物种多样性及其与土壤因子相关性[J]. 植物研究, 2010, 30(1): 57 − 64. LIU Lili, JIN Zexin, LI Jianhui. Plant species diversity inSinocalycanthus chinensis community and its correlation with soil factors in Dalei Mountain of Zhejiang Province [J]. Bull Bot Res, 2010, 30(1): 57 − 64. [9] 金则新, 李钧敏, 柯世省, 等. 夏蜡梅保护生物学[M]. 北京: 科学出版社, 2010: 1 − 353. [10] MANUEL C, MOLLES J. Ecology, Concept and Applications[M]. 2nd. New York: McGraw-Hill Companies, 2002: 186 − 254. [11] CRAWLEY M J. Plant Ecology[M]. London: Bllackwell Scientific Publications, 1986: 97 − 185. [12] 董瑞瑞, 唐战胜, 陈建华, 等. 珍稀濒危植物紫茎群落树种的种间联结性[J]. 安徽农业科学, 2018, 46(5): 127 − 129, 153. DONG Ruirui, TANG Zhansheng, CHEN Jianhua, et al. Interspecific correlations among tree species in the Stewartia sinensis community in Qianjiangyuan National Park, Zhejiang Province [J]. J Anhui Agric Sci, 2018, 46(5): 127 − 129, 153. [13] 洪仲棉. 天台山森林植被及其利用和保护[J]. 植物生态学与地植物学学报, 1988, 12(3): 232 − 236. HONG Zhongmian. The rational utilize and protect of forest vegetation in Tian-Tai Mountain [J]. Acta Phytoecol Geobot Sin, 1988, 12(3): 232 − 236. [14] 张彩绯. 天台45年气候变化规律初探[J]. 浙江气象, 2007, 28(2): 12 − 15. ZHANG Caifei. A preliminary study on the climate change of Tiantai in the past 45 years [J]. J Zhejiang Meteorol, 2007, 28(2): 12 − 15. [15] 胡正华, 于明坚, 丁炳扬, 等. 古田山国家级自然保护区常绿阔叶林类型及其群落物种多样性研究[J]. 应用与环境生物学报, 2003, 9(4): 341 − 345. HU Zhenghua, YU Mingjian, DING Bingyang, et al. Types of evergreen broad-leaved forests and their species diversity in Gutian Mountain National Nature Reserve [J]. Chin J Appl Environ Biol, 2003, 9(4): 341 − 345. [16] 马克平, 黄建辉, 于顺利, 等. 北京东灵山地区植物群落多样性的研究(Ⅱ)丰富度、均匀度和物种多样性指数[J]. 生态学报, 1995, 15(3): 268 − 277. MA Keping, HUANG Jianhui, YU Shunli, et al. Plant community diversity in Dongling Mountain, Beijing, China (Ⅱ) species richness, evenness and species diversities [J]. Acta Ecol Sin, 1995, 15(3): 268 − 277. [17] 方精云, 王襄平, 沈泽昊, 等. 植物群落清查的主要内容、方法和技术规范[J]. 生物多样性, 2009, 17(6): 533 − 548. FANG Jingyun, WANG Xiangping, SHEN Zehao, et al. Methods and protocols for plant community inventory [J]. Biodiversity Sci, 2009, 17(6): 533 − 548. [18] 张若蕙, 刘洪谔, 沈锡康, 等. 8种蜡梅的繁殖[J]. 浙江林业科技, 1994, 14(1): 1 − 7. ZHANG Ruohui, LIU Honge, SHEN Xikang, et al. Propagation of eight species of Calycanthaceae [J]. J Zhejiang For Sci Technol, 1994, 14(1): 1 − 7. [19] SCHLUTER D. A variance test for detecting species associations, with some example application [J]. Ecology, 1984, 65(3): 998 − 1005. [20] 王伯荪, 彭少麟. 