JIAN Yongqi, WU Jiasen, SHENG Weixing, et al. Effects of thinning and stand types on litter stock and soil water-holding capacity[J]. Journal of Zhejiang A&F University, 2021, 38(2): 320-328. DOI: 10.11833/j.issn.2095-0756.20200355
Citation: SU Yingzhang, XU Wenbing, ZHANG Guoli, et al. Range precision in forestry with Reflectorless Total Station[J]. Journal of Zhejiang A&F University, 2015, 32(3): 376-383. DOI: 10.11833/j.issn.2095-0756.2015.03.007

Range precision in forestry with Reflectorless Total Station

DOI: 10.11833/j.issn.2095-0756.2015.03.007
  • Received Date: 2014-08-28
  • Rev Recd Date: 2014-11-26
  • Publish Date: 2015-06-20
  • The Reflectorless Total Station, a convenient and efficient instrument for distance measurement used more in construction surveying than in forestry, was employed to determine the influence of different factors, such as trees, walls, distance, and angle of incidence, on precision distance measurements in forestry and to determine its feasibility for use with forest surveys, a Reflectorless Total Station (SOKKIA SET1X Total Station) with trees and walls as survey targets was tested. Experimental results on precision of distance measurements showed that (1) the material quality of a wall had little effect, its error is about 0.5 mm; whereas, (2) different tree species has varying degrees of bark roughness, it had the most influence to precision distance. For example, maximum error reached 2.769 mm with a measuring distance of 20 m. (3) Surface color of the target object revealed that the darker the color the greater the influence with 1 mm of error for a 20 m distance. (4) The stability of reflected signals had an error proportional to the distance with close to 5 mm measurement error for 100 m. (5) When the angle of incidence was over 20, at 20 m the error was close to 2 mm. (6) for target trees with rough bark, randomly selected target points should be obtained to improve the precision of the distance measurement.[Ch, 2 fig. 6 tab. 17 ref.]
  • [1] LEI Zeyong, HAN Yangang, ZHAO Guojun, ZHOU Yanping, ZHANG Yansong, YU Deliang.  Growth of Mongolian pine in Zhanggutai of Liaoning Province . Journal of Zhejiang A&F University, 2018, 35(2): 324-330. doi: 10.11833/j.issn.2095-0756.2018.02.017
    [2] WANG Haibin, PENG Daoli, GAO Xiuhui, LI Wenfang.  Forest stock volume estimates in Yanqing District based on GF-1 PMS images and k-NN method . Journal of Zhejiang A&F University, 2018, 35(6): 1070-1078. doi: 10.11833/j.issn.2095-0756.2018.06.010
    [3] ZHOU Jingping, LI Cunjun, HU Haitang, TAO Huan, PENG Dailiang, XIE Chunchun, GE Yan.  Optimal resolution selection for monitoring forest vegetation using remote sensing images . Journal of Zhejiang A&F University, 2018, 35(4): 716-723. doi: 10.11833/j.issn.2095-0756.2018.04.017
    [4] ZHAO Saisai, TANG Mengping, TANG Sijia, ZHANG Jun, LI Lan, PANG Chunmei, ZHAO Mingshui.  Visualization for a Phyllostachys edulis stands . Journal of Zhejiang A&F University, 2016, 33(5): 826-833. doi: 10.11833/j.issn.2095-0756.2016.05.014
