留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长江流域河岸植被缓冲带生态功能及构建技术研究进展

胡海波 邓文斌 王霞

胡海波, 邓文斌, 王霞. 长江流域河岸植被缓冲带生态功能及构建技术研究进展[J]. 浙江农林大学学报, 2022, 39(1): 214-222. doi: 10.11833/j.issn.2095-0756.20210201
引用本文: 胡海波, 邓文斌, 王霞. 长江流域河岸植被缓冲带生态功能及构建技术研究进展[J]. 浙江农林大学学报, 2022, 39(1): 214-222. doi: 10.11833/j.issn.2095-0756.20210201
HU Haibo, DENG Wenbin, WANG Xia. Research progress on ecological function and construction technology of riparian vegetation buffer strips in the Yangtze River Basin[J]. Journal of Zhejiang A&F University, 2022, 39(1): 214-222. doi: 10.11833/j.issn.2095-0756.20210201
Citation: HU Haibo, DENG Wenbin, WANG Xia. Research progress on ecological function and construction technology of riparian vegetation buffer strips in the Yangtze River Basin[J]. Journal of Zhejiang A&F University, 2022, 39(1): 214-222. doi: 10.11833/j.issn.2095-0756.20210201

长江流域河岸植被缓冲带生态功能及构建技术研究进展

doi: 10.11833/j.issn.2095-0756.20210201
基金项目: 江苏省林业科技创新与推广项目(LYKJ〔2020〕扬州市仪征市01);特定区域水土保持监测及苏南丘陵区经济林土壤侵蚀规律研究技术支撑与协作项目(2107116);国家林业局长江三角洲森林生态系统定位研究项目(2019132158);江苏省高等学校林学优势学科建设项目(164010641)
详细信息
    作者简介: 胡海波(ORCID: 0000-0001-8442-5222),教授,博士,从事水土保持、林业生态工程和城市生态等研究。E-mail: huhb2000@aliyun.com
  • 中图分类号: S718.5

Research progress on ecological function and construction technology of riparian vegetation buffer strips in the Yangtze River Basin

  • 摘要: 长江流域河岸植被缓冲带是河岸生态系统的重要组成部分,对长江流域污染防治和生态环境建设具有重要影响。综述了河岸植被缓冲带的主要生态功能,分析了长江流域河岸植被缓冲带面临的环境影响因素,阐述了河岸植被缓冲带构建技术,并对未来研究提出展望。河岸植被缓冲带的主要生态功能为缓洪护岸、截污净化和保护生物多样性等。目前,长江流域河岸植被缓冲带面临的主要影响因素为外来物种入侵、大量硬质工程建设和农业、工业发展带来的污染物排放等。长江流域河岸植被缓冲带的构建技术应根据不同河岸带的特点和功能来确定,并加强对河岸植被缓冲带的管理。未来研究应集中于:①开展河岸植被缓冲带遮阴效应的过程及机制研究,根据遮阴效应的研究结果,讨论遮阴的利弊问题,以及遮阴效应与缓冲极端气候的联系。②开展极端气候条件下生态功能研究,利用模型模拟极端气候条件下(暴雨、干旱等)河岸植被缓冲带的截留减污效应,为植被缓冲带的构建提供参考依据。③开展景观和流域尺度研究,结合遥感影像和各气象站点数据,从景观和流域尺度研究自然和人为活动对河岸植被缓冲带生态过程和生态功能的影响,探讨河岸植被缓冲带综合治理和管理模式。④建立植被缓冲带综合评价体系,应用数字化手段对河岸植被缓冲带实时监控,结合野外观察和采样分析,综合评价河岸植被缓冲带的结构和生态功能。参43
  • [1] 杨桂山, 徐昔保, 李平星. 长江经济带绿色生态廊道建设研究[J]. 地理科学进展, 2015, 34(11): 1356 − 1367. doi:  10.18306/dlkxjz.2015.11.003

    YANG Guishan, XU Xibao, LI Pingxing. Research on the construction of green ecological corridors in the Yangtze River Economic Belt [J]. Prog Geogr, 2015, 34(11): 1356 − 1367. doi:  10.18306/dlkxjz.2015.11.003
    [2] GONZÁLEZ E, FELIPE-LUCIA M R, BOURGEOIS B, et al. Integrative conservation of riparian zones [J/OL]. Biol Conserv, 2017, 211[2021-01-08]. doi: 10.1016/j.biocon.2016.10.035.
    [3] CORENBLIT D, VAUTIER F, GONZÁLEZ E, et al. Formation and dynamics of vegetated fluvial landforms follow the biogeomorphological succession model in a channelized river: biogeomorphological succession in a channelised river [J/OL]. Earth Surf Processes Landforms, 2020, 45(9)[2021-01-08]. doi: 10.1002/esp.4863.
    [4] FINNEGAN J, REGAN J T, de EYTO E, et al. Nutrient dynamics in a peatland forest riparian buffer zone and implications for the establishment of planted saplings [J]. Ecol Eng, 2012, 47: 155 − 164. doi:  10.1016/j.ecoleng.2012.06.023
    [5] MELLO K D, VALENTE R A, RANDHIR T O, et al. Effects of land use and land cover on water quality of low-order streams in Southeastern Brazil: Watershed watershed versus riparian zone [J]. Catena, 2018, 167: 130 − 138. doi:  10.1016/j.catena.2018.04.027
    [6] TEPLY M, MCGREER D, CEDER K. Using simulation models to develop riparian buffer strip prescriptions [J]. J For, 2014, 112(3): 302 − 311.
    [7] 段丽军. 河岸带生态功能研究综述[J]. 华北国土资源, 2015(2): 95 − 96. doi:  10.3969/j.issn.1672-7487.2015.02.051

    DUAN Lijun. Research summary on ecological function of riparian zone [J]. Huabei Land Resour, 2015(2): 95 − 96. doi:  10.3969/j.issn.1672-7487.2015.02.051
    [8] 闫钰, 董艳红, 汤洁, 等. 东新开河岸边植被缓冲带对雨水径流中典型污染物截留效果试验[J]. 环境工程, 2020, 38(9): 139 − 144.

    YAN Yu, DONG Yanhong, TANG Jie, et al. experimental study on the typical interception effect of the allowable buffer zone on the bank of dongxinkai river in rainwater runoff [J]. Environ Eng, 2020, 38(9): 139 − 144.
    [9] 任远, 王冬梅, 信忠保. 漓江流域水陆交错带植被配置型式分类及生态特征[J]. 生态学报, 2014, 34(15): 4423 − 4434.

