留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长江流域濒危兰科植物的空间分布

张一林 李功权 刘颖

张建云, 吴胜春, 王敏艳, 等. 烟秆炭修复重金属污染土壤的效应及对烟草生长的影响[J]. 浙江农林大学学报, 2018, 35(4): 674-683. DOI: 10.11833/j.issn.2095-0756.2018.04.013
引用本文: 张一林, 李功权, 刘颖. 长江流域濒危兰科植物的空间分布[J]. 浙江农林大学学报, 2022, 39(4): 750-757. DOI: 10.11833/j.issn.2095-0756.20210551
ZHANG Jianyun, WU Shengchun, WANG Minyan, et al. Tobacco stalk biochar in heavy metal contaminated soil amendments with tobacco production[J]. Journal of Zhejiang A&F University, 2018, 35(4): 674-683. DOI: 10.11833/j.issn.2095-0756.2018.04.013
Citation: ZHANG Yilin, LI Gongquan, LIU Ying. Spatial distribution of endangered orchids in the Yangtze River Watershed[J]. Journal of Zhejiang A&F University, 2022, 39(4): 750-757. DOI: 10.11833/j.issn.2095-0756.20210551

长江流域濒危兰科植物的空间分布

DOI: 10.11833/j.issn.2095-0756.20210551
基金项目: 国家自然科学基金青年基金资助项目(42004007)
详细信息
    作者简介: 张一林(ORCID: 0000-0002-8064-8776),从事植物学与地理信息系统应用研究。E-mail: zyl1041789958@163.com
    通信作者: 李功权(ORCID: 0000-0003-2933-0110),副教授,博士,从事时空大数据分析和地理信息系统应用研究。E-mail: 195648169@qq.com
  • 中图分类号: S718.3

Spatial distribution of endangered orchids in the Yangtze River Watershed

  • 摘要:   目的  兰科Orchidaceae植物已经成为旗舰保护类群,科学规范识别长江流域兰科植物的迁移规律,探究濒危兰科植物的空间分布,确定重点保护物种和热点地区,对于更好地研究和保护珍稀濒危兰科植物具有重要意义。  方法  以长江流域1981—2019年的代表性兰科植物为研究对象,基于野外考察和全球生物多样性信息资讯机构(GBIF)数据库选取兜被兰属Neottianthe、独蒜兰属Pleione等130个(10种)物种分布点为代表,根据植物地理学和地理信息系统(GIS)空间分析理论,采取核密度、莫兰指数和热点分布等方法,对长江流域濒危兰科植物的空间分布格局进行了研究。  结果  ①1998—2019年长江流域代表性兰科植物的密度高值区减少,分布在广西、贵州的兰科植物消失。密度中值区发生变化,兰科植物由四川中部向四川北部迁移;②长江流域代表性兰科植物的濒危等级值和空间位置呈显著正相关水平,1998—2019年比1981—1997年相关性更强;③高危险区发生变化,1981—1997年兰科植物高危险区主要分布在贵州和湖北,而1998—2019年主要分布在湖北。  结论  全球变暖、基础设施建设、非法采挖销售和过度砍伐森林都有可能成为兰科植物分布变化和数量减少的原因。湖北将成为以后需要重点关注的地区。图1表5参31
  • 烟草Nicotiana tabacum是中国重要的经济作物之一。中国烟草种植面积高达100万hm2,烟叶产量达450~500万t·a-1,其中烟秆产量约为150万t·a-1[1],由于管理比较粗犷,烟叶收获后大量烟秆被堆砌焚烧,不仅造成农林秸秆资源的巨大浪费,且焚烧产生的烟气对大气环境造成了严重影响。另一方面,有研究发现,中国部分烟草种植区土壤受到了不同程度的重金属污染,如贵阳和安顺镉的单项污染指数分别为1.581和1.103[2],当烟叶中含有过量重金属时,抽吸过程中,重金属会以气溶胶或金属氧化物的形式通过主流烟气进入人体,造成潜在危害[3];此外,连作会使重茬种植后的烟草生长迟缓、植株矮小、产量品质降低、土传病虫害加重等现象[4-5],严重影响当地烟农的经济收益。因此,寻找一种既能解决烟秆有效利用,同时又能降低土壤重金属生物有效性,并能提高重金属污染烟田经济价值的方法尤为重要。生物质炭是富含碳的生物质在缺氧或者无氧的条件下通过高温裂解或者不完全燃烧,生成的一种含碳量大、孔隙结构复杂的固体物质[6-7]。近年来,有研究表明:生物质炭可以提高土壤肥力[8],降低二氧化碳排放量[9];其含有的高比表面积、孔隙结构、碱性阳离子和官能团,对重金属有良好的修复作用[10];还可以改善土壤团聚体、降低土壤容重[11],促进土壤微生物活性[12],提高土壤酶活性[13]。因此,生物质炭化资源化利用不仅是低端农林废物如烟秆高值化利用的新技术途径,也是土壤学、环境科学、生态学等专业领域研究的一个重大热点。本研究利用贵州省毕节地区烟叶收获后的废弃烟秆制备成的烟秆炭改良重金属污染土壤,进行烟草种植试验,主要考察①烟秆炭对重金属污染土壤理化性质的影响;②烟秆炭对重金属污染土壤金属有效性的影响;③烟秆炭对烟叶生产及重金属质量分数的影响。希望通过本试验研究,为烟秆废弃物的炭化资源化再生使用及重金属污染土壤的修复利用提供理论依据。

    供试土壤采自浙江富阳朱家坞一块重金属复合污染水稻田。该采样点受到周边铜冶炼小作坊废水直排和大气沉降污染,因长期施用石灰,呈弱碱性。采样时取0~20 cm的表层土,带回实验室后剔除植物根系等杂物,风干后混匀、磨碎、过2 mm尼龙筛备用。实验用生物质炭是以贵州毕节地区烟叶收获后的废弃烟秆为原料在600 ℃下热裂解1 h制成,炭化后的产物过2 mm筛储备待用。土壤样品碱解氮、有效磷、有机质分别为132.67,13.31,63 600 mg·kg-1,pH值为pH 7.68,铜、铅、镉分别为296.66,5.91,291.39 mg·kg-1。烟秆炭的总氮、炭、氢、硫分别为20.1,597.5,32.6,3.6 g·kg-1,pH 10.51,铜、镉、铅分别为38.16,1.33,6.93 mg·kg-1,比表面积为368.92 m2·g-1,孔隙度为0.30 cm2·g-1,孔径大小为3.71 nm-1

    盆栽试验在浙江农林大学温室大棚进行。用土4.0 kg·盆-1,烟秆炭用量按0(对照TB0), 20, 40, 80 g·kg-1[m(炭): m(土)]计算施入(分别以TB20,TB40,TB80计),重复4次·处理-1。随机区组排列,并且隔15 d调换1次以保证每盆烟草苗生长受外界环境条件的影响基本一致。基肥选择硝酸铵、过磷酸钙和硫酸钾,用量分别为0.30, 0.80和0.30 g·盆-1,将基肥与土壤、烟秆炭充分混匀后装入塑料桶中(高32 cm,直径21 cm)。烟草种植采用直播方式,于2016年3月27日播种,苗高至10 cm时间苗,留长势一致的烟苗1株·盆-1。试验期间每天为每盆植物补充蒸馏水,使土壤含水量保持在田间最大持水量的65%左右。盆栽试验于8月6日结束。

    植物样的采集:先采收烟叶,然后将植株连根拔起,带回实验室区分根系和地上部,充分漂洗干净,待水珠自然风干后称量各部位鲜质量,然后装入牛皮纸袋105 ℃杀青30 min,60 ℃烘干至恒量,用植物粉碎机(CS-700,中国)粉碎后过0.125 mm筛,装入塑料封口袋中保存待测。

    土壤样的采集:用环刀(长40 cm,直径1 cm)按梅花采样法采集盆栽土壤,采样约500 g·盆-1,充分混匀后带回实验室阴干,用行星式球磨机(QM-3SP04-1,中国)磨碎后过0.125 mm筛,转入塑料封口袋中保存待测。

    土壤pH值采用酸度计(FE20,中国)测定[m(土): m(水)= 1.0: 2.5];有效磷测定采用Olsen法,经过0.5 mol·L-1碳酸氢钠(NaHCO3)浸提[m(土): m(水)=1: 20],比色法测定;有机碳采用低温外热重铬酸钾氧化-比色法[14]

    土壤重金属有效态提取采用二乙三胺五乙酸(DTPA)浸提法[m(土): m(水)=1: 20),重金属质量分数用电感耦合等离子体发射光谱仪(ICP-OES,Prodigy 7,美国)测定[15]。烟叶中重金属质量分数采用硝酸(HNO3)消解,ICP-OES测定[15]。测定过程分别采用土壤(GBW07447)和植物标准物质(GBW10012)进行质量控制。

    土壤脲酶的测定采用苯酚钠-次氯酸钠比色法;碱性磷酸酶采用磷酸苯二钠比色法,缓冲液选柠檬酸缓冲液(pH 7.0);脱氢酶采用TTC分光光度法。为衡量土壤酶综合活性值,对土壤氧化还原酶活性求取集合平均数,计算公式为:$ {G_{{\rm{Mea}}}} = \sqrt[3]{{脲酶活性 \times 脱氢酶活性 \times 碱性磷酸酶活性}} $[16]

    烟秆炭碳、氮、氢和硫质量分数用元素自动分析仪(Vario EL Ⅲ,德国)测定。炭比表面积由比表面积及孔隙度分析仪(SI-MP-10,美国)测定。烟秆炭官能团由傅里叶变换近红外光谱仪(FT-IR,IR Prestige 21,日本)测定。

    应用SPSS 17.0进行数据统计分析,采用单因素方差分析和Duncan's多重比较评价不同处理对土壤pH值、有效磷、碱解氮质量分数和有效态重金属质量分数等指标影响的显著性。采用Person法分析重金属有效性与土壤理化性质之间的相关性。应用Origin 8.5和Excel软件作图。

