-
植物化感作用对其生态功能以及植物之间、植物与环境之间的关系产生重要影响[1]。探讨生态系统中种群间相互干扰和物种进化之间的关系是目前化感研究领域的热点[2]。除了制约其他物种的生长,植物产生化感作用的化学物质还具有如调节植物养分吸收和土壤生物群落、影响凋落物分解过程和土壤肥力等作用[2−4]。因此,探讨化感作用有助于深入地理解和解释竹林生态系统中植物组成分布、群落演替、协同进化及入侵等效应[5]。
毛竹Phyllostachys edulis是常绿乔木状竹类植物。毛竹的不同器官和毛竹林土壤浸提液含有不同化感物质,不同质量浓度的浸提液对其他物种生长及种子萌发产生抑制或促进效应[5−8]。从植物化感作用入手,充分利用毛竹林生态系统中化感物质的正效应,避免负效应,探寻合理的毛竹林立体经营模式具有较好的实践意义。
林药复合经营模式可利用林下生态群落学的生态位和空间结构原理,把竹类、灌木、草本等合理配置,形成多层次和多种群的健康生态系统。高效的毛竹-药用植物复合经营模式需要探索与其相适应的林下伴生物种。本研究选择大宗药材浙贝母Fritillaria thunbergii为目标植物,探讨毛竹不同器官及林内土壤的化感作用,为在毛竹林下和林窗发展林药复合经营的森林生态系统提供参考和技术支撑。
-
研究区设在浙江省磐安县大盘山博物馆(28°49′N,120°17′E)。该区域属于亚热带季风气候,多年平均气温为 13.9~17.4 ℃,1 月最低平均气温为4.3 ℃,7 月最高平均气温为 28.8 ℃,无霜期短,雨量充沛,多年平均降水量为 1 409.8~1 527.8 mm。
-
于2019年9月在集约经营毛竹林内采集径级为0~5 mm的根系、3年生植株的新鲜枝叶、林下凋落物和0~20 cm土壤作为制备浸提液的材料。其中:根系的取材半径为以竹篼为中心的0.5 m范围内;新鲜枝叶取第6盘枝的3级枝和叶片;采集凋落物的范围与根系相同,尽量采集完整并去除杂质。
0~5 mm径级根系放置阴凉处风干;将新鲜枝叶洗净,均剪成1 cm左右的小段;凋落物混合均匀后从叶端开始向另一端剪碎,宽约1 mm;林下0~20 cm鲜土样风干,研碎,过2 mm筛。取1 g上述4种材料,加10 mL蒸馏水在室温[(26±1.2) ℃]下浸泡48 h后进行3重过滤:先用4层棉纱布过滤,再用普通滤纸过滤,然后用0.45 µm的微孔滤膜过滤。4 ℃消毒后置于冰箱。
-
以蒸馏水作空白对照(ck),将不同浸提液用蒸馏水稀释成0.005 kg·L−1 (T1)、0.010 kg·L−1 (T2)、0.020 kg·L−1(T3)、0.050 kg·L−1 (T4)和0.100 kg·L−1(T5) 等5个质量浓度并相应设置5个处理[9]。9月,选取无病虫害、颗粒饱满、大小均一的浙贝母块茎(10.9±1.12) g,选用直径30 cm、高30 cm的圆柱形控根容器种植,每盆种植3颗浙贝母块茎,穴距10 cm,呈等边三角形;每个处理设置5个重复,即5盆共15株,处理间所选用的块茎质量无显著差异。土壤为沙壤土,并混入竹炭肥100 g,搅拌均匀。竹碳肥理化性质:pH 5.6,全氮为(1.48±0.11) g·kg−1,全磷为(1.32±0.20) g·kg−1,全钾为(26.15±4.06) g·kg−1。将埋置块茎后的控根容器放置于大田,进行90 d的适应生长。随后隔15 d浇浸提液1次,每次每盆浇200 mL,处理期为90 d,期间进行常规管理。
-
于2020年4月选取植株上部成熟、无病虫害叶片,采用Li-6400便携式光合仪测量光合特征参数。设置光照强度梯度为0、20、60、100、200、400、800、1 200、1 600 μmol·m−2·s−1,选择晴朗无风的天气于9:00—11:00采用内置红蓝光源测定植株光响应曲线。人工二氧化碳摩尔分数控制为400 µmol·mol−1,相对湿度约为70%。
用直尺测量浙贝母的高度,每个处理10株,并将这10株取回实验室分根、茎、叶放入烘箱中105 ℃杀青30 min后80 ℃烘至恒量,用天平称其质量。采用剪纸称量法计算叶面积[7]。
在每个处理中,选取剩余5株浙贝母植株同一方向的上、中、下层叶片各3片,混合后采用徐琳煜等[9]的方法提取光合色素,用紫外分光光度计测定波长为665、649、470 nm处的吸光度。同时,每个处理选取成熟度相近中下层的叶片10片,放入干冰中迅速带回实验室,放−80 ℃冰箱备用。叶片过氧化氢酶(CAT)活性、过氧化物酶(POD)活性、超氧化物歧化酶(SOD)活性以及丙二醛(MDA)质量摩尔浓度均采用试剂盒(南京建成生物工程研究所)测定。
采用王文文等[10]和车朋等[11]的方法测定浙贝母的贝母素甲和贝母素乙。色谱条件:采用ELSD检测器检测,色谱柱为 Supersil ODS2 (4.6 mm×25 cm) E1828368。流动相:偶氮二环己基甲腈(AcCN)∶0.05%三乙胺溶液为75∶25,压力为10.0 MPa,流速为1 mL·min−1,柱温为30 ℃,进样量为20 µL。依次检测对照品和供试品溶液,并计算贝母素甲和贝母素乙的质量分数。
-
采用SPSS 19.0的非直角双曲线模型拟合光合—光响应曲线,依据光响应曲线计算得出表观量子效率、最大净光合速率、光饱和点和光补偿点。
化感效应指数IR=1−C/T(T≥C)或IR=T/C−1(T<C)。其中:T为试验值,C为对照值。IR>0表示促进作用, IR<0表示抑制作用[12]。综合化感效应指数用浙贝母的生长指标、光合色素和光响应特征参数的化感效应指数的算术平均值表示。
采用SPSS 19.0进行单因素方差分析及最小显著差异法(LSD法)检验(α=0.05)。
-
化感效应指数表明:毛竹根系、新鲜枝叶、凋落叶和土壤浸提液对浙贝母株高的影响表现为低质量浓度促进高质量浓度抑制(“低促高抑”)的效应(表1),在T5处理时均表现出抑制浙贝母高生长的现象;凋落物和土壤浸提液处理时,分别从T3、T4处理开始发生抑制作用。差异显著性分析表明:新鲜枝叶和凋落物浸提液处理对浙贝母株高的影响不显著。
表 1 毛竹不同浸提液对浙贝母株高、生物量和叶面积的影响
Table 1. Effects of different extracts of Ph. edulis forest on height of F. thunbergia
浸提液 浙贝母株高 ck/cm T1 T2 T3 T4 T5 数值/cm IR 数值/cm IR 数值/cm IR 数值/cm IR 数值/cm IR 根系 42.75±2.31c 57.93±0.86 a 0.26 53.20±3.43 b 0.20 52.27±2.75 b 0.18 43.30±0.85 c 0.01 37.78±3.12 d −0.12 新鲜枝叶 42.75±2.31 a 46.80±3.89 a 0.09 46.00±2.73 a 0.07 45.50±3.51 a 0.06 44.55±5.39 a 0.04 42.50±1.84 a −0.01 凋落物 42.75±2.31 a 44.03±3.89 a 0.03 44.47±3.42 a 0.04 42.75±6.04 a 0.00 41.58±10.41 a −0.03 38.43±6.84 a −0.10 土壤 42.75±2.31 ab 46.47±3.78 a 0.08 43.97±1.08 a 0.03 42.02±3.99 ab −0.02 38.13±4.11 b −0.11 37.90±3.65 b −0.11 浸提液 浙贝母地上生物量 ck/g T1 T2 T3 T4 T5 数值/g IR 数值/g IR 数值/g IR 数值/g IR 数值/g IR 根系 0.85±0.03 b 1.02±0.09 a 0.17 1.09±0.11 a 0.22 1.08±0.15 a 0.21 0.81±0.03 b −0.05 0.75±0.10 b −0.12 新鲜枝叶 0.85±0.03 c 1.10±0.02 bc 0.15 1.16±0.04 ab 0.27 1.27±0.04 a 0.33 1.09±0.17 b 0.22 0.86±0.01 c 0.02 凋落物 0.85±0.03 b 0.90±0.07 b 0.05 1.04±0.10 a 0.18 0.93±0.04 b 0.09 0.90±0.02 b 0.06 0.85±0.06 b 0.00 土壤 0.85±0.03 b 0.87±0.04 b 0.02 1.15±0.06 a 0.26 0.10±0.17 ab 0.15 0.97±0.07 ab 0.12 0.87±0.04 b 0.02 浸提液 浙贝母地下生物量 ck/g T1 T2 T3 T4 T5 数值/g IR 数值/g IR 数值/g IR 数值/g IR 数值/g IR 根系 1.16±0.20 c 1.41±0.10 bc 0.18 2.21±0.01 a 0.48 1.59±0.29 b 0.27 1.16±0.11 c 0.00 1.05±0.01 c −0.10 新鲜枝叶 1.16±0.20 a 1.29±0.06 a 0.10 1.43±0.03 a 0.19 1.46±0.36 a 0.20 1.40±0.10 a 0.17 1.34±0.07 a 0.13 凋落物 1.16±0.20 b 1.51±0.05 a 0.23 1.55±0.10 a 0.25 1.46±0.06 a 0.20 1.23±0.16 b 0.06 1.18±0.05 b 0.02 土壤 1.16±0.20 a 1.58±0.40 a 0.27 1.87±0.64 a 0.38 1.66±0.21 a 0.30 1.42±0.01 a 0.18 1.30±0.28 a 0.14 浸提液 浙贝母叶面积 ck/cm2 T1 T2 T3 T4 T5 数值/cm2 IR 数值/cm2 IR 数值/cm2 IR 数值/cm2 IR 数值/cm2 IR 根系 5.29±1.35 a 7.03±2.39 a 0.25 7.37±0.41 a 0.28 6.50±4.31 a 0.19 5.92±0.26 a 0.11 3.18±1.17 a −0.40 新鲜枝叶 5.29±1.35 a 6.21±1.16 a 0.15 7.28±2.35 a 0.27 6.08±4.20 a 0.13 5.77±1.03 a 0.08 5.60±1.72 a 0.06 凋落物 5.29±1.35 a 7.19±0.32 a 0.27 6.91±0.82 a 0.24 6.65±0.97 a 0.21 5.58±0.21 a 0.05 5.57±0.45 a 0.05 土壤 5.29±1.35 a 6.52±0.88 a 0.19 8.89±2.40 a 0.41 7.55±2.90 a 0.30 6.30±1.28 a 0.16 5.43±1.54 a 0.03 说明:同行不同小写字母表示处理间差异显著(P<0.05);表中数值为平均值±标准差。 除根系浸提液外,其他浸提液处理对浙贝母地上生物量的影响均表现为促进效应,促进程度随浸提液质量浓度的增加先升高后降低,且凋落物和土壤浸提液均在T2处理时地上生物量最大,在T5处理时最小(表1)。根系浸提液处理对浙贝母的地上和地下生物量的影响均表现为“低促高抑”的双重效应,均在T2处理时促进作用较为明显,T5处理时表现出抑制效应;新鲜枝叶浸提液对浙贝母地下生物量的影响不显著,对其地上生物量的影响在T2~T4处理时显著(P<0.05)高于ck;凋落物浸提液处理时,T2处理地上部分生物量显著(P<0.05)高于ck,而地下生物量在T1~T3处理时显著(P<0.05)高于ck;土壤浸提液对地上生物量的影响在T2处理时显著(P<0.05)高于ck。
