留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

百山祖国家公园与邻近地区常绿阔叶林群落特征比较

龙丹 吴逸卿 周伟龙 朱子安 周文婕 仲磊 沈国春 刘金亮 于明坚

张雅楠, 徐婷婷, 许好标, 等. 陆地棉早花基因GhPRR9的功能分析及验证[J]. 浙江农林大学学报, 2025, 42(1): 74−85 doi:  10.11833/j.issn.2095-0756.20240267
引用本文: 龙丹, 吴逸卿, 周伟龙, 等. 百山祖国家公园与邻近地区常绿阔叶林群落特征比较[J]. 浙江农林大学学报, 2025, 42(1): 12−22 doi:  10.11833/j.issn.2095-0756.20240456
ZHANG Ya’nan, XU Tingting, XU Haobiao, et al. Functional analysis and validation of early flowering gene GhPRR9 in Gossypium hirsutum[J]. Journal of Zhejiang A&F University, 2025, 42(1): 74−85 doi:  10.11833/j.issn.2095-0756.20240267
Citation: LONG Dan, WU Yiqing, ZHOU Weilong, et al. Differences in community characteristics of evergreen broad-leaved forests between Baishanzu National Park and adjacent areas[J]. Journal of Zhejiang A&F University, 2025, 42(1): 12−22 doi:  10.11833/j.issn.2095-0756.20240456

百山祖国家公园与邻近地区常绿阔叶林群落特征比较

DOI: 10.11833/j.issn.2095-0756.20240456
基金项目: 百山祖国家公园科研项目(2023JBGS01,2021KFLY10,2021ZDZX01,2023JBGS08);浙江省“尖兵”“领雁”研发攻关计划项目(2023C03137)
详细信息
    作者简介: 龙丹(ORCID: 0009-0006-5615-4203),从事群落生态学研究。E-mail: longdan_dan99@163.com
    通信作者: 刘金亮(ORCID: 0000-0002-2476-1803),副教授,博士,从事群落生态学和岛屿生物地理学研究。E-mail: jinliang.liu@foxmail.com
  • 中图分类号: S718.5

Differences in community characteristics of evergreen broad-leaved forests between Baishanzu National Park and adjacent areas

  • 摘要:   目的  百山祖国家公园具有典型且完整的亚热带森林生态系统,垂直带谱完整,原生常绿阔叶林面积分布广泛。通过比较分析百山祖国家公园常绿阔叶林与邻近其他自然保护区和非自然保护区内分布的常绿阔叶林的群落结构和物种多样性,有助于理解百山祖常绿阔叶林群落特征,为亚热带常绿阔叶林保护和退化植被生态恢复策略提供科学依据。  方法  选择百山祖国家公园(凤阳山和五岭坑)、九龙山、乌岩岭和古田山等4个国家级自然保护区和非自然保护区内的常绿阔叶林为研究对象,设置50个30 m×30 m的森林固定监测样地,针对样地内所有胸径≥1 cm的木本植物,利用方差分析、基于Bray-Curtis相异度指数的主坐标分析和置换方差分析等方法,比较各地区常绿阔叶林中所有木本植物成树和幼树的物种α多样性差异、物种组成差异和生物量差异。  结果  ①50个样地中共发现57科128属304种木本植物;其中百山祖国家公园的样地内有52科108属241种,优势种为木荷Schima superba和甜槠Castanopsis eyrei。②五岭坑的所有木本植物和幼树的物种α多样性最高,且国家公园和自然保护区的所有木本植物、成树和幼树的物种α多样性都高于非自然保护区。③五岭坑和凤阳山之间的所有木本植物、成树和幼树的物种组成均存在显著差异,且与其他地区的物种组成均存在差异。④凤阳山、五岭坑及乌岩岭和非保护区之间所有木本植物、成树或幼树的生物量均无显著差异,但五岭坑和凤阳山的幼树生物量显著低于古田山(P<0.05)。  结论  百山祖国家公园常绿阔叶林中的物种组成和多样性、生态系统功能等不仅在公园内不同海拔区域中存在差异,也与亚热带其他地区常绿阔叶林存在差异,说明该公园内的常绿阔叶林具有一定的独特性。图5表2参43
  • 陆地棉Gossypium hirsutum是主要的经济作物之一,在经济发展过程中占有重要地位。而今因优质耕地面积减少导致的粮棉争地问题日益突出,中国陆地棉产区又整体呈现西北内陆棉区面积不断扩大,黄河、长江棉区面积持续减少的趋势[1]。在西北内陆地区栽培早熟棉能充分发挥其可晚播的特点,减少因早春干燥、降温,以及晚霜等原因造成的育苗病虫害,降低杀虫剂施用量[2],增加霜前开花率并改善陆地棉品质[3]。因此,筛选早熟棉对提高耕地利用效率具有重要意义[4]

    植物从生理生长转向生殖生长的过程为开花[5],受环境激素影响[6],目前较为广泛的调控开花途径是光周期途径、春化途径、自主途径及年龄途径等[7]。自主及春化途径主要通过开花抑制基因FLC位点进行[8]FLC调控FTSOC1抑制开花[9],受光周期途径正向调控[10],可被FLD等通路抑制[11]。光周期靠CO/FT表达改变模式[12]CO是光周期的核心基因[13],其蛋白有2个锌指结构域正向调控FT[1415],N端蛋白控制光稳定,C端CCT区域用于核定位[16]。对拟南芥Arabidopsis thaliana研究表明:CCA1/LHYTOC1上游调控光形态建成抑制其节律[1718]。激活CCA1/LHYTOC1翻译组蛋白可调控昼夜节律[19]RVE8/LCL5也可通过结合TOC1启动子调节昼夜节律[20],节律核心基因限制TOC1的降解[21]TOC1和CCA1的mRNA转录水平受Hesp调控[22]

    PRR亚家族成员是生物钟重要组分。中心环CCA1和LHY通过结合启动子负调控TOC1(APRR1)[23]CCA1和LHYPRR9、PRR7的正调控因子[24],也可能是PRR5的正调控因子。3个PRR基因通过结合启动子负调控CCA1和LHY[25]PRR5促进TOC1积累使其稳定[26]PRR3和PRR5阻断TOC1与ZTL互作使其稳定[24]。对玉米Zea mays研究表明:PRR家族成员参与包括光响应在内的多种信号传导[27]。对大豆Glycine max研究表明:PRR家族CCT结构缺失与无意义突变影响开花时间[28]。对大白菜Brassica pekinensis[29]、大豆突变体[30]研究也表明:TOC1可控制早花,参与非生物胁迫应答[31]

    陆地棉中开花相关基因大多数属于光周期和生物钟相关途径[32]。前人对陆地棉中光周期通路CO[33]、FT[34],赤霉素途径FPF1[35]SPL3[36]和部分MADS-box[3738]家族基因进行研究,说明研究开花通路相关基因具有重要意义。结合生物信息学分析的基因功能研究有助于更好地理解基因功能[3940]。本研究将从陆地棉群体高密度遗传图谱[41]及数量性状基因座(QTL)定位[42]中发掘陆地棉中拟南芥TOC1(APRR1)的同源基因GhPRR9进行家族分析和功能验证,预测GhPRR9的结构及可能行使的功能,并对GhPRR9功能加以验证,为培育早熟棉提供一定的理论参考。

    陆地棉全基因组数据下载于Cottongen[43],拟南芥全基因组数据下载于TAIR[44],水稻Oryza sativa、草棉Gherbaceum、可可Theobroma caca、玉米、大豆、毛果杨Populus trichocarpa基因组数据下载于Phytozome[45]

    根据拟南芥PRR亚家族的定义,在Pfam上获得CCT (PF06203)和REC (PF00072)结构域隐马模型,用HMMER扫描整个陆地棉基因组取交集,利用在线工具[46]鉴别所筛选出的基因是否同时包含CCT和REC结构域,最终得到GhPRR家族基因成员。使用ExPASY网站[47]分析工具和WoLF对家族成员进行蛋白理化性质分析。

    用MEGA[48]对8个物种的PRR亚家族蛋白进行多序列比对,邻接法JJT模型构建系统进化树,校验重复100次。用DNAMAN进行保守序列比对和绘制。

    利用TBtool[49]软件制作染色体定位图和domain结构;使用MEME[50]网站分析家族成员所含Motif并进行可视化。使用Plant Care[51]分析GhPRR亚基因家族上游2 000 bp顺式启动子元件,使用TBtools进行可视化。在美国国家生物技术信息中心(NCBI)数据库中下载陆地棉相关的表达数据(序列号:PRJNA490626,编号:490626),用TBtools绘制热图。

    提取陆地棉标准系‘TM-1’花蕾RNA,并用试剂盒(CAT#037A)反转录得到底物。使用Primer 5设计引物并扩增目标片段。使用TaKaRa纯化试剂盒(9761)纯化片段,pMD18-T Vector Cloning Kit (CAT# 6011)连接T载。热激法转化DH5α感受态菌株,活化涂板后挑单菌落进行菌液PCR分析,选取合理条带单克隆测序。

    以T载为模板克隆片段并连接至过表达载体,热激转化农杆菌Agrobacterium tumefaciens GV3101,筛选阳性单克隆后取带花序的健康拟南芥提前剪下角果。浸入活化农杆菌液侵染1 min,沥干后黑暗1 d正常培养,收集种子为T0代。消毒播种T0代种子至相应抗性培养基上,其中,正常生长幼苗转入正常条件培养。筛选并验证拟南芥的阳性植株,成熟后收取T1代种子,如此培养至T3代。