    烟秆炭主要成分是碳(≈60%),含有少量的氮、氢、硫,pH 10.51,呈碱性,比供试土壤高2.83个单位。烟秆炭比表面积(BET)高达368.92 m2·g-1,与稻草炭(500 ℃裂解30 min,比表面积为29.97 m2·g-1)[17]和死猪炭(800 ℃裂解1 h,比表面积为29.15 m2·g-1)[18]相比有较高的比表面积,能为金属离子提供更多的吸附点位。由图 1可知:生物质炭表面含有丰富的芳香族和脂肪族官能团[19],这些含氧官能团决定了生物质炭具有亲水、疏水性,并增强其对酸碱的缓冲能力,也是土壤pH升高的关键因素。

    图  1  烟秆炭FT-IR表征
    Figure  1.  FT-IR characterization of the tobacco stalk biochar

    表 1显示:施用烟秆炭可以显著提高土壤pH值,且随着炭施加量的增加,土壤pH值显著提高。其中处理TB80效果最为显著,与对照相比土壤pH显著提高了0.38个单位。土壤有机质的变化趋势与pH值一致(表 1),但土壤溶解性有机碳质量分数只有在烟秆炭施加量增加到80 g·kg-1时,才呈现显著性提高(23.4%)。

    表  1  不同处理下土壤pH值和养分质量分数
    Table  1.  Soil pH and nutrient contents under different treatments
    处理 pH值 ω有机质/(g·kg-1) ω水溶性碳/(mg·kg-1) ω有效磷/(mg·kg-1) ω碱解氮/(g·kg-1)
    TB0 7.76 ± 0.06 d 29.73 ± 2.74 d 222.76 ± 16.58 b 19.71 ± 3.38 c 0.10 ± 0.003 bc
    TB20 7.85 ± 0.03 c 39.38 ± 2.46 c 228.51 ± 22.21 b 27.10 ± 7.66 c 0.11 ± 0.006 c
    TB40 7.97 ± 0.04 b 47.43 ± 7.11 b 231.26 ± 24.88 b 42.80 ± 6.76 b 0.12 ± 0.005 ab
    TB80 8.14 ± 0.05 a 60.08 ± 4.97 a 274.96 ± 15.49 a 67.50 ± 8.74 a 0.12 ± 0.008 a
    说明:TB0为对照,英文小写字母代表同列不同处理间的显著性差异水平(P<0.05)
    下载: 导出CSV 
    | 显示表格

    另外,施用一定数量的烟秆炭也能显著增加土壤碱解氮和有效磷质量分数(表 1)。与对照相比,施加20 g·kg-1烟秆炭对土壤碱解氮和有效磷质量分数提高不明显;当施加量增加到40 g·kg-1时,土壤有效磷质量分数显著提高,当增加到80 g·kg-1时,土壤有效磷比40 g·kg-1时又增加了约60.0%;但只有将烟秆炭施加量提高到80 g·kg-1时,与对照相比土壤碱解氮质量分数才显著增加(20.0%)。

    土壤重金属有效态主要指植物有效态,它与重金属形态关系密切[20]。中国现行土壤重金属有效态的提取采用二乙三胺五乙酸(DTPA)浸提法[NY/T 890-2004]。从图 2可见:施加烟秆炭能显著降低土壤中铜、镉和铅的有效态质量分数,但不同施用量对3种重金属的钝化效果表现不同。以土壤施加40 g·kg-1的烟秆炭为分界点,施用20 g·kg-1烟秆炭就能显著降低土壤有效态铜、铅和镉质量分数,与对照相比分别下降了16.6%,18.7%和19.6%;增加炭的施用量至40 g·kg-1,土壤中有效态镉质量分数并没有持续降低,而铜和铅又显著降低了20.5%和13.2%;再提高烟秆炭的施用量至80 g·kg-1,并不能继续降低土壤DTPA可提取态铜和铅的质量分数,但是镉质量分数却显著降低了26.7%。

    图  2  不同处理下DTPA有效态土壤重金属
    Figure  2.  Concentrations of the DTPA extractable heavy metals in soils under different treatments

    土壤酶参与碳、氮、磷、硫等各类物质的循环,是土壤新陈代谢的重要物质。土壤酶活性是反映土壤肥力和质量的重要指标。从表 2可知:土壤中施加烟秆炭会显著降低脱氢酶的活性,而一定数量的烟秆炭能显著提高土壤脲酶和磷酸酶活性。

    表  2  不同烟秆炭使用量对土壤酶活性的影响
    Table  2.  Effects of tobacco stalk biochar on soil enzymes activities under different application rates
    处理 脲酶/(mg·g-1·h-1) 碱性磷酸酶/(mg·g-1·h-1) 脱氢酶/(mg·g-1·h-1 土壤酶综合活性值
    TB0 13.83 ± 0.41 c 0.67 ± 0.52 b 0.36 ± 0.08 a 1.49 c
    TB20 16.54 ± 1.75 b 0.96 ± 0.72 ab 0.25 ± 0.12 b 1.58 b
    TB40 16.93 ± 3.81 b 0.97 ± 0.74 ab 0.23 ± 0.04 b 1.56 b
    TB80 20.49 ± 3.06 a 1.50 ± 1.12 a 0.21 ± 0.03 b 1.86 a
    说明:英文小写字母表示同列不同处理间的显著性差异水平(P<0.05)
    下载: 导出CSV 
    | 显示表格

    具体讲,土壤施加20 g·kg-1烟秆炭,脲酶活性显著提高了19.6%,但将烟秆炭的施用量增加到40 g·kg-1,并没有继续提高土壤脲酶活性(表 2),只有将施用量增加到80 g·kg-1时,土壤脲酶活性才显著又提高了21.0%,与对照相比约显著提高了50%。土壤施加20 g·kg-1或40 g·kg-1的烟秆炭,并不能显著提高土壤磷酸酶活性,但将炭的施用量提高到80 g·kg-1时,土壤磷酸酶活性与对照相比显著提高了2倍多。但是施加80 g·kg-1烟秆炭,土壤磷酸酶活性与施加20和40 g·kg-1烟秆炭的土壤磷酸酶活性对比没有显著性差异。烟秆炭的施用会降低土壤脱氢酶的活性,不同比例烟秆炭施用对土壤脱氢酶活性也没有显著性差异。

    因此,不同烟秆炭施用量处理对土壤酶活性综合性指标的影响效果为TB80>TB40=TB20>TB0。综上所述,处理TB80对土壤酶活性影响最为显著。

    由于重金属本身的化学性质各异且在土壤中存在的形态也不同,土壤理化性质对重金属有效态质量分数影响各不相同。从表 3中可知:烟秆炭施用量与铜、铅有效态质量分数呈负相关关系,其中与镉呈显著负相关关系,说明烟秆炭施用量对降低有效态镉效果更好。土壤基本理化性质如pH值和有机质、水溶性碳、碱解氮和有效磷质量分数与土壤有效态重金属铜、镉、铅均呈负相关关系。土壤有机质质量分数与有效态镉呈极显著负相关关系,pH值、有效磷质量分数与有效态镉呈显著负相关性,表明土壤有机质对镉的钝化作用比土壤pH值、有效磷质量分数大。有效态铅与有效态铜呈显著正相关性,表明土壤中铜与铅具有伴生性关系[21]

    表  3  土壤重金属有效态与烟秆炭施用量及土壤理化性质的相关性分析
    Table  3.  Correlation between soil DTPA-extractable heavy metals and soil physical and chemical properties
    炭施用量 有效磷 水溶性碳 有机质 pH值 碱解氮
    -0.88 -0.86 -0.66 -0.92 -0.90 -0.74 0.91 0.99*
    -0.98* -0.96* -0.89 -0.99** -0.98* -0.81 1.00 0.95
    -0.90 -0.871 -0.71 -0.94 -0.92 -0.71 0.95 1.00
    说明: *表示P<0.05(双尾检测);**表示P<0.01(双尾检测)
    下载: 导出CSV 
    | 显示表格

    表 4可见:施用烟秆炭对烟草生长各农艺指标影响各异。土壤施加烟秆炭能显著增加烟草有效叶数和叶片的宽度,但不同比例炭施用量对烟草株高和叶片的长度并没有显著影响。不同的是,烟叶鲜质量随生物炭施用量的增加而显著增加。20,40和80 g·kg-1的烟秆炭施用量收获的烟叶鲜质量分别比对照显著提高了45.0%,47.1%和61.2%。

    表  4  不同烟秆炭施用量对烟草农艺指标的影响
    Table  4.  Effects of different tobacco biochar application rates on agronomic indexes of tobacco stems
    处理 茎高/cm 有效叶数/片 叶宽/cm 叶长/cm 鲜叶质量/g
    TB0 87.25 ± 3.20 a 15.00 ± 0.00 b 16.00 ± 1.41 b 36.25 ± 2.36 a 85.00 ± 10.98 c
    TB20 95.75 ± 5.56 a 16.25 ± 0.96 a 19.75 ± 2.22 a 41.00 ± 4.08 a 119.00 ± 11.05 b
    TB40 94.00 ± 8.37 a 16.25 ± 0.96 a 22.25 ± 3.77 a 40.00 ± 3.46 a 125.00 ± 10.07 ab
    TB80 95.75 ± 4.35 a 16.25 ± 0.50 a 20.38 ± 1.10 a 41.13 ± 1.93 a 137.00 ± 5.72 a
    说明:同列数字后面英文小写字母表示不同处理间差异性水平(P<0.05)
    下载: 导出CSV 
    | 显示表格