    REN Yuan, WANG Dongmei, XIN Zhongbao. Classification and ecological characteristics analysis of vegetation arrangement type in land-water ecotone of Li River [J]. Acta Ecol Sin, 2014, 34(15): 4423 − 4434.
    [10] 曾立雄, 黄志霖, 肖文发, 等. 河岸植被缓冲带的功能及其设计与管理[J]. 林业科学, 2010, 46(2): 128 − 133. doi:  10.11707/j.1001-7488.20100221

    ZENG Lixiong, HUANG Zhilin, XIAO Wenfa, et al. Function, design and management of riparian vegetation buffer strips [J]. Sci Silv Sin, 2010, 46(2): 128 − 133. doi:  10.11707/j.1001-7488.20100221
    [11] 段学军, 王晓龙, 徐昔保, 等. 长江岸线生态保护的重大问题及对策建议[J]. 长江流域资源与环境, 2019, 28(11): 2641 − 2648.

    DUAN Xuejun, WANG Xiaolong, XU Xibao, et al. Major problems and countermeasures of ecological protection on the waterfront resources along the Yangtze River [J]. Resour Environ the Yangtze Basin, 2019, 28(11): 2641 − 2648.
    [12] 陈吉泉. 河岸植被特征及其在生态系统和景观中的作用[J]. 应用生态学报, 1996, 7(4): 439 − 448.

    CHEN Jiquan. Riparian vegetation characteristics and their functions in ecosystems and landscapes [J]. Chin J Appl Ecol, 1996, 7(4): 439 − 448.
    [13] 孙金伟, 许文盛. 河岸植被缓冲带生态功能及其过滤机理的研究进展[J]. 长江科学院院报, 2017, 34(3): 40 − 44. doi:  10.11988/ckyyb.20160706

    SUN Jinwei, XU Wensheng. A review on ecological functions and purification mechanism of riparian buffer zone [J]. J Yangtze River Sci Res Inst, 2017, 34(3): 40 − 44. doi:  10.11988/ckyyb.20160706
    [14] 夏继红, 林俊强, 姚莉, 等. 河岸带的边缘结构特征与边缘效应[J]. 河海大学学报(自然科学版), 2010, 38(2): 215 − 219.

    XIA Jihong, LIN Junqiang, YAO Li, et al. Edge structure and edge effect of riparian zones [J]. J Hohai Univ Nat Sci, 2010, 38(2): 215 − 219.
    [15] 左俊杰, 蔡永立, 罗坤, 等. 上海地区河岸带结构: 类型、分布及改进[J]. 水资源保护, 2009, 25(6): 24 − 28. doi:  10.3969/j.issn.1004-6933.2009.06.007

    ZUO Junjie, CAI Yongli, LUO Kun, et al. Riparian structure in Shanghai: types, distribution and improvement [J]. Water Resour Prot, 2009, 25(6): 24 − 28. doi:  10.3969/j.issn.1004-6933.2009.06.007
    [16] ZHONG Ronghua, HE Xiubin, BAO Yuhai, et al. Estimation of soil reinforcement by the roots of four postdam prevailing grass species in the riparian zone of Three Gorges Reservoir, China [J]. J Mount Sci, 2016, 13(3): 508 − 521. doi:  10.1007/s11629-014-3397-2
    [17] 杨树青, 白玉川, 徐海珏, 等. 河岸植被覆盖影响下的河流演化动力特性分析[J]. 水利学报, 2018, 49(8): 995 − 1006.

    YANG Shuqing, BAI Yuchuan, XU Haiyu, et al. Dynamic characteristics of river evolution under the influence of riparian vegetation cover [J]. J Hydraul Eng, 2018, 49(8): 995 − 1006.
    [18] 姚程, 胡小贞, 耿荣妹, 等. 几种水陆交错带植物对湖滨带底质的稳固作用[J]. 湖泊科学, 2017, 29(1): 105 − 115. doi:  10.18307/2017.0112

    YAO Cheng, HU Xiaozhen, GENG Rongmei, et al. Effects of five literal-zone plants on lakeshore sediment stabilization [J]. J Lake Sci, 2017, 29(1): 105 − 115. doi:  10.18307/2017.0112
    [19] 朱晓成, 吴永波, 余昱莹, 等. 太湖乔木林河岸植被缓冲带截留氮素效率[J]. 浙江农林大学学报, 2019, 36(3): 565 − 572. doi:  10.11833/j.issn.2095-0756.2019.03.018

    ZHU Xiaocheng, WU Yongbo, YU Yuying, et al. Removing nitrogen with trees planted in the riparian vegetation buffer strips of Taihu Lake [J]. J Zhejiang A&F Univ, 2019, 36(3): 565 − 572. doi:  10.11833/j.issn.2095-0756.2019.03.018
    [20] 王琼, 范康飞, 范志平, 等. 河岸缓冲带对氮污染物削减作用研究进展[J]. 生态学杂志, 2020, 39(2): 665 − 677.

    WANG Qiong, FAN Kangfei, FAN Zhiping, et al. Nitrogen pollutant removal by riparian buffer zone: a review [J]. Chin J Ecol, 2020, 39(2): 665 − 677.
    [21] 黄晓艺, 胡湛波, 叶春, 等. 太湖出入湖河口水质和水生植物中氮、磷含量及其相关性分析[J]. 环境工程, 2019, 37(9): 74 − 80,102.

    HUANG Xiaoyi, HU Zhanbo, YE Chun, et al. Nitrogen and phosphorus contents of aquatic plants and correlation analysis with water quality in confluence areas of rivers and lakes of Taihu Lake, China [J]. Environ Eng, 2019, 37(9): 74 − 80,102.
    [22] 付婧, 王云琦, 马超, 等. 植被缓冲带对农业面源污染物的削减效益研究进展[J]. 水土保持学报, 2019, 33(2): 1 − 8.

    FU Jing, WANG Yunqi, MA Chao, et al. Research progress on the effects of vegetation buffer zone on reducing agricultural non-point pollution [J]. J Soil Water Conserv, 2019, 33(2): 1 − 8.
    [23] 吴永波. 河岸植被缓冲带减缓农业面源污染研究进展[J]. 南京林业大学学报(自然科学版), 2015, 39(3): 143 − 148.

