-
长江流域是指长江干流和支流流经的广大区域,横跨中国东部、中部和西部三大经济区,共19个省、市和自治区,是世界第三大流域,流域总面积180万km2,占中国国土面积的18.8%。长江流域具有丰富的自然资源,依托长江黄金水道,孕育了发达的长江经济带。长江经济带拥有珍贵的岸线资源。长江岸线是口岸、产业及城镇布局的重要载体,而河岸植被缓冲带是长江流域的生态屏障和污染物入江的最后防线,不仅生物多样性丰富,生态系统服务功能价值高,而且是修复和建设长江绿色生态廊道的关键所在[1]。河岸植被缓冲带是流域保护的一项重要措施。国外的研究主要集中在河岸带生态恢复、河岸植被演替、河岸缓冲带对氮磷的净化机制、土地利用对河岸带的影响、河岸带管理和河岸缓冲带模拟研究等方面[2-6]。中国对河岸植被缓冲带的研究起步较晚,截至目前主要对河岸植被缓冲带的生态功能、截污效果、退化河岸带的生态修复,以及河岸带生态系统管理等方面[7-10]进行了研究,但大部分研究局限于定性介绍和小尺度的定位研究,缺乏流域尺度系统性的定量研究。本研究对长江流域河岸植被缓冲带的主要生态功能进行了研究,分析了目前长江流域河岸植被缓冲带面临的影响因素,并提出了植被缓冲带构建技术,以期为长江流域河岸植被缓冲带的构建技术提供科学依据,对长江经济带社会经济的可持续发展具有重要意义。
Research progress on ecological function and construction technology of riparian vegetation buffer strips in the Yangtze River Basin
-
摘要: 长江流域河岸植被缓冲带是河岸生态系统的重要组成部分,对长江流域污染防治和生态环境建设具有重要影响。综述了河岸植被缓冲带的主要生态功能,分析了长江流域河岸植被缓冲带面临的环境影响因素,阐述了河岸植被缓冲带构建技术,并对未来研究提出展望。河岸植被缓冲带的主要生态功能为缓洪护岸、截污净化和保护生物多样性等。目前,长江流域河岸植被缓冲带面临的主要影响因素为外来物种入侵、大量硬质工程建设和农业、工业发展带来的污染物排放等。长江流域河岸植被缓冲带的构建技术应根据不同河岸带的特点和功能来确定,并加强对河岸植被缓冲带的管理。未来研究应集中于:①开展河岸植被缓冲带遮阴效应的过程及机制研究,根据遮阴效应的研究结果,讨论遮阴的利弊问题,以及遮阴效应与缓冲极端气候的联系。②开展极端气候条件下生态功能研究,利用模型模拟极端气候条件下(暴雨、干旱等)河岸植被缓冲带的截留减污效应,为植被缓冲带的构建提供参考依据。③开展景观和流域尺度研究,结合遥感影像和各气象站点数据,从景观和流域尺度研究自然和人为活动对河岸植被缓冲带生态过程和生态功能的影响,探讨河岸植被缓冲带综合治理和管理模式。④建立植被缓冲带综合评价体系,应用数字化手段对河岸植被缓冲带实时监控,结合野外观察和采样分析,综合评价河岸植被缓冲带的结构和生态功能。参43Abstract: The riparian vegetation buffer strip in the Yangtze River Basin is an important part of the riparian ecosystem and has an important impact on pollution prevention and ecological environment construction in the Yangtze River Basin. The paper summarized the main ecological functions of the riparian vegetation buffer strips, analyzed the environmental impact factors faced by the riparian vegetation buffer strips in the Yangtze River Basin, expounded the construction technology of the riparian vegetation buffer strips, and proposed prospects for future research. The main ecological functions of the riparian vegetation buffer strips were flood mitigation and revetment, sewage interception and purification, and biological diversity protection. At present, the main influencing factors facing the riparian vegetation buffer strips in the Yangtze River Basin were the invasion of alien species, the construction of a large number of hard engineering projects, and pollutant emission caused by agricultural and industrial development. The construction technology of the riparian vegetation buffer strips in the Yangtze River Basin should be determined according to the characteristics and functions of different riparian strips, and the management of the riparian vegetation buffer strips should be strengthened. Future research should focus on the following aspects: (1) Research on the process and mechanism of the shading effect of riparian vegetation buffer strips. Based on the research results of the shading effect, the advantages and