    烟叶是烟草的重要经济部位,叶片中重金属质量分数是衡量烟叶品质的重要指标。从图 3可见:土壤添加一定量的烟秆炭可以显著降低烟叶中重金属质量分数,其中铜和镉的变化趋势相似。在土壤施加20 g·kg-1的烟秆炭时,叶片中铜和镉的质量分数比对照(无烟秆炭添加)显著降低了13.6%和18.4%;烟秆炭施用量增加到40 g·kg-1时,与20 g·kg-1相比,烟叶中铜、镉的质量分数没有显著变化;但当烟秆炭的施用量继续增加到80 g·kg-1时,与烟秆炭低施用量(20和40 g·kg-1)相比,叶片中铜和镉质量分数反而显著上升了。与对照相比,随着土壤施加烟秆炭的量的增加,烟叶中铅质量分数有下降趋势,但各处理间并没有显著差异。

    图  3  不同处理对烟叶中重金属的影响
    Figure  3.  Effects of different treatments on concentration of heavy matals in leaves on tobacco

    本研究中,施用烟秆炭可显著提高土壤pH值。原因可能归结为烟秆炭在高温裂解过程中,其灰分含有大量碱性盐基物质,当施入土壤后,盐基离子与氢离子(H+)及铝离子(Al3+)进行离子交换,生成中性盐,从而提高土壤pH值[21]。从表 1可知:使用烟秆炭可有效提高土壤养分质量分数。本研究结果表明:添加烟秆炭对提高土壤有机质质量分数有显著效果,且随着炭施用量的增加有机质显著增加。原因可能是烟秆炭本身炭质量分数高、氢/碳比小、芳香性强,化学稳定性较高,不易被微生物分解,从而有利于有机质的积累。

    本研究结果显示:施入烟秆炭后,土壤有效磷、碱解氮和水溶性有机碳均比对照高。虽然土壤碱解氮质量分数显著提高,但是增幅不大。这可能是由于烟秆炭表面丰富的含氧官能团带有负电荷,吸附土壤铵(NH4+),从而减少了氮素的损失[22]。有机质是作物所需氮、磷等必要营养元素的主要来源,土壤有效磷质量分数增加可能与有机质质量分数有关。刘方等[23]以生物质炭土壤改良剂为试材,研究了生物质炭对连作蔬菜地土壤有效养分影响的实验中发现,生物质炭能明显提高土壤有效氮和有效磷的质量分数。这与本研究结果相似。

    重金属的生物有效性大小决定着其在土壤中毒性的强弱,因此,降低重金属的生物有效性对于改善土壤质量至关重要[19]。生物质炭具有较大的比表面积和多孔的结构特征,具有良好的吸附特性,施入土壤后可以降低重金属有效性[24]。本研究结果表明:重金属有效态质量分数随着烟秆炭施加量的增加而显著减少。且烟秆炭对不同重金属的修复效果也不尽相同,处理TB40对铜、镉、铅的固定效果顺序为铜(33.7%)>铅(29.5%)>镉(26.4%)。JIANG等[25]采用水稻秸秆制成的生物质炭修复模拟铜、铅、镉污染老成土,结果发现:生物质炭使土壤pH值和阳离子交换量增大,使酸可提取态重金属含量降低,而氧化结合态和有机结合态含量增加,且生物质炭对铜和铅的固化效果优于镉,与本研究结果相似。这可能是生物质炭对铜离子(Cu2+)吸附机制不同于镉离子(Cd2+)和铅离子(Pb2+)的,还有可能是生物质炭表面的孔隙结构有利于铜的固定,具体机制还需进一步深入研究。YANG等[26]在使用烟秆炭修复镉、锌污染土壤的实验中发现,与对照相比,烟秆炭可以显著降低重金属镉、锌的有效态含量,且其固定效果随着烟秆炭施用量的增加而增强。有研究表明,有效磷在中性或碱性条件下易与土壤溶液中的重金属离子形成磷酸盐沉淀[27]。其次,pH值是影响土壤重金属有效性和迁移性的重要因素。土壤pH值随着炭施用量的增加可增加土壤及生物质炭表面的可变电荷,增强阳离子吸附能力和交换作用,降低重金属的解吸,还可促进重金属生成碳酸盐和磷酸盐沉淀[28]进而降低重金属的移动性。此外,有机质对重金属也表现出强烈的吸附固定能力,原因是有机质的主要成分是腐殖质,腐殖质是土壤重要的螯合或络合剂,其中羧基(—COOH),羟基(—OH)和羰基(—C=O)等能与重金属发生络合或螯合作用,使重金属在土壤溶液中失去活性[29]

    土壤酶活性可以反映土壤中生物化学反应的活跃程度以及养分物质循环状况,是衡量土壤质量的重要指标[30]。土壤有机质、pH值、养分及微生物种类等因素均可影响土壤酶活性。

    脲酶是参与土壤氮素循环的重要的水解酶,主要功能是催化土壤中尿素的水解,其活性强度常被用来表征土壤氮素供应状况[30]。本研究中,土壤脲酶活性与烟秆炭施用量密切相关。随着烟秆炭施用量的增加,脲酶活性有升高的趋势,其中处理80 g·kg-1的脲酶活性最高(20.49 mg·g-1·h-1)。碱性磷酸酶参与土壤中磷的矿化和利用,主要功能是在碱性条件下将土壤中的有机磷水解成为磷酸盐,为植物和土壤中的生物提供养分[31]。本研究结果显示:施加烟秆炭可增强重金属污染土壤中碱性磷酸酶的活性。原因可能是烟秆炭施入土壤可以改善土壤理化环境,有利于土壤动物和微生物生长,从而加快了有机物质的分解,为土壤酶的产生提供了更多的底物[32];还有可能是由于烟秆炭的施用增加了土壤活性有机碳质量分数(表 1),从而为土壤微生物的生长提供了充足的碳源,促进了微生物繁殖,刺激了酶活性提高[33]

    生物质炭的吸附性使得生物质炭对土壤酶的作用比较复杂,一方面生物质炭对反应底物的吸附有助于酶促反应的进行而提高土壤酶活性,另一方面生物质炭对酶分子的吸附对酶促反应结合位点形成保护,而阻止酶促反应的进行[32]。脱氢酶活性能反映土壤有机质含量和微生物活性[34]。本研究结果显示:土壤脱氢酶活性随着烟秆炭的增加而显著减少。冯爱青等[35]研究表明:施用控释肥及添加生物炭可提高土壤脲酶活性,抑制土壤脱氢酶活性。原因可能是在强碱性条件下脱氢酶的蛋白构象遭到了破坏进而影响酶活性[36]。具体原因还需进一步深入研究。

    生物质炭施入重金属污染土壤中可以有效增加作物的产量。原因是生物质炭施入土壤后可以增加土壤有效养分[8],促进微生物活性并改善土壤团聚体结构[11],降低重金属的生物有效性[28],从而为作物提供良好的生长环境。本研究结果表明,烟秆炭的施用可以提高烟叶产量,与众多研究结果相似[37-38]

    植物中重金属含量由土壤中重金属有效态含量及植物生理性质决定。植物体蛋白质、有机酸、有机碱及植物络合素、酶可以与植物体内的重金属形成螯合物,降低重金属的生物毒性[39]。在本研究中,适量添加烟秆炭可以降低叶片中重金属质量分数。原因可能是添加烟秆炭后降低了土壤中有效态重金属的质量分数。高瑞丽等[24]研究发现,在铅和镉复合污染土壤中添加生物质炭可显著减少有效态重金属的含量,与本实验研究结果相似。而处理TB80叶片中铜和镉质量分数却比处理TB20和TB40有所增加。原因可能是TB80的叶片生物量高,植物体中的蛋白质、有机物及植物络合素与重金属形成络合素,减轻了重金属对细胞的毒害作用,从而使烟草可以继续吸附重金属。此外,植物蒸腾作用和势能高于处理TB20和TB40,导致重金属质量分数升高。另有研究指出,不同重金属在植物不同器官的迁移能力不同[40],这可能是铅在各处理间没有显著差异的原因,但具体的作用机制还需进一步研究。

    综上所述,烟秆炭的施用可有效提高重金属污染土壤中pH值、有机质、碱解氮和有效磷质量分数;还可以显著提高土壤脲酶和碱性磷酸酶的活性,降低脱氢酶的活性,其中添加80 g·kg-1的烟秆炭对土壤肥力的改善及酶活性指数的提升最为显著。另外,土壤施加烟秆炭能显著增加烟草有效叶数和叶片的宽度,烟叶鲜质量随烟秆炭施用量的增加而显著增加。

    烟秆炭的施用可以降低污染土壤中重金属的生物有效性,施加40 g·kg-1烟秆炭已使铜、铅的钝化效果达到最佳,但80 g·kg-1的烟秆炭使污染土壤中镉的有效性降至最低。但是,施用20 g·kg-1的烟秆炭即可显著降低烟叶中重金属铜和镉的质量分数。

    本研究证明,烟秆炭作为土壤改良剂对重金属污染土壤有着良好的修复效果,且可提高重金属污染土壤中烟草的产量,提高污染农用地的经济价值,同时为因烟秆废弃而造成的环境污染等问题提供了一个合理的解决方案,也为烟秆炭在重金属污染农田中的修复提供了实践理论参考价值。

  • 图  1  兰科植物的莫兰指数散点图

    Figure  1  Moran scatter diagram of typical orchids

    表  1  代表性兰科植物的分布

    Table  1.   Distribution of representative orchids

    序号属名物种名生境生活型濒危等级
    1 舌唇兰属 Platanthera 小舌唇兰 Platanthera minor 山坡林下或草地 地生 近危
    2 头蕊兰属 Cephalanthera 金兰 Cephalanthera falcata 山坡林下 地生 近危
    3 兰属 Cymbidium 建兰 Cymbidium ensifolium 山坡林下 地生 易危
    4 兰属 蕙兰 Cymbidium faberi 向南山坡或黄山松 Pinus taiwanensis 林下 地生 易危
    5 虾脊兰属 Calanthe 反瓣虾脊兰 Calanthe reflexa 常绿阔叶林下、山谷溪边 地生 无危
    6 虾脊兰属 钩距虾脊兰 Calanthe graciliflora 山坡林下或石壁上 地生 易危
    7 兜被兰属 Neottianthe 二叶兜被兰 Neottianthe cucullata 针叶林下或高山草甸上 地生 近危
    8 无柱兰属 Amitostigma 无柱兰 Amitostigma gracile 岩石上或沟边阴湿草地上 地生 近危
    9 独蒜兰属 Pleione 独蒜兰 Pleione bulbocodioides 苔藓覆被的岩石上 附生 易危
    10 风兰属 Neofinetia 风兰 Neofinetia falcata 山中林地树干上 附生 濒危
    下载: 导出CSV