    从陆地棉基因组中提取GhPRR9起始密码子上游2 000 bp片段并预测顺式启动子元件。从陆地棉标准系‘TM-1’叶片DNA中分别克隆以起始编码为原点,长500、1 000、1 500和2 000 bp的片段,XcmⅠ酶切链接载体pCXGUS-P,热激法转入大肠埃希菌Escherichia coli,测序无误后将质粒转入农杆菌中侵染拟南芥得到种子。在卡那霉素培养基上播种筛选阳性植株培养至开花,取相关组织染色并观察。

    将完成转化的表达载体以及绿色荧光蛋白(GFP)空载体通过热激法转入农杆菌菌株GV3101。培养后离心收集菌体重新悬浮,注射幼嫩烟草下表皮。注射后的烟草黑暗培养1 d后恢复正常光照周期。取下表皮制成临时切片,在激光共聚焦显微镜(LSM880)下观察记录影像。

    相对定量使用2−ΔΔCt法,内参基因为GhHistone3 (陆地棉)和AtUBQ5 (拟南芥)。扩增程序为95 ℃ 30 s,95 ℃ 15 s,60 ℃ 30 s,共40个循环。

    陆地棉时空表达分析取样:选取4个品种陆地棉材料的不同器官组织,每个品种20株随机取样,混合研磨。日周期节律分析:取三叶期的陆地棉标准系‘TM-1’植株,在人工气候室中培养1周后,隔4 h取1次顶芽,重复3株混样研磨。

    用SGN VIGS Tool设计最佳VIGS片段。以测序正确的T载为模板进行扩增,SpeI和AscI酶切位点链接到pCLCrVA载体并转化至农杆菌LBA4404中。pCLCrVA-GhPRR9、pCLCrVA、pCLCrVA-PDS重悬液分别与pCLCrVB的重悬液按体积比1∶1混合均匀。

    选取子叶完全展平,第1片真叶尚未完全显形的健康植株进行注射。侵染后的陆地棉设置辅助对照、沉默株、烟草花叶病毒株和空白对照植株,避光培养1 d后转入正常光照培养至开花,记录现蕾开花时间。

    2.1.1   陆地棉GhPRR亚家族成员鉴定及定位分析

    在陆地棉全基因组中共鉴定到14个PRR亚基因家族成员,分别命名为GhPRR1~GhPRR14 (表1)。理化性质分析显示:PRR亚家族成员蛋白有552~775个氨基酸,相对分子量为60.76~85.30 kDa,平均等电点为6.77,酸性蛋白8个,碱性蛋白6个。亚细胞定位结果显示:有11个蛋白定位于细胞核中,2个定位于叶绿体,1个定位于内质网。

    表 1  GhPRR亚家族蛋白理化性质
    Table 1  Physicochemical properties of protein in GhPRR subfamily
    蛋白名称 染色体位置 等电点 分子量/kDa 氨基酸/个 亚细胞定位 亲水性
    GhPRR1 ChrA03 5.49 53.53 487 细胞核 −0.876
    GhPRR2 ChrA05 7.32 76.62 696 细胞核 −0.725
    GhPRR3 ChrA05 8.07 81.80 743 叶绿体 −0.738
    GhPRR4 ChrA05 8.55 60.76 552 细胞核 −0.834
    GhPRR5 ChrA09 6.33 73.66 669 内质网 −0.592
    GhPRR6 ChrA11 6.53 68.72 625 细胞核 −0.565
    GhPRR7 ChrA11 5.16 73.11 665 细胞核 −0.688
    GhPRR8 ChrA11 6.84 82.54 750 细胞核 −0.689
    GhPRR9 ChrD03 5.66 61.96 563 细胞核 −0.743
    GhPRR10 ChrD09 7.11 85.30 775 叶绿体 −0.677
    GhPRR11 ChrD11 7.56 70.20 638 细胞核 −0.692
    GhPRR12 ChrD11 5.62 72.77 661 细胞核 −0.622
    GhPRR13 ChrD11 7.91 76.08 691 细胞核 −0.680
    GhPRR14 ChrD12 6.67 70.92 645 细胞核 −0.742
    下载: 导出CSV 
    | 显示表格

    用TBtools绘制出染色体定位图(图1A),可观察到GhPRR家族基因保守分布在染色体两端,14个成员分布在8条染色体上,A亚族8个,D亚族6个,其中Chr A05、Chr A11、Chr D11染色体上分别拥有3个该家族的基因,其余染色体均为1个,表明GhPRR亚家族在陆地棉AD亚基因组上呈现不完全均匀分布。

    图 1  陆地棉GhPRR亚家族成员定位及多重序列对比
    Figure 1  Mapping and multiple sequence comparison of GhPRR subfamily members in cotton
    2.1.2   陆地棉GhPRR亚家族进化树及蛋白序列对比

    从水稻、拟南芥、玉米、草棉、可可、大豆、毛果杨中分别鉴定出5、6、9、9、24、35、49个PRR亚家族成员,与陆地棉GhPRR亚家族成员蛋白构建系统进化树(图1B)。聚类结果显示:陆地棉GhPRR亚家族进化关系最接近的物种是草棉和可可。不同物种中该基因家族成员的数量差异较为明显,也体现出PRR家族成员在不同物种中的多样性。

    多重序列比对(图1C)显示:陆地棉GhPRR亚家族蛋白共有4处位点保守性较强,其中有2个高度保守的g位点,说明该家族拥有2段特征结构域(REC与CCT)。

    2.1.3   陆地棉GhPRR亚家族成员结构分析

    蛋白结构分析显示:14个蛋白均含有CCT结构域(图2A)。GhPRR6、GhPRR1、GhPRR2、GhPRR4、GhPRR8和GhPRR13含有REC超家族结构域(cl19078),其余成员含有psREC_PRR结构域(cd17852,属cl19078超家族),亚家族成员有一定的保守性,REC结构域主要功能为核酸识别,CCT结构域主要标志转录因子,以上2个结构的保守性显示了该家族成员的功能。

    图 2  陆地棉GhPRR亚家族成员结构(A~D)及时空表达量(E~F)分析
    Figure 2  Structure (A-D) and spatiotemporal expression (E-F) of GhPRR subfamily members in cotton

    MEME分析共得到5个保守基序(图2B)。除GhPRR5外其余成员均含有Motif 2和Motif 5。GhPRR1仅有Motif 1,没有Motif 3和Motif 4,GhPRR4没有Motif 1、Motif 3和Motif 4,其余成员都拥有Motif 1、Motif 3和Motif 4。

    基因结构(图2C)显示:该亚家族成员GhPRR1外显子最少(5个),GhPRR2最多(11个),其中,5个成员有8个外显子,3个成员有9个外显子,2个成员有7个外显子,2个成员有6个外显子。最长外显子在3′端较为保守,结构相似度和进化关系基本一致。

    2.1.4   陆地棉GhPRR亚家族启动子顺式元件分析

    使用Plant Care对陆地棉GhPRR亚家族成员上游2 000 bp顺式启动子元件进行分析(图2D)发现:主要存在三类顺式元件,一是生长发育响应元件,如光响应元件、生物钟控件;二是激素响应元件,如赤霉素、脱落酸等响应元件;三是非生物胁迫元件,如逆境、盐胁迫等响应元件。其中光响应元件最多(184个),其次为赤霉素响应元件(28个)。说明该亚家族成员主要参与光响应和赤霉素通路。

    2.1.5   陆地棉GhPRR亚家族成员表达分析

    利用公开的转录组数据对陆地棉GhPRR亚家族成员进行组织表达分析(图2E)发现:不同成员组织表达水平差异较大。其中茎叶和花药中表达量最高的是GhPRR4,最少的分别是GhPRR8、GhPRR3和GhPRR2。GhPRR13和GhPRR9在花丝、花苞、花萼中表达量较高,GhPRR2和GhPRR6最少。根中GhPRR13表达量最多,GhPRR7最少,雌蕊花托中GhPRR13表达量最高,GhPRR12和GhPRR2最少。GhPRR4、GhPRR11和GhPRR6可能主要作用于维管组织,GhPRR13和GhPRR9可能作用于花器官组织。

    时间表达模式分析(图2F)显示:除GhPRR7、GhPRR12、GhPRR2、GhPRR3和GhPRR10外,GhPRR亚家族其他成员表达量均呈现开花前3 d至开花后1 d逐渐增加,开花后3~5 d逐渐降低的趋势,说明其可能集中在开花前和开花时发挥作用。GhPRR7主要作用在开花后5 d及之后,GhPRR12和GhPRR2可能较少参与开花过程。胚珠中GhPRR13表达量在第10天达到顶峰,说明它在胚珠发育前期可能发挥着一定的作用,GhPRR10、GhPRR5、GhPRR9、GhPRR18、GhPRR3、GhPRR4和GhPRR14也呈现相似的趋势,说明这些基因可能拥有类似的作用模式。纤维发育期间,GhPRR13、GhPRR10和GhPRR4表达量较高,说明这些基因可能参与纤维发育调控。时间模式上,GhPRR13在10~25 d纤维中表达量持续下降,而GhPRR10和GhPRR4则表现出持续上升的趋势,可知GhPRR10和GhPRR4可能参与纤维发育的后期调控,而GhPRR13则参与早期的纤维发育调控。丰富的时空表达说明陆地棉GhPRR家族成员广泛参与到开花前后、胚珠和纤维的发育过程中。

    使用Plant Care在线工具对该基因上游2 000 bp进行启动子顺式元件分析(表2),发现拟南芥AtTOC1的同源基因GhPRR9上存在着大量的光响应元件,说明光对该基因的转录有着重要的调控作用。除此之外,在GhPRR9基因的启动子区域还存在茉莉酸等激素响应元件,说明该基因可能参与激素相关通路的调节。

