留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

木质素磺酸钠吸附材料的制备及对刚果红的吸附性能

李钧洋 霍丽竹 龚著祥 许浩 王宇轩 郭超飞 杨雪娟 罗锡平

赵定蓉, 陆梅, 赵旭燕, 等. 土壤细菌群落对纳帕海高原湿地退化的响应[J]. 浙江农林大学学报, 2024, 41(2): 406-418. DOI: 10.11833/j.issn.2095-0756.20230331
引用本文: 李钧洋, 霍丽竹, 龚著祥, 等. 木质素磺酸钠吸附材料的制备及对刚果红的吸附性能[J]. 浙江农林大学学报, 2024, 41(4): 870-878. DOI: 10.11833/j.issn.2095-0756.20230585
ZHAO Dingrong, LU Mei, ZHAO Xuyan, et al. Response of soil bacterial community to wetland degradation in the Napahai Plateau[J]. Journal of Zhejiang A&F University, 2024, 41(2): 406-418. DOI: 10.11833/j.issn.2095-0756.20230331
Citation: LI Junyang, HUO Lizhu, GONG Zhuxiang, et al. Preparation of sodium lignosulfonate adsorption materials and their adsorption properties for Congo red[J]. Journal of Zhejiang A&F University, 2024, 41(4): 870-878. DOI: 10.11833/j.issn.2095-0756.20230585

木质素磺酸钠吸附材料的制备及对刚果红的吸附性能

DOI: 10.11833/j.issn.2095-0756.20230585
基金项目: 中央财政林业科技推广示范资金项目(2023TS01);浙江省重点研发计划项目(2020C03090)
详细信息
    作者简介: 李钧洋(ORCID: 0009-0007-8111-6724),从事生物质能源与材料研究。E-mail: likuhf@qq.com
    通信作者: 罗锡平(ORCID: 0009-0005-8310-7034),教授,博士,从事生物质资源化学利用研究。E-mail: luoxiping@zafu.edu.cn
  • 中图分类号: S781

Preparation of sodium lignosulfonate adsorption materials and their adsorption properties for Congo red

  • 摘要:   目的  以木质素磺酸钠(SLS)为原料,制备胺化改性的木质素磺酸钠以及共价有机框架聚合物/胺化木质素磺酸钠复合材料,考察它们作为吸附材料对刚果红的吸附性能。  方法  木质素磺酸钠与甲醛、二乙烯三胺经曼尼希反应制得胺化木质素磺酸钠(ASLS),采用红外光谱(FTIR)和扫描电镜(SEM)对吸附剂的表面官能团和形貌进行了表征。考察刚果红起始质量浓度、ASLS用量、溶液pH、吸附时间等对材料吸附效果的影响;探究ASLS的吸附动力学和循环再生性能。制备富含醌共价有机框架聚合物(AQ-COF),对比ASLS、AQ-COF、AQ-COF/ASLS材料对刚果红的吸附效果。  结果  FTIR和SEM表征结果显示:木质素磺酸钠成功胺化,ASLS与AQ-COF复合后自组装成棒状纳米结构。ASLS吸附结果表明:刚果红起始质量浓度为200 mg·L−1,ASLS用量为70 mg,pH为1~5时,吸附率达95%以上,并在80 min内达到吸附平衡,吸附过程符合准二级吸附动力学模型和Langmuir等温吸附模型,吸附过程主要为化学吸附。30 mg ASLS中添加少量AQ-COF (2 mg),复合吸附剂吸附率可达80%以上。  结论  胺化改性木质素磺酸钠对刚果红有良好的吸附效果,且具有优秀的再生性能,可以作为刚果红的优良吸附剂;共价有机框架聚合物AQ-COF与ASLS复合制备的复合吸附剂可以提升ASLS对刚果红的吸附能力,表明共价有机框架聚合物在刚果红吸附领域有良好的应用前景。图9表2参25
  • 湿地是地球上物种最丰富、生产力最高、生态系统服务功能最强的生态系统,被誉为“地球之肾”,在维持物种多样性、净化水质、调节生态系统平衡等方面发挥重要作用[12]。近年来,全球变化及人为干扰导致湿地大面积退化[3],引起湿地结构、功能及生态过程的一系列变化,并影响土壤质地、结构、养分状况、酸碱性及溶氧量,最终对土壤微生物群落组成、结构及多样性产生一系列的调控作用[4]

    细菌作为湿地生态系统中的重要组成部分,主要参与土壤形成、凋落物分解、养分供应及生态系统养分循环[5],能够作为土壤生态系统变化的预警指标[6],对湿地生态系统结构及功能的维持与稳定起着不容忽视的作用。前人研究表明:高寒湿地和鄱阳湖湿地退化,导致土壤蓄水保肥能力降低、养分流失、碳氮转化速率减慢,显著抑制土壤细菌群落多样性[78]。但也有一些研究表明:人为干扰引起湿地排干、水分流失、土壤酸化及土壤养分供给改变,能够导致湿地土壤细菌多样性增加[910]。另外,三江平原湿地退化引起的土壤酸碱度及含水量变化仅影响土壤细菌群落组成,而对细菌多样性无显著影响[11]。可见,土壤细菌群落对湿地土壤理化性质变化的响应,存在不确定性。这种不确定性可能与全球变化、区域气候、湿地类型及人为活动干扰密切相关。因此,探明“不同退化阶段—土壤理化环境—细菌群落结构和多样性”之间的耦合关系,对于理解全球气候变化和人为干扰引起的湿地退化对土壤细菌群落的影响机制,具有十分重要的科学意义。

    纳帕海高原湿地地处青藏高原香格里拉县内,其特殊的闭合—半闭合地形孕育着丰富的生物多样性,是全球生物多样性保护的重点区域[12]。近20多年来,在喀斯特作用和人为干扰的叠加影响下,该区湖水外泄,湖面面积大幅度减小,沼泽湿地逐渐旱化为沼泽化草甸和草甸,导致湿地水文和理化环境发生改变,进而影响土壤细菌群落结构及多样性[13]。本研究选取纳帕海不同退化阶段高原湿地类型(沼泽湿地、沼泽化草甸和草甸)为研究对象,运用Illumina高通量测序技术,揭示不同退化阶段湿地的土壤细菌群落结构及多样性干湿季变化特征,并分析细菌群落结构及多样性与土壤理化性质变化之间的关系,从而阐明土壤细菌群落对纳帕海高原湿地退化过程的响应规律,以期为理解人为干扰及全球气候变化加剧背景下高原退化湿地的土壤微生物多样性保育提供关键数据支撑。

    纳帕海湿地(27°49′~27°55′N,99°37′~99°43′E)地处滇西北横断山区香格里拉县,面积为3100 hm2,海拔为3260 m[12],是中国典型的高原季节性湿地,属于冷凉湿润的高原气候[14]。该区域年平均气温为5.4 ℃,最热月平均气温为13.2 ℃,最冷月平均气温为−3.8 ℃;干湿季节分明,雨季(5—10月)降雨量高达495.9 mm;干季(11月至翌年4月)降雨量仅占全年的20%[13]。在人为和自然因素的共同作用下,沼泽湿地(常年淹水)逐步向沼泽化草甸(季节性淹水)和草甸(无积水)退化。

    于2015年1月(干季)和8月(湿季),在每种退化湿地样带中分别随机布设3个10 m×10 m样地(表1),每个样地内按对角线法布设5个采样点(4个顶角和1个中心),分别采集各点样品并混合为1个土样,共采集18份土壤样品。去除各样点地表2 cm厚的覆盖物,然后用土钻钻取0~20 cm土层土样,去除石砾、残根后混合,并用四分法取适量土壤装入无菌自封袋,贴好标签装入便携式冰箱尽快带回实验室(沼泽湿地常年淹水,用特质采样器采样[15])。将带回的土样约100 g用于测定土壤自然含水率,约1 kg经自然风干、磨细过100目和10目筛后用于测定土壤基本性质,约200 g于−70 ℃下冷冻保存,用于土壤DNA提取和细菌高通量测序。

    表 1  样地基本信息
    Table 1  Basic information of the sampling sites
    湿地类型经度(N)纬度(E)积水深度/cm优势植物
    沼泽湿地(SW)  27°50′43.46″ 99°39′07.86″ 8.5~23.0 杉叶藻Hippuris vulgaris、狐尾藻Myripophyllum spicatum、篦齿眼子菜
     Potamogeton pectinatus
    沼泽化草甸(SM) 27°50′43.46″ 99°38′34.60″ −19.3~5.5 矮地榆Sanguisorba filiformis、发草Deschampsia caespitosa、无翅薹草
     Carex pleistoguna、斑唇马先蒿Pedicularis longiflora var. tubiformis
    草甸(M)    27°49′56.13″ 99°38′55.26″ −154.0~−123.0 大狼毒Euphorbia jolkinii、剪股颖Agrostis matsumurae
    下载: 导出CSV 
    | 显示表格

    土壤理化性质测定参照鲍士旦[16]方法,其中:土壤自然含水率采用烘干法;pH采用电位法(水土比为1.0∶2.5);有机质采用重铬酸钾氧化-外加热法;全氮采用硫酸-高氯酸消化开氏定氮法;全磷采用硫酸-高氯酸消煮-钼锑抗比色法;全钾采用氢氧化钠熔融-火焰光度法;速效氮采用碱解扩散吸收法;速效磷采用0.030 mol·L−1氟化铵-0.025 mol·L−1盐酸浸提钼蓝比色法;速效钾采用1.000 mol·L−1中性醋酸铵浸提火焰光度法。