disadvantages of shading and the relationship between shading effect and buffering extreme climate are discussed. (2) Ecological function research under extreme climatic conditions. Models are used to simulate the interception and pollution reduction effects of riparian vegetation buffer strips under extreme climatic conditions (rainstorm, drought, etc.), so as to provide a reference for the construction of vegetation buffer strips. (3) Landscape and watershed scale study. With the help of remote sensing images and data from various meteorological stations, the impact of natural and human activities on the ecological processes and ecological functions of the riparian vegetation buffer strips is studied from landscape and watershed scale in order to explore the comprehensive treatment and management model of riparian vegetation buffer strips. (4) Establishment of a comprehensive evaluation system for the vegetation buffer strips. The structure and ecological function of the riparian vegetation buffer strips are comprehensively evaluated by real-time monitoring of the riparian vegetation buffer strips with the help of digital means, combined with field observation and sample analysis. [Ch, 43 ref.]
-
Key words:
- Yangtze River Basin /
- riparian /
- vegetation buffer strip /
- ecological function /
- construction technology
-
[1] 杨桂山, 徐昔保, 李平星. 长江经济带绿色生态廊道建设研究[J]. 地理科学进展, 2015, 34(11): 1356 − 1367. YANG Guishan, XU Xibao, LI Pingxing. Research on the construction of green ecological corridors in the Yangtze River Economic Belt [J]. Prog Geogr, 2015, 34(11): 1356 − 1367. [2] GONZÁLEZ E, FELIPE-LUCIA M R, BOURGEOIS B, et al. Integrative conservation of riparian zones [J/OL]. Biol Conserv, 2017, 211[2021-01-08]. doi: 10.1016/j.biocon.2016.10.035. [3] CORENBLIT D, VAUTIER F, GONZÁLEZ E, et al. Formation and dynamics of vegetated fluvial landforms follow the biogeomorphological succession model in a channelized river: biogeomorphological succession in a channelised river [J/OL]. Earth Surf Processes Landforms, 2020, 45(9)[2021-01-08]. doi: 10.1002/esp.4863. [4] FINNEGAN J, REGAN J T, de EYTO E, et al. Nutrient dynamics in a peatland forest riparian buffer zone and implications for the establishment of planted saplings [J]. Ecol Eng, 2012, 47: 155 − 164. [5] MELLO K D, VALENTE R A, RANDHIR T O, et al. Effects of land use and land cover on water quality of low-order streams in Southeastern Brazil: Watershed watershed versus riparian zone [J]. Catena, 2018, 167: 130 − 138. [6] TEPLY M, MCGREER D, CEDER K. Using simulation models to develop riparian buffer strip prescriptions [J]. J For, 2014, 112(3): 302 − 311. [7] 段丽军. 河岸带生态功能研究综述[J]. 华北国土资源, 2015(2): 95 − 96. DUAN Lijun. Research summary on ecological function of riparian zone [J]. Huabei Land Resour, 2015(2): 95 − 96. [8] 闫钰, 董艳红, 汤洁, 等. 