    表 2  GhPRR9启动子顺式元件预测
    Table 2  Cis-acting element prediction of GhPRR9 promoter
    名称 起始位置/bp 所在链 功能 名称 起始位置/bp 所在链 功能
    ARE 43 厌氧胁迫响应 TATA-box 635 核心元件
    P-box 1 121 赤霉素响应 TATA-box 636 核心元件
    G-box 167 + 光响应 Sp1 1 057 光响应
    G-box 1 070 + 光响应 G-Box 1 009 光响应
    A-box 882 顺式调节 ABRE 168 + 脱落酸响应
    TCCC-motif 871 + 光响应 TGACG-motif 878 + 茉莉酸响应
    CAAT-box 249 + 增强区域 TGACG-motif 1 991 茉莉酸响应
    CAAT-box 354 + 增强区域 Box Ⅱ 1 007 光响应
    AE-box 535 光响应 Box 4 419 + 光响应
    GATA-motif 710 + 光响应 MRE 1 513 光响应MYB结合
    ATCT-motif 1 343 光响应 CGTCA-motif 878 茉莉酸响应
    TATA-box 634 核心元件
    下载: 导出CSV 
    | 显示表格

    对陆地棉标准系‘TM-1’进行荧光定量分析(图3A)表明:GhPRR9在花丝、萼片、花托中表达量较高,叶片最低,表明GhPRR9可能更多参与陆地棉的生殖生长。

    图 3  基因GhPRR9的时空表达量、亚细胞定位和启动子染色
    Figure 3  Spatial and temporal expression of GhPRR9 gene, subcellular localization and promoter staining

    对在人工光照条件下陆地棉三叶期标准系‘TM-1’顶芽隔4 h取样并进行荧光定量分析(图3B)表明:GhPRR9在光照开始后逐渐积累,并在中午达到顶峰,之后慢慢下降,在光周期内的表达呈现出一定的周期性。

    进一步对GhPRR9早熟品种‘中50’‘ZHONG 50’、‘中58’‘ZHONG 58’和晚熟品种‘TM-1’、‘豫棉21号’‘YM21’的表达量分析发现:GhPRR9在早熟品种中表达量显著高于晚熟品种(图3C),说明GhPRR9和早熟性状呈正向相关。

    将未转化的GFP质粒和35S::GhPRR9-GFP质粒分别转入农杆菌GV3101,并侵染烟草叶片组织,制作表皮切片置于激光共聚焦显微镜下发现:对照组分布于整个细胞中,而GFP融合蛋白荧光仅分布于细胞核(图3D)。

    截取GhPRR9不同长度的启动子与携带GUS报告基因的质粒进行重组,分别转入农杆菌GV3101后通过沾花法侵染拟南芥,获得纯合转基因株系染色观察,结果显示上游500 bp启动子几乎没有表达(图3E),而上游2 000 bp的启动子着色程度最深,说明GhPRR9启动子上游500~2 000 bp内可能存在关键调控元件诱导基因的表达。

    将拟南芥GhPRR9过表达株系培养至抽薹,并观察表型性状(图4A)发现:过表达株系GhPRR9表达量比野生型明显提高(图4B),且转基因过表达株系连座叶数量明显减少(图4C),抽薹时间和开花提前(图4D图4E),首花抽薹高度极显著矮于野生型(图4FP<0.01),说明GhPRR9正向调控植物的早花性状。过表达GhPRR9能促进开花关键基因LFYFT表达(图4G和图4H),表明GhPRR9也可能通过影响关键基因表达调控通路进而影响开花时间。

    图 4  拟南芥过表达株系的表型及表达量
    Figure 4  Phenotype and expression levels of A. thaliana overexpressed strains

    对VIGS沉默株系进行表达量检测发现:沉默株系中,GhPDS株系出现白化表型(图5A),且GhPRR9的表达量极显著降低(图5BP<0.01),表明GhPRR9基因成功得到了沉默。与对照株系相比,沉默株系现蕾时间延迟约3~4 d,开花时间延迟约2~5 d,表明沉默GhPRR9可推迟开花时间,反向证明其调节陆地棉早花的功能。

    图 5  陆地棉病毒诱导(VIGS)植株的表型及影响
    Figure 5  Phenotype and effect of G. hirsutum virus induced silencing (VIGS) plants

    本研究共鉴定出陆地棉14个GhPRR亚家族成员,成员含有CCT和REC保守结构域,说明其行使转录因子功能。转录组分析显示:大部分成员主要在开花前的茎叶、纤维发育后期和胚珠发育中期发挥作用,表明大部分成员可能存在功能冗余或协同拮抗作用。启动子元件分析显示:陆地棉GhPRR亚家族可能频繁地参与光感效应相关的生理过程,这与在拟南芥的结果中一致,据此可推测其与拟南芥同源基因作用相似。进化分析表明:陆地棉GhPRR亚家族成员基因数量多于拟南芥。前人研究也发现:棉花基因组进化加倍使该家族基因得到了扩增[52]

    对过表达株系研究发现:抽薹日期、开花日期都稍有提前,抽薹高度显著高于同期野生型植株,证明GhPRR9可以使拟南芥花期提前。构建GFP表达载体侵染烟草叶片,表明GhPRR9蛋白定位于细胞核,与生物信息学分析相互印证,进一步确认该基因行使转录因子的功能。对GhPRR9基因1 d内表达水平分析显示:光暗交替条件下基因表达量存在着周期性变化,按照其表达模式推断该基因在光照开始后积累,中午达到顶峰后慢慢下降,这与拟南芥同源基因的表达模式[53]相似,据此推测,陆地棉早花基因GhPRR9可能与拟南芥中的同源基因行使着类似的功能。陆地棉三叶期叶片的基因表达量结果显示:GhPRR9基因在早熟种中表达量高于晚熟种,据此可推断其与早熟性状有正向关联。构建VIGS株系发现:沉默株系高度降低,生育期推迟,反向证明了其促进生育期的功能。启动子分析显示:光和赤霉素可能影响该基因的转录。GUS染色结果显示:启动子上游500~2 000 bp可能存在关键调控元件。有研究显示:陆地棉转录因子与通路主要基因启动子的结合可随温度产生变化[54],且同源转录因子可能存在相互调控的作用[55]

    本研究预测了陆地棉GhPRR亚家族的功能和作用模式,找到拟南芥早花基因AtTOC1的陆地棉同源基因GhPRR9,并成功克隆,构建遗传转化株系对其功能进行验证显示:GhPRR9对早花性状存在正向促进作用。

  • 图  1  不同研究区域常绿阔叶林所有木本植物物种α多样性

    Figure  1  Differences in species α richness of all woody plants in different plots

    图  2  不同研究区域常绿阔叶林木本植物成树物种α多样性

    Figure  2  Differences in species α richness of mature trees in different plots

    图  3  不同研究区域常绿阔叶林木本植物幼树物种α多样性

    Figure  3  Differences in species α richness of saplings in different plots

    图  4  不同研究区域常绿阔叶林木本植物物种组成的差异

    Figure  4  Differences in species composition of woody plants among different plots

    图  5  不同研究区域中木本植物的生物量差异

    Figure  5  Differences in biomass of woody plants among different plots

    表  1  样地基本信息

    Table  1.   Basic information of sample plots

    研究区域 样地名称 纬度(N) 经度(E) 样地数量/个 海拔/m 优势种
    百山祖国家公园龙泉片区 凤阳山(FYS) 27.912º 119.184º 14 1051~1651 木荷、褐叶青冈、甜槠
    百山祖国家公园庆元片区 五岭坑(WLK) 27.540º 119.064º 12 651~851 甜槠、木荷、米槠
    古田山国家级自然保护区 古田山(GTS) 29.255º 118.130º 2 658~708 甜槠、木荷
    九龙山国家级自然保护区 九龙山(JLS) 28.398º 118.841º 4 625~747 木荷、红楠
    乌岩岭国家级自然保护区 乌岩岭(WYL) 27.713º 119.655º 6 960~1073 甜槠、木荷
    非自然保护区 非自保护区(FZR) 27.560º 119.713º 12 381~871 甜槠、木荷、米槠
      说明:木荷Schima superba,褐叶青冈Cyclobalanopsis stewardiana,甜槠Castanopsis eyrei,米槠Castanopsis carlesii,红楠Machilus thunbergia
    下载: 导出CSV

    表  2  不同研究区域之间常绿阔叶林木本植物的Bray-Curtis值以及物种组成显著差异(PERMANOVA)的检验

    Table  2.   Bray-Curtis values of woody plants among different plots and the test of significant differences in species composition (PERMANOVA)

    研究对象 项目 Bray-Curtis 平方和 R2 F P
    所有木本植物 FYS/WLK 0.706 1.867 0.253 8.138 ≤0.001
    FYS/WYL 0.467 0.729 0.149 3.153 0.002
    FYS/FZR 0.648 1.436 0.182 5.347 ≤0.001
    WLK/WYL 0.637 1.366 0.328 7.807 ≤0.001
    WLK/FZR 0.582 1.433 0.220 6.204 ≤0.001
    成树 FYS/WLK 0.771 1.904 0.232 7.261 ≤0.001
    FYS/WYL 0.628 0.778 0.142 2.977 0.003
    FYS/FZR 0.711 1.387 0.167 4.823 ≤0.001
    WLK/WYL 0.646 1.285 0.272 5.986 ≤0.001
    WLK/FZR 0.631 1.458 0.205 5.689 ≤0.001
    幼树 FYS/WLK 0.685 1.656 0.218 6.700 ≤0.001
    FYS/WYL 0.443 0.708 0.137 2.869 0.002
    FYS/FZR 0.655 1.399 0.166 4.786 ≤0.001
    WLK/WYL 0.653 1.321 0.295 6.683 ≤0.001
    WLK/FZR 0.575 1.165 0.169 4.469 ≤0.001
      说明:本表仅包含具有显著差异的结果。FYS. 凤阳山;WLK. 五岭坑;GTS. 古田山;JLS. 九龙山;WYL.乌岩岭;FZR. 非自然保护区。
    下载: 导出CSV
  • [1] 蔡焕满, 吴素美, 吴逸卿, 等. 百山祖国家公园五岭坑常绿阔叶林甜槠的种群特征[J]. 浙江林业科技, 2024, 44(1): 1−7.