    [5] DONG Xinyu, FAN Wenyi, TIAN Tian.  Object-based forest type classification with ZY-3 remote sensing data . Journal of Zhejiang A&F University, 2016, 33(5): 816-825. doi: 10.11833/j.issn.2095-0756.2016.05.013
    [6] CHEN Jinxing, YUE Depeng, FENG Zhongke, DING Jiawei, YAO Bingquan, YE Tianxiong.  A handheld dendrometer for automatic tree diameter measurement . Journal of Zhejiang A&F University, 2016, 33(4): 589-598. doi: 10.11833/j.issn.2095-0756.2016.04.006
    [7] WANG Yueting, ZHANG Xiaoli, YANG Huiqiao, WANG Shuhan, BAI Jinting.  Forest volume estimation based on spectral and textural information from the Landsat 8 satellite . Journal of Zhejiang A&F University, 2015, 32(3): 384-391. doi: 10.11833/j.issn.2095-0756.2015.03.008
    [8] YAO Zhi, ZHANG Xiaoli.  Based on WebGIS platform developing remote sensing information systems of forest canopy density inversion . Journal of Zhejiang A&F University, 2015, 32(3): 392-398. doi: 10.11833/j.issn.2095-0756.2015.03.009
    [9] FENG Xiaona, XU Wenbing, TANG Mengping, WU Guangzheng.  Analysis of single-point positioning precision in forestry using a G330 handheld GPS receiver . Journal of Zhejiang A&F University, 2013, 30(5): 640-647. doi: 10.11833/j.issn.2095-0756.2013.05.002
    [10] WU Zhao-yan, TANG Meng-ping.  Forest landscape visualization based on SketchUp and GIS . Journal of Zhejiang A&F University, 2012, 29(3): 352-358.
    [11] WANG Xiao-ning, XU Tian-shu, LI Yi.  Estimating forest volume in hilly regions with the ALOS PALSAR model’s dual polarization data . Journal of Zhejiang A&F University, 2012, 29(5): 667-670. doi: 10.11833/j.issn.2095-0756.2012.05.005
    [12] ZOU Yi-qiao, DU Qun, GE Hong-li.  An age-based growth model applied to no-age conditions . Journal of Zhejiang A&F University, 2012, 29(6): 889-896. doi: 10.11833/j.issn.2095-0756.2012.06.013
    [13] JI Bi-yong, TAO Ji-xing, ZHANG Guo-jiang, DU Qun, YAO Hong-wen, XU Jun.  Zhejiang Province’s forest vegetation biomass assessment for guaranteed accuracy . Journal of Zhejiang A&F University, 2012, 29(3): 328-334. doi: 10.11833/j.issn.2095-0756.2012.03.002
    [14] ZHANG Guo-jiang, JI Bi-yong, WANG Wen-wu, FANG Yan-jie, LI Zuo-hui.  City-county synchronized monitoring system of forest resources in the city with districts under its jurisdiction . Journal of Zhejiang A&F University, 2011, 28(1): 46-51. doi: 10.11833/j.issn.2095-0756.2011.01.008
    [15] WANG Zu-hua, CAI Liang-liang, GUAN Qing-wei, CAI Xia.  Evaluation of forest ecosystem services in Chun’an County . Journal of Zhejiang A&F University, 2010, 27(5): 757-761. doi: 10.11833/j.issn.2095-0756.2010.05.019
    [16] XU Wen-bing, TANG Meng-ping.  ree’s 3D coordinates positioned by two-side intersection with total station . Journal of Zhejiang A&F University, 2010, 27(6): 815-820. doi: 10.11833/j.issn.2095-0756.2010.06.002
    [17] LI Yi-qiu, FENG Zhong-ke.  Non-quidistance gray mode forecast of forest resource dynamic changes in Shandong Province . Journal of Zhejiang A&F University, 2009, 26(1): 7-12.