东新开河岸边植被缓冲带对雨水径流中典型污染物截留效果试验[J]. 环境工程, 2020, 38(9): 139 − 144. YAN Yu, DONG Yanhong, TANG Jie, et al. experimental study on the typical interception effect of the allowable buffer zone on the bank of dongxinkai river in rainwater runoff [J]. Environ Eng, 2020, 38(9): 139 − 144. [9] 任远, 王冬梅, 信忠保. 漓江流域水陆交错带植被配置型式分类及生态特征[J]. 生态学报, 2014, 34(15): 4423 − 4434. REN Yuan, WANG Dongmei, XIN Zhongbao. Classification and ecological characteristics analysis of vegetation arrangement type in land-water ecotone of Li River [J]. Acta Ecol Sin, 2014, 34(15): 4423 − 4434. [10] 曾立雄, 黄志霖, 肖文发, 等. 河岸植被缓冲带的功能及其设计与管理[J]. 林业科学, 2010, 46(2): 128 − 133. ZENG Lixiong, HUANG Zhilin, XIAO Wenfa, et al. Function, design and management of riparian vegetation buffer strips [J]. Sci Silv Sin, 2010, 46(2): 128 − 133. [11] 段学军, 王晓龙, 徐昔保, 等. 长江岸线生态保护的重大问题及对策建议[J]. 长江流域资源与环境, 2019, 28(11): 2641 − 2648. DUAN Xuejun, WANG Xiaolong, XU Xibao, et al. Major problems and countermeasures of ecological protection on the waterfront resources along the Yangtze River [J]. Resour Environ the Yangtze Basin, 2019, 28(11): 2641 − 2648. [12] 陈吉泉. 河岸植被特征及其在生态系统和景观中的作用[J]. 应用生态学报, 1996, 7(4): 439 − 448. CHEN Jiquan. Riparian vegetation characteristics and their functions in ecosystems and landscapes [J]. Chin J Appl Ecol, 1996, 7(4): 439 − 448. [13] 孙金伟, 许文盛. 河岸植被缓冲带生态功能及其过滤机理的研究进展[J]. 长江科学院院报, 2017, 34(3): 40 − 44. SUN Jinwei, XU Wensheng. A review on ecological functions and purification mechanism of riparian buffer zone [J]. J Yangtze River Sci Res Inst, 2017, 34(3): 40 − 44. [14] 夏继红, 林俊强, 姚莉, 等. 河岸带的边缘结构特征与边缘效应[J]. 河海大学学报(自然科学版), 2010, 38(2): 215 − 219. XIA Jihong, LIN Junqiang, YAO Li, et al. Edge structure and edge effect of riparian zones [J]. J Hohai Univ Nat Sci, 2010, 38(2): 215 − 219. [15] 左俊杰, 蔡永立, 罗坤, 等. 上海地区河岸带结构: 类型、分布及改进[J]. 水资源保护, 2009, 25(6): 24 − 28. ZUO Junjie, CAI Yongli, LUO Kun, et al. Riparian structure in Shanghai: types, distribution and improvement [J]. Water Resour Prot, 2009, 25(6): 24 − 28. [16] ZHONG Ronghua, HE Xiubin, BAO Yuhai, et al. Estimation of soil reinforcement by the roots of four postdam prevailing grass species in the riparian zone of Three Gorges Reservoir, China [J]. J Mount Sci, 2016, 13(3): 508 − 521. [17] 杨树青, 白玉川, 徐海珏, 等. 河岸植被覆盖影响下的河流演化动力特性分析[J]. 水利学报, 2018, 49(8): 995 − 1006. YANG Shuqing, BAI Yuchuan, XU Haiyu, et al. Dynamic characteristics of river evolution under the influence of riparian vegetation cover [J]. J Hydraul Eng, 2018, 49(8): 995 − 1006. [18] 姚程, 胡小贞, 耿荣妹, 等. 几种水陆交错带植物对湖滨带底质的稳固作用[J]. 湖泊科学, 2017, 29(1): 105 − 115. YAO Cheng, HU Xiaozhen, GENG Rongmei, et al. Effects of five literal-zone plants on lakeshore sediment stabilization [J]. J Lake Sci, 2017, 29(1): 105 − 115. [19] 朱晓成, 吴永波, 余昱莹, 等. 太湖乔木林河岸植被缓冲带截留氮素效率[J]. 