    CAI Huanman, WU Sumei, WU Yiqing, et al. The population characteristics of Castanopsis eyrei in evergreen broad-leaved forest in Wulingkeng of Baishanzu National Park [J]. Journal of Zhejiang Forestry Science and Technology, 2024, 44(1): 1−7.
    [2] 宋永昌. 中国常绿阔叶林: 分类·生态·保育[M]. 北京: 科学出版社, 2013.

    SONG Yongchang. Evergreen Broad-leaved Forests in China: Classification, Ecology, Conservation [M]. Beijing: Science Press, 2013.
    [3] HUANG Caishuang, XU Yue, ZANG Runguo. Low functional redundancy revealed high vulnerability of the subtropical evergreen broadleaved forests to environmental change [J/OL]. Science of the Total Environment, 2024, 935 : 173307[2024-07-01]. DOI: 10.1016/j.scitotenv.2024.173307.
    [4] 余秋伍, 杨菁, 沈国春. 浙江天童常绿阔叶林林冠结构与群落物种组成的关系[J]. 植物生态学报, 2022, 46(5): 529−538.

    YU Qiuwu, YANG Jing, SHEN Guochun. Relationship between canopy structure and species composition of an evergreen broadleaf forest in Tiantong region, Zhejiang, China [J]. Chinese Journal of Plant Ecology, 2022, 46(5): 529−538.
    [5] FANG Xiaofeng, SHEN Guochun, YANG Qingsong, et al. Habitat heterogeneity explains mosaics of evergreen and deciduous trees at local-scales in a subtropical evergreen broad-leaved forest [J]. Journal of Vegetation Science, 2017, 28(2): 379−388.
    [6] JIN Dongmei, YUAN Quan, DAI Xiling, et al. Enhanced precipitation has driven the evolution of subtropical evergreen broad-leaved forests in Eastern China since the early Miocene: evidence from ring-cupped oaks [J]. Journal of Systematics and Evolution, 2024, 62(4): 677−686.
    [7] 金毅, 陈建华, 米湘成, 等. 古田山24 ha森林动态监测样地常绿阔叶林群落结构和组成动态: 探讨2008年冰雪灾害的影响[J]. 生物多样性, 2015, 23(5): 610−618.

    JIN Yi, CHEN Jianhua, MI Xiangcheng, et al. Impacts of the 2008 ice storm on structure and composition of an evergreen broad-leaved forest community in Eastern China [J]. Biodiversity Science, 2015, 23(5): 610−618.
    [8] 米湘成, 王绪高, 沈国春, 等. 中国森林生物多样性监测网络: 二十年群落构建机制探索的回顾与展望[J]. 生物多样性, 2022, 30(10): 211−233.

    MI Xiangcheng, WANG Xugao, SHEN Guochun, et al. Chinese forest biodiversity monitoring network(CForBio): twenty years of exploring community assembly mechanisms and prospects for future research [J]. Biodiversity Science, 2022, 30(10): 211−233.
    [9] TONG Xin, NASON J D, DING Yuanyuan, et al. Genetic tracking of density-dependent adult recruitment: a case study in a subtropical oak [J]. Journal of Ecology, 2021, 109(6): 2317−2328.
    [10] 张田田, 王璇, 任海保, 等. 浙江古田山次生与老龄常绿阔叶林群落特征的比较[J]. 生物多样性, 2019, 27(10): 1069−1080.

    ZHANG Tiantian, WANG Xuan, REN Haibao, et al. A comparative study on the community characteristics of secondary and old-growth evergreen broad-leaved forests in Gutianshan, Zhejiang Province [J]. Biodiversity Science, 2019, 27(10): 1069−1080.
    [11] 宋永昌, 阎恩荣, 宋坤. 中国常绿阔叶林8大动态监测样地植被的综合比较[J]. 生物多样性, 2015, 23(2): 139−148.

    SONG Yongchang, YAN Enrong, SONG Kun. Synthetic comparison of eight dynamics plots in evergreen broadleaf forests, China [J]. Biodiversity Science, 2015, 23(2): 139−148.
    [12] 刘啸林, 吴友贵, 张敏华, 等. 浙江百山祖25 ha亚热带森林动态监测样地群落组成与结构特征[J]. 生物多样性, 2024, 32(2): 25−35.

    LIU Xiaolin, WU Yougui, ZHANG Minhua, et al. Community composition and structure of a 25 ha forest dynamics plot of subtropical forest in Baishanzu, Zhejiang Province [J]. Biodiversity Science, 2024, 32(2): 25−35.
    [13] ZHANG Yun, LI Xinke, KONG Zhaochen, et al. Subtropical forest vegetation development and climate change in Baishanzu area of Zhejiang Province, China, since the Holocene [J/OL]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2022, 608 : 111293[2024-07-01]. DOI: 10.1016/j.palaeo.2022.111293.
    [14] 米湘成, 余建平, 王宁宁, 等. 基于激光雷达技术估算钱江源国家公园森林的地上生物量[J]. 北京林业大学学报, 2022, 44(10): 77−84.

    MI Xiangcheng, YU Jianping, WANG Ningning, et al. Utilizing LiDAR technology to estimate forest aboveground biomass in Qianjiangyuan National Park, Jiangxi Province of Eastern China [J]. Journal of Beijing Forestry University, 2022, 44(10): 77−84.
    [15] 寿佳君, 薛乾怀, 王鑫洋, 等. 浙江古田山亚热带常绿阔叶林叶衰老物候影响因子研究[J]. 热带亚热带植物学报, 2023, 31(2): 181−191.

    SHOU Jiajun, XUE Qianhuai, WANG Xinyang, et al. Studies on affecting factors of leaf senescence phenology in a subtropical evergreen broad-leaved forest in Gutianshan, Zhejiang Province [J]. Journal of Tropical and Subtropical Botany, 2023, 31(2): 181−191.
    [16] 刘菊莲, 韦博良, 吴雁南, 等. 浙江九龙山常绿阔叶林不同物种的径级结构及空间关联[J]. 浙江农林大学学报, 2023, 40(3): 598−607.

    LIU Julian, WEI Boliang, WU Yannan, et al. Size structure and spatial association of different species of an evergreen broad-leaved forest in Jiulong Mountain, Zhejiang Province [J]. Journal of Zhejiang A&F University, 2023, 40(3): 598−607.
    [17] 戴尊, 陈星, 张建行, 等. 浙江乌岩岭国家级自然保护区叶附生苔类及附主植物多样性[J]. 生物多样性, 2022, 30(1): 124−131.

    DAI Zun, CHEN Xing, ZHANG Jianhang, et al. Species diversity of epiphyllous liverworts and host plants in the Wuyanling National Nature Reserve, Zhejiang Province [J]. Biodiversity Science, 2022, 30(1): 124−131.
    [18] CONDIT R. Tropical Forest Census Plots: Methods and Results from Barro Colorado Island, Panama, and a Comparison with other Plots [M]. Berlin: Springer, 1998.
    [19] 方精云, 郭柯, 王国宏, 等. 《中国植被志》的植被分类系统、植被类型划分及编排体系[J]. 植物生态学报, 2020, 44(2): 96−110.

    FANG Jingyun, GUO Ke, WANG Guohong, et al. Vegetation classification system and classification of vegetation types used for the compilation of vegetation of China [J]. Chinese Journal of Plant Ecology, 2020, 44(2): 96−110.
    [20] LIU Jinliang, ZHONG Yuchen, ZHONG Lei, et al. The asymmetric relationships of the distribution of conspecific saplings and adults in forest fragments [J]. Journal of Plant Ecology, 2020, 13(4): 398−404.
    [21] WEI Shiguang, LI Lin, BAI Kundong, et al. Community structure and species diversity dynamics of a subtropical evergreen broad-leaved forest in China: 2005 to 2020 [J]. Plant Diversity, 2024, 46(1): 70−77.
    [22] CHIU C H, WANG Yiting, WALTHER B A, et al. An improved nonparametric lower bound of species richness via a modified good-turing frequency formula [J]. Biometrics, 2014, 70(3): 671−682.
    [23] OUYANG Shuai, XIANG Wenhua, WANG Xiangping, et al. Significant effects of biodiversity on forest biomass during the succession of subtropical forest in South China [J]. Forest Ecology and Management, 2016, 372: 291−302.
    [24] 邓文婕, 吴华征, 李添翔, 等. 洞头国家级海洋公园主要植被类型及其特征[J]. 植物生态学报, 2024, 48(2): 254−268.

    DENG Wenjie, WU Huazheng, LI Tianxiang, et al. Main vegetation types and characteristics in Dongtou national marine park, Zhejiang, China [J]. Chinese Journal of Plant Ecology, 2024, 48(2): 254−268.
    [25] 田磊, 于明坚, 陈建华, 等. 基于样方法的浙江省11个自然保护区木本植物区系成分分析[J]. 浙江大学学报(理学版), 2015, 42(1): 28−37.