    用Soil DNA KIT试剂盒提取土壤总DNA,操作步骤参照试剂盒说明书。每份混合土样各提取3个DNA,充分混合后送往上海生工生物有限公司完成细菌高通量测序。利用引物341F[CCCTACA2CGACGCTCTTCCGATTG(barcode)CCTACGGGGGAG]和805R[GACTGGAGTTCCTTGGCACCCGAGAATTCCAGACTATATC]对细菌V3~V4区进行扩增,扩增过程分2轮。第1轮:10×PCR缓冲液5.0 μL,10 mmol·L−1dNTPs 0.5 μL,DNA模板10 ng,上游、下游引物各0.5 μL,Plantium Taq (5×16.67 mkat·L−1) 0.5 μL;扩增条件为:94 ℃预变性3 min,5个循环(94 ℃变性30 s、45 ℃退火20 s、65 ℃延伸30 s),20个循环(94 ℃变性20 s、55 ℃退火20 s、72 ℃延伸30 s),72 ℃延伸5 min。第2轮:DNA模板为20 ng,其他反应体系与第1轮一致;扩增条件为:95 ℃预变性30 s,5个循环(95 ℃变性15 s、55 ℃退火15 s、72 ℃延伸30 s),72 ℃延伸5 min。PCR扩增结束后,将纯化质检合格的扩增产物按1∶1等量混合,利用Miseq台式测序仪2×300 bp双端测序(paired-end)[13]

    实验数据用Excel 2007整理。数据分析前用SPSS 26进行正态分析和方差齐性检验(P<0.05)。采用单因素方差分析(one-way ANOVA)比较各样地变量之间的差异显著性,成对样本t检验比较干湿季之间的差异显著性。利用Mothur软件将相似性大于97%的序列归为同一种可操作分类单元(OTU),并计算Alpha多样性指数:丰富度指数(Richness)、香农指数 (Shannon)、艾斯指数(ACE)、赵氏指数(Chao1)、辛普森指数(Simpson)[13]。以理化因子为环境变量,细菌群落相对丰度为物种数据,采用Mantel分析理化因子对细菌群落结构的影响。

    2.1.1   土壤细菌门水平群落组成

    高通量测序结果显示:在干季和湿季共检测到相对丰度>1% 的细菌门主要有变形菌门Proteobacteria、酸杆菌门Acidobacteria、厚壁菌门Firmicutes、绿弯菌门Chloroflexi、放线菌门Actinobacteria、拟杆菌门Bacteroidetes、疣微菌门Verrucomicrobia、浮霉菌门Planctomycetes和未分类细菌门。其中,变形菌门是纳帕海高原湿地优势菌门,相对丰度高达35.92%,芽单胞菌门Gemmatimonadetes为干季特有菌门(图1)。

    图 1  不同退化阶段土壤细菌门干季(A)、湿季(B)相对丰度
    Figure 1  Composition of dry (A) and wet (B) season bacteria phylum in soil at different degradation stages

    不同退化阶段土壤细菌门相对丰度差异显著(P<0.05)。与沼泽湿地相比较,在干季,沼泽化草甸的变形菌门、酸杆菌门和厚壁菌门相对丰度显著增加(P<0.05),分别增加11.04%、49.10%和72.31%,绿弯菌门和拟杆菌门相对丰度分别减少40.89%和55.50%;草甸的酸杆菌门、放线菌门、疣微菌门、浮霉菌门和芽单胞菌门相对丰度分别增加205.38%、260.76%、188.17%、135.31%和182.18%,变形菌门、厚壁菌门和拟杆菌门相对丰度分别减少30.34%、46.55%和67.16%。在湿季,沼泽化草甸的变形菌门、酸杆菌门和拟杆菌门相对丰度分别增加17.98%、45.84%和223.54%,厚壁菌门和绿弯菌门相对丰度分别减少73.17%和35.39% (P<0.05);草甸的酸杆菌门、放线菌门、疣微菌门和浮霉菌门相对丰度分别增加216.33%、194.30%、294.56%和624.73%,厚壁菌门和拟杆菌门相对丰度分别减少88.63%和52.65%。

    不同退化阶段土壤细菌门相对丰度干湿季节存在显著差异(P<0.05)。沼泽湿地的变形菌门、酸杆菌门和绿弯菌门相对丰度为干季大于湿季,湿季分别减少了23.15%、23.89%和24.53%;厚壁菌门为湿季大于干季,是干季的3.70倍。沼泽化草甸的变形菌门、酸杆菌门、厚壁菌门和放线菌门相对丰度在湿季分别减少了18.35%、25.56%、42.39%和54.50%;拟杆菌门相对丰度在湿季显著增加(P<0.05),是干季的7.46倍。草甸的酸杆菌门相对丰度在湿季减少了21.17%;浮霉菌门相对丰度在湿季增加了1.79倍。

    2.1.2   土壤细菌属水平群落组成

    在属水平上,共检测到相对丰度>0.01%的细菌属有酸杆菌属(Gp4、Gp6、Gp7)、假单胞菌属Pseudomonas、芽单胞菌属Gemmatimonas、鞘氨醇单胞菌属SphingomonasPovalibacterSubdivisionSpartobacteria和未分类菌属。除此之外,酸杆菌属(Gp1、Gp16)、Paenisporosarcina、芽孢杆菌属Bacillus和放线菌属Gaiella为干季特有菌属;梭菌属Clostridium、尼龙菌属Flavobacterium、溶杆菌属Lysobacter、地杆菌属Pedobacter、马塞菌属Massilia和出芽菌属Gemmata为湿季特有菌属。未分类菌属为纳帕海高原湿地优势菌属,相对丰度高达20.64% (图2)。

    图 2  不同退化阶段土壤细菌属干、湿季群落组成
    Figure 2  Composition of dry and wet season bacteria phylum in soil at different degradation stages

    湿地退化显著影响土壤细菌属相对丰度(P<0.05)。与沼泽湿地相比较,在干季,沼泽化草甸的假单胞菌属、Paenisporosarcina属相对丰度显著增加(P<0.05),分别增加9.34、455.50倍,Povalibacter属相对丰度显著减少77.29% (P<0.05);草甸的酸杆菌属(GP16)、假单胞菌属、Spartobacteria属相对丰度分别增加409.35、9.54和30.86倍,Povalibacter属和未分类菌属相对丰度分别减少80.06%和41.25%。在湿季,沼泽化草甸的尼龙菌属、溶杆菌属、地杆菌属相对丰度分别增加5.87、228.50和197.98倍,梭菌属相对丰度显著减少76.28% (P<0.05);草甸的出芽菌属相对丰度显著增加116.75倍(P<0.05),未分类菌属和梭菌属相对丰度分别减少33.49%和99.34%。

    不同退化阶段的共有菌属因干湿季节变化而存在差异。沼泽湿地和沼泽化草甸的未分类菌属相对丰度均为干季大于湿季,在湿季分别减少21.59%和26.61%。沼泽化草甸中的假单胞菌属相对丰度在湿季减少79.75%;鞘氨醇单胞菌属相对丰度在湿季增加了95.78%。

    表2可见:湿地退化显著影响土壤细菌群落多样性(P<0.05)。在干季,沼泽化草甸和草甸的丰富度指数、香农指数、艾斯指数和Chao1指数较沼泽湿地显著增加(P<0.05),沼泽化草甸与草甸间差异不显著(P>0.05);在湿季,沼泽化草甸和草甸的丰富度指数、香农指数、艾斯指数和Chao1指数较沼泽湿地也显著增加,且沼泽化草甸显著高于草甸(P<0.05)。不同退化阶段土壤细菌群落多样性指数在季节变化上存在差异。沼泽湿地和沼泽化草甸的丰富度指数、艾斯指数和Chao1指数均为湿季大于干季;草甸的丰富度指数、香农指数、艾斯指数均为干季大于湿季,辛普森指数相反,且差异显著(P<0.05)。

    表 2  不同退化阶段土壤细菌群落多样性指数
    Table 2  Diversity index of soil bacterial community at different degradation stages
    湿地
    类型
    季节丰富度
    指数
    香农
    指数
    艾斯
    指数
    Chao1
    指数
    辛普森
    指数
    沼泽 
    湿地 
    干季4056 Bc6.16 Ab5668.94 Bb5368.14 Bb0.0135 Aa
    湿季4201 Ac6.20 Ac6095.66 Ac5789.86 Ac0.0118 Aa
    沼泽化
    草甸 
    干季5352 Bb6.68 Aa7046.88 Ba6631.88 Ba0.0061 Ab
    湿季5697 Aa7.14 Aa8095.30 Aa8121.55 Aa0.0049 Ab
    草甸 干季5451 Aa6.83 Aa7059.57 Aa6655.28 Aa0.0041 Bc
    湿季4915 Bb6.27 Bb6673.81 Bb6398.10 Ab0.0130 Aa
      说明:表中数据为平均值。不同大写字母表示同一退化阶段不同季节差异显著(P<0.05);不同小写字母表示同一季节不同退化阶段差异显著(P<0.05)。
    下载: 导出CSV 
    | 显示表格

    表3可知:湿地退化显著改变土壤理化性质(P<0.05)。湿地退化使土壤含水量以及有机质、全氮和速效氮质量分数显著减少(P<0.05)。干季的沼泽化草甸分别减少77.77%、41.16%、46.53%和33.91%,草甸分别减少80.93%、64.81%、87.31%和50.79%;湿季的沼泽化草甸分别减少32.30%、25.01%、51.34%和7.32%,草甸分别减少78.31%、61.99%、70.62%和39.18%,且土壤逐渐酸化。土壤磷、钾养分及碳氮比的变化趋势有所差异。较沼泽湿地,在干季,沼泽化草甸土壤全磷、全钾、速效磷、速效钾质量分数分别增加46.88%、9.39%、15.34%和27.38%;草甸土壤全磷质量分数及碳氮比分别增加14.06%和176.80%,全钾、速效磷及速效钾质量分数分别减少31.41%、42.92%和40.97%。在湿季,沼泽化草甸土壤全钾质量分数和碳氮比分别减少14.35%和63.88%,速效磷及速效钾质量分数分别增加66.15%和108.66%;草甸土壤全磷、速效磷、速效钾质量分数及碳氮比分别减少30.09%、33.57%、49.88%和37.97%,全钾质量分数显著增加51.48% (P<0.05)。