浙江农林大学学报, 2019, 36(3): 565 − 572. ZHU Xiaocheng, WU Yongbo, YU Yuying, et al. Removing nitrogen with trees planted in the riparian vegetation buffer strips of Taihu Lake [J]. J Zhejiang A&F Univ, 2019, 36(3): 565 − 572. [20] 王琼, 范康飞, 范志平, 等. 河岸缓冲带对氮污染物削减作用研究进展[J]. 生态学杂志, 2020, 39(2): 665 − 677. WANG Qiong, FAN Kangfei, FAN Zhiping, et al. Nitrogen pollutant removal by riparian buffer zone: a review [J]. Chin J Ecol, 2020, 39(2): 665 − 677. [21] 黄晓艺, 胡湛波, 叶春, 等. 太湖出入湖河口水质和水生植物中氮、磷含量及其相关性分析[J]. 环境工程, 2019, 37(9): 74 − 80,102. HUANG Xiaoyi, HU Zhanbo, YE Chun, et al. Nitrogen and phosphorus contents of aquatic plants and correlation analysis with water quality in confluence areas of rivers and lakes of Taihu Lake, China [J]. Environ Eng, 2019, 37(9): 74 − 80,102. [22] 付婧, 王云琦, 马超, 等. 植被缓冲带对农业面源污染物的削减效益研究进展[J]. 水土保持学报, 2019, 33(2): 1 − 8. FU Jing, WANG Yunqi, MA Chao, et al. Research progress on the effects of vegetation buffer zone on reducing agricultural non-point pollution [J]. J Soil Water Conserv, 2019, 33(2): 1 − 8. [23] 吴永波. 河岸植被缓冲带减缓农业面源污染研究进展[J]. 南京林业大学学报(自然科学版), 2015, 39(3): 143 − 148. WU Yongbo. Research progress on the riparian vegetation buffer strip functions on agricultural nonpoint source pollution reduction [J]. J Nanjing For Univ Nat Sci Ed, 2015, 39(3): 143 − 148. [24] 孙东耀, 仝川, 纪钦阳, 等. 不同类型植被河岸缓冲带对模拟径流及总磷的消减研究[J]. 环境科学学报, 2018, 38(6): 2393 − 2399. SUN Dongyao, TONG Chuan, JI Qinyang, et al. Reduction of simulated runoff and total phosphorus in different vegetation riparian buffer [J]. Acta Sci Circumstantiae, 2018, 38(6): 2393 − 2399. [25] 叶春, 李春华, 邓婷婷. 论湖滨带的结构与生态功能[J]. 环境科学研究, 2015, 28(2): 171 − 181. YE Chun, LI Chunhua, DENG Tingting. Structures and ecological function of lake littoral zones [J]. Res Environ Sci, 2015, 28(2): 171 − 181. [26] 王可洪, 袁兴中, 张冠雄, 等. 河岸无脊椎动物多样性维持机制研究进展[J]. 应用生态学报, 2020, 31(3): 1043 − 1054. WANG Kehong, YUAN Xingzhong, ZHANG Guanxiong, et al. Maintaining mechanisms of riparian invertebrate biodiversity: a review [J]. Chin J Appl Ecol, 2020, 31(3): 1043 − 1054. [27] 程莅登. 长江重庆段河岸植物群落及物种多样性研究[D]. 重庆: 西南大学, 2019. CHENG Lideng. Study on Riparian Plant Community and specice Diversity in Chongqing Section of the Yangtze River [D]. Chongqing: Southwest University, 2019. [28] 葛刚, 李恩香, 吴和平, 等. 鄱阳湖国家级自然保护区的外来入侵植物调查[J]. 湖泊科学, 2010, 22(1): 93 − 97. GE Gang, LI Enxiang, WU Heping, et al. Invasive plants in the national nature reserve of Lake Poyang [J]. J Lake Sci, 2010, 22(1): 93 − 97. [29] 左倬, 蒋跃, 薄芳芳, 等. 平原河网地区滨岸带外来植物入侵现状及影响研究: 以上海青浦区为例[J]. 生态环境学报, 2010, 19(3): 665 − 671. ZUO Zhuo, JIANG Yue, BO Fangfang, et al. Status and impacts of alien plants invasion of the riparian zone in plain river network area: a case study in Qingpu District, Shanghai [J]. Ecol Environ Sci, 2010, 19(3): 665 − 671. [30] van ANDELELTE, ARONSON J. Restoration Ecology: The New Frontier [M]. 