    TIAN Lei, YU Mingjian, CHEN Jianhua, et al. Analysis of woody flora based on quadrat method in eleven natural reserves of Zhejiang Province [J]. Journal of Zhejiang University (Science Edition), 2015, 42(1): 28−37.
    [26] ZHANG Wenxin, HUANG Dizhou, WANG Renqing, et al. Altitudinal patterns of species diversity and phylogenetic diversity across temperate mountain forests of Northern China [J/OL]. PLoS One, 2016, 11 (7): e0159995[2024-07-01]. DOI: 10.1371/journal.pone.0159995.
    [27] GALVÁN-CISNEROS C M, VILLA P M, COELHO A J P, et al. Altitude as environmental filtering influencing phylogenetic diversity and species richness of plants in tropical mountains [J]. Journal of Mountain Science, 2023, 20(2): 285−298.
    [28] 林阳, 李时轩, 周伟龙, 等. 百山祖国家公园植物群落αβ多样性对海拔梯度的响应[J]. 生态学报, 2024, 44(17): 7700−7712.

    LIN Yang, LI Shixuan, ZHOU Weilong, et al. α and β diversity patterns of woody plant communities along an elevation gradient in Baishanzu National Park [J]. Acta Ecologica Sinica, 2024, 44(17): 7700−7712.
    [29] 李大标, 钟毓萍, 龚笑飞, 等. 浙江遂昌马尾松林物种和谱系β多样性驱动因子分析[J]. 广西植物, 2023, 43(7): 1258−1267.

    LI Dabiao, ZHONG Yuping, GONG Xiaofei, et al. Analysis of species and phylogenetic β diversity drivers in the Masson pine forests in Suichang, Zhejiang Province [J]. Guihaia, 2023, 43(7): 1258−1267.
    [30] 周荣飞, 吴义松, 蔡焕满, 等. 浙江五岭坑原生常绿阔叶林群落的动态特征[J]. 浙江林业科技, 2022, 42(5): 1−8.

    ZHOU Rongfei, WU Yisong, CAI Huanman, et al. Dynamic characteristics of primary evergreen broad-leaved forest in wulingkeng mountain, Zhejiang Province [J]. Journal of Zhejiang Forestry Science and Technology, 2022, 42(5): 1−8.
    [31] COLWELL R K, LEES D C. The mid-domain effect: geometric constraints on the geography of species richness [J]. Trends in Ecology & Evolution, 2000, 15(2): 70−76.
    [32] 刘秉儒. 生物多样性的海拔分布格局研究及进展[J]. 生态环境学报, 2021, 30(2): 438−444.

    LIU Bingru. Recent advances in altitudinal distribution patterns of biodiversity [J]. Ecology and Environmental Sciences, 2021, 30(2): 438−444.
    [33] LI Chaojun, LOU Hezhen, YANG Shengtian, et al. Effect of human disturbances and hydrologic elements on the distribution of plant diversity within the Shamu watershed, Mt. Yuntai Nature Reserve, China [J/OL]. Journal of Environmental Management, 2022, 311 : 114833[2024-07-01]. DOI: 10.1016/j.jenvman.2022.114833.
    [34] 隆卫革. 桂南不同造林模式对植物物种组成和多样性特征的影响[J]. 安徽农业科学, 2024, 52(8): 106−109.

    LONG Weige. Effects of different afforestation modes on characteristics of plant composition and diversity at South Guangxi [J]. Journal of Anhui Agricultural Sciences, 2024, 52(8): 106−109.
    [35] LUO Yusheng, ZHOU Mengli, JIN Shanshan, et al. Changes in phylogenetic structure and species composition of woody plant communities across an elevational gradient in the southern Taihang Mountains, China [J/OL]. Global Ecology and Conservation, 2023, 42 : e02412[2024-07-01]. DOI: 10.1016/j.gecco.2023.e02412.
    [36] 何远政, 黄文达, 赵昕, 等. 气候变化对植物多样性的影响研究综述[J]. 中国沙漠, 2021, 41(1): 59−66.

    HE Yuanzheng, HUANG Wenda, ZHAO Xin, et al. Review on the impact of climate change on plant diversity [J]. Journal of Desert Research, 2021, 41(1): 59−66.
    [37] NISHIZAWA K, SHINOHARA N, CADOTTE M W, et al. The latitudinal gradient in plant community assembly processes: a meta-analysis [J]. Ecology Letters, 2022, 25(7): 1711−1724.
    [38] 李林, 魏识广, 练琚愉, 等. 亚热带不同纬度植物群落物种多样性分布规律[J]. 生态学报, 2020, 40(4): 1249−1257.

    LI Lin, WEI Shiguang, LIAN Juyu, et al. Distributional regularity of species diversity in plant community at different latitudes in subtropics [J]. Acta Ecologica Sinica, 2020, 40(4): 1249−1257.
    [39] 汤明华, 刘娟, 高林, 等. 基于森林资源清查资料的盈江县森林生物量和生长量分析[J]. 西部林业科学, 2024, 53(1): 129−137.

    TANG Minghua, LIU Juan, GAO Lin, et al. Forest biomass and growth in Yingjiang County based on forest resource inventory data [J]. Journal of West China Forestry Science, 2024, 53(1): 129−137.
    [40] 窦啸文, 吴登瑜, 张笑菁, 等. 天目山常绿阔叶林胸高断面积生长量影响因子研究[J]. 浙江农林大学学报, 2023, 40(5): 1063−1072.

    DOU Xiaowen, WU Dengyu, ZHANG Xiaojing, et al. Study on the factors affecting breast-height basal area increment of evergreen broad-leaved forest in Mount Tianmu [J]. Journal of Zhejiang A&F University, 2023, 40(5): 1063−1072.
    [41] 朱杰, 吴安驰, 邹顺, 等. 南亚热带常绿阔叶林树木多样性与生物量和生产力的关联及其影响因素[J]. 生物多样性, 2021, 29(11): 1435−1446.

    ZHU Jie, WU Anchi, ZOU Shun, et al. Relationships between tree diversity and biomass/productivity and their influence factors in a lower subtropical evergreen broad-leaved forest [J]. Biodiversity Science, 2021, 29(11): 1435−1446.
    [42] 杨远盛, 张晓霞, 于海艳, 等. 中国森林生物量的空间分布及其影响因素[J]. 西南林业大学学报, 2015, 35(6): 45−52.

    YANG Yuansheng, ZHANG Xiaoxia, YU Haiyan, et al. The spatial distribution of China’s forest biomass and its influencing factors [J]. Journal of Southwest Forestry University, 2015, 35(6): 45−52.
    [43] 陈彭祯霓, 任亮晶, 罗辑, 等. 海螺沟冰川退缩区原生演替序列植被物种多样性与生物量的关系[J]. 应用与环境生物学报, 2022, 28(5): 1129−1136.

    CHEN Pengzhenni, REN Liangjing, LUO Ji, et al. Relationship between biodiversity and biomass along the primary succession chronosequence in the foreland of the Hailuogou Glacier [J]. Chinese Journal of Applied and Environmental Biology, 2022, 28(5): 1129−1136.
  • [1] 窦啸文, 吴登瑜, 张笑菁, 汤孟平.  天目山常绿阔叶林胸高断面积生长量影响因子研究 . 浙江农林大学学报, 2023, 40(5): 1063-1072. doi: 10.11833/j.issn.2095-0756.20220651
    [2] 刘宣, 肖洒, 朱鹏, 杜婷, 李济宏, 洪宗文, 袁春阳, 兰婷, 李晗, 谭波, 徐振锋, 张健, 游成铭.  亚热带同质园不同人工林的生物量和林下植被多样性差异 . 浙江农林大学学报, 2022, 39(4): 717-726. doi: 10.11833/j.issn.2095-0756.20210562
    [3] 韩泽民, 李源, 王熊, 菅永峰, 周靖靖, 佃袁勇, 黄光体.  不同演替程度下马尾松人工林生物多样性对生物量的影响 . 浙江农林大学学报, 2021, 38(2): 246-252. doi: 10.11833/j.issn.2095-0756.20200334
    [4] 龙俊松, 汤孟平.  天目山常绿阔叶林空间结构与地形因子的关系 . 浙江农林大学学报, 2021, 38(1): 47-57. doi: 10.11833/j.issn.2095-0756.20200267
    [5] 金超, 李领寰, 吴初平, 姚良锦, 朱锦茹, 袁位高, 江波, 焦洁洁.  浙江省公益林生物多样性和立地对生物量的影响 . 浙江农林大学学报, 2021, 38(6): 1083-1090. doi: 10.11833/j.issn.2095-0756.20200696
    [6] 曾洪, 陈聪琳, 喻静, 向琳, 孙一淼, 胡明玥, 郝建锋.  人为干扰对雅安苍坪山公园桉树人工林物种多样性和生物量的影响 . 浙江农林大学学报, 2021, 38(2): 253-261. doi: 10.11833/j.issn.20950756.20200312
    [7] 方国景, 汤孟平.  天目山常绿阔叶林优势种群胸径的空间连续性分析 . 浙江农林大学学报, 2014, 31(5): 663-667. doi: 10.11833/j.issn.2095-0756.2014.05.001
    [8] 陈小荣, 陈圆圆, 骆争荣, 丁炳扬.  百山祖中山中亚热带常绿阔叶林群落5年动态特征 . 浙江农林大学学报, 2013, 30(6): 821-829. doi: 10.11833/j.issn.2095-0756.2013.06.004
    [9] 杜华强, 汤孟平, 崔瑞蕊.  天目山常绿阔叶林土壤养分的空间异质性 . 浙江农林大学学报, 2011, 28(4): 562-568. doi: 10.11833/j.issn.2095-0756.2011.04.007
    [10] 杨国平, 巩合德, 郑征, 张一平, 刘玉洪, 鲁志云.  哀牢山常绿阔叶林优势树种热值与养分特征 . 浙江农林大学学报, 2010, 27(2): 251-258. doi: 10.11833/j.issn.2095-0756.2010.02.015
    [11] 简敏菲, 刘琪璟, 梁跃龙, 唐培荣.  九连山常绿阔叶林群落的结构与种类数量特征 . 浙江农林大学学报, 2008, 25(4): 458-463.
    [12] 巩合德, 张一平, 刘玉洪, 杨国平, 鲁志云, 卢华正.  哀牢山常绿阔叶林林冠的截留特征 . 浙江农林大学学报, 2008, 25(4): 469-474.
    [13] 方国景, 汤孟平, 章雪莲.  天目山常绿阔叶林的混交度研究 . 浙江农林大学学报, 2008, 25(2): 216-220.
    [14] 江挺, 汤孟平.  天目山常绿阔叶林优势种群竞争的数量关系 . 浙江农林大学学报, 2008, 25(4): 444-450.
    [15] 哀建国, 翁国杭, 董蔚.  石垟森林公园常绿阔叶林主要种群的种间联结性 . 浙江农林大学学报, 2008, 25(3): 324-330.
    [16] 杨同辉, 达良俊, 李修鹏.  浙江天童国家森林公园常绿阔叶林生物量研究(Ⅱ)群落生物量及其分配规律 . 浙江农林大学学报, 2007, 24(4): 389-395.
    [17] 汤孟平, 周国模, 施拥军, 陈永刚, 吴亚琪, 赵明水.  天目山常绿阔叶林群落最小取样面积与物种多样性 . 浙江农林大学学报, 2006, 23(4): 357-361.
    [18] 范海兰, 洪伟, 洪滔, 吴承祯, 宋萍, 朱慧, 张琼, 林勇明.  炼山对南酸枣人工林林下物种多样性的影响 . 浙江农林大学学报, 2005, 22(5): 495-500.
    [19] 杨同辉, 达良俊, 宋永昌, 杨永川, 王良衍.  浙江天童国家森林公园常绿阔叶林生物量研究(Ⅰ)群落结构及主要组成树种生物量特征 . 浙江农林大学学报, 2005, 22(4): 363-369.
    [20] 金则新.  浙江天台山常绿阔叶林次生演替序列群落物种多样性 . 浙江农林大学学报, 2002, 19(2): 133-137.
  • 期刊类型引用(6)