    WU Yongbo. Research progress on the riparian vegetation buffer strip functions on agricultural nonpoint source pollution reduction [J]. J Nanjing For Univ Nat Sci Ed, 2015, 39(3): 143 − 148.
    [24] 孙东耀, 仝川, 纪钦阳, 等. 不同类型植被河岸缓冲带对模拟径流及总磷的消减研究[J]. 环境科学学报, 2018, 38(6): 2393 − 2399.

    SUN Dongyao, TONG Chuan, JI Qinyang, et al. Reduction of simulated runoff and total phosphorus in different vegetation riparian buffer [J]. Acta Sci Circumstantiae, 2018, 38(6): 2393 − 2399.
    [25] 叶春, 李春华, 邓婷婷. 论湖滨带的结构与生态功能[J]. 环境科学研究, 2015, 28(2): 171 − 181.

    YE Chun, LI Chunhua, DENG Tingting. Structures and ecological function of lake littoral zones [J]. Res Environ Sci, 2015, 28(2): 171 − 181.
    [26] 王可洪, 袁兴中, 张冠雄, 等. 河岸无脊椎动物多样性维持机制研究进展[J]. 应用生态学报, 2020, 31(3): 1043 − 1054.

    WANG Kehong, YUAN Xingzhong, ZHANG Guanxiong, et al. Maintaining mechanisms of riparian invertebrate biodiversity: a review [J]. Chin J Appl Ecol, 2020, 31(3): 1043 − 1054.
    [27] 程莅登. 长江重庆段河岸植物群落及物种多样性研究[D]. 重庆: 西南大学, 2019.

    CHENG Lideng. Study on Riparian Plant Community and specice Diversity in Chongqing Section of the Yangtze River [D]. Chongqing: Southwest University, 2019.
    [28] 葛刚, 李恩香, 吴和平, 等. 鄱阳湖国家级自然保护区的外来入侵植物调查[J]. 湖泊科学, 2010, 22(1): 93 − 97. doi:  10.18307/2010.0113

    GE Gang, LI Enxiang, WU Heping, et al. Invasive plants in the national nature reserve of Lake Poyang [J]. J Lake Sci, 2010, 22(1): 93 − 97. doi:  10.18307/2010.0113
    [29] 左倬, 蒋跃, 薄芳芳, 等. 平原河网地区滨岸带外来植物入侵现状及影响研究: 以上海青浦区为例[J]. 生态环境学报, 2010, 19(3): 665 − 671. doi:  10.3969/j.issn.1674-5906.2010.03.030

    ZUO Zhuo, JIANG Yue, BO Fangfang, et al. Status and impacts of alien plants invasion of the riparian zone in plain river network area: a case study in Qingpu District, Shanghai [J]. Ecol Environ Sci, 2010, 19(3): 665 − 671. doi:  10.3969/j.issn.1674-5906.2010.03.030
    [30] van ANDELELTE, ARONSON J. Restoration Ecology: The New Frontier [M]. 2nd ed. Oxford: Blackwell Publishing, 2013.
    [31] TERERAI F, GAERTNER M, JACOBS S M, et al. Resilience of invaded riparian landscapes: the potential role of soil-stored seed banks [J]. Environ Manage, 2015, 55(1): 86 − 99. doi:  10.1007/s00267-014-0374-z
    [32] SUN Rong, DENG Weiqiong, YUAN Xingzhong, et al. Riparian vegetation after dam construction on mountain rivers in China [J]. Ecohydrology, 2014, 7(4): 1187 − 1195.
    [33] KWON G J, LEE B A, NAM J M, et al. The relationship of vegetation to environmental factors in Wangsuk stream and Gwarim reservoir in Korea(Ⅱ) soil environments [J]. Ecol Res, 2007, 22(1): 75 − 86. doi:  10.1007/s11284-006-0188-4
    [34] 姚继平, 郝芳华, 王国强, 等. 人工智能技术对长江流域水污染治理的思考[J]. 环境科学研究, 2020, 33(5): 1268 − 1275.

    YAO Jiping, HAO Fanghua, WANG Guoqiang, et al. Artificial intelligence technology for water pollution control in the Yangtze River Basin [J]. Res Environ Sci, 2020, 33(5): 1268 − 1275.
    [35] 张雪, 张聪, 宋超, 等. 长江下游流域水体中重金属含量及风险评估[J]. 中国农学通报, 2017, 33(30): 67 − 73. doi:  10.11924/j.issn.1000-6850.casb17040051

    ZHANG Xue, ZHANG Cong, SONG Chao, et al. Heavy metal content of water and risk assessment in the lower reaches of the Yangtze River [J]. Chin Agric Sci Bull, 2017, 33(30): 67 − 73. doi:  10.11924/j.issn.1000-6850.casb17040051
    [36] 刘明丽. 长江流域水相、沉积相中多溴联苯醚及有机氯农药的污染特征和风险评价[D]. 北京: 北京交通大学, 2018.

    LIU Mingli. Characteristics and Risk Assessment of Polybrominated Diphenyl Ethersand Organochlorine Pesticides in Water and Sediment of the Yangtze River Basin [D]. Beijing: Beijing Jiaotong University, 2018.
    [37] WU Chenxi, ZHANG Kai, XIONG Xiong. Microplastic pollution in inland waters focusing on Asia [M]//WAGNER M, LAMBERT S. Freshwater Microplastics: Emerging Environmental Contaminants? Cham: Springer International Publishing, 2018: 85 − 99.
    [38] SU Lei, XUE Yingang, LI Lingyun, et al. Microplastics in Taihu Lake, China [J]. Environ Pollut, 2016, 216: 711 − 719. doi:  10.1016/j.envpol.2016.06.036
    [39] 钟勇. 美国水土保持中的缓冲带技术[J]. 中国水利, 2004(10): 63 − 65. doi:  10.3969/j.issn.1000-1123.2004.10.023

    ZHONG Yong. Buffer strip in soil and water conservation in the United States [J]. China Water Res, 2004(10): 63 − 65. doi:  10.3969/j.issn.1000-1123.2004.10.023
    [40] SAHU M, GU R R. Modeling the effects of riparian buffer zone and contour strips on stream water quality [J]. Ecol Eng, 2009, 35(8): 1167 − 1177. doi:  10.1016/j.ecoleng.2009.03.015
    [41] 廖先容, 扈幸伟, 邬龙. 城市河流滨岸缓冲带生态修复模式研究[J]. 水利水电技术, 2017, 48(10): 109 − 112.