    [18] XU Wen-bing, GAO Fei, DU Hua-qiang.  Application and precision analysis of several surveying methods in forest resources survey . Journal of Zhejiang A&F University, 2009, 26(1): 132-136.
    [19] XIA Wei-weil, HAN Hai-rong, YI Li-ta, CHENG Xiao-qin.  Dynamics of forest landscape pattern in Pangquangou National Nature Reserve . Journal of Zhejiang A&F University, 2008, 25(6): 723-727.
    [20] WANG Yi-xiang, DAI Wen-sheng, BAI Shang-bin, JIANG Feng, JIN Zu-da.  Improved survey method of ancient and famous trees . Journal of Zhejiang A&F University, 2006, 23(5): 549-553.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040Highcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 27.2 %FULLTEXT: 27.2 %META: 71.4 %META: 71.4 %PDF: 1.3 %PDF: 1.3 %FULLTEXTMETAPDFHighcharts.com
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.4 %其他: 4.4 %其他: 1.1 %其他: 1.1 %China: 1.2 %China: 1.2 %Cuernavaca: 0.1 %Cuernavaca: 0.1 %Kahramanmaraş: 0.5 %Kahramanmaraş: 0.5 %Osaka: 0.1 %Osaka: 0.1 %Rochester: 0.0 %Rochester: 0.0 %Turkey: 0.3 %Turkey: 0.3 %[]: 0.7 %[]: 0.7 %上海: 0.9 %上海: 0.9 %东莞: 0.1 %东莞: 0.1 %临汾: 0.0 %临汾: 0.0 %丽水: 0.1 %丽水: 0.1 %乐山: 0.0 %乐山: 0.0 %伊斯坦布尔: 0.1 %伊斯坦布尔: 0.1 %伊犁: 0.0 %伊犁: 0.0 %佛山: 0.1 %佛山: 0.1 %保定: 0.0 %保定: 0.0 %兰辛: 0.1 %兰辛: 0.1 %北京: 16.2 %北京: 16.2 %十堰: 0.1 %十堰: 0.1 %南京: 0.1 %南京: 0.1 %南充: 0.1 %南充: 0.1 %南宁: 0.0 %南宁: 0.0 %博阿努瓦: 0.1 %博阿努瓦: 0.1 %厦门: 0.0 %厦门: 0.0 %台北: 0.0 %台北: 0.0 %台州: 0.6 %台州: 0.6 %吉林: 0.0 %吉林: 0.0 %呼和浩特: 0.0 %呼和浩特: 0.0 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.0 %哥伦布: 0.0 %商丘: 0.1 %商丘: 0.1 %嘉兴: 0.1 %嘉兴: 0.1 %大津: 0.0 %大津: 0.0 %天津: 0.3 %天津: 0.3 %宁波: 0.0 %宁波: 0.0 %常州: 0.0 %常州: 0.0 %广州: 0.3 %广州: 0.3 %张家口: 1.7 %张家口: 1.7 %徐州: 0.0 %徐州: 0.0 %惠州: 0.1 %惠州: 0.1 %成都: 0.1 %成都: 0.1 %扬州: 0.2 %扬州: 0.2 %斯洛伐克布拉迪斯拉发: 0.1 %斯洛伐克布拉迪斯拉发: 0.1 %新乡: 0.1 %新乡: 0.1 %无锡: 0.1 %无锡: 0.1 %昆明: 0.0 %昆明: 0.0 %晋城: 0.0 %晋城: 0.0 %杭州: 4.5 %杭州: 4.5 %格兰特县: 0.0 %格兰特县: 0.0 %格里利: 0.1 %格里利: 0.1 %武汉: 0.2 %武汉: 0.2 %江门: 0.0 %江门: 0.0 %沈阳: 0.0 %沈阳: 0.0 %洛阳: 0.0 %洛阳: 0.0 %济南: 0.2 %济南: 0.2 %海得拉巴: 0.0 %海得拉巴: 0.0 %淮南: 0.1 %淮南: 0.1 %深圳: 0.5 %深圳: 0.5 %温州: 0.1 %温州: 0.1 %湖州: 0.2 %湖州: 0.2 %漯河: 0.4 %漯河: 0.4 %漳州: 0.1 %漳州: 0.1 %潍坊: 0.0 %潍坊: 0.0 %烟台: 0.1 %烟台: 0.1 %石家庄: 1.3 %石家庄: 1.3 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.0 %秦皇岛: 0.0 %纳什维尔: 0.1 %纳什维尔: 0.1 %绍兴: 0.1 %绍兴: 0.1 %芒廷维尤: 6.0 %芒廷维尤: 6.0 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.3 %苏州: 0.3 %荆门: 0.0 %荆门: 0.0 %衡水: 0.0 %衡水: 0.0 %衡阳: 0.0 %衡阳: 0.0 %衢州: 0.2 %衢州: 0.2 %西宁: 51.4 %西宁: 51.4 %西安: 0.2 %西安: 0.2 %诺沃克: 0.1 %诺沃克: 0.1 %贵阳: 0.1 %贵阳: 0.1 %赣州: 0.0 %赣州: 0.0 %达州: 0.0 %达州: 0.0 %运城: 0.4 %运城: 0.4 %邯郸: 0.2 %邯郸: 0.2 %郑州: 1.0 %郑州: 1.0 %铜川: 0.0 %铜川: 0.0 %银川: 0.0 %银川: 0.0 %长春: 0.1 %长春: 0.1 %长沙: 0.2 %长沙: 0.2 %长治: 0.0 %长治: 0.0 %阳泉: 0.3 %阳泉: 0.3 %阿克苏: 0.0 %阿克苏: 0.0 %马鞍山: 0.0 %马鞍山: 0.0 %黔西南: 0.1 %黔西南: 0.1 %其他其他ChinaCuernavacaKahramanmaraşOsakaRochesterTurkey[]上海东莞临汾丽水乐山伊斯坦布尔伊犁佛山保定兰辛北京十堰南京南充南宁博阿努瓦厦门台北台州吉林呼和浩特哈尔滨哥伦布商丘嘉兴大津天津宁波常州广州张家口徐州惠州成都扬州斯洛伐克布拉迪斯拉发新乡无锡昆明晋城杭州格兰特县格里利武汉江门沈阳洛阳济南海得拉巴淮南深圳温州湖州漯河漳州潍坊烟台石家庄福州秦皇岛纳什维尔绍兴芒廷维尤芝加哥苏州荆门衡水衡阳衢州西宁西安诺沃克贵阳赣州达州运城邯郸郑州铜川银川长春长沙长治阳泉阿克苏马鞍山黔西南Highcharts.com
  • Cited by