    1. 周泽建,冯金朝. 走马胎灰分对光的响应特征及其与生长指标的相关性. 热带亚热带植物学报. 2024(01): 111-117 . 百度学术
    2. 王改萍,章雷,赵慧琴,曹福亮,丁延朋,王峥. 光质对银杏苗木生长及黄酮类化合物积累的影响. 云南农业大学学报(自然科学). 2024(03): 163-171 . 百度学术
    3. 黄丽容,李翠,唐春风,黄燕芬,张占江,郭晓云. 不同光质对岩黄连生长发育、细胞结构及有效成分含量的影响. 中国农业大学学报. 2024(10): 151-160 . 百度学术
    4. 张清懿,钟冰,陈月韵,王宏斌,靳红磊. 蓝光对荆芥光合作用及活性成分积累的影响. 植物生理学报. 2024(12): 1823-1832 . 百度学术
    5. 范兴,卢燕燕,吴建文. 基于代谢组学分析光照对油茶鲜果后熟过程代谢物的影响. 食品研究与开发. 2022(21): 40-50 . 百度学术
    6. 曾译欧. 光照对植物枝叶生长和生物量的影响研究进展. 农业技术与装备. 2022(12): 57-59 . 百度学术

    其他类型引用(6)

  • 加载中
  • 链接本文:

    https://zlxb.zafu.edu.cn/article/doi/10.11833/j.issn.2095-0756.20240456

    https://zlxb.zafu.edu.cn/article/zjnldxxb/2025/1/12

图(5) / 表(2)
计量
  • 文章访问数:  358
  • HTML全文浏览量:  74
  • PDF下载量:  54
  • 被引次数: 12
出版历程
  • 收稿日期:  2024-07-21
  • 修回日期:  2024-10-20
  • 录用日期:  2024-12-06
  • 网络出版日期:  2025-01-20
  • 刊出日期:  2025-02-20

百山祖国家公园与邻近地区常绿阔叶林群落特征比较

doi: 10.11833/j.issn.2095-0756.20240456
    基金项目:  百山祖国家公园科研项目(2023JBGS01,2021KFLY10,2021ZDZX01,2023JBGS08);浙江省“尖兵”“领雁”研发攻关计划项目(2023C03137)
    作者简介:

    龙丹(ORCID: 0009-0006-5615-4203),从事群落生态学研究。E-mail: longdan_dan99@163.com

    通信作者: 刘金亮(ORCID: 0000-0002-2476-1803),副教授,博士,从事群落生态学和岛屿生物地理学研究。E-mail: jinliang.liu@foxmail.com
  • 中图分类号: S718.5

摘要:   目的  百山祖国家公园具有典型且完整的亚热带森林生态系统,垂直带谱完整,原生常绿阔叶林面积分布广泛。通过比较分析百山祖国家公园常绿阔叶林与邻近其他自然保护区和非自然保护区内分布的常绿阔叶林的群落结构和物种多样性,有助于理解百山祖常绿阔叶林群落特征,为亚热带常绿阔叶林保护和退化植被生态恢复策略提供科学依据。  方法  选择百山祖国家公园(凤阳山和五岭坑)、九龙山、乌岩岭和古田山等4个国家级自然保护区和非自然保护区内的常绿阔叶林为研究对象,设置50个30 m×30 m的森林固定监测样地,针对样地内所有胸径≥1 cm的木本植物,利用方差分析、基于Bray-Curtis相异度指数的主坐标分析和置换方差分析等方法,比较各地区常绿阔叶林中所有木本植物成树和幼树的物种α多样性差异、物种组成差异和生物量差异。  结果  ①50个样地中共发现57科128属304种木本植物;其中百山祖国家公园的样地内有52科108属241种,优势种为木荷Schima superba和甜槠Castanopsis eyrei。②五岭坑的所有木本植物和幼树的物种α多样性最高,且国家公园和自然保护区的所有木本植物、成树和幼树的物种α多样性都高于非自然保护区。③五岭坑和凤阳山之间的所有木本植物、成树和幼树的物种组成均存在显著差异,且与其他地区的物种组成均存在差异。④凤阳山、五岭坑及乌岩岭和非保护区之间所有木本植物、成树或幼树的生物量均无显著差异,但五岭坑和凤阳山的幼树生物量显著低于古田山(P<0.05)。  结论  百山祖国家公园常绿阔叶林中的物种组成和多样性、生态系统功能等不仅在公园内不同海拔区域中存在差异,也与亚热带其他地区常绿阔叶林存在差异,说明该公园内的常绿阔叶林具有一定的独特性。图5表2参43

English Abstract

张雅楠, 徐婷婷, 许好标, 等. 陆地棉早花基因GhPRR9的功能分析及验证[J]. 浙江农林大学学报, 2025, 42(1): 74−85 doi:  10.11833/j.issn.2095-0756.20240267
引用本文: 龙丹, 吴逸卿, 周伟龙, 等. 百山祖国家公园与邻近地区常绿阔叶林群落特征比较[J]. 浙江农林大学学报, 2025, 42(1): 12−22 doi:  10.11833/j.issn.2095-0756.20240456
ZHANG Ya’nan, XU Tingting, XU Haobiao, et al. Functional analysis and validation of early flowering gene GhPRR9 in Gossypium hirsutum[J]. Journal of Zhejiang A&F University, 2025, 42(1): 74−85 doi:  10.11833/j.issn.2095-0756.20240267
Citation: LONG Dan, WU Yiqing, ZHOU Weilong, et al. Differences in community characteristics of evergreen broad-leaved forests between Baishanzu National Park and adjacent areas[J]. Journal of Zhejiang A&F University, 2025, 42(1): 12−22 doi:  10.11833/j.issn.2095-0756.20240456
  • 钱江源-百山祖国家公园分为钱江源和百山祖2个园区,其中百山祖园区(以下称百山祖国家公园)涵盖了中亚热带东部山地生态系统完整的垂直带谱(低海拔和中山地带均有常绿阔叶林分布),完好地保存了浙闽赣交界山地的代表性和典型性植被和生态系统。其中,百山祖国家公园内保留着大面积迄今未受人为显著干扰的甜槠Castanopsis eyrei-木荷Schima superba和青冈Quercus glauca等常绿阔叶林,这些常绿阔叶林是百山祖国家公园中最具原真性和代表性的植物群落类型之一[1]

    亚热带常绿阔叶林是世界主要森林植被类型之一,主要分布在中国,分布区域约占中国国土面积的1/4,以中亚热带的常绿阔叶林最为典型[2]。由于受到人类干扰的作用,尤其在中国经济发达的东部地区,亚热带原生常绿阔叶林绝大部分退化为次生林或被改造为人工林,老龄林或原生林几乎丧失殆尽[3]。因此,了解百山祖国家公园内的常绿阔叶林的群落结构、物种多样性和生态系统功能,并与周边区域亚热带常绿阔叶林进行对比研究,对于亚热带地区植被恢复、生物多样性保护和生态系统功能提升等均具有重要的理论指导意义。