南亚热带常绿阔叶林种间联结测定技术研究(Ⅰ)种间联结测试的探讨与修正[J]. 植物生态学报, 1985, 9(4): 274 − 285. WANG Bosun, PENG Shaolin. Studies on the measuring techniques of interspecific association of lower-subtropical evergreen-broadleaved forests (Ⅰ) The exploration and the revision on the measuring formulas of interspecific association [J]. Chin J Plant Ecol, 1985, 9(4): 274 − 285. [21] 陈珍慧. 珍稀特有植物华顶杜鹃的种群特征和保护遗传学研究[D]. 杭州: 杭州师范大学, 2016: 23 − 24. CHEN Zhenhui. Studies on Population Characteristics and Protective Genetics of Rhododendron huadingense, A Rare Species Endemic to China[D]. Hangzhou: Hangzhou Normal University, 2016: 23 − 24. [22] 周先叶, 王伯荪, 李鸣光, 等. 广东黑石顶自然保护区森林次生演替过程中群落的种间联结性分析[J]. 植物生态学报, 2000, 24(3): 332 − 339. ZHOU Xianye, WANG Bosun, LI Mingguang, et al. An analysis of interspecific associations in secondary succession forest communities in Heishiding Natural Reserve, Guangdong Province [J]. Chin J Plant Ecol, 2000, 24(3): 332 − 339. [23] 吴征镒. 中国植被[M]. 北京: 科学出版社, 1995: 143 − 430. [24] 马金娥, 金则新, 张文标. 濒危植物夏蜡梅及其伴生植物的光合日进程[J]. 植物研究, 2007, 27(6): 708 − 714. MA Jin’e, JIN Zexin, ZHANG Wenbiao. The diurnal changes of photosynthesis in the endangered plant Sinocalycanthus chinensis and its accompanying plants [J]. Bull Bot Res, 2007, 27(6): 708 − 714. 期刊类型引用(10)
1. 宫正. 黄土高原森林林下植被物种多样性及其影响因素. 东北林业大学学报. 2025(02): 66-74 . 百度学术
2. 郭艳杰,毕华兴,赵丹阳,刘泽晖,林丹丹,韩金丹,黄浩博. 不同密度油松林地土壤水碳分布特征及其耦合关系. 应用生态学报. 2025(01): 50-58 . 百度学术
3. 王宇,王冬梅,王彦辉,云慧雅,张梦棋,张莹莹. 黄土高原退耕刺槐中龄林密度和空间结构对灌草多样性的影响. 生态学报. 2025(02): 822-836 . 百度学术
4. 张犇,赵廷宁,张海强,杨建英,贾亚倢,赵炯昌,胡亚伟,李阳. 晋西黄土区不同坡向刺槐林下植物种间关联及群落稳定性. 东北林业大学学报. 2024(05): 19-27 . 百度学术
5. 李志鑫. 陇东黄土高原刺槐林分特征和林下灌草多样性对林分密度的响应. 甘肃林业科技. 2024(03): 45-50+83 . 百度学术
6. 杨扬,彭祚登,刘伟韬,王鑫喆,王书婷,王少明. 不同经营世代刺槐人工林多功能经营的密度管理图研建. 北京林业大学学报. 2024(10): 11-21 . 百度学术
7. 贾亚倢,杨建英,张建军,胡亚伟,张犇,赵炯昌,李阳,唐鹏. 晋西黄土区林分密度对油松人工林生物量及土壤理化性质的影响. 浙江农林大学学报. 2024(06): 1211-1221 . 本站查看
8. 王思淇,张建军,张彦勤,赵炯昌,胡亚伟,李阳,唐鹏,卫朝阳. 晋西黄土区不同密度刺槐林下植物群落物种多样性. 干旱区研究. 2023(07): 1141-1151 . 百度学术
9. 李转桃,徐先英,赵鹏,罗永忠. 海拔对祁连山东段青海云杉林林下灌草多样性的影响. 植物资源与环境学报. 2023(06): 59-66 . 百度学术
10. 刘春梅,韩东苗,陈水莲,谭瑞坤,赵苗菲,龚昕怡. 林下套种草珊瑚栽培技术. 安徽农学通报. 2023(21): 51-54 . 百度学术
其他类型引用(3)
-
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20200349