    LIAO Xianrong, HU Xinwei, WU Long. Study on eco-restoration mode for riparian buffer zone of urban river [J]. Water Resour Hydropower Eng, 2017, 48(10): 109 − 112.
    [42] 诸葛亦斯, 刘德富, 黄钰铃. 生态河流缓冲带构建技术初探[J]. 水资源与水工程学报, 2006, 17(2): 63 − 67. doi:  10.3969/j.issn.1672-643X.2006.02.018

    ZHUGE Yisi, LIU Defu, HUANG Yuling. Primarily discussion on structuring technology of buffer zone in eco-stream [J]. J Water Resour Water Eng, 2006, 17(2): 63 − 67. doi:  10.3969/j.issn.1672-643X.2006.02.018
    [43] SWIFT L W. Filter strip widths for forest roads in the southern appalachians [J]. Southern J Appl For, 1986, 10(1): 27 − 34. doi:  10.1093/sjaf/10.1.27
  • [1] 薛芮, 阎景娟, 魏玲玲.  国家公园游憩利用的理论技术体系与研究框架构建 . 浙江农林大学学报, 2022, 39(1): 190-198. doi: 10.11833/j.issn.2095-0756.20210277
    [2] 张一林, 李功权, 刘颖.  长江流域濒危兰科植物的空间分布 . 浙江农林大学学报, 2022, 39(4): 750-757. doi: 10.11833/j.issn.2095-0756.20210551
    [3] 张瑜, 陈存友, 胡希军.  应用投影寻踪分类技术的森林生态功能评价 . 浙江农林大学学报, 2020, 37(2): 243-250. doi: 10.11833/j.issn.2095-0756.2020.02.007
    [4] 査晶晶, 吴永波, 茆安敏, 朱颖, 李文霞, 杨静.  河岸人工林缓冲带对径流水磷素的截留效果 . 浙江农林大学学报, 2020, 37(4): 639-645. doi: 10.11833/j.issn.2095-0756.20190509
    [5] 周媛.  多元目标导向下的成都中心城区绿地生态网络构建 . 浙江农林大学学报, 2019, 36(2): 359-365. doi: 10.11833/j.issn.2095-0756.2019.02.018
    [6] 廖文梅, 秦克清, 童婷, 彭泰中.  长江经济带城市化与森林生态承载力协调关系研究 . 浙江农林大学学报, 2019, 36(2): 349-358. doi: 10.11833/j.issn.2095-0756.2019.02.017
    [7] 朱晓成, 吴永波, 余昱莹, 李文霞.  太湖乔木林河岸植被缓冲带截留氮素效率 . 浙江农林大学学报, 2019, 36(3): 565-572. doi: 10.11833/j.issn.2095-0756.2019.03.018
    [8] 马莉, 杨筱, 张仪, 贾霁群, 孙启祥, 张倩, 周金星.  长江流域抑螺防病林生态服务功能评估 . 浙江农林大学学报, 2019, 36(1): 130-137. doi: 10.11833/j.issn.2095-0756.2019.01.016
    [9] 李华林, 高华端, 杨涛, 高儒学, 孙泉忠.  凯掌喀斯特小流域不同植被措施的减沙功能 . 浙江农林大学学报, 2017, 34(4): 687-694. doi: 10.11833/j.issn.2095-0756.2017.04.015
    [10] 金文奖, 侯平, 张伟, 梁立成, 俞飞.  温州鳌江流域表层底泥及河岸土壤重金属空间分布与生态风险评价 . 浙江农林大学学报, 2017, 34(6): 963-971. doi: 10.11833/j.issn.2095-0756.2017.06.001
    [11] 张伟, 陈蜀蓉, 侯平.  浦阳江流域疏浚前后底泥重金属污染及其潜在生态风险评价 . 浙江农林大学学报, 2016, 33(1): 33-41. doi: 10.11833/j.issn.2095-0756.2016.01.005
    [12] 于波涛, 齐木村.  寒地城市功能性生态园林树种选择技术 . 浙江农林大学学报, 2015, 32(5): 743-748. doi: 10.11833/j.issn.2095-0756.2015.05.013
    [13] 李静, 蒋文伟, 刘鹤, 唐吕君.  浙江省苍南县生态廊道布局与构建 . 浙江农林大学学报, 2014, 31(6): 877-884. doi: 10.11833/j.issn.2095-0756.2014.06.008
    [14] 过萍艳, 蒋文伟, 吕渊.  浙江省慈溪市宗汉街道城镇绿地生态网络构建 . 浙江农林大学学报, 2014, 31(1): 64-71. doi: 10.11833/j.issn.2095-0756.2014.01.010
    [15] 魏书精, 孙龙, 魏书威, 胡海清.  森林生态系统粗木质残体研究进展 . 浙江农林大学学报, 2013, 30(4): 585-598. doi: 10.11833/j.issn.2095-0756.2013.04.019
    [16] 梁晶, 方海兰.  城市有机废弃物对城市绿地土壤生态功能的维护作用 . 浙江农林大学学报, 2010, 27(2): 292-298. doi: 10.11833/j.issn.2095-0756.2010.02.022
    [17] 李冬林, 金雅琴, 张纪林, 阮宏华.  秦淮河河岸带典型区域土壤重金属污染分析与评价 . 浙江农林大学学报, 2008, 25(2): 228-234.
    [18] 何祯祥, 施季森, 邱进清, 肖石海.  林木遗传图谱构建的技术与策略 . 浙江农林大学学报, 1998, 15(2): 151-157.
    [19] 卜基保.  沿江平原立地条件对杨树生长的影响 . 浙江农林大学学报, 1997, 14(3): 298-302.
    [20] 余树全, 陈林武, 王江, 王鹏.  川江流域生态经济型防护林体系建设技术 . 浙江农林大学学报, 1996, 13(3): 354-358.
  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210201

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2022/1/214

计量
  • 文章访问数:  320
  • HTML全文浏览量:  118
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-03
  • 修回日期:  2021-09-09
  • 网络出版日期:  2021-11-15
  • 刊出日期:  2022-02-14

长江流域河岸植被缓冲带生态功能及构建技术研究进展

doi: 10.11833/j.issn.2095-0756.20210201
    基金项目:  江苏省林业科技创新与推广项目(LYKJ〔2020〕扬州市仪征市01);特定区域水土保持监测及苏南丘陵区经济林土壤侵蚀规律研究技术支撑与协作项目(2107116);国家林业局长江三角洲森林生态系统定位研究项目(2019132158);江苏省高等学校林学优势学科建设项目(164010641)
    作者简介:

    胡海波(ORCID: 0000-0001-8442-5222),教授,博士,从事水土保持、林业生态工程和城市生态等研究。E-mail: huhb2000@aliyun.com

  • 中图分类号: S718.5

摘要: 长江流域河岸植被缓冲带是河岸生态系统的重要组成部分,对长江流域污染防治和生态环境建设具有重要影响。综述了河岸植被缓冲带的主要生态功能,分析了长江流域河岸植被缓冲带面临的环境影响因素,阐述了河岸植被缓冲带构建技术,并对未来研究提出展望。河岸植被缓冲带的主要生态功能为缓洪护岸、截污净化和保护生物多样性等。目前,长江流域河岸植被缓冲带面临的主要影响因素为外来物种入侵、大量硬质工程建设和农业、工业发展带来的污染物排放等。长江流域河岸植被缓冲带的构建技术应根据不同河岸带的特点和功能来确定,并加强对河岸植被缓冲带的管理。未来研究应集中于:①开展河岸植被缓冲带遮阴效应的过程及机制研究,根据遮阴效应的研究结果,讨论遮阴的利弊问题,以及遮阴效应与缓冲极端气候的联系。②开展极端气候条件下生态功能研究,利用模型模拟极端气候条件下(暴雨、干旱等)河岸植被缓冲带的截留减污效应,为植被缓冲带的构建提供参考依据。③开展景观和流域尺度研究,结合遥感影像和各气象站点数据,从景观和流域尺度研究自然和人为活动对河岸植被缓冲带生态过程和生态功能的影响,探讨河岸植被缓冲带综合治理和管理模式。④建立植被缓冲带综合评价体系,应用数字化手段对河岸植被缓冲带实时监控,结合野外观察和采样分析,综合评价河岸植被缓冲带的结构和生态功能。参43

English Abstract

胡海波, 邓文斌, 王霞. 长江流域河岸植被缓冲带生态功能及构建技术研究进展[J]. 浙江农林大学学报, 2022, 39(1): 214-222. doi: 10.11833/j.issn.2095-0756.20210201
引用本文: 胡海波, 邓文斌, 王霞. 长江流域河岸植被缓冲带生态功能及构建技术研究进展[J]. 浙江农林大学学报, 2022, 39(1): 214-222. doi: 10.11833/j.issn.2095-0756.20210201
HU Haibo, DENG Wenbin, WANG Xia. Research progress on ecological function and construction technology of riparian vegetation buffer strips in the Yangtze River Basin[J]. Journal of Zhejiang A&F University, 2022, 39(1): 214-222. doi: 10.11833/j.issn.2095-0756.20210201
Citation: HU Haibo, DENG Wenbin, WANG Xia. Research progress on ecological function and construction technology of riparian vegetation buffer strips in the Yangtze River Basin[J]. Journal of Zhejiang A&F University, 2022, 39(1): 214-222. doi: 10.11833/j.issn.2095-0756.20210201
  • 长江流域是指长江干流和支流流经的广大区域,横跨中国东部、中部和西部三大经济区,共19个省、市和自治区,是世界第三大流域,流域总面积180万km2,占中国国土面积的18.8%。长江流域具有丰富的自然资源,依托长江黄金水道,孕育了发达的长江经济带。长江经济带拥有珍贵的岸线资源。长江岸线是口岸、产业及城镇布局的重要载体,而河岸植被缓冲带是长江流域的生态屏障和污染物入江的最后防线,不仅生物多样性丰富,生态系统服务功能价值高,而且是修复和建设长江绿色生态廊道的关键所在[1]。河岸植被缓冲带是流域保护的一项重要措施。国外的研究主要集中在河岸带生态恢复、河岸植被演替、河岸缓冲带对氮磷的净化机制、土地利用对河岸带的影响、河岸带管理和河岸缓冲带模拟研究等方面[2-6]。中国对河岸植被缓冲带的研究起步较晚,截至目前主要对河岸植被缓冲带的生态功能、截污效果、退化河岸带的生态修复,以及河岸带生态系统管理等方面[7-10]进行了研究,但大部分研究局限于定性介绍和小尺度的定位研究,缺乏流域尺度系统性的定量研究。本研究对长江流域河岸植被缓冲带的主要生态功能进行了研究,分析了目前长江流域河岸植被缓冲带面临的影响因素,并提出了植被缓冲带构建技术,以期为长江流域河岸植被缓冲带的构建技术提供科学依据,对长江经济带社会经济的可持续发展具有重要意义。

    • 长江干流(宜宾以下)未被占用的自然岸线为4 995.9 km,其中对长江水生生态系统有重要意义的河岸带仅1 528.5 km,这部分自然岸线极为稀缺[11]。在长江流域尤其是中下游地区,河网密集,湖泊众多,河岸植被建设对当地水土保持、净化水质和景观绿化等具有特别重要的意义。河岸植被缓冲带又称植被过滤带、河岸缓冲带和保护带等。目前,对于河岸植被缓冲带还没有统一的定义,多数学者采用狭义的定义:指河水—陆地交界处的两边,直至河水影响消失为止的地域[12]。从景观生态学角度看,河岸植被缓冲带是陆域和水域生态系统共同影响的生态交错带,具有独特的生态系统特征和生态服务功能。不同植被类型对污染物的拦截能力不同。孙金伟等[13]按照植被缓冲带的组成将其划分为草地缓冲带、灌木缓冲带、林木缓冲带和以上几种植被构成的复合缓冲带。河岸植被缓冲带结构复杂,时空异质性强,具有一定的脆弱性、过渡性与边缘性。有学者认为[14]:河岸植被缓冲带具有纵向空间的镶嵌性、横向空间的过渡性以及垂直空间的成层性和时间分布的动态性四维的空间结构特征,具有明显的边缘效应。左俊杰等[15]根据上海的河道特征、护岸类型、河岸带绿化及周边土地利用状况,将河岸带生态系统分为一级挡墙结构、二级挡墙结构、特殊结构型和自然或近自然结构4种类型,并提出了针对性的改造建议。河岸植被缓冲带的结构特征是影响生态系统服务功能的主要因素,因此对其类型和特征进行研究具有重要意义。

    • 河岸植被缓冲带是河流生态系统的重要组成部分,是“绿色基础设施”,主要生态功能包括防止河岸侵蚀、截留泥沙、净化水质,以及保障湿地生物多样性、提高生物安全性和维护生态系统完整性等。