    目前,针对亚热带常绿阔叶林的相关研究主要集中在中国东部亚热带地区,在局域尺度上探讨亚热带常绿阔叶林的群落特征和生境特点[4]、物种多样性和物种共存机制[5]、演替动态与干扰和气候的关系[67]以及群落结构和更新[89]等方面。张田田等[10]、宋永昌等[11]还在区域尺度上比较了中国亚热带不同区域分布的常绿阔叶林物种组成及群落特征,但尚未包括百山祖国家公园内中山地带和低海拔地带分布的大面积常绿阔叶林。目前,针对百山祖国家公园常绿阔叶林的研究主要以公园内的5和25 hm2常绿阔叶林固定样地为研究平台,在局域尺度上对常绿阔叶林的物种组成、群落特征和群落动态等方面进行了研究[1213]。因此,为进一步了解百山祖国家公园的常绿阔叶林的特点及与邻近其他地区常绿阔叶林群落特征差异,本研究选择分布于百山祖国家公园内的五岭坑和凤阳山,邻近地区的古田山、九龙山和乌岩岭等自然保护区内以及非自然保护区内的常绿阔叶林为研究对象,设置森林固定监测样地,结合样地内物种组成数据,比较α多样性指数、β多样性指数和生物量等的差异,对于理解亚热带常绿阔叶林的特征以及探讨百山祖常绿阔叶林原生性、完整性和代表性具有重要意义。此外,通过比较百山祖国家公园与临近地区常绿阔叶林的群落结构和物种组成差异,对于理解常绿阔叶林的群落特征、演替动态、植被恢复等均具有理论指导意义。

    • 钱江源-百山祖国家公园地处浙江省西南部,面积约754 km2。本研究选取百山祖园区作为研究区域,包含龙泉片区和庆元片区,是中亚热带常绿阔叶林生态系统的典型代表[14]。在百山祖国家公园庆元片区五岭坑(WLK)低海拔区域,分布有大面积以甜槠和木荷为优势种的常绿阔叶林,在龙泉片区凤阳山(FYS)的中海拔地带分布有大面积以木荷、褐叶青冈Cyclobalanopsis stewardiana和甜槠为优势种的常绿阔叶林。

      为与临近区域分布的常绿阔叶林进行比较研究,选择浙江省内其他3个国家级自然保护区,分别为古田山国家级自然保护区(GTS)[15]、九龙山国家级自然保护区(JLS)[16]、乌岩岭国家级自然保护区(WYL)[17]以及非自然保护区(FZR)内的常绿阔叶林(表1)。以上研究区域的气候类型均属于中亚热带季风气候。

      表 1  样地基本信息

      Table 1.  Basic information of sample plots

      研究区域 样地名称 纬度(N) 经度(E) 样地数量/个 海拔/m 优势种
      百山祖国家公园龙泉片区 凤阳山(FYS) 27.912º 119.184º 14 1051~1651 木荷、褐叶青冈、甜槠
      百山祖国家公园庆元片区 五岭坑(WLK) 27.540º 119.064º 12 651~851 甜槠、木荷、米槠
      古田山国家级自然保护区 古田山(GTS) 29.255º 118.130º 2 658~708 甜槠、木荷
      九龙山国家级自然保护区 九龙山(JLS) 28.398º 118.841º 4 625~747 木荷、红楠
      乌岩岭国家级自然保护区 乌岩岭(WYL) 27.713º 119.655º 6 960~1073 甜槠、木荷
      非自然保护区 非自保护区(FZR) 27.560º 119.713º 12 381~871 甜槠、木荷、米槠
        说明:木荷Schima superba,褐叶青冈Cyclobalanopsis stewardiana,甜槠Castanopsis eyrei,米槠Castanopsis carlesii,红楠Machilus thunbergia
    • 2012—2022年,在5个研究区域共设置50个大小为30 m×30 m的常绿阔叶林样地进行调查,每个研究地点所选样地信息见表1。参照美国热带森林研究中心(Center for Tropical Forest Science, CTFS)的方法[18],将每个样地划分成36个5 m×5 m小样方,调查样地内所有胸径(DBH)≥1 cm的木本植物个体,记录物种名、胸径、树高、分枝、空间坐标及生活状态等信息。同时测定样地内生境条件,包括海拔、坡度、坡向、郁闭度和土壤类型等。

    • 根据《中国植物志》(https://www.iplant.cn/foc)和《浙江植物志(新编)》[19]将调查到的物种分为乔木、灌木和小灌木。根据植物的生活型和DBH值将样地中调查到的所有个体划分为成树和幼树,其中乔木物种DBH>10 cm为成树,DBH≤10 cm为幼树;灌木物种DBH>5 cm为成树,DBH≤5 cm为幼树;小灌木物种DBH>2 cm为成树,DBH≤2 cm为幼树[20]

    • 分别计算了样地内所有木本植物、成树和幼树的α多样性指数,包括物种丰富度指数、Shannon-Wiener多样性指数、Simpson生态优势度指数[21]以及Chao多样性指数[22]。使用vegan包中的“diversity”和“estimate”等函数计算α多样性指数。

    • 基于胸径的异速生长方程计算样地内所有木本植物物种(DBH≥1 cm)的生物量,每个个体通过累计其主干、枝、叶以及根的生物量获得个体总生物量。生物量(含地上和地下生物量)具体计算公式参考OUYANG等[23]在中国亚热带森林中构建的生物量与个体胸径间的异速生长方程。

    • 为了确定不同样地的优势种和植被类型,计算样地内不同物种的重要值,依据重要值大小确定群落优势种和植被类型[24]

      利用方差分析(ANOVA)和最小显著差异法(LSD),分析不同样地之间的所有木本植物、成树和幼树的α多样性指数以及生物量是否具有显著差异。为了比较不同样地之间的物种组成差异,基于样地间的Bray-Curtis相异度指数的主坐标分析(PCoA),将样地内木本植物数据进行降维处理,使用vegan包中的“adonis”函数进行了999次置换方差分析(PERMANOVA),检验不同分组之间的物种组成是否存在显著差异。

    • 在50个样地中共调查到23021株木本植物,隶属于57科128属304种。其中,常绿阔叶树种占比最高,共172种,隶属于32科60属;落叶阔叶树种共123种,隶属于40科75属;针叶树种占比最少,共3科7属9种。在百山祖国家公园中共调查到10 935株个体,隶属于52科108属241种,优势种为木荷与甜槠,其中成树多度占比34%,幼树多度占比66%。古田山自然保护区样地中优势种为甜槠和木荷,其中,成树多度占比23%,幼树多度占比77%。九龙山自然保护区样地中优势种为木荷和红楠,其中成树多度占比26%,幼树多度占比74%。乌岩岭自然保护区样地优势种为甜槠和木荷,其中成树多度占比24%,幼树多度占比76%。非自然保护区样地优势种为甜槠、木荷和米槠,成树多度占比32%,幼树多度占比68%。

    • 当考虑所有木本植物时,4种α多样性指数差异呈现相同趋势(图1)。百山祖国家公园五岭坑所有木本植物的物种丰富度指数、Shannon指数和Simpson指数都显著高于凤阳山(P<0.05),Chao指数无显著差异,但五岭坑与九龙山和乌岩岭所有木本植物的物种α多样性均无显著差异,凤阳山与古田山所有木本植物的物种α多样性均无显著差异。非自然保护区所有树种的物种α多样性显著低于百山祖国家公园、九龙山和乌岩岭(P<0.05),与古田山无显著差异。

      图  1  不同研究区域常绿阔叶林所有木本植物物种α多样性

      Figure 1.  Differences in species α richness of all woody plants in different plots

      当考虑样地内成树的物种多样性时(图2),百山祖国家公园内五岭坑成树的Shannon指数显著高于凤阳山样地(P<0.05),而物种丰富度,Simpson指数和Chao指数无显著差异。五岭坑与古田山和乌岩岭样地成树的物种α多样性无显著差异。凤阳山成树的物种丰富度和Shannon指数显著低于乌岩岭(P<0.05),与古田山和九龙山无显著差异。非自然保护区成树的物种α多样性显著低于百山祖国家公园和乌岩岭(P<0.05),Simpson指数显著低于古田山和九龙山(P<0.05)。

      图  2  不同研究区域常绿阔叶林木本植物成树物种α多样性

      Figure 2.  Differences in species α richness of mature trees in different plots

      当考虑样地内幼树的物种多样性时(图3),百山祖国家公园五岭坑幼树的物种丰富度指数,Shannon指数和Simpson指数都显著高于凤阳山样地(P<0.05),Chao指数无显著差异,但五岭坑与九龙山和乌岩岭幼树α多样性无显著差异。凤阳山,古田山和非自然保护区幼树的物种丰富度,Shannon指数和Simpson指数无显著差异。非自然保护区幼树的物种丰富度,Shannon指数和Chao指数显著低于五岭坑、九龙山和乌岩岭(P<0.05)。

      图  3  不同研究区域常绿阔叶林木本植物幼树物种α多样性

      Figure 3.  Differences in species α richness of saplings in different plots

    • 对于所有木本植物的物种组成,百山祖国家公园中凤阳山和五岭坑样地的物种组成存在显著差异(PERMANOVA检验:F=8.138,P=0.001),凤阳山的物种组成与古田山、九龙山和乌岩岭的更为相似,而五岭坑的物种组成与非自然保护区的物种组成更为相似(图4A表2)。对于成树,凤阳山与乌岩岭的物种组成更相似,具有最低的Bray-Curtis指数值,凤阳山与五岭坑(F=7.261,P=0.001),九龙山以及非自然保护区(F=4.823,P=0.001)的物种组成存在显著差异(图4B表2),而五岭坑、九龙山以及非自然保护区的物种组成更相似。凤阳山与乌岩岭的幼树物种组成相似,且五岭坑幼树物种与非自然保护区幼树物种组成更相似,具有最低的Bray-Curtis指数值(图4C表2)。