    表  2  1981—2019年四川代表性兰科植物的空间分布

    Table  2.   Spatial distribution of representative Orchidaceae plants in Sichuan from 1981 to 2019

    年份地区经纬度代表性兰科植物年份地区经纬度代表性兰科植物
    1994 平武县  32°26′24″N,104°33′00″E 钩距虾脊兰1981 泸定县          29°54′50″N,102°14′02″E 反瓣虾脊兰
    1983 雷波县  28°15′43″N,103°34′15″E 金兰   1984 泸定县          29°54′50″N,102°14′02″E 反瓣虾脊兰
    1984 泸定县  29°54′50″N,102°14′02″E 金兰   1997 泸定县          29°30′00″N,101°54′00″E 二叶兜被兰
    1984 泸定县  29°54′50″N,102°14′02″E 金兰   1997 康定县          30°06′00″N,101°48′00″E 二叶兜被兰
    1981 泸定县  29°54′50″N,102°14′02″E 建兰   1997 康定县          30°08′45″N,101°51′36″E 二叶兜被兰
    1981 泸定县  29°54′50″N,102°14′02″E 建兰   1997 泸定县          29°34′30″N,101°59′56″E 二叶兜被兰
    1986 九寨沟县 33°15′36″N,104°13′48″E 蕙兰   2019 成都市青羊区       30°40′55″N,104°00′36″E 蕙兰   
    1982 泸定县  29°54′36″N,102°13′48″E 反瓣虾脊兰2005 翁达自然保护区      31°54′00″N,100°54′00″E 二叶兜被兰
    1983 九寨沟县 33°15′36″N,104°13′48″E 反瓣虾脊兰2007 阿坝藏族羌族自治区金川县 31°42′00″N,102°00′00″E 二叶兜被兰
    1981 泸定县  29°54′50″N,102°14′02″E 反瓣虾脊兰2005 翁达自然保护区      31°58′55″N,100°57′50″E 二叶兜被兰
    1984 北川县  31°53′34″N,104°26′09″E 反瓣虾脊兰2005 翁达自然保护区      31°58′55″N,100°57′50″E 二叶兜被兰
    1984 北川县  31°53′34″N,104°26′09″E 反瓣虾脊兰
    下载: 导出CSV

    表  3  1981—2019年贵州和广西代表性兰科植物的空间分布

    Table  3.   Spatial distribution of representative Orchidaceae plants in Guizhou and Guangxi from 1981 to 2019

    年份省份地区经纬度代表性兰科植物
    1986 贵州 松桃苗族自治县 28°09′00″N,109°12′00″E 钩距虾脊兰
    1996 贵州 桐梓县 28°07′48″N,106°49′12″E 金兰
    1988 贵州 印江土家族
    苗族自治县
    27°59′24″N,108°24′00″E 小舌唇兰
    1988 贵州 松桃苗族自治县 28°00′00″N,109°12′00″E 蕙兰
    1988 贵州 石阡县 27°30′36″N,108°13′48″E 反瓣虾脊兰
    1988 贵州 施秉县 27°01′48″N,108°11′24″E 反瓣虾脊兰
    1981 广西 金秀县老山伐木场十六公里阴冲 24°10′30″N,110°14′06″E 钩距虾脊兰
    1991 广西 兴安县猫儿山老山界 25°36′03″N,110°35′06″E 金兰
    1984 广西 资源县猫儿山万亩林场 26°00′18″N,110°35′56″E 金兰
    1992 广西 资源县塘洞猫儿山大竹坪 26°00′18″N,110°35′56″E 金兰
    1982 广西 兴安县猫儿山梯子岭 25°36′03″N,110°35′06″E 金兰
    1982 广西 金秀县 24°10′30″N,110°14′06″E 小舌唇兰
    1994 广西 环江县川山乡大沙坡 25°06′25″N,108°18′54″E 独蒜兰
    2016 广西 百色市那坡县 23°20′45″N,105°54′46″E 建兰
    1998 广西 龙胜各族自治县花坪红毛界下界 25°44′31″N,110°02′24″E 反瓣虾脊兰
    1998 广西 龙胜各族自治县花坪红毛界下界 25°44′31″N,110°02′24″E 反瓣虾脊兰
    1998 广西 金秀老山银杉保护区 24°10′30″N,110°14′06″E 钩距虾脊兰
    1998 广西 金秀老山银杉保护区 24°10′30″N,110°14′06″E 钩距虾脊兰
      说明:银杉Cathaya argyrophylla
    下载: 导出CSV

    表  4  1981—2019年兰科植物濒危等级的全局莫兰指数

    Table  4.   Global Moran’ s I index of the endangered species of representative Orchidaceae plants from 1981 to 2019

    时段莫兰指数Z域值(α=0.05)
    1981—1997年0.2413.7271.96
    1998—2019年0.8054.4501.96
    下载: 导出CSV

    表  5  1981—2019兰科植物濒危等级热点值分布

    Table  5.   Distribution of endangered hot spot values of Orchidaceae plants from 1981 to 2019

    省份1981—1997年1998—2019年
    ZPGi_ConfInvl
    字段
    ZPGi_ConfInvl
    字段
    浙江−0.870.3800.100.920
    云南1.130.260−0.320.750
    西藏−0.630.5301.300.190
    四川−0.200.840−0.230.820
    陕西0.270.7900.110.910
    青海0.520.610−0.750.460
    江西−0.480.6300.110.910
    湖南1.550.1200.460.640
    湖北1.750.0811.960.052
    河南0.700.4801.040.300
    贵州1.660.101−0.740.460
    广西0.960.3400.450.650
    甘肃−0.800.420−0.690.490
    福建−1.600.110−0.710.480
    安徽−0.870.3800.100.920
    上海−1.110.270−0.350.720
    重庆0.290.7700.170.860
    江苏−1.110.270−0.350.720
    广东0.130.9000.450.650
      说明:Z>1.65,P<0.10,Gi_ConfInvl字段为1,说明热点     具有置信度为90%的统计显著性;Z>1.96,     P<0.05,Gi_ConfInvl 字段为2,说明热点具有置信     度为95%的统计显著性
    下载: 导出CSV
  • [1] 袁喆, 喻志强, 冯兆洋, 等. 长江流域陆地生态系统NDVI时空变化特征及其对水热条件的响应[J]. 长江科学院院报, 2019, 36(11): 7 − 15.

    YUAN Zhe, YU Zhiqiang, FENG Zhaoyang, et al. Spatiotemporal variations of NDVI in terrestrial ecosystem in Yangtze River Basin and response to hydrothermal condition [J]. J Yangtze River Sci Res Inst, 2019, 36(11): 7 − 15.
    [2] 贾怡童, 林爱文, 朱弘纪. 长江流域不同气候分区生长季植被总初级生产力对极端气候变化的时空响应研究[J]. 国土与自然资源研究, 2020, 42(1): 38 − 42.

    JIA Yitong, LIN Aiwen, ZHU Hongji. Study on spatio-temporal response of total primary productivity of vegetation to extreme climate change in different climatic growing seasons in the Yangtze River Basin [J]. Territ Nat Resour Study, 2020, 42(1): 38 − 42.
    [3] 王重阳, 赵联军, 孟世勇. 王朗国家级自然保护区滑坡体兰科植物分布格局及其保护策略[J]. 生物多样性, 2022, 30(2): 21 − 30.

    WANG Chongyang, ZHAO Lianjun, MENG Shiyong. Spatial distribution pattern and protection strategy for orchids in landslide mass of the Wanglang National Nature Reserve [J]. Biodiversity Sci, 2022, 30(2): 21 − 30.
    [4] 胡会强, 余泽平, 王国兵, 等. 江西兰科药用植物资源调查[J]. 中国实验方剂学杂志, 2019, 25(21): 148 − 154.

    HU Huiqiang, YU Zeping, WANG Guobing, et al. Resources of Orchidaceae medicinal plants in Jiangxi Province [J]. Chin J Exp Tradit Medical Formulae, 2019, 25(21): 148 − 154.
    [5] 张殷波, 杜昊东, 金效华, 等. 中国野生兰科植物物种多样性与地理分布[J]. 科学通报, 2015, 60(2): 179 − 188.

    ZHANG Yinbo, DU Haodong, JIN Xiaohua, et al. Species diversity and geographic distribution of wild Orchidaceae in China [J]. Chin Sci Bull, 2015, 60(2): 179 − 188.
    [6] 罗毅波, 贾建生, 王春玲. 中国兰科植物保育的现状和展望[J]. 生物多样性, 2003, 11(1): 70 − 77.

    LUO Yibo, JIA Jiansheng, WANG Chunling. A general review of the conservation status of Chinese orchids [J]. Biodiversity Sci, 2003, 11(1): 70 − 77.
    [7] 王喜龙, 土艳丽, 文雪梅, 等. 藏东南兰科植物多样性及其沿海拔梯度的分布格局[J]. 中南林业科技大学学报, 2018, 38(12): 45 − 51.