毛竹根系、新鲜枝叶、凋落物和土壤浸提液对浙贝母叶面积的影响均无显著性差异(表1)。但化感效应指数表明:除了根系浸提液的T5处理外,其他浸提液对叶面积有促进作用,趋势为随着浸提液质量浓度的增加先升高后降低,除凋落物浸提液外,均在T2处理时叶面积最大,但各处理组间差异性均不显著,表明毛竹根系、新鲜枝叶、凋落物和土壤浸提液对浙贝母叶面积的影响不大。根系浸提液处理时对浙贝母叶面积的影响表现为“低促高抑”的效应。
-
化感效应指数表明:除了根系浸提液的T5处理,不同浸提液对浙贝母的叶绿素a、叶绿素b和叶绿素a+b质量分数均有促进作用,随浸提液质量浓度增加呈现先升高后降低的趋势,且均在T5处理时质量分数最低。叶绿素a/b数值则随浸提液质量浓度的增加而增加(根系浸提液除外),根系各处理间的差异不显著(表2)。毛竹根系浸提液处理时,叶绿素a和叶绿素a+b均表现为低质量浓度促进高质量浓度抑制的效应,而叶绿素b和类胡萝卜素质量分数均有不同程度提高。新鲜枝叶浸提液处理时,叶绿素b和类胡萝卜素质量分数表现为“低促高抑”的双重效应,这与凋落物浸提液处理时趋同。土壤浸提液处理时,对光合色素参数均有不同程度的提升作用(除了类胡萝卜素表现为“低促高抑”),浙贝母光合色素质量分数随浸提液质量浓度的增加而降低。
表 2 毛竹不同浸提液对浙贝母光合色素参数的影响
Table 2. Effects of different extracts of Ph. edulis forest on the photosynthetic pigment of F. thunbergia
浸提液 叶绿素a ck/(mg·g−1) T1 T2 T3 T4 T5 数值/(mg·g−1) IR 数值/(mg·g−1) IR 数值/(mg·g−1) IR 数值/(mg·g−1) IR 数值/(mg·g−1) IR 根系 1.49±0.13 b 1.81±0.10 a 0.18 1.70±0.65 ab 0.13 1.68±0.23 ab 0.12 1.51±0.11 b 0.02 1.34±0.12 c −0.10 新鲜枝叶 1.49±0.13 d 1.76±0.02 b 0.15 1.93±0.02 a 0.23 1.63±0.02 c 0.09 1.57±0.01 cd 0.06 1.57±0.04 cd 0.05 凋落物 1.49±0.13 c 1.93±0.04 a 0.23 1.74±0.04 b 0.15 1.61±0.04 bc 0.08 1.58±0.01 bc 0.06 1.54±0.04 c 0.03 土壤 1.49±0.13 b 1.69±0.02 a 0.120 1.63±0.02 ab 0.09 1.58±0.03 ab 0.06 1.53±0.03 ab 0.05 1.55±0.06 ab 0.04 浸提液 叶绿素b ck/(mg·g−1) T1 T2 T3 T4 T5 数值/(mg·g−1) IR 数值/(mg·g−1) IR 数值/(mg·g−1) IR 数值/(mg·g−1) IR 数值/(mg·g−1) IR 根系 0.44±0.01 c 0.66±0.63 ab 0.34 0.75±0.54 a 0.42 0.62±0.64 ab 0.20 0.59±0.11 ab 0.26 0.50±0.06 bc 0.13 新鲜枝叶 0.44±0.01 b 0.68±0.01 a 0.36 0.73±0.01 a 0.40 0.50±0.01 b 0.13 0.47±0.01 ab 0.06 0.38±0.01 e −0.13 凋落物 0.44±0.01 c 0.75±0.02 b 0.42 0.81±0.01 a 0.46 0.47±0.01 c 0.07 0.45±0.01 c 0.03 0.43±0.01 c −0.01 土壤 0.44±0.01 c 0.67±0.01 a 0.35 0.63±0.01 a 0.31 0.53±0.01 b 0.18 0.51±0.01 bc 0.14 0.49±0.19 bc 0.12 浸提液 叶绿素a/b ck T1 T2 T3 T4 T5 数值 IR 数值 IR 数值 IR 数值 IR 数值 IR 根系 3.46±0.72 a 2.77±0.13 a −0.20 2.27±0.23 a −0.34 2.72±0.26 a −0.21 2.62±0.36 a −0.24 2.74±0.59 a −0.21 新鲜枝叶 3.46±0.72 ab 2.57±0.01 b −0.26 2.64±0.01 b −0.24 3.24±0.01 b −0.06 3.37±0.01 ab −0.03 4.16±0.04 a 0.12 凋落物 3.46±0.72 a 2.57±0.01 b −0.26 2.16±0.02 b −0.38 3.45±0.01 a −0.01 3.51±0.01 a 0.02 3.58±0.01 a 0.03 土壤 3.46±0.72 a 2.51±0.01 a −0.28 2.57±0.03 a −0.26 3.02±0.01 a −0.13 3.16±0.01 a −0.11 3.46±0.79 a −0.09 浸提液 叶绿素a+b ck/(mg·g−1) T1 T2 T3 T4 T5 数值/(mg·g−1) IR 数值/(mg·g−1) IR 数值/(mg·g−1) IR 数值/(mg·g−1) IR 数值/(mg·g−1) IR 根系 1.92±0.09 c 2.47±0.16 a 0.22 2.45±0.03 a 0.22 2.30±0.08 ab 0.16 2.10±0.21 bc 0.08 1.84±0.06 c −0.04 新鲜枝叶 1.92±0.09 e 2.44±0.02 b 0.21 2.66±0.03 a 0.28 2.13±0.02 c 0.01 2.04±0.01 d 0.06 1.95±0.04 e 0.01 凋落物 1.92±0.09 d 2.68±0.05 a 0.28 2.54±0.05 b 0.24 2.08±0.05 c 0.08 2.04±0.01 cd 0.06 1.97±0.06 cd 0.02 土壤 1.92±0.09 d 2.35±0.02 a 0.19 2.26±0.03 b 0.15 2.11±0.04 c 0.09 2.07±0.03 c 0.07 2.05±0.03 c 0.06 浸提液 类胡萝卜素 ck/(mg·g−1) T1 T2 T3 T4 T5 数值/(mg·g−1) IR 数值/(mg·g−1) IR 数值/(mg·g−1) IR 数值/(mg·g−1) IR 数值/(mg·g−1) IR 根系 0.52±0.01 a 0.63±0.04 a 0.17 0.62±0.03 a 0.16 0.60±0.04 a 0.13 0.56±0.03 a 0.06 0.55±0.01 a 0.05 新鲜枝叶 0.52±0.01 b 0.60±0.01 a 0.13 0.59±0.01 a 0.12 0.53±0.01 b 0.02 0.45±0.01 c −0.15 0.43±0.01 c −0.17 凋落物 0.52±0.01 b 0.61±0.01 a 0.14 0.59±0.01 a 0.12 0.52±0.01 b −0.01 0.50±0.01 b −0.05 0.47±0.02 c −0.10 土壤 0.52±0.01 d 0.61±0.01 a 0.14 0.59±0.01 b 0.12 0.54±0.01 c 0.03 0.48±0.01 e −0.08 0.44±0.01 f −0.15 说明:同行不同小写字母表示处理间差异显著(P<0.05);表中数值为平均值±标准差。 除根系浸提液外,其他3种浸提液处理对浙贝母的最大净光合速率基本表现为促进作用,均提高浙贝母的表观量子效率和降低光补偿点,表明毛竹根系、枝叶、凋落物和土壤浸提液处理影响了浙贝母的光合代谢速率,提升了其对环境的生长适应能力(表3)。根系浸提液处理时,T5处理的光饱和点与光补偿点分别比ck降低了53%和50%,化感指数分别为−0.530和−0.500。新鲜枝叶浸提液处理时,浙贝母的光饱和点随浸提液质量浓度的增加呈现出先升高后降低的趋势,光补偿点与ck差异不显著。凋落物浸提液处理时,T1处理的光饱和点显著(P<0.05)高于ck,T2~T4处理均显著(P<0.05)低于ck。土壤浸提液处理时,表观量子效率随着浸提液质量浓度升高而降低,而光饱和点和光补偿点的值均在T1处理时最低。
表 3 毛竹不同浸提液对浙贝母光响应特征参数的影响
Table 3. Effects of different extracts of Ph. edulis forest on photoresponse characteristic parameters of F. thunbergii
浸提液 表观量子效率 ck T1 T2 T3 T4 T5 数值 IR 数值 IR 数值 IR 数值 IR 数值 IR 根系 0.048±0.013 de 0.071±0.005 b 0.324 0.065±0.008 cd 0.262 0.063±0.004 cd 0.238 0.049±0.004 e 0.020 0.096±0.010 a 0.500 新鲜枝叶 0.048±0.013 a 0.067±0.011 a 0.284 0.067±0.009 a 0.284 0.059±0.004 a 0.186 0.050±0.003 a 0.040 0.053±0.004 a 0.094 凋落物 0.048±0.013 b 0.054±0.008 b 0.111 0.084±0.012 a 0.429 0.072±0.011 ab 0.333 0.053±0.006 b 0.094 0.059±0.011 b 0.186 土壤 0.048±0.013 a 0.074±0.026 a 0.351 0.062±0.006 a 0.226 0.053±0.007 a 0.094 0.054±0.007 a 0.111 0.050±0.008 a 0.040 浸提液 最大净光合速率 ck/
(μmol·m−2·s−1)T1 T2 T3 T4 T5 数值/
(μmol·m−2·s−1)IR 数值/
(μmol·m−2·s−1)IR 数值/
(μmol·m−2·s−1)IR 数值/
(μmol·m−2·s−1)IR 数值/
(μmol·m−2·s−1)IR 根系 4.31±0.83 c 7.31±1.06 b 0.41 8.83±1.99 b 0.51 9.02±2.41 a 0.55 10.57±2.01 ab 0.59 3.99±0.68 c −0.08 新鲜枝叶 4.31±0.83 a 6.65±1.04 a 0.35 7.15±2.31 a 0.40 6.19±1.65 a 0.30 4.49±0.67 a 0.04 4.68±1.01 a 0.08 凋落物 4.31±0.83 b 6.52±0.42 a 0.34 6.52±0.82 a 0.34 5.32±1.21 ab 0.19 4.51±0.70 b 0.04 5.48±1.12 ab 0.21 土壤 4.31±0.83 a 4.92±0.61 a 0.12 4.78±0.59 a 0.10 4.763±0.52 a 0.10 4.58±0.66 a 0.06 4.52±0.70 a 0.05 浸提液 光饱和点 ck/
(μmol·m−2·s−1)T1 T2 T3 T4 T5 数值/
(μmol·m−2·s−1)IR 数值/
(μmol·m−2·s−1)IR 数值/
(μmol·m−2·s−1)IR 数值/
(μmol·m−2·s−1)IR 数值/