    • 无植被保护的河岸,极易受到洪水冲刷,导致河岸后退,河床抬高,河道堵塞,严重影响河流的通航和泄洪功能。河岸植被缓冲带的缓洪护岸功能是通过植被根系固持土壤、凋落物覆盖地表以及林冠截留降水,增强河岸的抗侵蚀能力,拦蓄地表径流,拦截泥沙,减缓河流流速和消减洪峰,从而减少河岸水土流失的生态过程。有学者[16]对三峡库区河岸植被缓冲带4种草本植物根系进行研究发现:不同土层的根长密度为0.24~20.89 cm·cm−3,0~10 cm土层的根长密度显著大于10 cm以上土层;雀稗Paspalum paspaloides的根系抗拉强度最高,为62.6 MPa。表明植物根系对河岸土壤具有加固作用。此外,河岸植被对洪水期河流的演化过程有重要影响,杨树青等[17]采用自然模拟实验,通过改变河岸植被单双岸布设方式,控制河岸植被覆盖率分别为0% 、20% 、40% 、80%,模拟河流演化过程。结果表明:双岸植被覆盖的河道主流稳定性较单岸植被覆盖好;植被覆盖率越高,水流对河床的局部扰动越强烈,河流演变达到稳定状态周期越长。

    • 河岸植被缓冲带能够过滤河岸两旁地表径流内的营养物质(如氮、磷等)、有机物质(如腐殖酸、亲水性氨基酸等)和有毒有害物质(如重金属、农药等),并在各种物理、化学和生物过程作用下,减轻对河流水体的污染。

      河岸植被可以缓流落淤,减少水中悬浮物,起到改善水质的作用。姚程等[18]利用长江下游2种土壤,开展了5种植物对底泥稳固作用的研究。结果表明:植物使底泥孔隙度减少,细小粒径(<50 μm)土壤增加,有利于底泥沉积,改善上覆水指标,从而减少水中的悬浮颗粒物。河流中适量的氮、磷是河岸两旁植被的营养物质,但过量将导致水体富营养化。国际上一般认为:湖水中总磷质量浓度达0.02 mg·L−1、总氮质量浓度达0.20 mg·L−1将导致水体富营养化发生。植被缓冲带植物和微生物吸收以及土壤吸附和反硝化作用,可以截留大量输入河流中的氮素[19]。王琼等[20]归纳总结了河岸植被缓冲带对氮污染物的削减作用。黄晓艺等[21]以太湖蠡湖区和贡湖湾区的13个主要出入湖河口为研究对象,发现有机物和氮污染严重,总氮、铵氮(NH+ 4-N)、总磷、高锰酸盐指数(CODMn)的质量浓度分别为0.48~4.17、0.26~1.09、0.04~0.29、5.80~18.30 mg·L−1,且不同水生植物对氮磷的吸收量从大到小排序为芦苇Phragmites australis、茭草Zizania latifolia、香蒲Typha orientalis、水鳖Hydrocharis dubia。另外,农业面源污染成为水污染的最主要来源。有学者总结分析了植被缓冲带对农业面源污染物的截留净化功能[22-23]。孙东耀等[24]模拟了不同浓度面源污染的农田径流。结果表明:不同植被组合对径流量及总磷的消减效果从大到小依次为草本、灌草、灌木,其中草本植物缓冲带对径流量的消减率达86.93%,在高、低浓度进水时对总磷浓度的消减率分别为95.20%、80.69%。河岸植被缓冲带对氮磷的截留转化效率受污染物量和形态、植被年龄、群落结构,以及季节、气候、土壤等综合因素的影响,因此在不同的研究区域,研究结果有较大差异。

    • 河岸植被缓冲带是水陆生态交错带,也是两栖动物觅食、越冬和迁移的重要通道,并且丰富的植被可向河流和陆地输入大量的枯枝落叶和果实等凋落物,为水生、陆生和两栖类生物提供了良好的生境和充足的食物,有利于保护物种多样性。河岸带具有独特的时空特征和边缘效应,河岸水位随着洪水和干旱交替出现并呈周期性变化,进而影响着河岸带干、湿环境的交替分布,在不同的时间和地点为种间竞争营造了不同的生境条件,也形成了栖息地和植被的多样性及时间变化性。

      河岸生境是许多重要野生动植物(如鸟类、寄生蜂等)的庇护区和繁殖地,对珍稀和濒危物种的保护具有重要意义。植被缓冲带内挺水植物和沉水植物为产黏性卵的鱼类提供重要的附着基质,湖滨滩地形成了洞庭湖、鄱阳湖、太湖等一大批重要的渔业基地。在鄱阳湖122种鱼类中,依靠湖洲草滩湿地繁殖的鱼类占70%~80%[25]。多样的河岸植物和凋落物为植食性无脊椎动物提供了充足的食物来源,复杂的植物群落结构也是无脊椎动物良好的避难场所[26]。河岸植被缓冲带为有益昆虫和传粉昆虫提供了栖息地,农田附近的河岸植被缓冲带中生存的掠食性异翅目Heteroptera昆虫和成虫越冬的鞘翅目Coleoptera昆虫,可为春季农作物害虫(如蚜虫Aphidoidea)提供第一道重要的防线。因此,河岸植被缓冲带有可能加强自然虫害控制和授粉服务,并对产量产生积极影响。总之,河岸植被缓冲带生态系统生境复杂,生物多样性丰富,具有很高的生态保护价值。

    • 中国人口众多,社会经济发展迅速,快速的城市化进程、大量水利工程建设、外来物种的引入和农业、工业发展带来的污染物排放等,导致长江河岸植被缓冲带退化、生物多样性降低和水体富营养化等生态环境问题,对长江流域的生态安全以及社会经济的可持续发展构成了严重威胁。

    • 河岸植被缓冲带是生态交错带,是生态风险较大的区域,具有较高的生物多样性和生态脆弱性,人类活动的加剧会降低本地物种的多样性,且极容易受到外来植物的入侵。

      据调查,长江上游重庆段两岸的外来入侵植物共13科28属32种,菊科Asteraceae植物最多,共包含13种;其次为苋科Amaranthaceae,包含4种。其中大狼杷草Bidens frondosa、鬼针草Bidens pilosa、苏门白酒草Conyza sumatrensis、喜旱莲子草Alternanthera philoxeroides、野胡萝卜Daucus carota在调查区广泛分布且数量较多。风险评价结果显示:32种入侵植物中21.88%的危险程度较高[27]。此外,葛刚等[28]在长江中游鄱阳湖国家级自然保护区的实地调查中,初步确定有外来入侵植物12科16属19种,其中菊科最多,有4种,危害较为严重的外来入侵种有裸柱菊Solvia anthemifolia、野胡萝卜、野老鹳草Geranium carolinianum和喜旱莲子草等4种。在长江下游上海青浦河滨岸带生态系统中,发现外来入侵植物14科24种,其科、种数分别占到该生态系统所有植物科、种数的48.3%与26.1%,从分布状况与危害程度上看,加拿大一枝黄花Solidago canadensis、小飞蓬Comnyza canadensis、钻形紫菀Aster subulatus、白花三叶草Trifolium repens、喜旱莲子草、凤眼莲Eichhornia crassipes和水盾草Cabomba caroliniana这7种外来入侵植物对河流滨岸带生态系统的影响尤为严重[29]