    WANG Xilong, TU Yanli, WEN Xuemei, et al. Diversity and altitudinal distribution patterns of orchids in Southeastern of Tibet [J]. J Cent South Univ For Technol, 2018, 38(12): 45 − 51.
    [8] 刘洋, 杜凡, 李瑞年, 等. 滇西北兰科植物海拔分布格局[J]. 西南林业大学学报, 2012, 32(3): 40 − 46.

    LIU Yang, DU Fan, LI Ruinian, et al. Altitudinal distribution pattern of orchid plants in northwest of Yunnan Province [J]. J Southwest For Univ, 2012, 32(3): 40 − 46.
    [9] 弓莉, 罗建, 林玲. 南迦巴瓦兰科植物多样性及垂直分布格局[J]. 高原农业, 2020, 4(5): 499 − 505.

    GONG Li, LUO Jian, LIN Ling. Species diversity and vertical distribution pattern of Orchidaceae in Namcha Barwa, Tibet [J]. J Plateau Agric, 2020, 4(5): 499 − 505.
    [10] 杨正斌, 余东莉, 刘强. 西双版纳兰科植物海拔分布格局[J]. 林业调查规划, 2014, 39(3): 71 − 75, 101.

    YANG Zhengbin, YU Dongli, LIU Qiang. Altitudinal distribution of orchids in Xishuangbanna [J]. For Inventory Plann, 2014, 39(3): 71 − 75, 101.
    [11] 戍祖芳, 冯建孟. 滇西北地区兰科植物多样性的分布格局及其解释[J]. 楚雄师范学院学报, 2016, 31(6): 39 − 45.

    SHU Zufang, FENG Jianmeng. Geographical pattern of Orchidaceae diversity in northwest Yunnan and its explanation [J]. J Chuxiong Norm Univ, 2016, 31(6): 39 − 45.
    [12] 张晓龙. 中国野生兰科植物地理分布格局研究[D]. 太原: 山西大学, 2014.

    ZHANG Xiaolong. Study on Geographic Distribution Pattern of the Wild Orchidaceae Plants in China [D]. Taiyuan: Shanxi University, 2014.
    [13] JOBSON B, KERRI W, LARA J, et al. Home range and habitat selection of captive-bred and rehabilitated cape vultures Gyps coprotheres in southern Africa [J]. Oryx, 2020, 55(4): 607 − 612.
    [14] HANNAH B, NORMAN S L, PATRICIA A F. GIS Investigation of the relationship of sex and season on the population distribution of common bottle nose dolphins (Tursiops truncatus) in Charleston, South Carolina [J]. Int J Geogr Inf Sci, 2020, 34(8): 1552 − 1566.
    [15] 陈龙, 刘春兰, 马明睿, 等. 太行山生物多样性保护优先区(北京区域)急需保护物种的空间分布、热点识别及保护成效评价[J]. 生态与农村环境学报, 2019, 35(4): 451 − 458.

    CHEN Long, LIU Chunnan, MA Mingrui, et al. Spatial distribution, hot spots identification and protection effectiveness evaluation of urgently protected species in priority area of Taihang Mountains biodiversity conservation (Beijing region) [J]. J Ecol Rural Environ, 2019, 35(4): 451 − 458.
    [16] 王芳, 袁兴中, 熊森, 等. 重庆澎溪河湿地自然保护区生物多样性空间格局及热点区[J]. 应用生态学报, 2020, 31(31): 1682 − 1690.

    WANG Fang, YUAN Xingzhong, XIONG Sen, et al. Spatial patterns of biodiversity and hotspots in Chongqing Pengxi River Wetland Nature Reserve, China [J]. Chin J Appl Ecol, 2020, 31(31): 1682 − 1690.
    [17] 杨文涛, 吕春彤, 陈浩. 地理环境条件约束的入侵物种虚拟负样本生成方法[J]. 干旱区资源与环境, 2020, 34(9): 179 − 187.

    YANG Wentao, LÜ Chuntong, CHEN Hao. Generating pseudo-absence samples of invasive species under the constraint of geographical environment [J]. J Arid Land Resour Environ, 2020, 34(9): 179 − 187.
    [18] 徐海根, 雷军成. 外来入侵植物假高粱在我国的潜在分布区分析[J]. 植物保护, 2011, 37(3): 87 − 92.

    XU Haigen, LEI Juncheng. Prediction of the potential distribution of the alien invasive plant Sorghum halepense in China [J]. Plant Prot, 2011, 37(3): 87 − 92.
    [19] 汪松, 解焱. 中国物种红色名录(第1卷) [M]. 北京: 高等教育出版社, 2004: 300 − 468.

    WANG Song, XIE Yan. Red List of Chinese Species (Volume 1) [M]. Beijing: Higher Education Press, 2004: 300 − 468.
    [20] 张冲, 赵景波. 厄尔尼诺/拉尼娜事件对长江流域气候的影响研究[J]. 水土保持通报, 2011, 31(3): 1 − 6, 11 − 12.

    ZHANG Chong, ZHAO Jingbo. Effects of El Niño-Southern Oscillation events on climate in Yangtze River Basin [J]. Bull Soil Water Conserv, 2011, 31(3): 1 − 6, 11 − 12.
    [21] 张凤英, 张增信, 田佳西, 等. 长江流域森林NPP模拟及其对气候变化的响应[J]. 南京林业大学学报(自然科学版), 2021, 45(1): 175 − 181.

    ZHANG Fengying, ZHANG Zengxin, TIAN Jiaxi, et al. Forest NPP simulation in the Yangtze River Basin and its response to climate change [J]. J Nanjing For Univ Nat Sci Ed, 2021, 45(1): 175 − 181.
    [22] 张晓娅, 杨世伦. 流域气候变化和人类活动对长江径流量影响的辨识(1956—2011)[J]. 长江流域资源与环境, 2014, 23(12): 1729 − 1739.

    ZHANG Xiaoya, YANG Shilun. Climatic and anthropogenic impacts on water discharge in the Yangtze River over the last 56 years (1956−2011) [J]. Resour Environ Yangtze Basin, 2014, 23(12): 1729 − 1739.
    [23] 任平, 洪步庭, 周介铭. 基于空间自相关模型的农村居民点时空演变格局与特征研究[J]. 长江流域资源与环境, 2015, 24(12): 1993 − 2002.

    REN Ping, HONG Buting, ZHOU Jieming. Research of spatiotemporal pattern and characteristics for the evolution of rural settlements based on spatial autocorrelation model [J]. Resour Environ Yangtze Basin, 2015, 24(12): 1993 − 2002.
    [24] 蔡雪娇, 吴志峰, 程炯. 基于核密度估算的路网格局与景观破碎化分析[J]. 生态学杂志, 2012, 31(1): 158 − 164.

    CAI Xuejiao, WU Zhifeng, CHENG Jiong. Analysis of road network pattern and landscape fragmentation based on kernel density estimation [J]. Chin J Ecol, 2012, 31(1): 158 − 164.
    [25] 刘锐, 胡伟平, 王红亮, 等. 基于核密度估计的广佛都市区路网演变分析[J]. 地理科学, 2011, 31(1): 81 − 86.

    LIU Rui, HU Weiping, WANG Hongliang, et al. The road network evolution of Guangzhou-Foshan metropolitan area based on kernel density estimation [J]. J Geogr Sci, 2011, 31(1): 81 − 86.
    [26] 许章华, 刘健, 余坤勇, 等. 福建省马尾松毛虫害空间自相关分析[J]. 安全与环境学报, 2013, 13(6): 167 − 171.

    XU Zhanghua, LIU Jian, YU Kunyong, et al. Analysis of the spatial autocorrelation of Dendrolimus punctatus Walker in Fujian [J]. J Saf Environ, 2013, 13(6): 167 − 171.
    [27] 田怀珍, 陈林, 邢福武. 广东南岭国家级自然保护区兰科植物物种多样性及其保护[J]. 生物多样性, 2013, 21(2): 224 − 234.

    TIAN Huaizhen, CHEN Lin, XING Fuwu. Species diversity and conservation of orchids in Nanling National Nature Reserve, Guangdong [J]. Biodiversity Sci, 2013, 21(2): 224 − 234.
    [28] 黎磊, 陈家宽. 气候变化对野生植物的影响及保护对策[J]. 生物多样性, 2014, 22(5): 549 − 563.

    LI Lei, CHEN Jiakuan. Influence of climate change on wild plants and the conservation strategies [J]. Biodiversity Sci, 2014, 22(5): 549 − 563.
    [29] 于志磊, 秦天玲, 章数语, 等. 近年来长江流域植被指数变化规律及气候因素影响研究[J]. 中国水利水电科学研究院学报, 2016, 14(5): 362 − 366, 373.

    YU Zhilei, QIN Tianling, ZHANG Shuyu, et al. Analysis of vegetation dynamic variations and response to climatic factor in Yangtze River Basin in recent decades [J]. J China Inst Water Resour Hydropower Res, 2016, 14(5): 362 − 366, 373.
    [30] 丁斌, 顾显跃, 缪启龙. 长江流域近50年来的气温变化特征[J]. 长江流域资源与环境, 2006, 15(4): 531 − 536.