(μmol·m−2·s−1)IR 根系 110.67±10.00 c 116.92±16.63 bc 0.05 151.25±19.04 b 0.27 240.38±26.52 a 0.54 236.20±23.33 a 0.53 51.97±7.26 d −0.53 新鲜枝叶 110.67±10.00 a 114.18±12.30 a 0.03 121.60±16.16 a 0.09 121.81±20.48 a 0.09 109.84±12.00 a −0.01 107.09±12.52 a −0.03 凋落物 110.67±10.00 b 139.20±13.21 a 0.21 89.50±8.01 c −0.19 87.79±10.36 c −0.21 97.23±9.27 c −0.12 109.78±12.84 bc −0.01 土壤 110.67±10.00 a 80.00±7.32 b −0.23 93.23±10.25 ab −0.16 108.74±11.00 a −0.02 103.30±9.40 a −0.07 110.44±6.55 a −0.00 浸提液 光补偿点 ck/
(μmol·m−2·s−1)T1 T2 T3 T4 T5 数值/
(μmol·m−2·s−1)IR 数值/
(μmol·m−2·s−1)IR 数值/
(μmol·m−2·s−1)IR 数值/
(μmol·m−2·s−1)IR 数值/
(μmol·m−2·s−1)IR 根系 20.88±4.22 a 14.09±3.26 ab −0.32 15.38±3.02 ab −0.26 17.86±4.63 ab −0.14 20.41±4.10 a −0.02 10.42±2.15 b −0.50 新鲜枝叶 20.88±4.22 a 14.91±2.11 a −0.28 14.92±2.69 a −0.28 16.95±1.65 a −0.19 20.00±3.21 a −0.04 18.87±2.91 a −0.09 凋落物 20.88±4.22 a 18.52±2.08 a −0.11 11.91±0.67 b −0.43 13.89±1.33 b −0.33 18.86±0.90 a −0.09 16.95±2.15 ab −0.19 土壤 20.88±4.22a 13.51±1.90 b −0.35 16.13±1.44 ab −0.23 18.70±2.61 a −0.09 18.52±1.55 a −0.11 20.00±2.71 a −0.04 说明:同行不同小写字母表示处理间差异显著(P<0.05);表中数值为平均值±标准差。 -
综合化感效应表明:除根系浸提液外,其他3种浸提液对浙贝母的化感效应均表现为不同程度的促进作用,浸提液质量浓度越高促进作用越弱(表4)。根系浸提液对浙贝母的化感效应则表现为“低促高抑”,T5有一定的抑制效应,这与其生长指标和光合生理指标的研究结果一致。根系浸提液对浙贝母的综合平均化感效应指数为0.103,土壤浸提液对其化感效应最弱,平均化感效应指数为0.056。4种浸提液的综合化感效应指数从大到小依表现为根系浸提液、新鲜枝叶浸提液、凋落物浸提液、土壤浸提液。
表 4 毛竹不同浸提液对浙贝母的综合化感效应
Table 4. Synthesis effects of different extracts of Ph. edulis forest on F. thunbergia
处理 不同浸提液的综合化感效应指数 处理 不同浸提液的综合化感效应指数 根系 新鲜枝叶 凋落物 土壤 根系 新鲜枝叶 凋落物 土壤 T1 0.136 0.106 0.148 0.035 T4 0.104 0.039 0.020 0.041 T2 0.200 0.154 0.106 0.107 T5 −0.108 0.011 0.016 0.016 T3 0.180 0.102 0.053 0.081 平均值 0.103 0.082 0.069 0.056 -
毛竹根系、新鲜枝叶、凋落物和土壤浸提液对过氧化氢酶的影响表现为随着浸提液质量浓度的增加,呈现先升高后降低的趋势,表明中低质量浓度的4种浸提液提高了浙贝母叶片的过氧化氢酶活性(图1)。根系浸提液处理时,T2和T3的过氧化氢酶活性显著(P<0.05)高于ck。新鲜枝叶和凋落物浸提液的过氧化氢酶活性在T3时显著(P<0.05)高于ck。土壤浸提液处理时,T2、T3、T4的过氧化氢酶活性显著(P<0.05)高于ck。
图 1 毛竹不同浸提液对浙贝母抗氧化酶活性和丙二醛的影响
Figure 1. Effects of different extracts of Ph. edulis forest on the activities of antioxidant enzymes and MDA content of F. thunbergii
根系浸提液处理时,T5显著(P<0.05)增加了过氧化物酶活性。新鲜枝叶浸提液处理时,过氧化物酶活性随浸提液质量浓度的增加表现为先升高后降低,其中T4显著(P<0.05)高于ck。凋落物浸提液处理时,T2的过氧化物酶活性显著(P<0.05)高于ck。土壤浸提液处理时,过氧化物酶活性随浸提液质量浓度的增加而增加,T3、T4、T5显著(P<0.05)高于ck。
毛竹不同浸提液对超氧化物歧化酶活性的影响表现为随着浸提液质量浓度的增加呈现先升高后降低的趋势,这与过氧化氢酶类似。根系和凋落物浸提液处理时,T2、T3、T4的超氧化物歧化酶活性显著(P<0.05)高于ck。新鲜枝叶和土壤浸提液处理时,各处理组与ck的差异不显著。
毛竹不同浸提液处理对丙二醛质量摩尔浓度的影响有差异。根系浸提液处理时,丙二醛质量摩尔浓度随浸提液质量浓度的增加而增加,T4、T5显著(P<0.05)高于ck。新鲜枝叶和凋落物浸提液处理时,各处理组的丙二醛质量摩尔浓度与ck差异不显著。土壤浸提液处理时,丙二醛质量摩尔浓度随浸提液质量浓度的增加表现为先增加后降低,T1显著(P<0.05)高于ck。
-
浙贝母的贝母素甲和贝母素乙是其主要生物碱药效成分。随着毛竹根系、新鲜枝叶、凋落物及土壤浸提液质量浓度的增加,贝母素甲和贝母素乙质量分数表现为先升高后下降(表5)。除根系浸提液处理外,其他浸提液对贝母素甲和贝母素乙质量分数的影响均表现为促进效应。贝母素甲和贝母素乙质量分数分别在根系浸提液的T3和T4时显著(P<0.05)小于ck。
表 5 毛竹不同浸提液对贝母素甲和贝母素乙质量分数的影响
Table 5. Effects of different extracts of Ph. edulis forest on the contents of fritillarin A and fritillarin B
浸提液 贝母素甲/(mg·kg−1) ck T1 T2 T3 T4 T5 根系 65.15±1.84 b 87.15±1.53 a 88.77±0.27 a 58.30±0.30 c 40.12±0.12 d 39.79±3.29 d 新鲜枝叶 65.15±1.84 d 95.56±1.06 b 108.58±3.58 a 86.99±1.99 b 82.75±0.25 c 71.76±1.26 d 凋落物 65.15±1.84 e 113.94±3.00 a 91.22±1.22 b 87.75±0.25 c 83.26±0.26 d 81.89±1.35 d 土壤 65.15±1.84 d 95.21±3.01 bc 100.56±0.51 a 96.65±1.50 b 92.78±0.50 c 91.57±1.40 c 浸提液 贝母素乙/(mg·kg−1) ck T1 T2 T3 T4 T5 根系 29.10±1.10 b 41.93±0.40 a 42.15±0.15 a 27.92±0.60 b 22.45±2.20 c 16.70±1.20 d 新鲜枝叶 29.10±1.10 d 47.33±0.30 b 62.34±2.04 a 46.23±1.02 b 40.15±0.15 b 35.13±0.10 c 凋落物 29.10±1.10 c 45.45±1.30 a 43.47±3.40 a 39.07±1.07 b 38.42±1.96 b 38.04±1.04 b 土壤 29.10±1.10 d 41.75±1.50 b 52.23±2.20 a 51.88±1.50 a 40.26±0.20 b 38.41±1.20 c 说明:同行不同小写字母表示处理间差异显著(P<0.05);数值为平均值±标准差。 -
植物的株高、生物量和叶面积等生长参数是反映化感作用最直观的指标[6, 13]。研究表明:化感作用强度与化感物质的种类、来源、含量以及目标植物对其的敏感程度有关[5, 14−15]。本研究发现:毛竹新鲜枝叶、凋落物及土壤浸提液对浙贝母的生长有积极作用,这与毛竹根系、新鲜枝叶、凋落物及土壤浸提液对块茎类草本药用植物延胡索Corydalis yanhusuo株高、地上部分、地下部分和叶面积影响表现为“低促高抑”的结果不同[7],也有别于毛竹浸提液对苦槠Castanopsis sclerophylla幼苗的株高和地径的试验结果[5],本研究中高质量浓度毛竹新鲜枝叶、凋落物和土壤浸提液抑制浙贝母高生长的同时能促进地上、地下生物量的积累。
光合色素是光合作用过程中的重要物质,叶绿素质量分数的变化是植物对化感作用响应的最直接的表现形式之一[16]。本研究发现:毛竹根系、新鲜枝叶、凋落物和土壤浸提液对浙贝母光合色素的影响均随浸提液质量浓度的增加先升后降,除根系浸提液T5外,其他处理的所有光合色素均值都大于ck。这与黄永杰等[16]用水花生Alternanthera philoxeroides浸提液处理马尼拉草Zoysia matrella的结果不同,与张瑞等[7]用毛竹根系、新鲜枝叶、凋落物和土壤浸提液处理延胡索的结果亦有差异。本研究中,浙贝母叶绿素a、叶绿素b增加且叶绿素b的增量超过了叶绿素a,表明浸提液处理提高了浙贝母直射光吸收的同时亦大大提高了漫射光(蓝紫光)的吸收,增加其能量的积累,有利于浙贝母生长;而叶绿素a/b表明浙贝母具备中性植物的特点,在将来的复合经营体系中能较好地适应和利用毛竹林下(林窗)环境。
光合作用是化感物质影响植物生长的重要途径[17]。本研究发现:毛竹新鲜枝叶、凋落物和土壤浸提液处理使浙贝母对光能的利用能力和吸收能力增强;同时,毛竹根系、新鲜枝叶、凋落物和土壤浸提液不同程度提高了浙贝母的表观量子效率,降低了光补偿点,且在高质量浓度浸提液处理下降低光饱和点,表明毛竹根系、新鲜枝叶、凋落物和土壤浸提液促进了浙贝母对弱光的吸收,使之适应了光环境的变化。浙贝母在适应弱光环境的同时增加最大光合速率,可以在光合生理生化过程中最大程度地利用自身可塑性适应环境,最优化摄取环境资源。这与浸提液处理后浙贝母的生长指标、光合色素变化以及化感综合效应值的结果一致。本研究的结果与陈娟等[5]利用不同毛竹浸提液降低了苦槠对光能的利用效率的结果不同,原因可能是化感作用依赖于浸提液质量浓度、测试物种和化感物质的来源[3]。浙贝母在毛竹根系、新鲜枝叶、凋落物和土壤浸提液处理下的这一光合特性十分重要。毛竹属于典型的大型克隆植物,处于抛荒和自然发育的毛竹林更是具有强大的入侵扩张能力,能建立高郁闭度的单优群落。浙贝母属于浅根系的早春植物,通过吸收由毛竹叶片淋溶、凋落物分解和土壤微生物发育等方式释放到环境中的化感物质,来提高毛竹林隙和林下弱光的利用率,以利于生存、生长和发育。这是浙贝母与毛竹建立复合经营体系的优势。