    表 3  不同退化阶段土壤理化性质
    Table 3  Soil physical and chemical characteristics at different degradation stages
    湿地类型干湿季含水量/%有机质/(g·kg−1)全氮/(g·kg−1)全磷/(g·kg−1)全钾/(g·kg−1)
    沼泽湿地 干季106.15±0.47 Ba138.20±4.29 Aa9.22±0.20 Ba0.64±0.01 Ac10.76±0.36 Ab
    湿季117.15±0.60 Aa144.40±2.52 Aa11.98±0.29 Aa0.57±0.01 Aa9.13±0.20 Ab
    沼泽化草甸干季23.60±1.52 Bb81.31±1.45 Bb4.93±0.31 Ab0.94±0.02 Aa11.77±0.29 Aa
    湿季79.31±0.91 Ab108.28±1.37 Ab5.83±0.31 Ab0.56±0.02 Ba7.82±0.15 Bc
    草甸   干季20.24±1.04 Bb48.63±6.60 Bc1.17±0.04 Bc0.73±0.01 Ab7.38±0.18 Ac
    湿季25.41±0.50 Ac54.89±2.13 Ac3.52±0.05 Ac0.37±0.02 Bb13.83±0.13 Aa
    湿地类型干湿季碳氮比pH速效氮/(mg·kg−1)速效磷/(mg·kg−1)速效钾/(mg·kg−1)
    沼泽湿地 干季8.75±0.37 Bb7.92±0.01 Aa627.75±2.29 Aa6.78±0.16 Ab176.76±0.93 Bb
    湿季14.59±0.55 Aa7.87±0.02 Aa494.61±7.02 Ba7.15±0.20 Ab297.36±9.03 Ab
    沼泽化草甸干季9.81±0.47 Ab6.97±0.04 Bb414.85±1.37 Bb7.82±0.14 Ba225.16±1.29 Ba
    湿季5.27±0.13 Bc7.82±0.11 Aa458.39±3.36 Ab11.88±1.21 Aa620.46±4.70 Aa
    草甸   干季24.22±3.30 Aa5.92±0.12 Ac308.92±1.36 Ac3.87±0.14 Bc104.35±1.44 Ac
    湿季9.05±0.35 Bb5.65±0.08 Ab300.84±3.44 Ac4.75±0.05 Ac149.04±8.64 Ac
      说明:表中数据为平均值±标准误。不同大写字母表示同一退化阶段不同季节差异显著(P<0.05);不同小写字母表示同一季节不同退化阶段差异显著(P<0.05)。
    下载: 导出CSV 
    | 显示表格

    干湿季节变化显著影响土壤理化性质的变化规律(P<0.05)。沼泽湿地土壤含水量以及全氮、碳氮比、速效钾质量分数均为湿季大于干季,湿季分别增加10.36%、29.93%、40.03%和68.23%;速效氮在湿季显著减少21.21%(P<0.05)。沼泽化草甸土壤含水量以及有机质、速效氮、速效磷和速效钾质量分数在湿季比干季分别增加236.06%、33.17%、10.50%、51.92%和175.56%;全磷、全钾质量分数和碳氮比在湿季分别减少40.43%、33.56%和46.28%;湿季pH升高,土壤偏碱性。草甸土壤含水量以及有机质、全氮、速效磷质量分数在湿季比干季分别增加25.54%、12.87%、200.85%和22.74%;全磷质量分数和碳氮比分别减少49.32%和62.63%。

    2.4.1   干季

    干季土壤理化因子与土壤细菌群落组成的Mantel分析结果如图3所示。门水平上,土壤全氮、全钾、速效钾质量分数及pH和土壤细菌门的曼特尔显著值最小(P<0.01),说明土壤pH以及氮和钾质量分数的高低是调控干季纳帕海不同退化阶段湿地土壤细菌群落结构的主要理化因子。其中,全氮质量分数和pH与酸杆菌门、放线菌门、疣微菌门、浮霉菌门、芽单胞菌门呈显著负相关(r=−0.93~−0.70,P<0.05),与变形菌门、绿弯菌门、拟杆菌门呈显著正相关(r=0.67~0.90,P<0.05)。全钾和速效钾质量分数与变形菌门、厚壁菌门呈极显著正相关(r=0.85~0.98,P<0.01),与酸杆菌门、疣微菌门、浮霉菌门呈显著负相关(r=−0.97~−0.79,P<0.05)。

    图 3  干季土壤理化因子与细菌群落结构关系的Mantel分析
    Figure 3  Mantel test analysis of the relationship between soil physical and chemical factors and bacterial community structure in dry season

    属水平上,土壤氮、磷、钾质量分数以及pH的高低是调控干季纳帕海不同退化阶段湿地土壤细菌群落组成的主要理化因子。其中,全氮、速效氮质量分数以及pH与酸杆菌属(Gp1、Gp4、Gp6、Gp7)、假单胞菌属、芽单胞菌属、鞘氨醇单胞菌属、芽孢杆菌属、Spartobacteria、出芽菌属呈显著负相关(r=−0.93~−0.67,P<0.05),与Gp16属、Povalibacter、未分类菌属呈显著正相关(r=0.72~0.91,P<0.05)。速效磷、速效钾质量分数与酸杆菌属(Gp1、Gp4)、鞘氨醇单胞菌属、Spartobacteria、出芽菌属呈极显著负相关(r=−0.97~−0.80),与未分类菌属呈极显著正相关(r=0.81~0.96,P<0.01)。

    2.4.2   湿季

    湿季土壤理化因子与土壤细菌群落组成的Mentel分析结果如图4所示。门水平上,有机质、氮和磷质量分数及含水量、pH的高低是调控纳帕海不同退化阶段湿地土壤细菌群落结构的主要理化因子。其中,含水量、pH以及有机质、全氮、全磷、速效氮质量分数与酸杆菌门、放线菌门、疣微菌门和浮霉菌门呈显著负相关(r=−0.98~−0.74,P<0.05),有机质、全氮、速效氮质量分数以及含水量与厚壁菌门、绿弯菌门呈显著正相关(r=0.75~0.96,P<0.05)。

    图 4  湿季土壤理化因子与细菌群落结构关系的Mantel分析
    Figure 4  Mantel test analysis of the relationship between soil physical and chemical factors and bacterial community structure in wet season

    属水平上,有机质、氮、磷质量分数以及pH、含水量、碳氮比是调控纳帕海不同退化阶段湿地土壤细菌群落组成的主要理化因子。其中,有机质、全氮、全磷、速效氮质量分数以及含水量、pH 与假单胞菌属、芽单胞菌属、Gp4属、Gp7属、Spartobacteria、出芽菌属呈显著负相关(r=−0.97~−0.71,P<0.05),与梭菌属、Povalibacter、未分类菌属呈显著正相关(r=0.79~0.96,P<0.05);碳氮比与尼龙菌属、Subdivision、溶杆菌属、地杆菌属、马塞菌属呈显著负相关(r=−0.90~−0.68,P<0.05),与梭菌属和Povalibacter呈显著正相关(r=0.76~0.78,P<0.05)。

    对土壤理化因子与细菌多样性指数进行Pearson相关性分析,结果如表4所示。在干季,丰富度指数、香农指数、艾斯指数、Chao1指数与有机质、全氮、速效氮质量分数以及pH、含水量呈极显著负相关(r=−0.99~−0.83,P<0.01)。可见:土壤有机质、全氮、速效氮质量分数以及pH、含水量是影响干季土壤细菌多样性的主控因子,且对细菌多样性起抑制作用。

    表 4  土壤主要理化因子与细菌群落多样性的相关性分析
    Table 4  Correlation analysis between main soil physical and chemical factors and bacterial community diversity
    项目干季湿季
    丰富度指数香农指数艾斯指数Chao1指数辛普森指数丰富度指数香农指数艾斯指数Chao1指数辛普森指数
    含水量 −0.99** −0.92** −0.99** −0.99** 0.98**
    有机质 −0.87** −0.89** −0.85** −0.85** 0.93**
    全氮  −0.91** −0.90** −0.89** −0.89** 0.96** −0.67*
    全磷  0.71* 0.70*
    全钾  0.72* 0.88** 0.83** 0.85** −0.84**
    碳氮比 −0.70* −0.96** −0.79* −0.91** −0.90**
    pH   −0.86** −0.83** −0.83** −0.83** 0.91**
    速效氮 −0.96** −0.93** −0.95** −0.94** 0.99**
    速效磷 0.88** 0.79* 0.81** −0.90**
    速效钾 0.68* 0.91** 0.82** 0.84** −0.91**
      说明:*表示显著相关(P<0. 05);**表示极显著相关(P<0. 01);−表示不相关(P>0.05)。
    下载: 导出CSV 
    | 显示表格

    在湿季,香农指数、艾斯指数、Chao1指数与土壤全钾、速效钾、速效磷质量分数呈显著正相关(r=0.79~0.91,P<0.05),与碳氮比呈显著负相关(r=−0.91~−0.79,P<0.05),是影响湿季土壤细菌多样性的主控因子。其中,全钾、速效钾、速效磷质量分数对细菌多样性起促进作用,而碳氮比起抑制作用。

    土壤细菌作为微生物群落中数量最丰富、种类最多、生物量最大的功能类群,能够对高原湿地退化引起的土壤微域环境变化产生敏感响应[17]。变形菌门是纳帕海湿地的主要优势类群,与李金业等[18]、李玉倩等[19]研究结果一致。变形菌门的生态幅广、适宜能力强,能在不同退化湿地环境中形成较为稳定的生态位,但其喜弱碱特性会影响其相对丰度的变化[20]。本研究中,在轻度退化的弱碱沼泽化草甸土壤中变形菌门相对丰度显著增加。酸杆菌门、放线菌门、疣微菌门、浮霉菌门和芽单胞菌门相对丰度均随湿地退化程度的加深而增加。酸杆菌属嗜酸菌、寡营养类群,其胞外多糖与补偿溶质的产生与积累使其更适应于含水量低、酸性较强、养分较低的退化草甸土壤[21];放线菌门、疣微菌门Spartobacteria属和浮霉菌门等属好气性细菌,喜欢通气良好的环境,湿地退化导致土壤含水量减少,土壤孔隙度、通气状况得到改善,促进其相对丰度的显著增加[22];疣微菌门是高寒沙化草甸的特有菌群,主要通过磷来维持其群落机制和养分平衡[23],故在磷分较丰富的退化草甸土壤中相对丰度较高。本研究发现:湿地退化会抑制绿弯菌门的生长繁殖,这是因为该菌门属兼性厌氧菌,在养分匮乏的条件下进行光能自养,但仍以无光或有光且缺氧条件下的化学能或光能异养生长为主[24],湿地退化导致土壤水分减少而抑制其相对丰度增加。综上所述,湿地退化过程中土壤含水量减少,使得土壤通气透水性得到改善,促进好气性细菌类群大量繁殖。