      由于外来入侵植物具有适应性和繁殖能力强、传播扩散迅速等特点,而河流是传播体有效扩散的通道,部分入侵植物通过与本地植被的竞争,逐渐改变原生态系统的结构和功能,并降低生态系统的恢复能力[30],同时改变河岸的水分循环、生物地球化学循环,进而导致生境质量退化,对河岸带生态系统的健康和生态功能的正常发挥造成严重威胁。但有学者认为[31]:尽管外来入侵物种可能会导致河岸现存植被退化,却丰富了土壤种子库的物种多样性,能为本地植物群落的恢复再生提供适度的潜力。另外,河岸带韧性植物群落对外界干扰的响应机制复杂,是该领域研究的重点和难点。目前,人们对外来生物入侵机制及造成的生态环境效应和河岸带生态系统植被群落动态变化规律还不太清楚,还需进一步开展长期观测和系统研究。

    • 大量水利工程的修建,改变了水文特性、传播过程、地貌特征以及河流的连通性,从而引起植被物种丰富度、植物组成和分布的变化[32]。大坝对河流的屏障效应还会限制种子的传播,并影响植物的发芽和定植,进而导致大坝上游和下游的物种丰富度异变。如KWON等[33]发现:水库消落带的物种丰富度低于其上游溪流湿地。由于三峡大坝的修建,降低了鄱阳湖和洞庭湖的洪水位,进入枯水季的时间提前,导致湖草分布带下移,水生植被表现出一定的萎缩。此外,不同湿地类型主要分布高程也逐渐降低,如2005—2010年洞庭湖水滩-湖草分界点高程由23.15 m降至22.85 m,湖草-芦苇分界点高程由25.03 m降至23.90 m[26]

      在城镇区域,由于对河岸植被缓冲带生态系统的结构特征和生态功能的认识不够,为追求景观效果,部分自然植被群落类型已经被人工“园林化”,造成河道的白化、硬化、渠道化。这些硬质护岸破坏了自然水陆交互作用,导致河道生态服务功能减弱。虽然河道的渠化、硬化有益于防洪治水,但也造成了水土分离、水与生物分离,阻断了河道和岸线生态系统之间的相互作用,破坏了水生、湿生动植物的生境和栖息地,使河岸带动植物种类减少甚至消亡,并导致河道生态系统失衡与生态功能受损。

    • 环境保护部、国家发展和改革委员会、水利部联合颁发的《重点流域水污染防治规划(2016—2020年)》指出:长江流域工业废水污染物主要为重金属(铬、铜),城镇生活污水污染物主要为营养盐[总氮、总磷、重铬酸盐指数(CODCr)],农业面源污染主要为持久性有机污染物[多溴二苯醚 (PBDEs)、六氯环己烷 (HCHs)][34]。张雪等[35]评估了长江下游流域水体重金属污染风险。结果表明:铬、铅、铜、汞、砷的残留均值分别为4.276、1.866、5.762、0.016、1.421 μg·L−1,证实了重化工业高度密集的长江下游地区受铬、铜污染较严重。刘明丽[36]发现:同国内外其他水体中的污染相比,长江水体中多溴二苯醚和有机氯农药(六六粉和滴滴涕)处于中高水平,质量浓度范围及平均值分别为0.33~10.36 (3.49)、91.03~152.13(112.03)、11.71~54.53(31.43) μg·L−1;长江沉积物中六氯环己烷 (HCHs)处于中等污染水平,质量分数范围及平均值为4.75~45.12和15.47 ng·g−1。另外,被认为是污染物的微塑料(一般定义为直径小于5 mm的塑料,其形状主要分为碎片、纤维、颗粒和泡沫)吸收有毒化学物质或病原体,然后通过食物链转移至生物体内[37]。SU等[38]已在太湖沉积物和地表水中检测到微塑料,分别达11.0~234.6个·kg−1和3.4~25.8个·L−1。然而,目前对于微塑料缺乏成熟的检测方法和标准丰度描述单位;微塑料对于生物的毒理反应尚不明确,迁移累积造成的生态环境效应有待研究。总之,长江流域不同江段的水质已经受到中轻度污染,并且重金属和微塑料对人体健康有极大威胁,需要进行长期监测与研究,为长江水体的污染问题提供解决方案。

    • 河岸植被缓冲带的空间位置选择很重要。如果选址不合理,那么地表径流和污染物会绕过河岸植被缓冲带直接进入河流。河岸植被缓冲带垂直于地表径流方向,通常设置在河岸下坡区域,且连续分布比间断分布的截流截污效率更高[39];在河岸的等高线上设置多条多年生植被缓冲带,比直接设置在河流旁的植被缓冲带效果更好[40]

      河岸植被缓冲带空间结构体系分为纵向空间结构和横向空间结构[41]。针对长江流域上中下游不同区段,应设置不同类型的植被缓冲带。上游山高坡陡,以保持水土、固堤护岸为主;中游地势缓和、淤积严重,以涵养水源、消浪减能为主;下游地势平缓,人为活动频繁,以截污净化水质和美化环境为主。在横向空间结构方面,根据岸坡常淹水区—周期性淹水区—陆地区的特点,适地适树,因地制宜地设置水生植物群落、湿生植物群落和陆生森林植物群落。比如,在常水位以下可以种植芦苇、香蒲等水生植物,在常水位附近种植杞柳Salix integra、紫穗槐Amorpha fruticosa等湿生灌木,在常水位以上至高水位可以种植耐水湿的中山杉Taxodium zhongshansha、池杉Taxodium ascendens、垂柳Salix babylonica和乌桕Sapium sebiferum等乔木树种。