    DING Bin, GU Xianyue, MIU Qilong. Characteristics in the variation of temperature over the Yangtze River Valley over last 50 years [J]. Resour Environ Yangtze Basin, 2006, 15(4): 531 − 536.
    [31] LIU Hong, FENG Changlin, LUO Yibo, et al. Potential challenges of climate change to orchid conservation in a wild orchid hotspot in southwestern China [J]. Bot Rev, 2010, 76(2): 174 − 192.
  • [1] 冉佳璇, 戚玉娇.  黔中马尾松木荷混交林树高-胸径模型 . 浙江农林大学学报, 2024, 41(2): 343-352. doi: 10.11833/j.issn.2095-0756.20230363
    [2] 张成虎, 刘菊, 胡宝清, 陈秀芬.  广西西江流域水源涵养服务空间格局及其影响因素 . 浙江农林大学学报, 2022, 39(5): 1104-1113. doi: 10.11833/j.issn.2095-0756.20210616
    [3] 李彪, 熊忠平, 徐正会, 翟奖, 周雪英, 许国莲.  雅鲁藏布河谷上游及青藏高原西南坡蚂蚁物种的分布格局 . 浙江农林大学学报, 2022, 39(3): 590-597. doi: 10.11833/j.issn.2095-0756.20210407
    [4] 桂伟峰, 温庆忠.  绿汁江下段天然灌草丛群落分布格局及环境关系分析 . 浙江农林大学学报, 2022, 39(1): 60-67. doi: 10.11833/j.issn.2095-0756.20210197
    [5] 胡海波, 邓文斌, 王霞.  长江流域河岸植被缓冲带生态功能及构建技术研究进展 . 浙江农林大学学报, 2022, 39(1): 214-222. doi: 10.11833/j.issn.2095-0756.20210201
    [6] 罗成龙, 徐正会, 熊忠平, 祁彪, 袁定宇, 冉茂君.  四川王朗自然保护区及邻近地区蚂蚁物种的分布格局 . 浙江农林大学学报, 2019, 36(4): 638-645. doi: 10.11833/j.issn.2095-0756.2019.04.002
    [7] 张龙, 严靖, 邵学新.  浙江景宁望东垟亚高山湿地植被构成及分布格局 . 浙江农林大学学报, 2019, 36(3): 501-506. doi: 10.11833/j.issn.2095-0756.2019.03.010
    [8] 马莉, 杨筱, 张仪, 贾霁群, 孙启祥, 张倩, 周金星.  长江流域抑螺防病林生态服务功能评估 . 浙江农林大学学报, 2019, 36(1): 130-137. doi: 10.11833/j.issn.2095-0756.2019.01.016
    [9] 唐思嘉, 汤孟平, 赵赛赛, 杜秀芳, 沈钱勇, 庞春梅.  天目山毛竹竞争空间格局的动态分析 . 浙江农林大学学报, 2018, 35(2): 199-208. doi: 10.11833/j.issn.2095-0756.2018.02.002
    [10] 金文奖, 侯平, 张伟, 梁立成, 俞飞.  温州鳌江流域表层底泥及河岸土壤重金属空间分布与生态风险评价 . 浙江农林大学学报, 2017, 34(6): 963-971. doi: 10.11833/j.issn.2095-0756.2017.06.001
    [11] 崔静, 吴记贵, 黄伯高, 蒋万杰, 范雅倩, 程瑾.  兰科植物的生殖隔离 . 浙江农林大学学报, 2016, 33(4): 695-702. doi: 10.11833/j.issn.2095-0756.2016.04.020
    [12] 汪洋, 冷艳芝, 苏长江, 宋丛文, 程德华, 操英南, 张敏, 付翠林.  恩施天然红椿种群结构及空间分布格局 . 浙江农林大学学报, 2016, 33(1): 17-25. doi: 10.11833/j.issn.2095-0756.2016.01.003
    [13] 王敬, 韦新良, 徐建, 范佩佩.  天目山针阔混交林林木空间分布格局特征 . 浙江农林大学学报, 2014, 31(5): 668-675. doi: 10.11833/j.issn.2095-0756.2014.05.002
    [14] 丁雪娇, 韩红, 庞彩菊, 马玉心, 崔大练, 范彩彩.  砂砧薹草和假牛鞭草种群空间分布格局的分形特征 . 浙江农林大学学报, 2013, 30(2): 220-225. doi: 10.11833/j.issn.2095-0756.2013.02.010
    [15] 张志华, 韦新良, 汤孟平, 骆文建, 王敬.  天目山针阔混交林中枫香的结构特征 . 浙江农林大学学报, 2012, 29(6): 867-874. doi: 10.11833/j.issn.2095-0756.2012.06.010
    [16] 陈小荣, 李乐, 夏家天, 杨旭, 王伟, 丁炳扬.  百山祖亮叶水青冈种群结构和分布格局 . 浙江农林大学学报, 2012, 29(5): 647-654. doi: 10.11833/j.issn.2095-0756.2012.05.002
    [17] 田敏, 龚茂江, 徐小雁, 王彩霞.  兰科植物花发育的基因调控研究进展 . 浙江农林大学学报, 2011, 28(3): 494-499. doi: 10.11833/j.issn.2095-0756.2011.03.023
    [18] 曹永慧, 萧江华, 李迎春, 陈双林, 吴明.  浙江天童披针叶茴香-南酸枣群落优势种群结构及空间格局 . 浙江农林大学学报, 2009, 26(1): 44-51.
    [19] 张望, 操国兴, 刘光华, 刘欣.  四川省喇叭河自然保护区珙桐种群结构与分布格局 . 浙江农林大学学报, 2008, 25(4): 451-457.
    [20] 金则新.  浙江天台山落叶阔叶林优势种群结构与动态分析 . 浙江农林大学学报, 2001, 18(3): 245-251.
  • 期刊类型引用(3)

    1. 贾方方,滕世华,何琳,付安旗,陈淑萍,赵中原. 基于水分光谱指数的烟草叶片等效水厚度估测. 中国农学通报. 2024(01): 151-156 . 百度学术
    2. 王楠,陈春玲,相爽,金忠煜,白驹驰,于丰华. 基于叶片双层辐射传输机理的水稻叶绿素含量反演. 农业工程学报. 2024(17): 171-178 . 百度学术
    3. 莫佳佳,黄玉清,靳佳,闫妍. 芒果叶片水分含量估算光谱指数模型的建立. 西南农业学报. 2023(08): 1677-1685 . 百度学术

    其他类型引用(5)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210551

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2022/4/750

图(1) / 表(5)
计量
  • 文章访问数:  660
  • HTML全文浏览量:  163
  • PDF下载量:  45
  • 被引次数: 8
出版历程
  • 收稿日期:  2021-08-10
  • 修回日期:  2022-03-20
  • 录用日期:  2022-04-12
  • 网络出版日期:  2022-07-20
  • 刊出日期:  2022-08-20

长江流域濒危兰科植物的空间分布

doi: 10.11833/j.issn.2095-0756.20210551
    基金项目:  国家自然科学基金青年基金资助项目(42004007)
    作者简介:

    张一林(ORCID: 0000-0002-8064-8776),从事植物学与地理信息系统应用研究。E-mail: zyl1041789958@163.com

    通信作者: 李功权(ORCID: 0000-0003-2933-0110),副教授,博士,从事时空大数据分析和地理信息系统应用研究。E-mail: 195648169@qq.com
  • 中图分类号: S718.3

摘要:   目的  兰科Orchidaceae植物已经成为旗舰保护类群,科学规范识别长江流域兰科植物的迁移规律,探究濒危兰科植物的空间分布,确定重点保护物种和热点地区,对于更好地研究和保护珍稀濒危兰科植物具有重要意义。  方法  以长江流域1981—2019年的代表性兰科植物为研究对象,基于野外考察和全球生物多样性信息资讯机构(GBIF)数据库选取兜被兰属Neottianthe、独蒜兰属Pleione等130个(10种)物种分布点为代表,根据植物地理学和地理信息系统(GIS)空间分析理论,采取核密度、莫兰指数和热点分布等方法,对长江流域濒危兰科植物的空间分布格局进行了研究。  结果  ①1998—2019年长江流域代表性兰科植物的密度高值区减少,分布在广西、贵州的兰科植物消失。密度中值区发生变化,兰科植物由四川中部向四川北部迁移;②长江流域代表性兰科植物的濒危等级值和空间位置呈显著正相关水平,1998—2019年比1981—1997年相关性更强;③高危险区发生变化,1981—1997年兰科植物高危险区主要分布在贵州和湖北,而1998—2019年主要分布在湖北。  结论  全球变暖、基础设施建设、非法采挖销售和过度砍伐森林都有可能成为兰科植物分布变化和数量减少的原因。湖北将成为以后需要重点关注的地区。图1表5参31

English Abstract

张建云, 吴胜春, 王敏艳, 等. 烟秆炭修复重金属污染土壤的效应及对烟草生长的影响[J]. 浙江农林大学学报, 2018, 35(4): 674-683. DOI: 10.11833/j.issn.2095-0756.2018.04.013
引用本文: 张一林, 李功权, 刘颖. 长江流域濒危兰科植物的空间分布[J]. 浙江农林大学学报, 2022, 39(4): 750-757. DOI: 10.11833/j.issn.2095-0756.20210551
ZHANG Jianyun, WU Shengchun, WANG Minyan, et al. Tobacco stalk biochar in heavy metal contaminated soil amendments with tobacco production[J]. Journal of Zhejiang A&F University, 2018, 35(4): 674-683. DOI: 10.11833/j.issn.2095-0756.2018.04.013
Citation: ZHANG Yilin, LI Gongquan, LIU Ying. Spatial distribution of endangered orchids in the Yangtze River Watershed[J]. Journal of Zhejiang A&F University, 2022, 39(4): 750-757. DOI: 10.11833/j.issn.2095-0756.20210551
  • 长江流域发源于唐古拉山脉,自西向东流经青藏高原、横断山区、云贵高原、四川盆地、江南丘陵和长江中下游平原,注入东海[1]。地域辽阔,横跨中国东部、中部和西部地区,包括19个省(直辖市和自治区)。长江流域地形复杂,地势西高东低呈阶梯状分布。气候类型复杂,除青藏高原为高原山地气候、西南热带季风气候外,主要为亚热带季风气候[2]。夏季高温多雨,冬季温和少雨,四季分明,年降水量在1 000 mm以上,这为生物提供了良好的栖息环境,成为生物多样性极为丰富的地区。长江流域种子植物约占全国种子植物的50%,珍稀濒危植物和国家重点保护植物共占全国珍稀濒危保护植物的39.7%。