植物抗氧化能力的提高是植物在胁迫环境下生存的重要保障。在本研究中,毛竹根系、新鲜枝叶、凋落物和土壤浸提液对抗氧化酶的影响基本表现为先升高后下降,表明毛竹浸提液在一定质量浓度范围内可以提升浙贝母的抗氧化能力。这可能与毛竹根系、新鲜枝叶、凋落物和土壤浸提液具有抗氧化性、清除自由基的能力有关[18],亦有可能是其含有激活过氧化氢酶相关基因表达的物质[19],同时,中低质量浓度毛竹根系浸提液可以促进过氧化氢酶活性,提高浙贝母的抗逆性。亦有研究表明,不同物种在不同胁迫类型的影响下,其过氧化氢酶活性表现出提升、无影响和下降的现象[19],因此植物在应对胁迫时有多种途径和策略可以选择[20]。高质量浓度毛竹根系浸提液处理时,增加了浙贝母丙二醛质量摩尔浓度,说明高质量浓度毛竹根系浸提液对浙贝母产生了一定的伤害,限制了浙贝母生长,这与其生长指标的研究结果一致。土壤浸提液处理对浙贝母丙二醛质量摩尔浓度影响不一致。T1处理时浙贝母丙二醛质量摩尔浓度显著高于ck,表明T1胁迫程度在其承受范围之内,所以浙贝母的抗氧化系统能迅速清除其体内过多的活性氧自由基,保护浙贝母的生理功能免受伤害。新鲜枝叶和凋落物浸提液处理时,浙贝母丙二醛质量摩尔浓度与ck之间没有显著差异,这与陈昱等[20]在芥菜Brassica juncea浸提液对豇豆Vigna unguiculata幼苗的抗氧化酶活性的影响结果相似。可见,毛竹林化感物质对浙贝母丙二醛的影响不大,但提高了浙贝母叶片的抗氧化酶活性,从而促进了浙贝母的生长。
在毛竹根系、新鲜枝叶、凋落物和土壤处理下,浙贝母的主要药效成分贝母素甲和贝母素乙的变化与其生长指标、光合生理、抗性生理的表现趋同,所有浸提液(中、高质量浓度的根系浸提液除外)均有增加药效成分的效应,这种效应为竹药复合经营提供了基础。高质量浓度毛竹根系浸提液对浙贝母生长有一定的抑制作用亦体现在其药效成分上,而其他3种浸提液特别是新鲜枝叶浸提液对药效成分的提升较为明显,原因可能是竹叶具有丰富的黄酮类化合物、酚酸类化合物、蒽醌类化合物等活性成分[18]。
-
浙贝母具备中性植物的特性,可适应0.005~0.100 kg·L−1的毛竹新鲜枝叶、凋落物和土壤浸提液浇灌处理。上述3种浸提液提高了浙贝母的生物量、叶面积、光合色素、弱光环境适应能力和药效成分等,但高质量浓度毛竹根系浸提液对浙贝母有一定的限制作用。在实际生产经营中,可以在毛竹林中适当开辟林窗和林隙,整地挖除根鞭后栽培浙贝母。
Allelopathic effects of Phyllostachys edulis extracts on Fritillaria thunbergii
-
摘要:
目的 探讨毛竹Phyllostachys edulis根系、新鲜枝叶、凋落物及土壤浸提液对浙贝母Fritillaria thunbergii的化感作用,筛选毛竹-药用植物复合经营体系的适生经济物种。 方法 选择药用植物浙贝母作为目标植物,开展不同质量浓度(0.005、0.010、0.020、0.050和0.100 kg·L−1)毛竹(根系、新鲜枝叶、凋落物和0~20 cm土壤浸提液)的化感作用试验。 结果 ①根系浸提液对浙贝母的生长性状(株高、生物量和叶面积)、光合色素(叶绿素a、叶绿素b、叶绿素a+b)和药效成分的影响表现为“低促高抑”的效应。②新鲜枝叶、凋落物和土壤浸提液对浙贝母生长性状、光合色素和药效成分表现为促进作用,提高了叶面积的同时亦可提升直射光和漫射光的吸收能力,有利于浙贝母在弱光环境下生长;浙贝母最大净光合速率、光饱和点在这3种浸提液处理下,随着浸提液质量浓度增加表现为先升高后下降,同时增加了表观量子效率,降低了光补偿点,表明毛竹浸提液改变了浙贝母对光能的利用率和光强吸收范围。③根系浸提液对浙贝母的化感综合效应最强,土壤浸提液最弱。④高质量浓度根系浸提液处理时,浙贝母丙二醛质量摩尔浓度增加,表明浙贝母受到一定的环境胁迫。 结论 浙贝母可适应除高质量浓度根系浸提液外的其他浸提液浇灌,且可提升生物量和药效成分。建议开展整地作业,清理毛竹林死根鞭,有利于浙贝母的优质生长。图1表5参20 Abstract:Objective The purpose is to explore the allelopathic effects of forest extract of Phyllostachys edulis on Fritillaria thunbergii, so as to screen the suitable economic species for compound management of Ph. edulis and medicinal plants. Method F. thunbergii was selected as the target plant to carry out the allelopathy experiments of different extracts of Ph. edulis forest (roots, fresh branches and leaves, litter and 0~20 cm soil) at different concentrations (0.005, 0.010, 0.020, 0.050 and 0.100 kg·L−1). Result (1) The effects of root extract on the growth characters (plant height, biomass and leaf area), photosynthetic pigments (chlorophyll a, chlorophyll b and chlorophyll a+b) and active medicinal components (fritillarin A and fritillarin B) of F. thunbergii showed promotion at lower extract concentration while inhabitation at higher concentration. (2) Fresh branches and leaves, litter and soil extracts promoted the growth traits, photosynthetic pigments and active components, increased the leaf area and absorption capacity of direct and diffuse light, which was conducive to the growth of F. thunbergii under low light condition. The maximum net photosynthetic rate and light saturation point also increased under the treatment of these three extracts, which first increased and then decreased with the increase of the extract concentration. At the same time, the apparent quantum efficiency increased and the light compensation point decreased, indicating that Ph. edulis extracts changed the utilization rate of light energy and the absorption range of light intensity. (3) The comprehensive allelopathic effect of root extract on F. thunbergii was the strongest, while that of the soil extract was the weakest. (4) The MDA content increased when the root extract was in high concentration, indicating that F. thunbergii was under certain environmental stress. Conclusion F. thunbergii can adapt to the irrigation of other extracts except root extract of high concentration, and can improve biomass and active medicinal components. Land preparation and cleaning up the dead root of Ph. edulis forest is conducive to the high-quality growth of F. thunbergii. [Ch, 1 fig. 5 tab. 20 ref.] -
Key words:
- Fritillaria thunbergii /
- photosynthesis /
- allelopathy /
- under-forest economy /
- compound management
-
杨树Populus作为速生用材树种,具有广泛的用途,尤其是在制浆造纸、人造纤维和纤维板制造业中占有重要地位。木材纤维是杨树木材的主要组成部分,也是制浆及纤维制造业的主要原料,纤维性状的优劣直接决定着杨树纤维材的开发利用与发展[1]。然而,纤维形态特征及纤维含量对不同品种或无性系而言均存在着差异,即使同一树种的不同个体或同株不同部位亦有明显差异[2]。Jr FARMER等[3]利用美洲黑杨Populus deltoids无性系幼林作为试验材料,开展了木材纤维长度性状变异研究,证明了纤维性状在无性系间也呈较大差异。王明庥等[4]对杂种无性系的材性变异研究表明:纤维相关性状呈株内变异特点,且各性状间的变异具有独立性。查朝生等[5]对杨树无性系人工林的木材纤维形态特征进行了研究,表明纤维长、纤维宽以及纤维长宽比随着生长轮的增加,呈增大趋势。MANSFIELD等[6]对不同产地15个山杨Populus davidiana无性系的木材纤维性状进行研究发现:纤维性状在不同品种及林分间均呈显著变异。刘玉鑫等[7]研究表明:美洲黑杨无性系纤维性状存在遗传变异,且变异受遗传的影响大于受环境的影响。综上可知,杨树无论是品种间、林分间、无性系间或是单株的不同部位都存在变异的可能,因此,分析与评价杨树不同无性系间纤维性状差异性,不仅能够为选育适用于木材工业化生产及大规模加工利用高附加值的杨树优良新品种提供参考,而且对促进杨树人工林及杨树相关产业的可持续发展具有重要意义。鉴于此,本研究选择树干通直圆满,生长量大,且在长江流域及洞庭湖区分布广、适生性较强的7个杨树无性系为材料,对纤维素形态特征及含量差异进行了研究,综合评价了各无性系纤维性状指标,旨在为杨树无性系选择纤维材优良品系提供科学依据。
1. 研究区概况
研究区在湖南省岳阳市君山区(39°46ʹ01″N,116°25ʹ53″E)。该区光照充足,年平均气温为16.8 ℃,年平均降水量为1 135.3~1 237.9 mm,无霜期为260 d,雨热同期,为典型的亚热带湿润季风气候[8-10]。林地海拔为28~35 m,土壤多为江湖冲积而成的潮土,土壤肥沃[11]。
2. 材料与方法
2.1 材料
试验林于2009年造林,林分株行距为4 m×6 m。林内共18个杨树无性系,各无性系按完全随机区组试验排列,每个无性系10株,3次重复。试验林造林后3~4 a,每年浅耕1~2次,林下间种南瓜Cucurbita moschato;造林后2~6 a,于每年的4月下旬至5月上旬采用环状沟施肥法施尿素或复合肥(250~500 g·株−1) 1次;造林后第3年、第5年以及第7年,每年12月修枝1次,3次修枝强度(修枝高度与树高比)分别为35%、40%和40%;其他管理措施为常规管理。