    Periodical cited type(16)

    1. 马关媛,蒋小金,刘佳庆,刘文杰,陈春峰,张瑞. 不同林型橡胶林土壤水分入渗特征及影响因子. 水土保持研究. 2025(01): 57-65+72 .
    2. 许在恩,叶子豪,傅伟,潘鑫,潘鑫桐,童志鹏. 间伐对千岛湖流域生态公益林氮磷养分流失的影响. 中国水土保持. 2024(02): 44-47 .
    3. 程思源,陈俏艳,乔栋,戴黎聪. 海南热带雨林不同林分凋落物储量及其持水特性. 热带地理. 2024(04): 700-708 .
    4. 沈秋红,何诗杨,许元科,吴夏华,周肄智,吴家森,叶丽敏. 间伐对杉木林枯落物和土壤水源涵养能力的动态变化分析. 福建农业科技. 2024(02): 10-15 .
    5. 陈家琛,蒋政,伍雄辉,曹光球,曹世江. 间伐对福建山区杉木人工林凋落物水文特征的影响. 生态学杂志. 2024(04): 1057-1064 .
    6. 蔚阿龙,温慧,丛日春,侯美娟,李瀚之. 坝上地区不同森林类型凋落物层水文效应. 浙江农林大学学报. 2024(05): 959-969 . 本站查看
    7. 贾亚倢,杨建英,张建军,胡亚伟,张犇,赵炯昌,李阳,唐鹏. 晋西黄土区林分密度对油松人工林生物量及土壤理化性质的影响. 浙江农林大学学报. 2024(06): 1211-1221 . 本站查看
    8. 郭海云,王根绪,孙守琴. 氮添加对亚高山针叶林土壤结构及水分入渗性能的影响. 水土保持学报. 2023(01): 238-245 .
    9. 何芳婷. 不同间伐强度对杉木人工林生长量的影响. 乡村科技. 2023(05): 101-103 .
    10. 罗秀龙,舒英格,龙慧,李雪梅. 喀斯特地区不同年限退耕草地的持水性能. 水土保持通报. 2023(05): 7-17 .
    11. 白荣芬. 辽东栎垂直层含水特征与全碳分析. 林业科技通讯. 2022(02): 64-66 .
    12. 高荣,成向荣. 间伐对杉木人工林林下植物多样性及其水源涵养能力研究. 绿色科技. 2022(08): 7-11+62 .
    13. 于忠亮,付世萃,王梓默,潘艳艳,苑景淇,杨帆,张大伟. 吉林省辽河流域不同植被类型土壤水源涵养能力分析. 中国水土保持. 2022(07): 51-55 .
    14. 王立超,夏江宝,赵玉尧,陈萍. 密度调控对鲁北黄泛平原区人工林土壤物理性质及植物多样性的影响. 水土保持通报. 2022(03): 43-48+56 .
    15. 郭昊澜,赵子豪,连晓倩,张婷,吴鹏飞. 间伐对杉木人工林水土保持功能影响的研究进展. 亚热带农业研究. 2021(04): 252-257 .
    16. 谭又铭,骆恒,陈龙,偏措西若. 不同间伐强度对德昌杉林木生长的影响. 绿色科技. 2021(23): 161-162 .

    Other cited types(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article views(2220) PDF downloads(571) Cited by(28)

Related
Proportional views

Range precision in forestry with Reflectorless Total Station

doi: 10.11833/j.issn.2095-0756.2015.03.007

Abstract: The Reflectorless Total Station, a convenient and efficient instrument for distance measurement used more in construction surveying than in forestry, was employed to determine the influence of different factors, such as trees, walls, distance, and angle of incidence, on precision distance measurements in forestry and to determine its feasibility for use with forest surveys, a Reflectorless Total Station (SOKKIA SET1X Total Station) with trees and walls as survey targets was tested. Experimental results on precision of distance measurements showed that (1) the material quality of a wall had little effect, its error is about 0.5 mm; whereas, (2) different tree species has varying degrees of bark roughness, it had the most influence to precision distance. For example, maximum error reached 2.769 mm with a measuring distance of 20 m. (3) Surface color of the target object revealed that the darker the color the greater the influence with 1 mm of error for a 20 m distance. (4) The stability of reflected signals had an error proportional to the distance with close to 5 mm measurement error for 100 m. (5) When the angle of incidence was over 20, at 20 m the error was close to 2 mm. (6) for target trees with rough bark, randomly selected target points should be obtained to improve the precision of the distance measurement.[Ch, 2 fig. 6 tab. 17 ref.]

JIAN Yongqi, WU Jiasen, SHENG Weixing, et al. Effects of thinning and stand types on litter stock and soil water-holding capacity[J]. Journal of Zhejiang A&F University, 2021, 38(2): 320-328. DOI: 10.11833/j.issn.2095-0756.20200355
Citation: SU Yingzhang, XU Wenbing, ZHANG Guoli, et al. Range precision in forestry with Reflectorless Total Station[J]. Journal of Zhejiang A&F University, 2015, 32(3): 376-383. DOI: 10.11833/j.issn.2095-0756.2015.03.007

Catalog

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return