    干湿季节交替通过调节水分、温度以及细菌对土壤养分的利用关系从而改变土壤细菌群落组成[25]。本研究发现:厚壁菌门在沼泽湿地中为湿季大于干季,而在沼泽化草甸中为干季大于湿季。厚壁菌属厌氧快速生长型菌群,具有固碳作用,大多存在于动物肠道中[26]。湿季雨水冲刷,厚壁菌门随动物粪便流入沼泽湿地,相对丰度增加,同时动物粪便的输入可直接刺激其相对丰度的增加;而沼泽化草甸的有机底物相对较低,干季丰富的凋落物为厚壁菌门提供充足碳源,相对丰度较湿季增加。梭菌属为湿季特有菌属,在沼泽湿地中占优势,相对丰度高达22.60%。该菌属是来自厚壁菌门的专性厌氧铁还原菌,在严格厌氧条件下才能生存,主要通过还原铁获取生长能量[27],沼泽湿地常年淹水,湿季适宜的温度和充足的有机底物可促进其快速生长;而在干季,养分较少、温度相对较低,有利于厌氧寡营养绿弯菌门聚集[28]。拟杆菌门(尼龙菌属)在湿季沼泽化草甸显著增加,这主要与其需氧特性和水生环境的生物学特性有关[29]。酸杆菌门具有降解植物残体多聚物的能力[21],干季植物枯死,凋落物的分解为酸杆菌的繁殖及降解提供更好的养分条件[30],故相对丰度呈现干季大于湿季的变化趋势。芽单胞菌门在干季相对丰度较低,在湿季则未检测到,进一步表明了芽单胞菌属好氧菌,适宜生存于较为干燥的环境中[3132]。因此,干湿季更替显著影响好养厌养、需氧厌氧细菌群落分布格局。

    高原湿地退化通过影响水热条件、土壤结构、土壤养分,进而影响土壤细菌群落多样性[33]。本研究中,沼泽化草甸和草甸土壤的丰富度指数、香农指数、艾斯指数和Chao1指数显著高于沼泽湿地,说明湿地退化会促进细菌多样性的增加。这可能是沼泽湿地有机底物常年积累,但由于其土壤处于厌氧状况,不利于微生物对养分的矿化,难为大多数细菌提供直接能量来源[34],因此,细菌多样性较沼泽化草甸和草甸细菌低。另一方面,湿地在退化过程中,土壤孔隙度、通气状况得到改善,碱性减弱、凋落物分解加快,农药化肥的残留以及牛粪的输入为细菌生命活动提供物质源泉[35],有利于好氧喜酸细菌大量繁殖,从而导致细菌多样性较沼泽湿地高。另外,湿地退化导致植被类型呈现挺水植物—湿中生植物—旱生植物的演替格局[12],地上凋落物、根系分泌物的增加直接为土壤细菌提供可利用的碳氮及其他养分,细菌多样性增加[13]

    干湿季节更替引起的降雨量和温湿度变化,可能影响土壤理化性质及酶活性变化,进而调控土壤细菌群落多样性的干湿季变化[36]。本研究中,沼泽湿地和沼泽化草甸土壤细菌的丰富度指数、艾斯指数湿季显著高于干季,而草甸则为干季显著高于湿季。原因可能是沼泽湿地和沼泽化草甸淹水较多导致通气透水性差,抑制了需氧细菌对有机质的降解[24]。但在湿季,由于温度升高,细菌酶活性增强,溶解氧降低[37],刺激细菌大量繁殖,导致湿季细菌多样性高于干季。相较于沼泽湿地和沼泽化草甸,草甸土壤含水量低,通气透水性好,为需氧细菌提供良好的微氧环境[34]。特别是湿季放牧和旅游增加,土壤细菌多样性会因牲畜和游客践踏引起的土壤板结和理化性质变化,而导致细菌多样性湿季低于干季[38]。因此,干湿季节更替使得纳帕海不同退化阶段土壤细菌群落多样性存在差异。

    湿地退化过程中土壤水分状况变化,直接或间接导致土壤环境厌氧-需氧界面通气性、酸碱性和养分状况的改变,进而显著影响土壤细菌群落结构及多样性[3940]。纳帕海高原湿地不同退化阶段土壤含水量是影响干季土壤细菌群落结构和多样性变化的主要因子,由于沼泽湿地—沼泽化草甸—草甸演替过程中,土壤含水量减少,土壤质地疏松和溶解氧增加,有利于土壤养分分解,从而促进需氧菌的繁殖,细菌多样性增加。牛佳等[41]指出:水分是影响土壤细菌群落结构的主要因子,通过调节土壤酸碱度及养分分布格局,进而影响细菌群落结构组成。本研究中,土壤含水量与全氮、有机质、速效氮质量分数以及pH呈显著正相关,并随湿地退化而显著减少。pH高低决定整个湿地生态系统元素循环反应体系的酸碱度[42],显著影响细菌群落组成。湿地退化过程中,土壤酸化使得土壤碳氮磷养分有效性发生改变[43],从而影响土壤细菌群落分布格局。Mantel分析结果显示:pH同土壤有机质、全氮、速效氮质量分数以及含水量显著促进酸杆菌门、放线菌门、浮霉菌门和疣微菌门相对丰度增加,而抑制变形菌门、绿弯菌门和拟杆菌门相对丰度增加。原因是变形菌门、绿弯菌门和拟杆菌门属于固碳微生物,具有好氧喜弱碱特性[44],湿地退化,碳氮质量分数降低不利于细菌生长繁殖。这与林春英等[7]在高寒沼泽湿地退化研究中得出的结论相似。

    不同退化阶段土壤碳氮比增加对湿季细菌多样性增加起抑制作用。李杰[45]研究得出:碳氮比通过调节微生物分解进程进而调节土壤养分有效性,高碳氮比抑制土壤微生物活性从而缓解有机质分解,而低碳氮比加快微生物对有机质的分解、转化。本研究中,高原湿地退化过程中,土壤碳氮比降低,细菌可利用养分转化速率加快[46],细菌多样性增加;但湿地退化引起的土壤有机质减少也会导致土壤细菌可利用碳源减少,使得绝大部分共养厌氧细菌相对丰度下降(厚壁菌门、变形菌门)。Mantel分析结果显示:土壤含水量及碳、氮质量分数减少,显著抑制厚壁菌门、绿弯菌门和梭菌属相对丰度的增加;磷促进变形菌门、拟杆菌门(尼龙菌属)和地杆菌属相对丰度的增加。原因是湿地退化,土壤碳氮质量分数及含水量减少,厌氧需养菌受到抑制[47];同时,湿地退化引起的土壤酸化可刺激铁铝氧化物释放磷元素,进而促进喜磷细菌(变形菌门、拟杆菌门以及尼龙菌属和地杆菌属)大量繁殖。综上所述,湿地退化引起土壤养分状况、含水量及酸碱度改变,通过影响土壤细菌的养分需求和代谢过程,进而调控纳帕海高原湿地土壤细菌多样性。

    纳帕海高原湿地退化显著影响土壤理化环境的时空异质性,进而调控土壤细菌群落结构及多样性。湿地退化引起土壤有机质、氮质量分数以及水分、pH减小,导致酸杆菌门、放线菌门、浮霉菌门、疣微菌门相对丰度显著增加,绿弯菌门相对丰度显著减少及变形菌门、厚壁菌门(梭菌属)和拟杆菌门(尼龙菌属)干湿季差异,进而导致退化湿地土壤细菌多样性较沼泽湿地显著增加。因此,湿地退化导致土壤水分、酸碱度及土壤养分供给状况发生改变,从而显著影响土壤细菌群落结构及多样性。

  • 图  1  SLS、ASLS、AQ-COF、AQ-COF/ASLS的红外光谱图

    Figure  1  Infrared spectra of SLS, ASLS, AQ-COF, AQ-COF/ASLS

    图  2  ASLS、AQ-COF、AQ-COF/ ASLS的扫描电子显微镜(SEM)照片

    Figure  2  Scanning electron microscope (SEM) images of ASLS, AQ-COF, AQ-COF/ASLS

    图  3  ASLS对不同初始质量浓度刚果红染料的吸附量

    Figure  3  Adsorption of congo red dyes at different initial concentrations by ASLS

    图  4  刚果红吸附率和吸附量随ASLS用量的变化关系

    Figure  4  Relationship between congo red adsorption rate and adsorption capacity with ASLS dosage

    图  5  pH对吸附效果的影响

    Figure  5  Effect of pH on adsorption

    图  6  ASLS在不同时间对刚果红的吸附率

    Figure  6  Adsorption rate of Congo red by ASLS at different times

    图  7  ASLS吸附刚果红的准一级动力学模型(A)和准二级动力学模型(B)拟合

    Figure  7  Quasi-first-order kinetics (A) and quasi -second-order kinetics (B) fitting of ASLS adsorption

    图  8  ASLS吸附剂的循环使用性能

    Figure  8  Recycling performance of ASLS adsorbent

    图  9  不同吸附剂对刚果红的吸附效果

    Figure  9  Adsorption effect of different adsorbents on congo red

    表  1  ASLS对刚果红吸附的准一级动力学和准二级动力学模型参数

    Table  1.   Quasi-first-order kinetic and quasi-second-order kinetic model parameters for the adsorption of congo red adsorbed by ASLS

    动力学模型qe/(mg·g−1)速率常数(k)R2
    准一级动力学50.63−0.083 60.953 0
    准二级动力学71.940.013 90.999 9
    下载: 导出CSV