选取试验林中树干圆满且通直,生长较快的杨树XL-80、XL-86、XL-83、XL-58、XL-75、ZH-17、I-69(对照)等7个无性系作为材料,每个无性系选取3株标准木测定树高及胸径,伐倒后作为生物量测定和纤维性状取样对象。在伐倒样株胸径处取一个厚5 cm的圆盘作为木材纤维形态测定试样。
2.2 方法
各无性系样木伐倒后,将地上部分分成干、枝、叶,树干每2 m分为一段,分别称各部位的鲜质量,然后各部位在105 ℃下烘干并称量,最后根据样品干质量和湿质量的比例,换算单株生物量干质量[12]。单株纤维素质量的估算:单株纤维素质量=单株生物量干质量×纤维素质量分数。采集的样品经处理后,纤维素质量分数测定采用硝酸-乙醇法,木材纤维长和纤维宽采用刘超逸等[13]的测定方法。
2.3 数据处理
运用Excel、SPSS等软件进行不同无性系间的数据统计和方差分析。各无性系间生长性状及纤维形态及含量综合评价采用加权综合得分法。
3. 结果与分析
3.1 杨树无性系的性状变异分析
由表1可以看出:树体性状和木材纤维性状变异幅度较大,为2.66%~21.76%,其中生物量(21.76%)和单株纤维素(21.35%)的变异系数较大,均超过21%,树高和纤维宽的变异系数较小,为2.0%~3.2%,表明杨树各性状间变异的差异较大,可选择利用的空间广阔。
表 1 杨树无性系性状变异Table 1 Character variation of poplar clones性状 胸径/cm 树高/m 生物量/(kg·株−1) 纤维长/mm 纤维宽/mm 纤维长宽比 纤维素质量分数/% 单株纤维素/(kg·株−1) 平均值 31.28 25.22 301.81 1.04 0.02 52.03 57.78 175.46 标准差 3.08 0.81 65.68 0.05 0.00 1.82 2.31 37.47 变异系数/% 9.84 3.19 21.76 4.99 2.66 3.50 3.99 21.35 3.2 木材纤维形态差异
从表2可知:7个杨树无性系的纤维长为0.95~1.12 mm,纤维宽为0.019~0.021 mm,纤维长宽比为49.1~54.6。其中,无性系XL-83的纤维长最小,为0.95 mm,与其他无性系纤维长呈极显著差异(P<0.01);除无性系XL-83外,其他无性系的纤维长差异均不显著(P>0.05),且无性系XL-58、XL-86以及XL-80纤维长均达1.05 mm以上。无性系之间纤维宽差异均不显著(P>0.05)。无性系的纤维长宽比从大到小依次为I-69、XL-58、XL-86、XL-75、ZH-17、XL-80、XL-83。各无性系间的纤维长宽比存在一定差异,其中无性系XL-83与I-69、XL-58、XL-86均呈显著差异(P<0.05)。
表 2 杨树无性系纤维特征Table 2 Fiber characteristics of poplar clones无性系 纤维长/mm 纤维宽/mm 纤维长宽比 XL-80 1.06±0.05 Ab 0.021±0.001 a 50.93±0.91 ac XL-86 1.07±0.05 Ab 0.021±0.001 a 52.52±2.50 a XL-83 0.95±0.03 Bc 0.019±0.001 a 49.09±9.19 bc XL-58 1.12±0.10 Aa 0.021±0.000 a 53.84±3.81 a XL-75 1.02±0.03 Ab 0.020±0.001 a 51.91±2.00 ac ZH-17 1.04±0.07 Ab 0.020±0.001 a 51.81±1.80 ac I-69 1.08±0.05 Ab 0.020±0.001 a 54.62±4.70 a 说明:数值为平均值±标准差;同列不同大写字母表示同 一指标在不同无性系之间差异极显著(P<0.01);同 列不同小写字母表示同一指标在不同无性系之间差 异显著(P<0.05) 3.3 生物量及木材纤维素差异
从表3可以看出:无性系生物量间差异显著(P<0.05),生物量为194.27~401.73 kg·株−1,其中生物量最大的无性系为XL-80 (401.73 kg·株−1),最小的无性系为对照I-69 (194.27 kg·株−1)。各无性系间纤维素质量分数存在一定差异,除无性系XL-83与其他无性系的纤维素质量分数呈显著差异(P<0.05)外,其他无性系间纤维素质量分数差异不显著(P>0.05)。无性系纤维素质量分数为53.06%~59.66%,均高出造纸所需纤维素质量分数的基本要求(40%)。无性系单株纤维素为114.04~233.81 kg·株−1,其中最高的无性系为XL-80 (233.81 kg·株−1),对照I-69单株纤维素仍为最小,仅114.04 kg·株−1。无性系单株纤维素呈不同程度的差异,其中无性系XL-80与XL-86单株纤维素呈显著差异(P<0.05),与其他无性系均呈极显著差异(P<0.01);无性系I-69与供试的其他无性系均呈极显著差异(P<0.01),无性系XL-75与ZH-17差异不显著(P>0.05)。
表 3 杨树无性系生物量及木材纤维素差异Table 3 Differences in biomass and wood cellulose content of poplar clones无性系 生物量/
(kg·株−1)纤维素质量
分数/%单株纤维素/
(kg·株−1)XL-80 401.73±12.09 Aa 58.22±0.40 a 233.81±5.43 Aa XL-86 335.98±10.90 Bb 59.66±0.23 a 200.58±7.18 Ab XL-83 329.23±9.34 Cc 53.06±0.41 b 174.82±3.64 Bb XL-58 320.14±1.62 Dd 58.55±0.50 a 187.60±2.55 Bc XL-75 268.67±1.96 Ef 59.17±0.94 a 159.05±3.58 BCe ZH-17 270.31±0.96 Ee 59.66±0.53 a 161.38±0.78 BCe I-69 194.27±3.76 Fg 58.66±0.10 a 114.04±2.01 Df 说明:数值为平均值±标准差;同列不同大写字母表示同 一指标在不同无性系之间差异极显著(P<0.01);同 列不同小写字母表示同一指标在不同无性系之间差 异显著(P<0.05) 3.4 生长性状及木材纤维性状相关性分析
木材纤维性状与生长性状间的相关分析结果(表4)表明:生长性状树高、胸径、生物量以及单株纤维素之间呈极显著正相关(P<0.01)。纤维长与纤维宽、纤维长宽比以及纤维素质量分数呈显著正相关(P<0.05),纤维长宽比与纤维素质量分数呈显著正相关(P<0.05)。木材纤维性状与生长性状之间相关性各异,纤维宽与树高、胸径、生物量呈正相关但不显著(P>0.05),纤维长、纤维长宽比及纤维素质量分数分别与胸径、树高及生物量均呈负相关,且均不显著(P>0.05),表现出独立遗传特性。
表 4 无性系生长性状与木材纤维性状的相关性Table 4 Correlation between clonal growth traits and wood fiber traits项目 胸径 树高 生物量 纤维长 纤维宽 纤维长宽比 纤维素质量分数 单株纤维素 胸径 1 树高 0.926** 1 生物量 0.995** 0.903** 1 纤维长 −0.146 −0.178 −0.111 1 纤维宽 0.520 0.366 0.556 0.734* 1 纤维长宽比 −0.598 −0.534 −0.572 0.863* 0.293 1 纤维素质量分数 −0.258 −0.210 −0.237 0.716* 0.467 0.682* 1 单株纤维素 0.972** 0.887* 0.981** 0.032 0.667* −0.448 −0.043 1 说明:*表示相关显著(P<0.05);**表示相关极显著(P<0.01) 3.5 不同无性系木材纤维综合评价
纤维材培育的最终目标是尽可能多地提供优质的纤维。因林木的生长量与木材产量呈正相关,木材的纤维形态又直接关系到林木纤维的产量和质量,因此,纤维材的产量以及纤维形态和含量是评价和选择该材种优劣的重要依据。本研究通过主成分分析(表5)得出:决定第1主成分的主要是生物量、纤维素质量分数和单株纤维素;决定第2主成分的主要是纤维长和纤维宽,前2个主成分已经能够解释原有各性状的大部分信息,故可以选择前2个主成分进行综合评分。根据所选主成分的贡献率对主成分得分进行加权平均,求得主成分综合得分(表6)。由表6可以看出:供试7个无性系综合得分由大到小依次为XL-80、XL-58、XL-86、ZH-17、XL-83、XL-75、I-69,该综合得分排序与各无性系的生物量、纤维长、纤维宽、纤维长宽比及纤维素质量分数排序具有一定的一致性。通过综合评比,入选的前5个杨树无性系综合了各性状的优良水平,也突出了联合选择在纤维材良种选育中的重要性。
表 5 主要性状的特征向量Table 5 Feature vectors of main characters性状 主成分 1 2 生物量 0.875 −0.028 纤维长 −0.018 0.435 纤维宽 −0.201 0.365 纤维素质量分数 0.236 0.099 单株纤维素 0.935 0.035 表 6 各无性系综合评价得分Table 6 Comprehensive evaluation score of each clone无性系 第1主成分得分 第2主成分得分 综合得分 排序 XL-80 2.489 2.547 2.510 1 XL-86 0.952 0.982 0.963 3 XL-83 −0.944 −0.907 −0.931 5 XL-58 1.252 1.110 1.202 2 XL-75 −1.204 −1.117 −1.173 6 ZH-17 −0.522 −0.438 −0.493 4 I-69 −2.024 −2.177 −2.078 7 4. 讨论与结论
4.1 讨论
木材纤维占阔叶树木材总体积的50%以上,木材纤维的形态指标直接影响着木材的硬度、强度以及制浆造纸性能,与木材物理力学性能以木材的开发利用息息相关[14-15]。曾广植[16]研究得出:纤维长与纸张强度呈线性正相关;张平冬等[17]认为:纤维长宽比越大,越能增加纤维之间交织次数,提升结合能力,从而增强纸张的强固性和割裂性[7];汪殿蓓等[18]研究表明:纤维长宽比大于56是优良的造纸原料。本研究杨树无性系的纤维长以及纤维长宽比最小分别为0.95 mm和49.09,均达到或超出国际木材解剖学中所规定的中级长度纤维(0.91~1.60 mm)以及长宽比不低于35~45的标准[4],其中纤维长与刘玉鑫等[7]、查朝生等[5]的测定结果相当,但纤维长宽比均高于以上测定结果,且主成分综合得分排名中,前5个无性系的纤维长宽比均在58.2以上。进一步表明本研究杨树无性系的纤维性状均较优,其中主成分分析评价得分较高的前5个无性系更适合用于纸浆或纤维用材。
性状间遗传变异差异较大,要开展多性状选择就需要探明各性状间相互关系。而杨树作为速生树种,其生长性状在进行良种选择时是必须考虑的指标,材性性状无论是作为结构材还是纤维用材都是综合评价的关键因子,因此,生长性状、材性性状以及生长性状与材性性状间的相关性是杨树遗传改良的重要依据。黄家华[19]以鹅掌楸Liriodendron chinenese等14个种源作为研究材料,发现生长性状与纤维宽及纤维长宽比均呈负相关;覃敏[20]评价了6年生米老排Mytilaria laosensis子代测定林,发现除纤维宽外,生长性状与木材性状的改良具有相对独立性;黄寿先[21]选取12个杉木Cunninghamia lanceolata无性系对制浆造纸性能的变异及其与生长、材性的相关性进行了研究,得出胸径、树高与管胞长度、宽度、管胞长宽比等呈不显著到显著的遗传负相关;李开隆等[22]通过对山杨材性与生长性状的相关性分析得出:纤维长、纤维宽及纤维长宽比均与树高、胸径等生长性状相关不显著。以上研究表明:纤维性状与生长性状呈一定的相关性,但相关性均不显著,说明纤维性状与生长性状间具有一定的独立性,在进行林木选育时可实现生长与材性同步选择。本研究分析了供试杨树无性系的生长性状与纤维性状间的相关性,发现纤维宽与树高、胸径及生物量呈正相关,但不显著,纤维长、纤维长宽比及纤维素质量分数分别与胸径、树高及生物量呈负相关性,且均不显著。该结论与以上研究结论[19-22]具有一定的相似性。杨树生长性状与纤维性状间存在着负相关或相关性不显著,说明这2个性状在遗传机制中是相互独立的,可开展杨树生长性状与纤维性状的联合改良。