    • 河岸植被缓冲带宽度原则上应根据径流分布、径流量、污染负荷量、缓冲带立地条件以及植被类型等因素确定,但生态建设中缓冲带宽度还受其他因素制约,如河岸特性、水文状况、资金投入和业主要求等。此外,由于长江流域岸线跨度大,河岸结构复杂等原因,长江流域河岸植被缓冲带宽度应根据不同河岸带的特点和功能来确定。当河岸植被缓冲带的功能是固岸护坡而侵蚀不严重时,宽度可窄些,一般10~15 m即可;当河岸侵蚀作用严重时,植被缓冲带宽度至少20 m。当河岸植被缓冲带的功能是过滤沉淀物质和吸收污染物质时,在高宽比小于15%的斜坡中,15 m左右宽的草地缓冲带可以截留大量颗粒物和污染物;在较为陡峭斜坡或者土壤渗透能力较差的岸段,缓冲带宽度应达40 m或更宽。当河岸植被缓冲带的功能是保护渔业时,植被缓冲带宽度至少40 m。当河岸植被缓冲带是野生动植物栖息地时,缓冲带的宽度应根据保护物种而定,通常120 m是所能接受的最小值[42]

      河岸植被缓冲带宽度确定方法可以大致分为:基于复杂数学模型的宽度确定方法[REMM模型(riparian ecosystem management model)、CREAMS模型(the chemicals,runoff,and erosion from agricultural management systems)和VFSMOD模型(the vegetative filter strip model)、基于简单数学模型的宽度确定方法(Phillips水文模型、Phillips时间模型、Mander模型、Nieswand模型和SWAT模型)和其他确定方法[缓冲带宽度设计工具(VSFMOD模型)、基于GIS的方法]等。坡度是对缓冲区宽度设置影响最大的因素。SWIFT[43]发现:植被缓冲带宽度与坡度之间存在线性关系,缓冲带的坡度每增加1%,宽度就要相应增加0.12~0.42 m。这样才能平衡径流速度和侵蚀能力。所以,应根据河岸带具体情况确定坡度和植被缓冲带宽度。

    • 河岸植被缓冲带植物配置应从垂直和水平方向考虑。水域垂直方向上配置不同沉水、浮水和挺水植物群落,陆地垂直方向上配置不同的乔、灌、草、藤植被结构,提高生态系统的稳定性;在水平方向上,按照不同河段自然演替模式,先种植当地先锋物种对河岸进行稳固,然后再种植其他适应性和生态功能性强的物种恢复缓冲带的植被。通过合理配置不同植物,选择适宜密度,通过相互适应和竞争,保证河岸植被缓冲带的植物群落共生与健康稳定。

      河岸植被缓冲带植物的选择应遵循如下原则:①适地适树原则。针对长江流域不同河岸特点,选择适应性广、保持水土和净化环境能力强的植物,最大限度地发挥植被缓冲带的生态功能。优先选择乡土植物,适当引进外来物种。②乔灌草藤相结合原则。充分利用草、藤本植物速生、覆盖率高,灌木和乔木植物冠幅大、根系深的特点,增加植物群落的覆盖度,有效发挥林分遮阴效应和林冠截留作用,防治土壤侵蚀。③常绿与落叶树种混交原则。常绿树种和落叶树种混交可以形成明显的季相变化,既增加地表覆盖,具有遮阴作用,又能拦截污染物和防治水土流失。④阳性和阴性植物相结合原则。为提高光能利用率,丰富生物多样性,在植物群落配置过程中,应将喜光植物和耐阴植物有机结合起来。⑤物种共生相容原则。根据生态位理论和互利共生原则,选用的植物应在空间和营养生态位上具有一定的差异性,避免种间激烈竞争,保证植物群落的稳定性。⑥景观生态相结合原则。以遵循自然规律为出发点,在最大限度维持原有地貌的基础上,尽可能结合长江流域不同河岸带生态环境特征、园林景观以及当地文化进行设计,建设美丽长江岸线,使人类生活与生态环境和谐协调。

    • 加强河湖水域岸线管理保护,恢复河湖水域岸线生态功能。各级河长制定经济激励措施,鼓励人们认领并负责河岸带的恢复与管理。河岸植被缓冲带的管理对发挥其生态功能至关重要,尤其是营养积累潜力。在植被缓冲带建成前期,部分未建成的岸段会出现汇流,进而产生“木桶效应”;待植被缓冲带建成后,草地对营养物质的截留吸收,会形成氮库,需要定期收割和清理。另外,建立河流及河岸带的在线信息库,监测河岸带植被建设情况和健康信息,以推动河岸植被缓冲带建设,促使公众更加关注河流及河岸带健康。最后,还可颁布相关的法律、法规,依法管理。

    • 河岸植被缓冲带是“绿色基础设施”,生态功能巨大,但随着经济的快速发展、城市化进程的加快以及外来物种的入侵等,导致长江流域河岸植被缓冲带退化、生物多样性降低和水体富营养化等生态环境问题,对该流域的生态安全以及社会经济的可持续发展构成了严重威胁。当前,亟需对长江流域河岸植被缓冲带进行深入、系统研究。为此提出以下建议:①开展河岸植被缓冲带遮阴效应的过程及机制研究。河岸植被缓冲带起到缓冲极端天气的作用,是一种潜在、有价值的气候缓解措施。目前,中国关于长江流域植被缓冲带的遮阴效应研究较少,应根据遮阴效应的研究结果,讨论遮阴的利弊问题以及遮阴效应与缓冲极端气候的联系。②开展极端气候条件下生态功能研究。虽然目前对河岸带多种污染物的截留效果以及净化机制进行了研究,但随着全球极端气候的增加,有必要进一步利用模型模拟极端气候条件下(暴雨、干旱等)河岸植被缓冲带的截流减污效应,为植被缓冲带的构建提供参考依据。③开展景观和流域尺度研究。在研究尺度上,目前多以微观与中观为主,针对景观尺度和流域尺度的研究成果缺乏,应利用遥感影像和各气象站点数据,从景观和流域尺度研究自然和人为活动对河岸植被缓冲带生态过程和生态功能的影响,探讨河岸植被缓冲带综合治理和管理模式。④建立植被缓冲带综合评价体系。应用遥感技术、地理信息系统、全球定位系统、计算机模拟等数字化手段,对河岸植被缓冲带地形、水文、植被和人为活动等进行实时监控,结合野外观察和采样分析,综合评价河岸植被缓冲带的结构和生态功能。

参考文献 (43)

目录

    /

    返回文章
    返回