    表  2  等温吸附线的拟合参数

    Table  2.   Fitting parameters for isothermal adsorption lines

    Langmuir方程Freundlich方程
    KLqm/(mg·g−1)R2KF1/nR2
    0.042173.9130.990 41.280 90.283 10.958 9
    下载: 导出CSV
  • [1] AL-SALIHI S, JASIM A M, FIDALGO M M, et al. Removal of Congo red dyes from aqueous solutions by porous γ-alumina nanoshells [J/OL]. Chemosphere, 2022, 286: 131769[2023-12-01]. doi: 10.1016/j.jscs.2010.12.003.
    [2] AMEN R, BASHIR H, BIBI I, et al. A critical review on arsenic removal from water using biochar-based sorbents: the significance of modification and redox reactions [J/OL]. Chemical Engineering Journal, 2020, 396: 125195[2023-12-01]. doi: 10.1016/j.cej.2020.125195.
    [3] HAN Guihong, DU Yifan, HUANG Yanfang, et al. Study on the removal of hazardous Congo red from aqueous solutions by chelation flocculation and precipitation flotation process [J/OL]. Chemosphere, 2022, 289: 133109[2023-12-01]. doi: 10.1016/j.chemosphere.2021.133109.
    [4] KHUMALO N P, VILAKATI G D, MHLANGA S D, et al. Dual-functional ultrafiltration nano-enabled PSf/PVA membrane for the removal of Congo red dye [J/OL]. Journal of Water Process Engineering, 2019, 31: 100878[2023-12-01]. doi: 10.1016/j.jwpe.2019.100878.
    [5] XIANG Dong, LU Siyu, MA Yuqin, et al. Synergistic photocatalysis-fenton reaction of flower-shaped CeO2/Fe3O4 magnetic catalyst for decolorization of high concentration Congo red dye [J/OL]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 647: 129021[2023-12-01]. doi: 10.1016/j.colsurfa.2022.129021.
    [6] LI Kezhuo, YUAN Gaoqian, DONG Long, et al. Boehmite aerogel with ultrahigh adsorption capacity for Congo red removal: preparation and adsorption mechanism [J/OL]. Separation and Purification Technology, 2022, 302: 122065[2023-12-01]. doi: 10.1016/j.seppur.2022.122065.
    [7] SAJJADI M, AHMADPOOR F, NASROLLAHZADEH M, et al. Lignin-derived (nano) materials for environmental pollution remediation: current challenges and future perspectives [J]. International Journal of Biological Macromolecules, 2021, 178: 394 − 423.
    [8] XU Wenjing, CHEN Yizhen, KANG Jianxun, et al. Synthesis of polyaniline/lignosulfonate for highly efficient removal of acid red 94 from aqueous solution [J]. Polymer Bulletin, 2019, 76: 4103 − 4116.
    [9] SHABAN M, ABUKHADRA M R, SHAHIEN M G, et al. Novel bentonite/zeolite-NaP composite efficiently removes methylene blue and Congo red dyes [J]. Environmental Chemistry Letters, 2018, 16: 275 − 280.
    [10] MENG Xianzhi, SCHEIDEMANTLE B, LI Mi, et al. Synthesis, characterization, and utilization of a lignin-based adsorbent for effective removal of azo dye from aqueous solution [J]. ACS Omega, 2020, 5(6): 2865 − 2877.
    [11] TENG Xiaoxu, XU Hui, SONG Wenjia, et al. Preparation and properties of hydrogels based on PEGylated lignosulfonate amine [J]. ACS Omega, 2017, 2(1): 251 − 259.
    [12] 谷飞. 木质素磺酸基复合材料的制备及吸附性能研究[D]. 北京: 北京林业大学, 2022.

    GU Fei. Preparation and Adsorption Properties of Lignosulfonic Acid Matrix Composites [D]. Beijing: Beijing Forestry University, 2022.
    [13] 薛蓓, 房伶晏, 梁辰, 等. 磁性木质素制备及其对染料的吸附性能[J]. 林业工程学报, 2019, 4(4): 85 − 92.

    XUE Bei, FANG Lingyan, LIANG Chen, et al. Preparation of magnetic lignin and its adsorption properties on dyes [J]. Journal of Forestry Engineering, 2019, 4(4): 85 − 92.
    [14] 任建鹏, 吴彩文, 刘慧君, 等. 木质素-聚苯胺复合材料的制备及对刚果红的吸附[J]. 化工进展, 2023, 42(6): 3087 − 3096.

    REN Jianpeng, WU Caiwen, LIU Huijun, et al. Preparation of lignin-polyaniline composites and adsorption of Congo red [J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3087 − 3096.
    [15] 张文标, 李文珠, 金首文, 等. 竹炭负载壳聚糖对 Zn2+吸附动力学及其机制分析[J]. 浙江农林大学学报, 2010, 27(5): 641 − 645.

    ZHANG Wenbiao, LI Wenzhu, JIN Shouwen, et al. Adsorption kinetics with Zn2+ on bamboo charcoal loaded with chitosan [J]. Journal of Zhejiang A&F University, 2010, 27(5): 641 − 645.
    [16] 史航, 李兵, 郭建忠. 功能化枝状复合吸附材料的制备及吸附Cr(Ⅵ)的性能[J]. 浙江农林大学学报, 2022, 39(2): 396 − 404.

    SHI Hang, LI Bing, GUO Jianzhong. Preparation of functional dendritic composite adsorbents and their adsorption properties for Cr(Ⅵ) [J]. Journal of Zhejiang A&F University, 2022, 39(2): 396 − 404.
    [17] HEO J W, AN Liangliang, CHEN Jiansong, et al. Preparation of amine-functionalized lignins for the selective adsorption of methylene blue and Congo red [J/OL]. Chemosphere, 2022, 295: 133815[2023-12-01]. doi: 10.1016/j.chemosphere.2022.133815.
    [18] 农晶愿, 邹政, 杨惠越, 等. 纤维素气凝胶的制备及对刚果红的吸附性能[J]. 东北林业大学学报, 2019, 47(2): 95 − 103.

    NONG Jingyuan, ZOU Zheng, YANG Huiyue, et al. Preparation of cellulose aerogel and its adsorption properties for Congo red [J]. Journal of Northeast Forestry University, 2019, 47(2): 95 − 103.
    [19] 谈学松, 范志磊, 张勇. 纤维素-氨基硫脲吸附材料的制备及其性能评价[J]. 浙江理工大学学报(自然科学版), 2019, 41(2): 154 − 159.

    TAN Xuesong, FAN Zhilei, ZHANG Yong. Preparation of cellulose-aminothiourea adsorption materials and their performance evaluation [J]. Journal of Zhejiang Sci-Tech University (Natural Science Edition), 2019, 41(2): 154 − 159.
    [20] CHATTERJEE S, TRAN H N, GODFRED O B, et al. Supersorption capacity of anionic dye by newer chitosan hydrogel capsules via green surfactant exchange method [J]. ACS Sustainable Chemistry &Engineering, 2018, 6(3): 3604 − 3614.
    [21] MAQBOOL M, SADAF S, BHATTI H N, et al. Sodium alginate and polypyrrole composites with algal dead biomass for the adsorption of Congo red dye: kinetics, thermodynamics and desorption studies [J/OL]. Surfaces and Interfaces, 2021, 25: 101183[2023-12-01]. doi: 10.1016/j.surfin.2021.101183.
    [22] 赵卿瑞, 黄钰焜, 张洪培, 等. 铁改性香蒲生物炭吸附去除水中刚果红的研究[J]. 化学试剂, 2024, 46(3): 81 − 90.

    ZHAO Qingrui, HUANG Yukun, ZHANG Hongpei, et al. Study on the adsorption and removal of Congo red in water by iron-modified cattail biochar [J]. Chemical Reagents, 2024, 46(3): 81 − 90.
    [23] 和芹, 郭小松, 魏金芳, 等. Fe3O4@壳聚糖磁球的制备及对刚果红的吸附性能研究[J]. 化学世界, 2023, 64(5): 336 − 341.

    HE Qin, GUO Xiaosong, WEI Jinfang, et al. Preparation of Fe3O4@chitosan magnetic spheres and their adsorption properties on Congo red [J]. Chemical World, 2023, 64(5): 336 − 341.
    [24] 陈锋, 马路路, 朱思嘉, 等. 葡萄糖酸钠派生多孔碳对刚果红的吸附特性研究[J]. 水处理技术, 2023, 49(10): 41 − 46.