多性状综合评价选择法能够在相关性复杂的多性状之间权衡取舍,使目标性状得到进一步改良,同时又能够保留其他优良性状。本研究利用主成分分析加权综合得分法对杨树无性系进行综合评价,初步筛选出XL-80、XL-58、XL-86、ZH-17、XL-83等5个优良无性系,无性系XL-58的纤维长度最长,高出群体均值7.25%;无性系XL-80的生物量最大,高出群体均值33.11%;无性系XL-86和ZH-17的纤维素含量最高,高出群体均值3.32%;无性系XL-83各性状虽没有最突出的,但各性状在供试无性系评比中排序都是靠前的,也均达到了优良纤维材的整体水平[23-24]。综上所述,评价筛选的5个优良纤维材无性系综合了各性状的优良特性,既考虑到了生长性状又兼顾了纤维性状对林木选优的影响,能够最大程度地实现物尽其用,达到杨树无性系资源利用的最大化,同时也为杨树多目标育种提供了更丰富的遗传资源与选育途径。
4.2 结论
本研究表明:7个杨树无性系生物量、木材纤维长及单株纤维素差异显著,纤维素质量分数存在一定的差异,各性状变异幅度较大,这些为杨树资源的良种选育及性状改良提供了遗传基础与参考依据;主成分分析表明:生物量、纤维素质量分数和单株纤维素代表了杨树无性系各性状的综合水平,是杨树纤维材评选的主导因子。综合评价选出木材纤维性状综合表现较优的5个无性系(XL-80、XL-58、XL-86、ZH-17、XL-83),这些无性系除生长性状表现优良外,木材纤维各项指标均达到了造纸所需原料的中优水平。
-
表 1 毛竹不同浸提液对浙贝母株高、生物量和叶面积的影响
Table 1. Effects of different extracts of Ph. edulis forest on height of F. thunbergia
浸提液 浙贝母株高 ck/cm T1 T2 T3 T4 T5 数值/cm IR 数值/cm IR 数值/cm IR 数值/cm IR 数值/cm IR 根系 42.75±2.31c 57.93±0.86 a 0.26 53.20±3.43 b 0.20 52.27±2.75 b 0.18 43.30±0.85 c 0.01 37.78±3.12 d −0.12 新鲜枝叶 42.75±2.31 a 46.80±3.89 a 0.09 46.00±2.73 a 0.07 45.50±3.51 a 0.06 44.55±5.39 a 0.04 42.50±1.84 a −0.01 凋落物 42.75±2.31 a 44.03±3.89 a 0.03 44.47±3.42 a 0.04 42.75±6.04 a 0.00 41.58±10.41 a −0.03 38.43±6.84 a −0.10 土壤 42.75±2.31 ab 46.47±3.78 a 0.08 43.97±1.08 a 0.03 42.02±3.99 ab −0.02 38.13±4.11 b −0.11 37.90±3.65 b −0.11 浸提液 浙贝母地上生物量 ck/g T1 T2 T3 T4 T5 数值/g IR 数值/g IR 数值/g IR 数值/g IR 数值/g IR 根系 0.85±0.03 b 1.02±0.09 a 0.17 1.09±0.11 a 0.22 1.08±0.15 a 0.21 0.81±0.03 b −0.05 0.75±0.10 b −0.12 新鲜枝叶 0.85±0.03 c 1.10±0.02 bc 0.15 1.16±0.04 ab 0.27 1.27±0.04 a 0.33 1.09±0.17 b 0.22 0.86±0.01 c 0.02 凋落物 0.85±0.03 b 0.90±0.07 b 0.05 1.04±0.10 a 0.18 0.93±0.04 b 0.09 0.90±0.02 b 0.06 0.85±0.06 b 0.00 土壤 0.85±0.03 b 0.87±0.04 b 0.02 1.15±0.06 a 0.26 0.10±0.17 ab 0.15 0.97±0.07 ab 0.12 0.87±0.04 b 0.02 浸提液 浙贝母地下生物量 ck/g T1 T2 T3 T4 T5 数值/g IR 数值/g IR 数值/g IR 数值/g IR 数值/g IR 根系 1.16±0.20 c 1.41±0.10 bc 0.18 2.21±0.01 a 0.48 1.59±0.29 b 0.27 1.16±0.11 c 0.00 1.05±0.01 c −0.10 新鲜枝叶 1.16±0.20 a 1.29±0.06 a 0.10 1.43±0.03 a 0.19 1.46±0.36 a 0.20 1.40±0.10 a 0.17 1.34±0.07 a 0.13 凋落物 1.16±0.20 b 1.51±0.05 a 0.23 1.55±0.10 a 0.25 1.46±0.06 a 0.20 1.23±0.16 b 0.06 1.18±0.05 b 0.02 土壤 1.16±0.20 a 1.58±0.40 a 0.27 1.87±0.64 a 0.38 1.66±0.21 a 0.30 1.42±0.01 a 0.18 1.30±0.28 a 0.14 浸提液 浙贝母叶面积 ck/cm2 T1 T2 T3 T4 T5 数值/cm2 IR 数值/cm2 IR 数值/cm2 IR 数值/cm2 IR 数值/cm2 IR 根系 5.29±1.35 a 7.03±2.39 a 0.25 7.37±0.41 a 0.28 6.50±4.31 a 0.19 5.92±0.26 a 0.11 3.18±1.17 a −0.40 新鲜枝叶 5.29±1.35 a 6.21±1.16 a 0.15 7.28±2.35 a 0.27 6.08±4.20 a 0.13 5.77±1.03 a 0.08 5.60±1.72 a 0.06 凋落物 5.29±1.35 a 7.19±0.32 a 0.27 6.91±0.82 a 0.24 6.65±0.97 a 0.21 5.58±0.21 a 0.05 5.57±0.45 a 0.05 土壤 5.29±1.35 a 6.52±0.88 a 0.19 8.89±2.40 a 0.41 7.55±2.90 a 0.30 6.30±1.28 a 0.16 5.43±1.54 a 0.03 说明:同行不同小写字母表示处理间差异显著(P<0.05);表中数值为平均值±标准差。 表 2 毛竹不同浸提液对浙贝母光合色素参数的影响
Table 2. Effects of different extracts of Ph. edulis forest on the photosynthetic pigment of F. thunbergia
浸提液 叶绿素a ck/(mg·g−1) T1 T2 T3 T4 T5 数值/(mg·g−1) IR 数值/(mg·g−1) IR 数值/(mg·g−1) IR 数值/(mg·g−1) IR 数值/(mg·g−1) IR 根系 1.49±0.13 b 1.81±0.10 a 0.18 1.70±0.65 ab 0.13 1.68±0.23 ab 0.12 1.51±0.11 b 0.02 1.34±0.12 c −0.10 新鲜枝叶 1.49±0.13 d 1.76±0.02 b 0.15 1.93±0.02 a 0.23 1.63±0.02 c 0.09 1.57±0.01 cd 0.06 1.57±0.04 cd 0.05 凋落物 1.49±0.13 c 1.93±0.04 a 0.23 1.74±0.04 b 0.15 1.61±0.04 bc 0.08 1.58±0.01 bc 0.06 1.54±0.04 c 0.03 土壤 1.49±0.13 b 1.69±0.02 a 0.120 1.63±0.02 ab 0.09 1.58±0.03 ab 0.06 1.53±0.03 ab 0.05 1.55±0.06 ab 0.04 浸提液 叶绿素b ck/(mg·g−1) T1 T2 T3 T4 T5 数值/(mg·g−1) IR 数值/(mg·g−1) IR 数值/(mg·g−1) IR 数值/(mg·g−1) IR 数值/(mg·g−1) IR 根系 0.44±0.01 c 0.66±0.63 ab 0.34 0.75±0.54 a 0.42 0.62±0.64 ab 0.20 0.59±0.11 ab 0.26 0.50±0.06 bc 0.13 新鲜枝叶 0.44±0.01 b 0.68±0.01 a 0.36 0.73±0.01 a 0.40 0.50±0.01 b 0.13 0.47±0.01 ab 0.06 0.38±0.01 e −0.13 凋落物 0.44±0.01 c 0.75±0.02 b 0.42 0.81±0.01 a 0.46 0.47±0.01 c 0.07 0.45±0.01 c 0.03 0.43±0.01 c −0.01 土壤 0.44±0.01 c 0.67±0.01 a 0.35 0.63±0.01 a 0.31 0.53±0.01 b 0.18 0.51±0.01 bc 0.14 0.49±0.19 bc 0.12 浸提液 叶绿素a/b ck T1 T2 T3 T4 T5 数值 IR 数值 IR 数值 IR 数值 IR 数值 IR 根系 3.46±0.72 a 2.77±0.13 a −0.20 2.27±0.23 a −0.34 2.72±0.26 a −0.21 2.62±0.36 a −0.24 2.74±0.59 a −0.21 新鲜枝叶 3.46±0.72 ab 2.57±0.01 b −0.26 2.64±0.01 b −0.24 3.24±0.01 b −0.06 3.37±0.01 ab −0.03 4.16±0.04 a 0.12 凋落物 3.46±0.72 a 2.57±0.01 b −0.26 2.16±0.02 b −0.38 3.45±0.01 a −0.01 3.51±0.01 a 0.02 3.58±0.01 a 0.03 土壤 3.46±0.72 a 2.51±0.01 a −0.28 2.57±0.03 a −0.26 3.02±0.01 a −0.13 3.16±0.01 a −0.11 3.46±0.79 a −0.09 浸提液 叶绿素a+b ck/(mg·g−1) T1 T2 T3 T4 T5 数值/(mg·g−1) IR 数值/(mg·g−1) IR 数值/(mg·g−1) IR 数值/(mg·g−1) IR 数值/(mg·g−1) IR 根系 1.92±0.09 c 2.47±0.16 a 0.22 2.45±0.03 a 0.22 2.30±0.08 ab 0.16 2.10±0.21 bc 0.08 1.84±0.06 c −0.04 新鲜枝叶 1.92±0.09 e 2.44±0.02 b 0.21 2.66±0.03 a 0.28 2.13±0.02 c 0.01 2.04±0.01 d 0.06 