    兰科Orchidaceae植物因花期长、花朵造型奇异和色彩绚丽,具有极高的观赏价值[3];入药具有清热解毒、滋阴润肺等功效,药用价值也较高[4]。兰科植物对环境的依赖性比较强[5],易受到人类活动的影响。全世界所有的野生兰科植物均被列为《野生动植物濒危物种国际贸易公约》(CITES)的保护范围,为野生植物保护的旗舰类群[6]。目前,对兰科植物分布格局的研究主要有垂直分析和水平分析2种方法。在垂直尺度上,将区域性的山地海拔高度分段,分析兰科植物的分布格局以及区系特征,如藏东南[7]、滇西北[8]、西藏南迦巴瓦[9]、西双版纳[10]等。通过计算兰科植物属和种的丰富度,分析兰科植物丰富度的分布中心和变化趋势,进而研究水平意义上的分布格局,如滇西北[11]和全国兰科植物[12]的分布格局。也有学者采用地理信息系统(GIS)空间分析方法分析地区多物种的分布范围[13]和空间分布特征[14],揭示物种空间分布规律,达到维护当地生物多样性的稳定[15-16]和预防外来物种入侵的目的[17-18]

    总的来看,关于长江流域兰科植物的空间分布格局研究较少,且根据濒危程度进行长时序分析还不多见。基于此,本研究采用核密度、空间自相关和热点分析等GIS空间分析方法,分析了长江流域代表性濒危兰科植物的空间分布格局,为更有效地保护兰科植物提供理论依据。

    • 全球生物多样性信息资讯机构(GBIF)是由世界各国政府资助的国际资讯机构(https://www.gbif.org/)。该网站收集了兰科植物的分布地区、物种名称、物种出现时间、物种经纬度坐标等信息。根据《中国物种红色名录》[19]的物种濒危等级,以及1981—2019年在长江流域分布的物种,选取了130个(10种)兰科植物空间分布点(表1),所选取的代表性10种兰科植物均有观赏和药用价值。

      表 1  代表性兰科植物的分布

      Table 1.  Distribution of representative orchids

      序号属名物种名生境生活型濒危等级
      1 舌唇兰属 Platanthera 小舌唇兰 Platanthera minor 山坡林下或草地 地生 近危
      2 头蕊兰属 Cephalanthera 金兰 Cephalanthera falcata 山坡林下 地生 近危
      3 兰属 Cymbidium 建兰 Cymbidium ensifolium 山坡林下 地生 易危
      4 兰属 蕙兰 Cymbidium faberi 向南山坡或黄山松 Pinus taiwanensis 林下 地生 易危
      5 虾脊兰属 Calanthe 反瓣虾脊兰 Calanthe reflexa 常绿阔叶林下、山谷溪边 地生 无危
      6 虾脊兰属 钩距虾脊兰 Calanthe graciliflora 山坡林下或石壁上 地生 易危
      7 兜被兰属 Neottianthe 二叶兜被兰 Neottianthe cucullata 针叶林下或高山草甸上 地生 近危
      8 无柱兰属 Amitostigma 无柱兰 Amitostigma gracile 岩石上或沟边阴湿草地上 地生 近危
      9 独蒜兰属 Pleione 独蒜兰 Pleione bulbocodioides 苔藓覆被的岩石上 附生 易危
      10 风兰属 Neofinetia 风兰 Neofinetia falcata 山中林地树干上 附生 濒危
    • 将兰科植物按照《中国物种红色名录》[19]标准,根据极危、濒危、易危、近危、无危的濒危等级,分别赋值为5、4、3、2、1,濒危程度越严重,赋值越大。对代表性兰科植物根据全球气候变暖速度划分为2个时段进行研究:1981—1997年为变暖加速期,1998—2019年为变暖暂缓期[20-22]。采用ArcGIS软件的核密度方法定性分析2个时间段内兰科植物聚集分布特征。采用空间自相关分析对2个时间段的兰科植物濒危等级进行全局莫兰指数(Moran’s I)计算。采用Open Geoda软件对代表性兰科植物计算局部莫兰指数,以标准化的濒危属性值作为横轴,相邻濒危属性值的加权平均值作为纵轴,分别绘制1981—1997年和1998—2019年的莫兰指数散点图。使用Open Geoda软件的热点分析值($G_i^{*} $),分析兰科植物濒危等级的热点分析,得出1981—1997年(置信度95%)和1998—2019年(置信度99%)的热点分布表[23],并将分析结果进行可视化显示。

    • 核密度函数值可反映兰科植物在长江流域的空间聚集和分散特征,函数值越高,说明兰科植物聚集程度越高,且值随中心辐射距离的增大而逐渐变小[24]。计算表达式如下:

      $$ f_{n}(y)=\frac{b}{n h} \sum_{b=1}^{n} k\left(\frac{y-y_{b}}{h}\right)。 $$ (1)

      式(1)中:$ f_{n}(y)$为兰科植物n个空间分布点的核密度测算值,n=130;k为核密度常数;h为核密度测算带宽的平滑参数;$ \left(y-y_{b}\right)$为兰科植物估计值y与分布点b样本值yb之间的空间距离。参考相关研究成果的基础上[25],得出兰科植物的密度空间分布特征。

    • 全局莫兰指数表示地理对象属性值在全部空间范围内的聚集程度[26],是对属性在整个空间分布区域的特征刻画。计算表达式如下:

      $$ {I}=\frac{m \displaystyle \sum_{i=1}^{m} \displaystyle \sum_{j=1}^{m} {\boldsymbol{w}}_{{\boldsymbol{i j}}}\left(x_{i}-\bar{x}\right)\left(x_{j}-\bar{x}\right)}{\displaystyle \sum_{i=1}^{m} \displaystyle \sum_{j=1}^{m} {\boldsymbol{w}}_{{\boldsymbol{i j}}} \displaystyle \sum_{i=1}^{m}\left(x_{i}-\bar{x}\right)^{2}} 。 $$ (2)

      式(2)中:I为濒危兰科植物的全局莫兰指数值;m为空间单元数量;xi、xj分别为第i个空间单元和第j个空间单元兰科植物的濒危等级值;$\bar x $为濒危等级均值;wij为空间单元ij的空间权重矩阵。

      标准化Z值检验全局莫兰指数自相关水平,当Z>1.96或Z<−1.96 (α=0.05)时,说明濒危兰科植物在空间上存在显著的空间自相关水平。

    • 局部空间自相关可以检测局部区域是否存在变量聚集的现象[26],进一步明确相邻兰科植物生存状况的分布关系,弥补全局空间自相关不能确定具体聚集区域的不足。热点分析可以进一步分析兰科植物局部空间自相关关系。经过反复试验,莫兰指数散点图采用“Queen’s”原则,判断是否邻接。计算表达式如下:

      $$ G_{i}^{*}=\frac{\displaystyle \sum_{j=1}^{m} {\boldsymbol{w}}_{{\boldsymbol{i j}}} x_{j}}{\displaystyle \sum_{j=1}^{m} x_{j}} 。$$ (3)

      式(3)中:$ G_{i}^{*}$为兰科植物濒危等级的热点分析值;${\boldsymbol{w}}_{{\boldsymbol{i j}}}$为空间单元i、j的空间权重矩阵;xj为第j个空间单元兰科植物的濒危等级值;m为空间单元数量。

    • 通过核密度分析结果可知:1981—2019年,兰科植物的空间分布整体上呈“多核破碎化”,但1998年后,破碎化程度有所减弱。在四川分布的代表性兰科植物北移,数量减少。318国道的建设经过康定县和泸定县,这些地区早期发现有大量兰科植物分布,如今兰科植物减少,这在一定程度上说明兰科植物受到国道建设的影响(表2),国道建设加剧了人类活动,缩减了兰科植物的生存空间。

      表 2  1981—2019年四川代表性兰科植物的空间分布

      Table 2.  Spatial distribution of representative Orchidaceae plants in Sichuan from 1981 to 2019

      年份地区经纬度代表性兰科植物年份地区经纬度代表性兰科植物
      1994 平武县  32°26′24″N,104°33′00″E 钩距虾脊兰1981 泸定县          29°54′50″N,102°14′02″E 反瓣虾脊兰
      1983 雷波县  28°15′43″N,103°34′15″E 金兰   1984 泸定县          29°54′50″N,102°14′02″E 反瓣虾脊兰
      1984 泸定县  29°54′50″N,102°14′02″E 金兰   1997 泸定县          29°30′00″N,101°54′00″E 二叶兜被兰
      1984 泸定县  29°54′50″N,102°14′02″E 金兰   1997 康定县          30°06′00″N,101°48′00″E 二叶兜被兰
      1981 泸定县  29°54′50″N,102°14′02″E 建兰   1997 康定县          30°08′45″N,101°51′36″E 二叶兜被兰
      1981 泸定县  29°54′50″N,102°14′02″E 建兰   1997 泸定县          29°34′30″N,101°59′56″E 二叶兜被兰
      1986 九寨沟县 33°15′36″N,104°13′48″E 蕙兰   2019 成都市青羊区       30°40′55″N,104°00′36″E 蕙兰   
      1982 泸定县  29°54′36″N,102°13′48″E 反瓣虾脊兰2005 翁达自然保护区      31°54′00″N,100°54′00″E 二叶兜被兰
      1983 九寨沟县 33°15′36″N,104°13′48″E 反瓣虾脊兰2007 阿坝藏族羌族自治区金川县 31°42′00″N,102°00′00″E 二叶兜被兰
      1981 泸定县  29°54′50″N,102°14′02″E 反瓣虾脊兰2005 翁达自然保护区      31°58′55″N,100°57′50″E 二叶兜被兰
      1984 北川县  31°53′34″N,104°26′09″E 反瓣虾脊兰2005 翁达自然保护区      31°58′55″N,100°57′50″E 二叶兜被兰
      1984 北川县  31°53′34″N,104°26′09″E 反瓣虾脊兰