    CHEN Feng, MA Lulu, ZHU Sijia, et al. Adsorption characteristics of porous carbon derived from sodium gluconate on Congo red [J]. Water Treatment Technology, 2023, 49(10): 41 − 46.
    [25] ZONG Enmin, FAN Runfang, HUA Hao, et al. A magnetically recyclable lignin-based bio-adsorbent for efficient removal of Congo red from aqueous solution [J]. International Journal of Biological Macromolecules, 2023, 226: 443 − 453.
  • [1] 马淑雯, 刘鑫, 周小琴, 方晓波, 郑华宝, 毛浩楠, 杨雨, 孟祺绅, 张成.  海绵热解炭固定化微生物吸附-降解餐饮废水中油脂的研究 . 浙江农林大学学报, 2023, 40(2): 293-303. doi: 10.11833/j.issn.2095-0756.20220338
    [2] 方涛, 李锦云, 郭明, 王瑞, 孙立苹.  温敏型分子印迹水凝胶的制备及对有机磷阻燃剂的吸附性 . 浙江农林大学学报, 2022, 39(2): 405-414. doi: 10.11833/j.issn.2095-0756.20210254
    [3] 史航, 李兵, 郭建忠.  功能化枝状复合吸附材料的制备及吸附Cr(Ⅵ)的性能 . 浙江农林大学学报, 2022, 39(2): 396-404. doi: 10.11833/j.issn.2095-0756.20200119
    [4] 张曾, 宋成芳, 单胜道, 郑华宝, 张成.  猪粪水热炭对土壤有机碳矿化及土壤性质的影响 . 浙江农林大学学报, 2021, 38(4): 765-773. doi: 10.11833/j.issn.2095-0756.20200651
    [5] 李雨桐, 何鑫龙, 彭一帆, 胡勰克, 王昱杭, 赵婷, 吴胜春, 梁鹏.  藻源溶解性有机质对汞甲基化的影响 . 浙江农林大学学报, 2021, 38(2): 362-368. doi: 10.11833/j.issn.2095-0756.20200146
    [6] 孟童瑶, 李素艳, 邹荣松, 余克非, 付冰妍, 揭阳.  固定化木质素降解菌对园林废弃物堆肥的影响 . 浙江农林大学学报, 2021, 38(1): 38-46. doi: 10.11833/j.issn.2095-0756.20200219
    [7] 李思艳, 刘俊蕃, 李梅.  不同官能团多壁碳纳米管对镉的吸附及细菌毒性 . 浙江农林大学学报, 2021, 38(2): 355-361. doi: 10.11833/j.issn.2095-0756.20200297
    [8] 戴志楠, 温尔刚, 陈翰博, 杨兴, 陈俊辉, 郭佳, 王海龙.  施用原始及铁改性生物质炭对土壤吸附砷(Ⅴ)的影响 . 浙江农林大学学报, 2021, 38(2): 346-354. doi: 10.11833/j.issn.2095-0756.20200392
    [9] 王珏, 郭明, 孙立苹.  磁性海藻酸钠复合凝胶球的制备及对铅离子的吸附性能 . 浙江农林大学学报, 2020, 37(6): 1112-1119. doi: 10.11833/j.issn.2095-0756.20190751
    [10] 胡蝶, 李文奇, 张利萍, 关莹, 高慧.  废报纸生物质炭的制备及对铜离子的吸附性能 . 浙江农林大学学报, 2020, 37(2): 325-334. doi: 10.11833/j.issn.2095-0756.2020.02.018
    [11] 肖继波, 黄志达, 陈玉莹, 瞿倩, 褚淑祎.  高效除磷型底泥陶粒的制备及性能分析 . 浙江农林大学学报, 2019, 36(2): 415-421. doi: 10.11833/j.issn.2095-0756.2019.02.024
    [12] 丁婷婷, 李倩, 金贞福.  木质素及溴化木质素对合成环氧树脂热性能的影响 . 浙江农林大学学报, 2018, 35(3): 562-566. doi: 10.11833/j.issn.2095-0756.2018.03.023
    [13] 安兰芝, 卢祥, 刘祖广.  木质素胺在稀酸水溶液中的聚集行为 . 浙江农林大学学报, 2017, 34(1): 7-13. doi: 10.11833/j.issn.2095-0756.2017.01.002
    [14] 沈振明, 夏俊, 戴勇, 沈秋兰, 李永春, 徐秋芳.  阴离子淀粉对土壤养分离子的吸附作用 . 浙江农林大学学报, 2014, 31(3): 366-372. doi: 10.11833/j.issn.2095-0756.2014.03.006
    [15] 尚娜娜, 叶晓, 黄丽霜, 金贞福.  热压过程中毛竹材加工剩余物蒸爆纤维木质素结构变化规律 . 浙江农林大学学报, 2012, 29(3): 420-425. doi: 10.11833/j.issn.2095-0756.2012.03.015
    [16] 吴光前, 孙新元, 张齐生.  活性炭表面氧化改性技术及其对吸附性能的影响 . 浙江农林大学学报, 2011, 28(6): 955-961. doi: 10.11833/j.issn.2095-0756.2011.06.020
    [17] 郝瑞军, 方海兰, 沈烈英, 车玉萍.  上海典型植物群落土壤有机碳矿化特征 . 浙江农林大学学报, 2010, 27(5): 664-670. doi: 10.11833/j.issn.2095-0756.2010.05.005
    [18] 刘源, 王浩, 黄静, 赵岩, 费文君.  城市绿地系统有机更新“四化”法研究 . 浙江农林大学学报, 2010, 27(5): 739-744. doi: 10.11833/j.issn.2095-0756.2010.05.016
    [19] 窦春英, 徐温新, 叶正钱, 张圆圆, 姚芳, 吕家珑.  6种典型农田土壤的锌吸附-解吸特性 . 浙江农林大学学报, 2010, 27(1): 8-14. doi: 10.11833/j.issn.2095-0756.2010.01.002
    [20] 周兵, 安传福, 董云发, 强胜.  用大孔吸附树脂分离链格孢菌毒素 . 浙江农林大学学报, 2007, 24(2): 198-202.
  • 期刊类型引用(3)

    1. 道日娜,张英,李希来,李强,马林雄,铁晓龙. 高寒湿地演替过程对土壤细菌多样性的影响. 环境科学. 2025(03): 1897-1904 . 百度学术
    2. 彭鵾,靳红梅,孙恩惠,陈国强,雍宬,GUEGUIM KANA E B,吴增游,刘歆颖,程洁红,曲萍,黄红英. 秸秆纤维毯覆盖对葡萄园土壤理化性质、杂草防控及果实品质的影响. 农业资源与环境学报. 2025(02): 430-438 . 百度学术
    3. 刘秀花,孙钰涵,卢杰,刘小康,马延东,贺屹,胡安焱. 黄土-古土壤原核生物群落对古气候变化的响应. 微生物学报. 2024(06): 1800-1823 . 百度学术

    其他类型引用(1)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20230585

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2024/4/870

图(9) / 表(2)
计量
  • 文章访问数:  434
  • HTML全文浏览量:  58
  • PDF下载量:  23
  • 被引次数: 4
出版历程
  • 收稿日期:  2023-12-06
  • 修回日期:  2024-03-21
  • 录用日期:  2024-04-08
  • 网络出版日期:  2024-07-12
  • 刊出日期:  2024-07-12

木质素磺酸钠吸附材料的制备及对刚果红的吸附性能

doi: 10.11833/j.issn.2095-0756.20230585
    基金项目:  中央财政林业科技推广示范资金项目(2023TS01);浙江省重点研发计划项目(2020C03090)
    作者简介:

    李钧洋(ORCID: 0009-0007-8111-6724),从事生物质能源与材料研究。E-mail: likuhf@qq.com

    通信作者: 罗锡平(ORCID: 0009-0005-8310-7034),教授,博士,从事生物质资源化学利用研究。E-mail: luoxiping@zafu.edu.cn
  • 中图分类号: S781

摘要:   目的  以木质素磺酸钠(SLS)为原料,制备胺化改性的木质素磺酸钠以及共价有机框架聚合物/胺化木质素磺酸钠复合材料,考察它们作为吸附材料对刚果红的吸附性能。  方法  木质素磺酸钠与甲醛、二乙烯三胺经曼尼希反应制得胺化木质素磺酸钠(ASLS),采用红外光谱(FTIR)和扫描电镜(SEM)对吸附剂的表面官能团和形貌进行了表征。考察刚果红起始质量浓度、ASLS用量、溶液pH、吸附时间等对材料吸附效果的影响;探究ASLS的吸附动力学和循环再生性能。制备富含醌共价有机框架聚合物(AQ-COF),对比ASLS、AQ-COF、AQ-COF/ASLS材料对刚果红的吸附效果。  结果  FTIR和SEM表征结果显示:木质素磺酸钠成功胺化,ASLS与AQ-COF复合后自组装成棒状纳米结构。ASLS吸附结果表明:刚果红起始质量浓度为200 mg·L−1,ASLS用量为70 mg,pH为1~5时,吸附率达95%以上,并在80 min内达到吸附平衡,吸附过程符合准二级吸附动力学模型和Langmuir等温吸附模型,吸附过程主要为化学吸附。30 mg ASLS中添加少量AQ-COF (2 mg),复合吸附剂吸附率可达80%以上。  结论  胺化改性木质素磺酸钠对刚果红有良好的吸附效果,且具有优秀的再生性能,可以作为刚果红的优良吸附剂;共价有机框架聚合物AQ-COF与ASLS复合制备的复合吸附剂可以提升ASLS对刚果红的吸附能力,表明共价有机框架聚合物在刚果红吸附领域有良好的应用前景。图9表2参25

English Abstract

赵定蓉, 陆梅, 赵旭燕, 等. 土壤细菌群落对纳帕海高原湿地退化的响应[J]. 浙江农林大学学报, 2024, 41(2): 406-418. DOI: 10.11833/j.issn.2095-0756.20230331
引用本文: 李钧洋, 霍丽竹, 龚著祥, 等. 木质素磺酸钠吸附材料的制备及对刚果红的吸附性能[J]. 浙江农林大学学报, 2024, 41(4): 870-878. DOI: 10.11833/j.issn.2095-0756.20230585
ZHAO Dingrong, LU Mei, ZHAO Xuyan, et al. Response of soil bacterial community to wetland degradation in the Napahai Plateau[J]. Journal of Zhejiang A&F University, 2024, 41(2): 406-418. DOI: 10.11833/j.issn.2095-0756.20230331
Citation: LI Junyang, HUO Lizhu, GONG Zhuxiang, et al. Preparation of sodium lignosulfonate adsorption materials and their adsorption properties for Congo red[J]. Journal of Zhejiang A&F University, 2024, 41(4): 870-878. DOI: 10.11833/j.issn.2095-0756.20230585
  • 随着染料工业的发展,染料废水的污染越来越严重,废水处理问题引起了社会各界的广泛关注[1]。刚果红是一种基于联苯胺的阴离子双偶氮染料,在生产和使用过程中易产生流失进入水体,且难以降解,对水生动植物微生物都具有毒害作用[2]。目前处理有机染料废水的有效方法主要分为物理法和化学法,具体有吸附法[3]、絮凝法、膜分离法[4-5]和光催化法[6]等。相较于其他方法,吸附法是一种更为经济有效的方法,具有成本低、可得性好、操作简单、去除效率高等优点,被广泛用于处理染料废水[7]