1.95±0.04 e 0.01 凋落物 1.92±0.09 d 2.68±0.05 a 0.28 2.54±0.05 b 0.24 2.08±0.05 c 0.08 2.04±0.01 cd 0.06 1.97±0.06 cd 0.02 土壤 1.92±0.09 d 2.35±0.02 a 0.19 2.26±0.03 b 0.15 2.11±0.04 c 0.09 2.07±0.03 c 0.07 2.05±0.03 c 0.06 浸提液 类胡萝卜素 ck/(mg·g−1) T1 T2 T3 T4 T5 数值/(mg·g−1) IR 数值/(mg·g−1) IR 数值/(mg·g−1) IR 数值/(mg·g−1) IR 数值/(mg·g−1) IR 根系 0.52±0.01 a 0.63±0.04 a 0.17 0.62±0.03 a 0.16 0.60±0.04 a 0.13 0.56±0.03 a 0.06 0.55±0.01 a 0.05 新鲜枝叶 0.52±0.01 b 0.60±0.01 a 0.13 0.59±0.01 a 0.12 0.53±0.01 b 0.02 0.45±0.01 c −0.15 0.43±0.01 c −0.17 凋落物 0.52±0.01 b 0.61±0.01 a 0.14 0.59±0.01 a 0.12 0.52±0.01 b −0.01 0.50±0.01 b −0.05 0.47±0.02 c −0.10 土壤 0.52±0.01 d 0.61±0.01 a 0.14 0.59±0.01 b 0.12 0.54±0.01 c 0.03 0.48±0.01 e −0.08 0.44±0.01 f −0.15 说明:同行不同小写字母表示处理间差异显著(P<0.05);表中数值为平均值±标准差。 表 3 毛竹不同浸提液对浙贝母光响应特征参数的影响
Table 3. Effects of different extracts of Ph. edulis forest on photoresponse characteristic parameters of F. thunbergii
浸提液 表观量子效率 ck T1 T2 T3 T4 T5 数值 IR 数值 IR 数值 IR 数值 IR 数值 IR 根系 0.048±0.013 de 0.071±0.005 b 0.324 0.065±0.008 cd 0.262 0.063±0.004 cd 0.238 0.049±0.004 e 0.020 0.096±0.010 a 0.500 新鲜枝叶 0.048±0.013 a 0.067±0.011 a 0.284 0.067±0.009 a 0.284 0.059±0.004 a 0.186 0.050±0.003 a 0.040 0.053±0.004 a 0.094 凋落物 0.048±0.013 b 0.054±0.008 b 0.111 0.084±0.012 a 0.429 0.072±0.011 ab 0.333 0.053±0.006 b 0.094 0.059±0.011 b 0.186 土壤 0.048±0.013 a 0.074±0.026 a 0.351 0.062±0.006 a 0.226 0.053±0.007 a 0.094 0.054±0.007 a 0.111 0.050±0.008 a 0.040 浸提液 最大净光合速率 ck/
(μmol·m−2·s−1)T1 T2 T3 T4 T5 数值/
(μmol·m−2·s−1)IR 数值/
(μmol·m−2·s−1)IR 数值/
(μmol·m−2·s−1)IR 数值/
(μmol·m−2·s−1)IR 数值/
(μmol·m−2·s−1)IR 根系 4.31±0.83 c 7.31±1.06 b 0.41 8.83±1.99 b 0.51 9.02±2.41 a 0.55 10.57±2.01 ab 0.59 3.99±0.68 c −0.08 新鲜枝叶 4.31±0.83 a 6.65±1.04 a 0.35 7.15±2.31 a 0.40 6.19±1.65 a 0.30 4.49±0.67 a 0.04 4.68±1.01 a 0.08 凋落物 4.31±0.83 b 6.52±0.42 a 0.34 6.52±0.82 a 0.34 5.32±1.21 ab 0.19 4.51±0.70 b 0.04 5.48±1.12 ab 0.21 土壤 4.31±0.83 a 4.92±0.61 a 0.12 4.78±0.59 a 0.10 4.763±0.52 a 0.10 4.58±0.66 a 0.06 4.52±0.70 a 0.05 浸提液 光饱和点 ck/
(μmol·m−2·s−1)T1 T2 T3 T4 T5 数值/
(μmol·m−2·s−1)IR 数值/
(μmol·m−2·s−1)IR 数值/
(μmol·m−2·s−1)IR 数值/
(μmol·m−2·s−1)IR 数值/
(μmol·m−2·s−1)IR 根系 110.67±10.00 c 116.92±16.63 bc 0.05 151.25±19.04 b 0.27 240.38±26.52 a 0.54 236.20±23.33 a 0.53 51.97±7.26 d −0.53 新鲜枝叶 110.67±10.00 a 114.18±12.30 a 0.03 121.60±16.16 a 0.09 121.81±20.48 a 0.09 109.84±12.00 a −0.01 107.09±12.52 a −0.03 凋落物 110.67±10.00 b 139.20±13.21 a 0.21 89.50±8.01 c −0.19 87.79±10.36 c −0.21 97.23±9.27 c −0.12 109.78±12.84 bc −0.01 土壤 110.67±10.00 a 80.00±7.32 b −0.23 93.23±10.25 ab −0.16 108.74±11.00 a −0.02 103.30±9.40 a −0.07 110.44±6.55 a −0.00 浸提液 光补偿点 ck/
(μmol·m−2·s−1)T1 T2 T3 T4 T5 数值/
(μmol·m−2·s−1)IR 数值/
(μmol·m−2·s−1)IR 数值/
(μmol·m−2·s−1)IR 数值/
(μmol·m−2·s−1)IR 数值/
(μmol·m−2·s−1)IR 根系 20.88±4.22 a 14.09±3.26 ab −0.32 15.38±3.02 ab −0.26 17.86±4.63 ab −0.14 20.41±4.10 a −0.02 10.42±2.15 b −0.50 新鲜枝叶 20.88±4.22 a 14.91±2.11 a −0.28 14.92±2.69 a −0.28 16.95±1.65 a −0.19 20.00±3.21 a −0.04 18.87±2.91 a −0.09 凋落物 20.88±4.22 a 18.52±2.08 a −0.11 11.91±0.67 b −0.43 13.89±1.33 b −0.33 18.86±0.90 a −0.09 16.95±2.15 ab −0.19 土壤 20.88±4.22a 13.51±1.90 b −0.35 16.13±1.44 ab −0.23 18.70±2.61 a −0.09 18.52±1.55 a −0.11 20.00±2.71 a −0.04 说明:同行不同小写字母表示处理间差异显著(P<0.05);表中数值为平均值±标准差。 表 4 毛竹不同浸提液对浙贝母的综合化感效应
Table 4. Synthesis effects of different extracts of Ph. edulis forest on F. thunbergia
处理 不同浸提液的综合化感效应指数 处理 不同浸提液的综合化感效应指数 根系 新鲜枝叶 凋落物 土壤 根系 新鲜枝叶 凋落物 土壤 T1 0.136 0.106 0.148 0.035 T4 0.104 0.039 0.020 0.041 T2 0.200 0.154 0.106 0.107 T5 −0.108 0.011 0.016 0.016 T3 0.180 0.102 0.053 0.081 平均值 0.103 0.082 0.069 0.056 表 5 毛竹不同浸提液对贝母素甲和贝母素乙质量分数的影响
Table 5. Effects of different extracts of Ph. edulis forest on the contents of fritillarin A and fritillarin B
浸提液 贝母素甲/(mg·kg−1) ck T1 T2 T3 T4 T5 根系 65.15±1.84 b 87.15±1.53 a 88.77±0.27 a 58.30±0.30 c 40.12±0.12 d 39.79±3.29 d 新鲜枝叶 65.15±1.84 d 95.56±1.06 b 108.58±3.58 a 86.99±1.99 b 82.75±0.25 c 71.76±1.26 d 凋落物 65.15±1.84 e 113.94±3.00 a 91.22±1.22 b 87.75±0.25 c 83.26±0.26 d 81.89±1.35 d 土壤 65.15±1.84 d 95.21±3.01 bc 100.56±0.51 a 96.65±1.50 b 92.78±0.50 c 91.57±1.40 c 浸提液 贝母素乙/(mg·kg−1) ck T1 T2 T3 T4 T5 根系 29.10±1.10 b 41.93±0.40 a 42.15±0.15 a 27.92±0.60 b 22.45±2.20 c 16.70±1.20 d 新鲜枝叶 29.10±1.10 d 47.33±0.30 b 62.34±2.04 a 46.23±1.02 b 40.15±0.15 b 35.13±0.10 c 凋落物 29.10±1.10 c 45.45±1.30 a 43.47±3.40 a 39.07±1.07 b 38.42±1.96 b 38.04±1.04 b 土壤 29.10±1.10 d 41.75±1.50 b 52.23±2.20 a 51.88±1.50 a 40.26±0.20 b 38.41±1.20 c 说明:同行不同小写字母表示处理间差异显著(P<0.05);数值为平均值±标准差。 -