2nd ed. Oxford: Blackwell Publishing, 2013. [31] TERERAI F, GAERTNER M, JACOBS S M, et al. Resilience of invaded riparian landscapes: the potential role of soil-stored seed banks [J]. Environ Manage, 2015, 55(1): 86 − 99. [32] SUN Rong, DENG Weiqiong, YUAN Xingzhong, et al. Riparian vegetation after dam construction on mountain rivers in China [J]. Ecohydrology, 2014, 7(4): 1187 − 1195. [33] KWON G J, LEE B A, NAM J M, et al. The relationship of vegetation to environmental factors in Wangsuk stream and Gwarim reservoir in Korea(Ⅱ) soil environments [J]. Ecol Res, 2007, 22(1): 75 − 86. [34] 姚继平, 郝芳华, 王国强, 等. 人工智能技术对长江流域水污染治理的思考[J]. 环境科学研究, 2020, 33(5): 1268 − 1275. YAO Jiping, HAO Fanghua, WANG Guoqiang, et al. Artificial intelligence technology for water pollution control in the Yangtze River Basin [J]. Res Environ Sci, 2020, 33(5): 1268 − 1275. [35] 张雪, 张聪, 宋超, 等. 长江下游流域水体中重金属含量及风险评估[J]. 中国农学通报, 2017, 33(30): 67 − 73. ZHANG Xue, ZHANG Cong, SONG Chao, et al. Heavy metal content of water and risk assessment in the lower reaches of the Yangtze River [J]. Chin Agric Sci Bull, 2017, 33(30): 67 − 73. [36] 刘明丽. 长江流域水相、沉积相中多溴联苯醚及有机氯农药的污染特征和风险评价[D]. 北京: 北京交通大学, 2018. LIU Mingli. Characteristics and Risk Assessment of Polybrominated Diphenyl Ethersand Organochlorine Pesticides in Water and Sediment of the Yangtze River Basin [D]. Beijing: Beijing Jiaotong University, 2018. [37] WU Chenxi, ZHANG Kai, XIONG Xiong. Microplastic pollution in inland waters focusing on Asia [M]//WAGNER M, LAMBERT S. Freshwater Microplastics: Emerging Environmental Contaminants? Cham: Springer International Publishing, 2018: 85 − 99. [38] SU Lei, XUE Yingang, LI Lingyun, et al. Microplastics in Taihu Lake, China [J]. Environ Pollut, 2016, 216: 711 − 719. [39] 钟勇. 美国水土保持中的缓冲带技术[J]. 中国水利, 2004(10): 63 − 65. ZHONG Yong. Buffer strip in soil and water conservation in the United States [J]. China Water Res, 2004(10): 63 − 65. [40] SAHU M, GU R R. Modeling the effects of riparian buffer zone and contour strips on stream water quality [J]. Ecol Eng, 2009, 35(8): 1167 − 1177. [41] 廖先容, 扈幸伟, 邬龙. 城市河流滨岸缓冲带生态修复模式研究[J]. 水利水电技术, 2017, 48(10): 109 − 112. LIAO Xianrong, HU Xinwei, WU Long. Study on eco-restoration mode for riparian buffer zone of urban river [J]. Water Resour Hydropower Eng, 2017, 48(10): 109 − 112. [42] 诸葛亦斯, 刘德富, 黄钰铃. 生态河流缓冲带构建技术初探[J]. 水资源与水工程学报, 2006, 17(2): 63 − 67. ZHUGE Yisi, LIU Defu, HUANG Yuling. Primarily discussion on structuring technology of buffer zone in eco-stream [J]. J Water Resour Water Eng, 2006, 17(2): 63 − 67. [43] SWIFT L W. Filter strip widths for forest roads in the southern appalachians [J]. Southern J Appl For, 1986, 10(1): 27 − 34. -
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20210201
计量
- 文章访问数: 1310
- HTML全文浏览量: 295
- PDF下载量: 91
- 被引次数: 0