    木质素磺酸钠是造纸工业副产物,结构中包含的芳香族酚羟基、脂肪族羟基以及侧链的负电荷基团可有效吸附溶液中的染料离子和金属离子,同时含有磺酸基官能团,具有良好的水溶性、分散性和表面活性[8]。利用其独特结构开发天然生物质吸附剂具有环境友好、成本低廉等特点,在水处理方面得到了广泛的研究和应用[9]。单纯的木质素磺酸盐虽然表现出一定的吸附性能,但是自身吸附性能有限,对染料的亲和性不高,限制了它的广泛应用,因此,需要利用木质素磺酸盐表面丰富的官能团进行化学改性制备木质素基吸附材料,从而进一步增强其吸附性能。目前存在的改性方法主要包括酚化、磺化、曼尼希反应、羧甲基化、接枝共聚、复合改性等[1011]。例如,谷飞[12]利用木质素磺酸钠与壳聚糖复合制备吸附材料,用于吸附阴离子染料罗丹明B和刚果红,表明随壳聚糖含量的增加,胺基数目增多,复合吸附剂对刚果红的吸附效果增加。薛蓓等[13]利用曼尼希反应将不同比例的木质素与磁性材料结合,制备了磁性木质素纳米材料,对刚果红的吸附量达234.1 mg·g−1,同时缓解了吸附材料难回收的问题。任建鹏等[14]使用聚苯胺和木质素磺酸盐复合,引入胺基、亚胺基等活性基团的同时改善了聚苯胺在溶液中易聚合的特点。目前,木质素磺酸钠用于刚果红吸附的研究大多集中在利用木质素与其他材料复合提高其吸附性能,对木质素磺酸钠直接化学改性用于刚果红吸附的研究较少。因此,本研究利用化学改性方法制备胺化木质素磺酸钠,并将其与共价有机框架聚合物复合制备吸附剂,进一步增强材料的吸附效果,为化学改性木质素磺酸钠以及共价有机框架聚合物在有机污染物吸附领域的应用提供参考。

    • 将10.0 g木质素磺酸钠,0.5 g 氢氧化钠(NaOH)溶解于23.0 mL水中,加入3.0 g二乙烯三胺升温至85 ℃;缓慢滴加4.5 mL质量分数为36%的甲醛水溶液,冷凝回流条件下反应4 h;反应结束冷却至室温,滴加1.0 mol·L−1盐酸(HCl)直至无棕色沉淀析出,过滤,分别使用异丙醇和石油醚洗涤产物至滤液无色,放入干燥箱中烘干。研磨后再次抽滤,用蒸馏水洗涤至滤液无色,得到最终产物ASLS,胺值为2.34 mmol·g−1

    • 将36 mg四氟-1,4-苯醌(TFBQ)、96 mg二羟基蒽醌(DHAQ)、4 mL 1,4-二氧六环、156 µL三乙胺加入到充有氩气的10 mL反应瓶中,混合均匀,超声5 min,随后放入120 ℃烘箱反应72 h;反应结束后冷却至室温,离心,收集棕色沉淀物;随后用大量丙酮、二氯甲烷、四氢呋喃洗涤产物。用丙酮索式提取24 h后收集产物,60 ℃真空干燥后得棕色粉末为AQ-COF。称取一定质量的ASLS粉末、AQ-COF粉末放入研钵中,混合并研磨均匀,制得AQ-COF/ASLS复合材料。

    • 采用Nicolet 6700傅里叶变换红外光谱仪对样品进行表征分析。具体流程如下:取1~2 mg 样品在玛瑙研钵中研磨成细粉末与干燥的溴化钾混合均匀,装入模具内,在压片机上压制成片测试,扫描范围为400~4 000 cm−1

    • 准确称量2 g样品到250 mL烧瓶中,加入50 mL乙醇,加热至沸腾1 min以除去可能存在的游离氨,冷却至室温。滴加5滴溴酚蓝指示剂并搅拌,使用0.2 mol·L−1的盐酸标准溶液滴定至黄色终点出现,记录消耗的HCl体积。总胺值(A)计算公式为:$ A=56.1VN/S $。其中:V为样品滴定所需的HCl体积(mL);N为HCl溶液的浓度(mol·L−1);S为使用的样品质量(g)。

    • 使用S20206414 SU 8010冷场发射SEM,观察样品表面形貌。将样品粉末分散于少量乙醇中,超声使其分散均匀,对样品表面进行喷金处理,观察样品表面形貌。

    • 配制质量浓度为200 mg·L−1的刚果红溶液,根据实验需要进行稀释或者调节pH。吸附实验的具体步骤如下:取25 mL一定浓度的刚果红溶液于锥形瓶中,分别加入一定质量的吸附剂,在磁力搅拌器上以300 r·min−1转速进行搅拌吸附。吸附一定时间后,将悬浮液在8 000 r·min−1下离心取上清液,利用分光光度计测定其吸光度,计算刚果红质量浓度,并按以下公式计算刚果红的吸附率及吸附量。

      $$ R=\frac{{c}_{0}-{c}_{\mathrm{t}}}{{c}_{0}}\times 100\mathrm{\%} \text{;} $$ (1)
      $$ q=\frac{{(c}_{0}-{c}_{\mathrm{t}})\times V}{m} 。 $$ (2)

      式(1)~(2)中:R为刚果红平衡吸附率;$ {c}_{0} $为初始时刚果红质量浓度(mg·L−1);${c}_{\mathrm{t}}$为吸附结束后刚果红质量浓度(mg·L−1);q为单位质量吸附剂上的吸附量(mg·g−1);V为液相体积(mL);m为吸附剂质量(g)。

      刚果红起始质量浓度对吸附效果的影响实验中,刚果红起始质量浓度分别为50、100、150、200、250 mg·L−1;pH对吸附性能的影响实验中,利用0.1 mol·L−1 HCl或NaOH调节刚果红溶液pH变化为1~11。

    • 取25 mL质量浓度为200 mg·L−1刚果红溶液,加入70 mg ASLS,分别在吸附时间为20、40、60、80、100、120 min时测定刚果红溶液的吸光度,计算t时刻的吸附量qt,采用准一级动力学和准二级动力学模型对数据进行拟合。方程如下所示:

      $$ \mathrm{ln}({q}_{{\rm{e}}}-{q}_{t})=\mathrm{ln}{q}_{{\rm{e}}}-{k}_{1}t\text{;} $$ (3)
      $$ \frac{t}{{q}_{t}}=\frac{1}{{k}_{2}{{q}^{2}_{{\rm{e}}}}}+\frac{t}{{q}_{{\rm{e}}}}\mathrm{。} $$ (4)

      式(3)~(4)中:k1为准一级动力学方程的速率常数;k2为准二级动力学方程的速率常数;t为吸附时间(min);qe为平衡吸附量(mg·g−1);qtt时刻对刚果红的吸附量(mg·g−1)。

    • ASLS对刚果红的吸附过程分别采用Langmuir和Freundlich吸附模型[1516]进行拟合,其等温线模型分别如下所示:

      $$ \frac{{C}_{{\rm{e}}}}{{q}_{{\rm{e}}}}=\frac{{C}_{{\rm{e}}}}{{q}_{{\rm{m}}}}+\frac{1}{{q}_{{\rm{m}}}{k}_{{\rm{L}}}} \text{;} $$ (5)
      $$ \mathrm{ln}{q}_{{\rm{e}}}=\mathrm{ln}{k}_{{\rm{F}}}+\frac{1}{n}\mathrm{ln}{C}_{{\rm{e}}} 。 $$ (6)

      式(5)~(6)中:Ce为吸附后溶液中刚果红的剩余质量浓度(mg·L−1);qe为平衡吸附量(mg·g−1);qm为吸附剂理论最大吸附量(mg·g−1);kL为Langmuir等温线模型与吸附能有关的常数;kF为Freundlich等温线模型与吸附容量相关的常数;n为Freundlich等温线模型的经验参数。

    • 将吸附饱和后的吸附剂过滤收集,在0.2 mol·L−1的NaOH溶液中解吸30 min,后用蒸馏水洗涤,重复3次,真空干燥至恒量得到再生的吸附剂,用于循环吸附实验,最后用紫外分光光度计测定吸光度,并计算吸附率。

    • 图1所示:胺化前后SLS和ASLS都出现了典型的木质素磺酸钠的红外吸收峰。例如,3 425、2 937 cm−1处分别为木质素磺酸钠中O—H、C—H伸缩振动吸收峰,1 614、1 507 cm−1处分别为木质素磺酸钠芳环上C=C双键吸收峰和芳环骨架伸缩振动吸收峰,1 032 cm−1处为木质素磺酸钠结构中磺酸基团的特征吸收峰,说明胺化后并未改变木质素磺酸钠的骨架结构。SLS谱图中1 386 cm−1处为芳环上的C—H面内弯曲振动吸收峰,该峰在ASLS谱图上减弱,说明芳环上的氢原子被取代;同时ASLS谱图中1 461 cm−1处吸收峰增强,是因为引入了二乙烯三胺,其亚甲基上C—H面内弯曲振动峰所致。同时1 340 cm−1处出现了C—N键的伸缩振动吸收峰。以上吸收峰的出现和强弱变化说明了胺化木质素磺酸钠与甲醛、二乙烯三胺之间发生了曼尼希反应,成功引入胺基。

      图  1  SLS、ASLS、AQ-COF、AQ-COF/ASLS的红外光谱图

      Figure 1.  Infrared spectra of SLS, ASLS, AQ-COF, AQ-COF/ASLS

      AQ-COF谱图中,1 665 cm−1为—C=O伸缩振动吸收峰,1 582 cm−1处为C=C吸收峰,1 298 cm−1为C—C单键伸缩振动吸收峰,说明富含醌结构的共价有机框架聚合物成功制备。AQ-COF/ASLS红外光谱图中,无明显新增特征吸收峰出现。与复合前相比,AQ-COF和ASLS的特征吸收峰均无明显变化,说明两者之间无化学反应发生,可能依靠物理相互作用复合。

    • 图2所示:ASLS表面含有粗糙鳞片状结构的聚集体结构;AQ-COF为颗粒状聚集体,颗粒直径为0.5~1.0 μm;AQ-COF/ASLS中含有大量的棒状纳米结构,表面附着许多颗粒,棒状结构直径约500 nm,这种棒状结构为ASLS在AQ-COF的作用下自组装形成。表明ASLS和AQ-COF复合后表面形貌发生显著变化,ASLS被AQ-COF分散得更为均匀,提高了吸附剂的比表面积,可为吸附剂提供更多的可吸附位点。

      图  2  ASLS、AQ-COF、AQ-COF/ ASLS的扫描电子显微镜(SEM)照片

      Figure 2.  Scanning electron microscope (SEM) images of ASLS, AQ-COF, AQ-COF/ASLS