[1] QIN Fangcuo, LIU Shu, YU Shixiao. Effects of allelopathy and competition for water and nutrients on survival and growth of tree species in Eucalyptus urophylla plantations [J]. Forest Ecology and Management, 2018, 424(15): 387 − 395. [2] INDERJIT, WARDLE D, KARBAN R, et al. The ecosystem and evolutionary contexts of allelopathy [J]. Trends in Ecology and Evolution, 2011, 26(12): 655 − 663. [3] HU Lingfei, ROBERT C A M, CADOT S, et al. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota [J/OL]. Nature Communications, 2018, 9: 2738[2022-06-07]. doi: 10.1038/s41467-018-05122-7. [4] BONANOM G, ZOTTI M G, IDBELLA M, et al. Microbiota modulation of allelopathy depends on litter chemistry: mitigation or exacerbation? [J/OL]. Science of the Total Environment, 2021, 776: 145942[2022-06-17]. doi: 10.1016/j.scitotenv.2021.145942. [5] 陈娟, 白尚斌, 周国模, 等. 毛竹浸提液对苦槠幼苗生长的化感效应[J]. 生态学报, 2014, 34(16): 4499 − 4507. CHEN Juan, BAI Shangbin, ZHOU Guomo, et al. Allelopathic effects of Phyllostachys edulis extracts on Castanopsis sclerophylla [J]. Acta Ecologica Sinica, 2014, 34(16): 4499 − 4507. [6] 刘姚姚, 张瑞, 沈晓飞, 等. 毛竹林不同浸提液对浙江楠幼苗生长的影响研究[J]. 西部林业科学, 2020, 49(3): 99 − 108. LIU Yaoyao, ZHANG Rui, SHEN Xiaofei, et al. Study on the effects of different extracts from Phyllostachys edulis forest on the growth of Phoebe chekiangensis seedlings [J]. Journal of West China Forestry Science, 2020, 49(3): 99 − 108. [7] 张瑞, 詹卉, 刘姚姚, 等. 毛竹林不同浸提液对延胡索生长指标和光合特征的影响[J]. 西南林业大学学报(自然科学), 2020, 40(3): 59 − 67. ZHANG Rui, ZHAN Hui, LIU Yaoyao, et al. Effects of different extracts from Phyllostachys edulis on the growth index and photosynthesis characteristics of Corydalis yanhusuo [J]. Journal of Southwest Forestry University (Natural Sciences), 2020, 40(3): 59 − 67. [8] 李欣欣, 赖金莉, 岳建华, 等. 毛竹各器官和根际土浸提液对杉木种子萌发的化感作用[J]. 生态学报, 2018, 38(22): 8149 − 8157. LI Xinxin, LAI Jinli, YUE Jianhua, et al. Allelopathy of Phyllostachys pubescens extract on the seed germination of Chinese fir [J]. Acta Ecologica Sinica, 2018, 38(22): 8149 − 8157. [9] 徐琳煜, 刘守赞, 白岩, 等. 不同光强处理对三叶青光合特性的影响[J]. 浙江农林大学学报, 2018, 35(3): 467 − 475. XU Linyu, LIU Shouzan, BAI Yan, et al. Effects of light intensity treatments on photosynthetic characteristics in Tetrastigma hemsleyanum [J]. Journal of Zhejiang A&F University, 2018, 35(3): 467 − 475. [10] 王文文, 杨飞, 杨中, 等. 超高效液相色谱-串联质谱法分析贝母药材中5种生物碱[J]. 分析测试学报, 2019, 38(4): 461 − 465. WANG Wenwen, YANG Fei, YANG Zhong, et al. Determination of 5 alkaloids in Fritillaria by ultrahigh performance liquid chromatography-tandem mass spectrometry [J]. Journal of Instrumental Analysis, 2019, 38(4): 461 − 465. [11] 车朋, 刘久石, 齐耀东, 等. UPLC-ELSD同时测定贝母类药材中6种生物碱的含量[J]. 中国中药杂志, 2020, 45(6): 1393 − 1398. CHE Peng, LIU Jiushi, QI Yaodong, et al. Simultaneous determination of six major isosteroidal alkaloids in Beimu by UPLC-ELSD [J]. China Journal of Chinese Materia Medica, 2020, 45(6): 1393 − 1398. [12] WILLIAMSON G B, RICHARDSON D. Bioassays for allelopathy: measuring treatment responses with independent controls [J]. Journal of Chemical Ecology, 1988, 14(1): 181 − 187. [13] 曾任森. 化感作用研究中的生物测定方法综述[J]. 应用生态学报, 1999, 10(1): 125 − 128. ZENG Rensen. Review on bioassay methods for allelopathy research [J]. Chinese Journal of Applied Ecology, 1999, 10(1): 125 − 128. [14] INDERJIT. Soil microorganisms: an important determinant of allelopathic activity [J]. Plant and Soil, 2005, 274(1): 227 − 236. [15] DAI Zhicong, WANG Xiaoying, QI Shanshan, et al. Effects of leaf litter on inter-specific competitive ability of the invasive plant Wedelia trilobata [J]. Ecological Research, 2016, 31(3): 367 − 374. [16] 黄永杰, 周会, 张丹丹, 等. 水花生及其根际土浸提液对马尼拉幼苗生长生理特性的影响[J]. 水土保持学报, 2015, 29(1): 285 − 291. HUANG Yongjie, ZHOU Hui, ZHANG Dandan, et al. Effects of extracts of Alternanthera philoxeroides and rhizospheric soil on growth and physiological characteristics of Zoysia matrella seedlings [J]. Journal of Soil and Water Conservation, 2015, 29(1): 285 − 291. [17] 阎飞, 杨振明, 韩丽梅. 植物化感作用(Allelopathy)及其作用物的研究方法[J]. 生态学报, 2000, 20(4): 692 − 696. YAN Fei, YANG Zhenming, HAN Limei. Review on research methods for allelopathy and allelochemicals in plants [J]. Acta Ecologica Sinica, 2000, 20(4): 692 − 696. [18] WU Di, CHEN Jianyang, LU Baiyi, et al. Application of near infrared spectroscopy for the rapid determination of antioxidant activity of bamboo leaf extract [J]. Food Chemistry, 2012, 135: 2147 − 2156. [19] 刘云芬, 王薇薇, 祖艳侠, 等. 过氧化氢酶在植物抗逆中的研究进展[J]. 大麦与谷类科学, 2019, 36(1): 5 − 8. LIU Yunfen, WANG Weiwei, ZU Yanxia, et al. Research progress on the effects of catalase on plant stress tolerance [J]. Barley and Cereal Sciences, 2019, 36(1): 5 − 8. [20] 陈昱, 张福建, 杨有新, 等. 芥菜浸提液对豇豆连作土壤性质及幼苗生理指标的影响[J]. 核农学报, 2019, 33(5): 1038 − 1047. CHEN Yu, ZHANG Fujian, YANG Youxin, et al. Effect of aqueous extract of mustard on soil properties of the continuous cropping cowpea and seedling physiological indexes [J]. Journal of Nuclear Agricultural Sciences, 2019, 33(5): 1038 − 1047. 期刊类型引用(7)
1. 徐斌,陈新宇,廖焕琴,张卫华,杨会肖. 棱果花的花表型性状多样性分析. 林业与环境科学. 2025(01): 36-42 . 百度学术
2. 杜宏志,王福森,张强,杨春柳,刘晓萌,邢政华,毕宇,李树森. 黑龙江西部青杨派纸浆材综合评价. 防护林科技. 2025(02): 45-49 . 百度学术
3. 戚亚,王改萍,郑保砼,彭大庆,李硕民,曹福亮. 文冠果无性系花表型性状遗传变异分析. 经济林研究. 2024(01): 29-38 . 百度学术
4. 刘忠明,李阳,王文波,王守娟,刘梦茹,孔凡功. 三种木材纤维微细结构分析及制浆性能研究. 造纸科学与技术. 2024(03): 6-10 . 百度学术
5. 彭叶青. 皮用青檀优株评选研究. 新农民. 2024(24): 64-66 . 百度学术
6. 黄国伟,彭华兰,张亚东,马林江,张兴虎,张新叶. 江汉平原引种45年生黑杨派品种生长过程比较. 中国农学通报. 2024(31): 1-6 . 百度学术
7. 黄桂华,梁坤南,付强,王先棒,周再知,周强,张绍祥. 11年生柚木无性系遗传变异与优良无性系选择. 东北林业大学学报. 2023(08): 18-22+64 . 百度学术
其他类型引用(3)
-
-
链接本文:
https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20220471