      从兰科植物分布密度来看,中密度分布在湖北中部、湖南中部、重庆中部、贵州东部和北部、四川中部和北部、云南北部、甘肃南部;高密度分布在湖南西部、湖北西南部、广西东北部、重庆东南部和贵州东北部。中密度分布省份(直辖市和自治区)数量未减少,且分布面积增加了1 969 m2 (2.9%);高密度分布省份(直辖市和自治区)数量减少,少了广西和贵州,且分布面积减少了222 m2 (0.32%)。高密度栖息地数量和面积减少,兰科植物生存受到威胁。研究发现:南岭地区存在村民采挖和贩卖观赏兰花的现象,并且南岭地区修建了大量水电站[27],改变了兰科植物的生长环境,这对环境要求严格的兰科植物来说,无疑产生了重要影响(表3)。贵州兰科植物主要分布在铜仁地区的松桃、桐梓、印江、石阡,该地区矿产资源丰富,大量的矿产开发会铲除覆盖地表植被,破坏兰科植物生长环境,再加上村民采挖兰属和虾脊兰属植物,导致兰科植物在贵州的分布发生明显变化(表3)。

      表 3  1981—2019年贵州和广西代表性兰科植物的空间分布

      Table 3.  Spatial distribution of representative Orchidaceae plants in Guizhou and Guangxi from 1981 to 2019

      年份省份地区经纬度代表性兰科植物
      1986 贵州 松桃苗族自治县 28°09′00″N,109°12′00″E 钩距虾脊兰
      1996 贵州 桐梓县 28°07′48″N,106°49′12″E 金兰
      1988 贵州 印江土家族
      苗族自治县
      27°59′24″N,108°24′00″E 小舌唇兰
      1988 贵州 松桃苗族自治县 28°00′00″N,109°12′00″E 蕙兰
      1988 贵州 石阡县 27°30′36″N,108°13′48″E 反瓣虾脊兰
      1988 贵州 施秉县 27°01′48″N,108°11′24″E 反瓣虾脊兰
      1981 广西 金秀县老山伐木场十六公里阴冲 24°10′30″N,110°14′06″E 钩距虾脊兰
      1991 广西 兴安县猫儿山老山界 25°36′03″N,110°35′06″E 金兰
      1984 广西 资源县猫儿山万亩林场 26°00′18″N,110°35′56″E 金兰
      1992 广西 资源县塘洞猫儿山大竹坪 26°00′18″N,110°35′56″E 金兰
      1982 广西 兴安县猫儿山梯子岭 25°36′03″N,110°35′06″E 金兰
      1982 广西 金秀县 24°10′30″N,110°14′06″E 小舌唇兰
      1994 广西 环江县川山乡大沙坡 25°06′25″N,108°18′54″E 独蒜兰
      2016 广西 百色市那坡县 23°20′45″N,105°54′46″E 建兰
      1998 广西 龙胜各族自治县花坪红毛界下界 25°44′31″N,110°02′24″E 反瓣虾脊兰
      1998 广西 龙胜各族自治县花坪红毛界下界 25°44′31″N,110°02′24″E 反瓣虾脊兰
      1998 广西 金秀老山银杉保护区 24°10′30″N,110°14′06″E 钩距虾脊兰
      1998 广西 金秀老山银杉保护区 24°10′30″N,110°14′06″E 钩距虾脊兰
        说明:银杉Cathaya argyrophylla

      气温是影响植物生长的自然因素之一,气温与植物的光合作用、呼吸作用和代谢作用密不可分[28]。经研究发现:1981—1997年和1998—2019年兰科植物中、高密度区存在较明显的变化,这与1998年之后全球变暖速度进入“停滞”相吻合[21-22],说明长江流域兰科植物分布位置和数量变化也可能与全球变暖有关。

    • 全局莫兰指数可以表示要素的空间自相关性,当Z>1.96时,说明莫兰指数值具有明显的聚类特征。从表4看出:1981—1997年濒危兰科植物全局莫兰指数为0.241,1998—2019年为0.805,通过了显著性水平α=0.05的检验(Z>1.96)。说明这2个时段的濒危兰科植物在空间上呈正相关,具有明显的空间集聚特征。1998—2019年的莫兰指数大于1981—1997年,且更趋向于1,表明1998—2019年濒危兰科植物的空间自相关性水平显著增强,生存空间急剧缩减,抱团分布的现象更加明显。

      表 4  1981—2019年兰科植物濒危等级的全局莫兰指数

      Table 4.  Global Moran’ s I index of the endangered species of representative Orchidaceae plants from 1981 to 2019

      时段莫兰指数Z域值(α=0.05)
      1981—1997年0.2413.7271.96
      1998—2019年0.8054.4501.96
    • 图1表明:2个时段的局部莫兰指数均大于0,与全局莫兰指数结果相符。趋势线主要分布在第1和第3象限,说明兰科植物的濒危等级值在2个时段都存在高—高值聚集和低—低值聚集。图1A中,落入第1象限的兰科植物濒危等级值有22个,占总点数的25.0%,落入第3象限的有48个,占总点数的54.6%。图1B中,落入第1象限的兰科植物濒危等级值有21个,占总点数的50.0%,落入第3象限的有16个,占总点数的38.1%。可见,兰科植物在1981—1997年表现出明显的低—低聚集,1998—2019年表现出明显的高—高聚集,说明兰科植物局部空间异质性增强,且处于高风险区的兰科植物数量明显增加。在莫兰散点图趋势线以下,图1A数据点的数量为55个,占总点数的62.5%,图1B数据点的数量为18个,占总点数的42.9%。1998—2019年与1981—1997年相比,数据点的数量明显减少。兰科植物濒危等级值的“核”效应明显减弱,“多核破碎化”的态势也在弱化,这与核密度分析结果相吻合。

      图  1  兰科植物的莫兰指数散点图

      Figure 1.  Moran scatter diagram of typical orchids

    • 热点分析是根据统计学方法,识别具有统计显著性的热点和冷点。由表5可以看出:1981—1997年兰科植物处在高—高聚集模式下的省份只有贵州和湖北,说明这2个省份兰科植物的生存状况面临威胁。1998—2019年兰科植物在湖北的热点值更高,濒危程度进一步加重。由此可知:1998—2019年与1981—1997年相比,湖北空间分布的代表性兰科植物濒危程度更集中。代表性兰科植物濒危热点分布地区发生变化,即高危险区发生变化。其中需要重点保护的兰科植物是蕙兰、小舌唇兰、钩距虾脊兰、反瓣虾脊兰和金兰。湖北应该成为长江流域兰科植物监控、管理、保护的重点省份。虽然蕙兰在江浙地区分布整体处于冷点区域,但由于人为采挖,蕙兰的生存状况在江浙一带也须引起重视。

      表 5  1981—2019兰科植物濒危等级热点值分布

      Table 5.  Distribution of endangered hot spot values of Orchidaceae plants from 1981 to 2019

      省份1981—1997年1998—2019年
      ZPGi_ConfInvl
      字段
      ZPGi_ConfInvl
      字段
      浙江−0.870.3800.100.920
      云南1.130.260−0.320.750
      西藏−0.630.5301.300.190
      四川−0.200.840−0.230.820
      陕西0.270.7900.110.910
      青海0.520.610−0.750.460
      江西−0.480.6300.110.910
      湖南1.550.1200.460.640
      湖北1.750.0811.960.052
      河南0.700.4801.040.300
      贵州1.660.101−0.740.460
      广西0.960.3400.450.650
      甘肃−0.800.420−0.690.490
      福建−1.600.110−0.710.480
      安徽−0.870.3800.100.920
      上海−1.110.270−0.350.720
      重庆0.290.7700.170.860
      江苏−1.110.270−0.350.720
      广东0.130.9000.450.650
        说明:Z>1.65,P<0.10,Gi_ConfInvl字段为1,说明热点     具有置信度为90%的统计显著性;Z>1.96,     P<0.05,Gi_ConfInvl 字段为2,说明热点具有置信     度为95%的统计显著性
    • 温度和降水的变化可能是影响兰科植物生长的自然因素。从空间格局来看,1998—2019年与1981—1997年相比,长江流域代表性兰科植物多核破碎化趋势有所减弱,濒危值和空间位置表现出高度的空间自相关,兰科植物更趋向于集中分布。从长江流域关注重点地区来说,四川、贵州和广西是代表性兰科植物密度分布发生变化的省份,湖北是现阶段濒危等级值较高的省份,即热点省份。可能是因为适宜兰科植物生长的区域受到气候变化和人为因素的双重影响。在1998年以后,全球变暖进入停滞化阶段[29],20世纪90年代中后期长江流域气温产生明显变化[30],增长速度有所减缓[20-22]。气候变化给兰科植物的生长带来了较大影响。LIU等[31]研究认为:在气候变化的大背景下,兰科植物15%的种类和25%的属存在数量减少或局部灭绝的高风险,这与本研究提出的全球变暖会影响兰科植物生存发展的结论相符。

      1998—2019年兰科植物的密度高值区减少,分布在广西、贵州的兰科植物消失。兰科植物的密度中值区由四川中部向四川北部迁移。濒危等级值和空间位置的正相关水平显著增强,聚集特征更加明显。高危险区数量由贵州和湖北2个省份减少为湖北1个省份。高危险区濒危水平增长,热点值更高,兰科植物的生存处境更加严峻,湖北将成为重点关注的地区。

      修建基础设施虽然带给人们极大便利,但也影响了兰科植物的生境,导致兰科植物数量减少、分布范围改变。道路修建会破坏地表植被,增加车流量,排放有害气体,从而影响兰科植物的生长。水利设施的修建改变了小气候,也影响了兰科植物的生长。此外,国家对兰科植物的保护较弱,监管部门的责任不到位,导致采挖和线上线下销售现象严重。人们对森林资源的过度采伐,使附生兰和地生兰生存的场所受到影响,这也极不利于兰科植物的生长和繁殖。

参考文献 (31)

目录

/

返回文章
返回