    • 当吸附剂ASLS用量为10 mg,刚果红溶液体积为25 mL,保持刚果红初始pH不变的情况下,考察室温下刚果红初始质量浓度对吸附量的影响。从图3可以看出:随着刚果红溶液初始质量浓度的增加,ASLS对刚果红的吸附量先逐渐增加,后达到平衡吸附量。这是由于吸附通常为物质在两相界面处的接触,初始质量浓度较低时,刚果红分子与ASLS中的大量活性位点产生强烈吸附,并很快达到平衡。随着刚果红初始质量浓度的增加,刚果红与吸附剂表面的接触概率增大,活性吸附位点得到充分利用,增强了吸附效果,因此吸附量增加。当刚果红初始质量浓度达200 mg·L−1时,吸附量最大,达153 mg·g−1;继续增加刚果红初始质量浓度,更多的刚果红分子吸附在ASLS表面,使有效吸附活性中心被占据。当刚果红分子数量大于或等于吸附位点数目时,ASLS的吸附达到上限,即达到平衡吸附量,因此,继续增加刚果红质量浓度,吸附量不再上升[17]

      图  3  ASLS对不同初始质量浓度刚果红染料的吸附量

      Figure 3.  Adsorption of congo red dyes at different initial concentrations by ASLS

    • 当刚果红初始质量浓度为200 mg·L−1,体积为25 mL时,保持刚果红初始pH值不变,改变ASLS用量,测定刚果红吸附量和吸附率随ASLS用量的变化。从图4可以看出:随着ASLS用量增加,对刚果红的吸附率从29.6%逐渐增加到98.3%,但单位质量的ASLS对刚果红的吸附量从148.00 mg·g−1降低到70.19 mg·g−1。这是因为随着ASLS用量的增加,吸附剂吸附面积增大,活性吸附位点数量增加,因此对刚果红的吸附率逐渐增大;但是体系中刚果红总质量浓度一定,随ASLS用量增加,部分ASLS分子间可能会发生团聚,导致部分活性位点被包埋,降低了吸附率[18],因此单位质量的ASLS对刚果红的吸附量降低。

      图  4  刚果红吸附率和吸附量随ASLS用量的变化关系

      Figure 4.  Relationship between congo red adsorption rate and adsorption capacity with ASLS dosage

    • 溶液pH是影响吸附材料吸附性能的关键因素之一,染料和吸附材料在溶液中的表面电荷差异对整个吸附过程起重要作用[19]。当温度为25 ℃,刚果红质量浓度为200 mg·L−1,体积为25 mL,ASLS用量为50 mg时,研究溶液pH对刚果红吸附率的影响。从图5可见:在pH低于5时,ASLS对刚果红保持了较好的吸附能力,去除率达96.8%以上;随着pH的增大,吸附效果降低,当pH大于5时,去除率下降明显。这可能是在酸性环境中,ASLS中的—NH2被质子化,形成带正电荷的${\rm{NH}}_3^+ $。刚果红是一种阴离子染料,结构中含有2个带负电的磺酸基团,可以与质子化的胺基之间形成强烈的静电相互作用,因此酸性环境中,对刚果红的去除率比较高;随着pH的升高,溶液中OH增大,OH与刚果红之间存在竞争,因此对刚果红的去除率逐渐降低。

      图  5  pH对吸附效果的影响

      Figure 5.  Effect of pH on adsorption

    • 图6可以看出:ASLS对刚果红的吸附分为2个阶段,吸附时间低于70 min时,随时间增加,吸附率增长较快;吸附时间达70 min时,吸附率接近98%;继续延长吸附时间,吸附率增加趋于平缓,80 min时达到吸附平衡。这是因为吸附初期,ASLS有较多吸附位点,且与刚果红接触良好,因此刚果红较容易被吸附;随着吸附时间延长,ASLS表面吸附位点逐渐达到饱和,因此吸附速率逐渐下降,直至达到吸附平衡状态。

      图  6  ASLS在不同时间对刚果红的吸附率

      Figure 6.  Adsorption rate of Congo red by ASLS at different times

      图7为准一级动力学和准二级动力学模型拟合曲线,表1为准一级动力学和准二级动力学模型参数。由表1图7可以看出:准二级动力学模型拟合参数中的决定系数R2为0.999 9,高于准一级动力学模型(R2为0.953 0)。说明二级动力学模型可以更好地描述ASLS对刚果红的吸附过程,因为ASLS对刚果红的吸附过程主要由化学吸附控制[20]

      图  7  ASLS吸附刚果红的准一级动力学模型(A)和准二级动力学模型(B)拟合

      Figure 7.  Quasi-first-order kinetics (A) and quasi -second-order kinetics (B) fitting of ASLS adsorption

      表 1  ASLS对刚果红吸附的准一级动力学和准二级动力学模型参数

      Table 1.  Quasi-first-order kinetic and quasi-second-order kinetic model parameters for the adsorption of congo red adsorbed by ASLS

      动力学模型qe/(mg·g−1)速率常数(k)R2
      准一级动力学50.63−0.083 60.953 0
      准二级动力学71.940.013 90.999 9
    • 表2可见:Langmuir模型的R2为0.990 4,大于Freundlich模型的决定系数(R2为0.958 9),说明ASLS吸附刚果红的过程遵循Langmuir模型,为单分子层吸附,其理论最大吸附量为174 mg·g−1。Freundlich模型中n为经验参数,通常1/n小于1时有利于吸附过程,1/n大于1时不利于吸附过程。本研究的1/n为0.283 1,说明吸附过程易于进行。

      表 2  等温吸附线的拟合参数

      Table 2.  Fitting parameters for isothermal adsorption lines

      Langmuir方程Freundlich方程
      KLqm/(mg·g−1)R2KF1/nR2
      0.042173.9130.990 41.280 90.283 10.958 9
    • 图8可以看出:ASLS经过6次循环吸附实验后,仍然能够保持91.38%的吸附率,少量吸附效率的损失可能是由于ASLS中部分官能团的不可逆结合,导致吸附位点减少,从而导致吸附率下降。综上,说明ASLS在使用过程中具有良好的再生性能。

      图  8  ASLS吸附剂的循环使用性能

      Figure 8.  Recycling performance of ASLS adsorbent

    • 为了探究AQ-COF对ASLS吸附性能的影响,将2 mg AQ-COF与30 mg ASLS复合,制备AQ-COF/ASLS复合吸附剂。当温度为25 ℃,刚果红质量浓度为200 mg·L−1,体积为25 mL时,研究复合吸附剂对刚果红的吸附效果。如图9所示:复合前ASLS的吸附率为58.90%,AQ-COF对刚果红吸附率仅为8.20%,复合后AQ-COF/ASLS吸附剂对刚果红的吸附率达83.15%,吸附率明显提升,推测在AQ-COF和ASLS的相互作用下,ASLS被AQ-COF分散得更为均匀,因为AQ-COF中含有大量的醌结构,电负性较大的羰基结构与ASLS中带负电的磺酸基及电子云密度较高的胺基之间相互作用进行自组装[21],使ASLS中活性位点更多暴露出来,这与SEM的分析结果相一致。刚果红分子与吸附剂之间主要通过磺酸基、胺基、羟基等官能团之间的静电作用、氢键作用、π—π相互作用等进行吸附。并且胺化木质素磺酸钠、AQ-COF均为三维多孔结构,两者复合自组装之后增大了三维空间复杂性,为吸附剂提供更多的可吸附位点,从而有效提高吸附效率。

      图  9  不同吸附剂对刚果红的吸附效果

      Figure 9.  Adsorption effect of different adsorbents on congo red

    • 本研究制备的胺化木质素磺酸钠、AQ-COF/胺化木质素磺酸钠复合吸附剂对刚果红的最大平衡吸附量分别为153.0和216.7 mg·g−1,与其他生物质材料吸附剂相比,铁改性香蒲生物质炭为45.3 mg·g−1[22],Fe3O4@壳聚糖磁球为29.8 mg·g−1[23],葡萄糖酸钠派生多孔碳为102.0 mg·g−1[24],EL-PEI@Fe3O4-Mg为74.7 mg·g−1[25]。可见,本研究制备的胺基官能团化学改性的吸附剂吸附能力普遍高于没有经过官能团化学改性的吸附剂,说明通过化学改性引入活性胺基,在酸性环境中有利于提高质子化氨基的质量浓度,从而有效提升木质素磺酸钠对刚果红等阴离子染料的吸附性能。而任建鹏等[14]研究表明:木质素-聚苯胺复合材料的最大平衡吸附量为431.2 mg·g−1,吸附效果优于本研究制备的吸附剂,是因为其结构中含有大量的活性伯胺、仲胺官能团,可以通过静电作用、氢键作用、π—π作用等对染料分子进行吸附,因而吸附效果明显,进一步说明在木质素磺酸钠中引入活性胺基是提升其对刚果红吸附效果的有效方法。

      此外,共价有机框架材料具有丰富的活性位点和高的比表面积,可与胺化木质素磺酸钠结合,利用两者之间的协同与自组装作用,可有效提高胺化木质素磺酸钠吸附剂的比表面积,为吸附剂提供更多的可吸附活性位点。本研究表明:复合前ASLS对刚果红的吸附率为58.90%,复合后AQ-COF/ASLS吸附剂对刚果红的吸附率达83.15%。可见,利用胺化木质素磺酸钠与COF复合可以明显提升材料的吸附效率,为木质素磺酸钠在刚果红吸附中的应用提供了新的思路。AQ-COF/胺化木质素磺酸钠复合吸附剂结构调控、吸附条件的优化,以及其对刚果红吸附性能的进一步提高可在后续进一步研究。

    • 以木质素磺酸钠为原料,成功制备了ASLS、AQ-COF/ASLS 2种吸附剂,表明木质素磺酸钠成功胺化,且具有较强吸附效果。当ASLS用量为10 mg,染料初始质量浓度为200 mg·L−1,温度为25 ℃时,实际最大吸附量可达153.0 mg·g−1,并在80 min时达到吸附平衡,酸性环境可显著提高吸附效率;吸附等温线和吸附动力学分别符合Langmuir方程和准二级动力学方程,表明胺化改性的木质素磺酸钠对刚果红具有良好的吸附效果和循环使用性能。此外,AQ-COF/ASLS最大平衡吸附量为216.7 mg·g−1,因此,利用胺化木质素磺酸钠与COF复合是制备高效吸附剂的有效方法。

参考文献 (25)

目录

/

返回文章
返回