      图  4  不同研究区域常绿阔叶林木本植物物种组成的差异

      Figure 4.  Differences in species composition of woody plants among different plots

      表 2  不同研究区域之间常绿阔叶林木本植物的Bray-Curtis值以及物种组成显著差异(PERMANOVA)的检验

      Table 2.  Bray-Curtis values of woody plants among different plots and the test of significant differences in species composition (PERMANOVA)

      研究对象 项目 Bray-Curtis 平方和 R2 F P
      所有木本植物 FYS/WLK 0.706 1.867 0.253 8.138 ≤0.001
      FYS/WYL 0.467 0.729 0.149 3.153 0.002
      FYS/FZR 0.648 1.436 0.182 5.347 ≤0.001
      WLK/WYL 0.637 1.366 0.328 7.807 ≤0.001
      WLK/FZR 0.582 1.433 0.220 6.204 ≤0.001
      成树 FYS/WLK 0.771 1.904 0.232 7.261 ≤0.001
      FYS/WYL 0.628 0.778 0.142 2.977 0.003
      FYS/FZR 0.711 1.387 0.167 4.823 ≤0.001
      WLK/WYL 0.646 1.285 0.272 5.986 ≤0.001
      WLK/FZR 0.631 1.458 0.205 5.689 ≤0.001
      幼树 FYS/WLK 0.685 1.656 0.218 6.700 ≤0.001
      FYS/WYL 0.443 0.708 0.137 2.869 0.002
      FYS/FZR 0.655 1.399 0.166 4.786 ≤0.001
      WLK/WYL 0.653 1.321 0.295 6.683 ≤0.001
      WLK/FZR 0.575 1.165 0.169 4.469 ≤0.001
        说明:本表仅包含具有显著差异的结果。FYS. 凤阳山;WLK. 五岭坑;GTS. 古田山;JLS. 九龙山;WYL.乌岩岭;FZR. 非自然保护区。
    • 在考虑样地内所有木本植物的生物量时,百山祖国家公园内凤阳山、五岭坑,乌岩岭和非自然保护区之间的生物量无显著性差异,但均显著(P<0.05)低于古田山,高于九龙山(图5A)。凤阳山、五岭坑、古田山、乌岩岭以及非自然保护区之间成树的生物量都没有显著差异,且除乌岩岭外,均显著高于九龙山(图5B)。古田山具有最高的幼树生物量,显著(P<0.05)高于凤阳山、五岭坑、九龙山,乌岩岭和非自然保护区等其他研究区域(P<0.05),且其他样地之间的幼树生物量均无显著差异(图5C)。

      图  5  不同研究区域中木本植物的生物量差异

      Figure 5.  Differences in biomass of woody plants among different plots

    • 中国具有世界上分布最广、类型最为丰富的亚热带森林,其结构复杂,物种丰富,提供了稳定的生态系统服务价值。本研究系统分析并比较了中国亚热带地区百山祖国家公园内常绿阔叶林与其他自然保护区和非自然保护区内常绿阔叶林的群落特征。研究发现百山祖国家公园内五岭坑所有木本植物物种α多样性显著高于凤阳山,这与田磊等[25]的研究结果一致,可能与凤阳山和五岭坑所处的海拔差异有关。海拔通过影响气温和降水等影响物种α多样性,但物种α多样性随海拔的变化关系尚缺乏统一的格局[2627]。林阳等[28]发现:在百山祖国家公园内不同海拔梯度的木本植物物种α多样性与海拔梯度呈显著负相关。随着海拔的升高,气温降低,常绿阔叶树种的生长受到限制,这可能导致高海拔凤阳山比低海拔五岭坑的物种α多样性低。进一步通过对比分析不同生长型幼树和成树物种α多样性的差异,发现五岭坑幼树的物种α多样性显著高于凤阳山,但2个样地内成树的物种α多样性没有显著差异。这说明低海拔区域幼树的物种多样性显著高于高海拔区域。与成树相比,幼树的物种α多样性可能更容易受到生物和非生物因子的影响[29]。五岭坑样地处于较低海拔范围,与高海拔的凤阳山比较,五岭坑内群落生境更加稳定,可能更有利于幼树的更新和生长[30]

      “中间膨胀效应”假说认为不同物种的分布范围相互重叠,但是由于边界限制,使得不同物种的分布范围在边界处重叠小,在中心地区重叠大[31]。在百山祖国家公园和选择的自然保护区中,处于中间海拔梯度的五岭坑样地、乌岩岭样地以及九龙山样地内,总体上物种α多样性都处于较高水平,符合这一假说,从而导致处于中间海拔样地的物种丰富度更高,多项研究也证实了这一结论[32]

      另外,非自然保护区的物种α多样性显著低于自然保护区,可能与人为干扰对物种多样性的影响有关[33]。通常自然保护区限制人为活动(如砍伐或择伐),同时也对自然保护区内的物种进行特定的保护,因而具有更高的物种α多样性。

    • 物种组成差异能够反映群落间的异质性,物种组成相似度越高,群落间异质性和群落生境条件的异质性越小[34]。植物群落所处的生境条件、气候因子以及区域物种库等不同均会影响群落间物种组成的差异。如海拔可以通过影响温度和水分改变群落环境,进而影响群落内物种组成[35]。本研究发现:百山祖国家公园内凤阳山和五岭坑的常绿阔叶林中所有木本植物、成树和幼树的物种组成均存在显著差异,可能与2个区域所处的海拔不同有关。随海拔变化,不同物种对温度和水分等环境因子的耐受性不同,在海拔梯度上的分布范围也会不同[36]。如五岭坑样地主要分布在低海拔区域(海拔为651~851 m),乔木层优势种主要为甜槠和木荷,样地内木本植物的叶生活型以常绿阔叶树种为主(常绿阔叶树种122种、落叶树种39种和针叶树种2种),而处于高海拔的凤阳山样地(海拔为1051~1651 m),常绿阔叶树种中的青冈类和杜鹃类以及落叶树种和针叶树种的种类比例增加(常绿阔叶树种97种、落叶树种69种和针叶树种7种)。同时,除了海拔对物种组成的影响外,纬度梯度也会对物种组成产生影响[37]。李林等[38]发现相近纬度和海拔上的物种组成更相似。本研究中凤阳山和乌岩岭所处海拔和纬度更接近,2个样地所有木本植物、成树和幼树物种组成更加相似,五岭坑与非自然保护区海拔和纬度相近,物种组成也更相似。

    • 生物量是衡量森林生态系统生产力的重要指标,同时也是评估森林碳汇的重要参数[39]。在森林生态系统中,气候、土壤理化性质和地形等非生物因子[40]以及群落的演替历史和物种组成等生物因子[41]都是影响生物量的重要因素。如森林生物量随年均气温和年均降水的提高而逐渐升高[42],处于演替前期的次生林相比于演替后期原生林或老龄林具有更低的生物量[43]。本研究中,百山祖国家公园内的凤阳山和五岭坑区域,虽然海拔上存在差异,但2个区域间所有木本植物、成树和幼树的生物量均无显著差异,说明环境因子虽然对2个区域的物种组成和物种多样性产生了较大的影响,但对于生物量并无显著影响。本研究中古田山所有木本植物和幼树的生物量显著高于其他样地,其他各区域间幼树的生物无显著差异。结合样地中不同生长型的树种多度发现:虽然样地中幼树的多度占比均显著高于成树,但古田山幼树多度占比最高。此外,样地内壳斗科植物个体的生物量普遍高于其他物种,可能使壳斗科植物占比高的群落生物量更高。进一步分析各样地幼树中壳斗科个体多度占比发现,古田山壳斗科幼树多度占比高于凤阳山、五岭坑、九龙山、乌岩岭和非自然保护区。因此,古田山具有更高的幼树生物量,也可能与样地内壳斗科物种个体占比较高有关。本研究结果也说明物种组成是影响生物量的主要原因之一。为更全面反映百山祖国家公园与邻近地区常绿阔叶林群落特征比较,后续研究应增加研究样地的数量和分布范围。

    • 百山祖国家公园内凤阳山和五岭坑常绿阔叶林群落的物种多样性和物种组成存在显著差异,但生物量并无显著差异。相比于其他区域的常绿阔叶林,五岭坑常绿阔叶林具有更高的物种多样性。同时,国家公园和自然保护区内分布的常绿阔叶林物种多样性显著高于非自然保护区。在物种组成方面,五岭坑常绿阔叶林与同纬度的非自然保护区常绿阔叶林物种组成更为相似,而凤阳山则与乌岩岭常绿阔叶林的物种组成更相似。本研究结果表明:受海拔、纬度、群落演替历史和人类干扰等的影响,百山祖国家公园内分布的低海拔和中山地带常绿阔叶林中的物种多样性、物种组成和生态系统功能等不仅在公园内存在差异,尤其在五岭坑分布的以甜槠-木荷为优势种的典型常绿阔叶林和中山地带分布的以褐叶青冈等为优势种的山地常绿阔叶林,也与亚热带其他地区常绿阔叶林存在差异,说明该公园内保存的亚热带常绿阔叶林具有一定的独特性,具有较高的保护价值。

    • 感谢浙江大学毛志斌、韦博良,浙江师范大学林阳,中国计量大学杨中杰,华东师范大学李时轩,温州大学刘维勇、邓文婕、刘腾腾、税章利和惠城阳等,以及赖正林和姜淦冰等人参与野外调查工作。

参考文献 (43)

目录

/

返回文章
返回